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Abstract—We consider the problem of private approximate
nearest neighbor (ANN) search. A user seeks the closest vector
to a target query q among M vectors stored in a system
of N non-colluding databases. The user aims to retrieve the
ANN without revealing information about q to any of the N

databases. We provide an information-theoretic formulation of
the problem and propose a scheme based on a tree-structured
ANN search mechanism. The proposed scheme uses a coding-
theoretic approach to traverse the branch in the tree structure
that leads to the approximately closest vector to q while guaran-
teeing perfect information-theoretic privacy. We prove that our
approach achieves a communication cost of O(N2

M
1

N→1 ) for N

databases. For large M , this communication cost is lower than
competing cryptographic ANN search protocols.

I. INTRODUCTION

Approximate nearest neighbor (ANN) search [1], [2] aims
to retrieve the closest point within a dataset to a given target
query. ANN search is used in a multitude of applications
ranging from recommendation systems [3], image retrieval [4],
anomaly detection [5], and computational biology [6].

Recently, the emergence of transformer models [7] has led
to several new methods for creating high-dimensional vector
representations (embeddings) of text, images, speech, and
videos that capture the semantics of the underlying data [8],
[9]. Vector embedding models map data from different modali-
ties into a common vector space such that samples with similar
semantics are positioned “close together.” For instance, Open
AI’s CLIP model [8] maps images and text onto R512 such
that semantically related image-text pairs have high cosine
similarity. This new generation of embedding models reignited
interest in vector databases optimized for ANN search to
power applications ranging from reverse-image retrieval [10]
to retrieval-augmented generative models [11]–[14].

This work provides an information-theoretic formulation
to the problem of private ANN search. In this setting, a
user with a query embedding q seeks to approximate the
closest vector embedding to q within a database with M
vectors, without revealing any information on q. This setting
is the information-theoretic counterpart of the private ANN
search problem studied in cryptography under computational
security guarantees [15]–[18]. These protocols use computa-
tionally intensive tools such as oblivious RAM, garbled cir-
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cuits, and homomorphic encryption to achieve privacy against
computationally-bounded adversaries. In contrast, we aim to
guarantee perfect information-theoretic privacy of a query q
by considering multiple non-colluding databases. We propose
a coding-theoretic construction for private ANN search that
aims to reduce both communication and computational costs.

While our setting is closely related to private information
retrieval (PIR) [19]–[27], a fundamental difference exists be-
tween the objectives of the two problems. In PIR, a user
requires to download a given file from a system of databases
that store multiple files, without revealing the index of the
required file to any of the databases. Note that in PIR the
user knows the index of the file to be downloaded prior to
sending the queries. In contrast, in the problem of information-
theoretically private ANN, a user aims to find the index of
the nearest vector in the database to their query. Unlike PIR,
here the index vector is unknown a priori. Once this index
is privately obtained, the user can download the respective
vector/underlying data content using classical PIR techniques.
We foresee information-theoretic ANN as the first step of a
two-step information-theoretically secure PIR protocol: First,
a user finds the index of a file to be retrieved via private ANN
search (e.g., the index of an image whose embedding is closest
to that of a text query). Then, the user proceeds to privately
download the file via a PIR protocol such as [20], [28], [29].

The proposed scheme is based on an r-level ANN search
algorithm that divides the M vectors in the database into
M

1
r clusters in a hierarchical manner [30]–[33]. This results

in a tree-structure of clusters. For a given query q, the
algorithm traverses the branch that leads to the approximately
closest vector to q. The coding theoretic approach ensures that
no information on the branch traversed or the intermediate
clusters investigated are revealed to any of the databases,
which guarantees the privacy of q. The proposed scheme is
able to achieve a communication cost of O(N2M

1
N→1 ) with

N non-colluding databases. The cryptographic protocols [15]–
[18] that perform private ANN search achieve communication
costs of O(

→
M logM), O(M), O(logM) and O(logM),

respectively, with computational privacy guarantees. Thus, our
proposed scheme incurs a communication cost that is lower
than the cryptographic protocols in [15], [16]. Moreover, the
protocols in [17], [18] use fully-homomorphic encryption,
which, to the best of our knowledge, is not practical over



databases with thousands of entries (i.e., M > 103 [15]).

II. PROBLEM FORMULATION

Notation. [a :b] is the set of integers from a to b↑a. xT is the
transpose of vector x and ↓ denotes the Kronecker product.

We consider N non-colluding replicated vector databases
consisting of M d-dimensional vectors denoted by vi, i↔[1:M ].
The entries of each vi take values from a finite set specified by
[0 : t↗1] for some prime number t, i.e., vi↔ [0 : t↗1]d for i↔ [1 :
M ]. A user with a d-dimensional query vector q↔ [0 : t↗1]d that
is independent of all vi, requires to retrieve the closest vector
to q among all vi, i↔[1:M ], without revealing any information
on q to any of the N databases. The closeness between any
two vectors is measured by the following similarity metric.

Definition 1 (Dot product similarity (DPS)) Let a and b be
two vectors such that a, b ↔ [0 : t ↗ 1]d ↘ Fd

p, where Fp is a
large prime field with p > (t↗ 1)2d. The DPS between a and
b is defined as S : [0 : t↗ 1]d ≃ [0 : t↗ 1]d ⇐ Fp,

S(a, b) = aT b =
d∑

i=1

aibi (mod p) =
d∑

i=1

aibi. (1)

For any three vectors a, b, c ↔ [0 : t↗ 1]d, we say that vectors
a and b are more similar compared to a and c if,1 S(a, b) >
S(a, c), where the comparison is performed considering the
corresponding integers, i.e., S(a, b), S(a, c) ↔ Z+.

In this problem setting, the user wishes to retrieve

iDPS = arg max
i→[1:M ]

S(q, vi), (2)

without revealing any information on q to any of the databases.
To obtain the closest vector to a given query q in (2), the user

sends a privatized query Rn to database n, n ↔ [1 : N ], which
responds with an answer An. The answer An is a function of
Rn and the contents of the database, i.e.,

H(An|Rn, v[1:M ]) = 0, n ↔ [1 : N ], (3)

where H(·) denotes entropy. The user then approximates iDPS

using the answers received by all N databases as,

îDPS = f(R[1:N ], A[1:N ], q), (4)

where f(·) is a deterministic function used to approximate
iDPS. The privacy constraint on the user’s query q is given by,

I(q;Rn, v[1:M ]) = 0, n ↔ [1 : N ], (5)

where I(·) denotes mutual information. This ensures per-
fect information-theoretic privacy of q against non-colluding
databases. We seek to design retrieval mechanisms that ap-
proximate (2) for a given q while satisfying (3)-(5) with the
goal of minimizing the total communication cost, defined as,

C = CD + CU , (6)

1In this formulation, we do not specify an exact finite field representation of
the vectors that preserves the dot product similarity. An example case would
be t = 2 with p > d, where the dot product between any two vectors reflects
the similarity via a measure related to the Hamming distance.

Algorithm 1: r-level hierarchical ANN search
Data: r, q, wi1,...,iω ,Ci1,...,iω , ω ↔ [1 : r ↗ 1], for all

ij ↔ [1 : M
1
r ], j ↔ [1 : ω], and v[1:M ]

Result: Approximate of (2): îDPS

ω ⇒ 2;
î↑1 = argmax

k→
[
1:M

1
r

] S(q, wk);

while ω < r do
î↑ω = argmax

k→
[
1:M

1
r

] S(q, wî↑1 ,...,̂i
↑
ω→1,k

);

ω = ω+ 1;
end
î↑r = argmaxi:vi→Cî↑1 ,...,̂i↑r→1

S(q, vi);

îDPS ⇒ î↑r .

where CD and CU are the total numbers of Fp symbols
downloaded and uploaded by the user, respectively. To this
end, we fix a (non-private) ANN search algorithm and suitably
modify it to incorporate privacy, while providing the same
search accuracy as its non-private counterpart.

III. MAIN RESULT

The ANN search algorithm that we leverage is based on an
r-level hierarchical clustering mechanism, as shown in Fig. 1.
In level 0, all the M vectors belong to a single cluster. In
level 1, the cluster in level 0 is partitioned into M

1
r clusters

denoted by2 Ci, i ↔ [1 : M
1
r ]. In level 2, each cluster in

level 1 is further divided into M
1
r clusters. The clusters in

level 2 are denoted by Ci1,i2 , i1, i2 ↔ [1 : M
1
r ], where i1

and i2 denote the cluster indices in levels 1 and 2 from which
it was rooted. In general, a cluster in level ω ↔ [1 : r ↗ 1]
is denoted by Ci1,...,iω , where each ij represents the index
of its root cluster in level j. Each cluster Ci1,...,iω in level
ω ↔ [1 : r↗1] is assigned a corresponding representative vector
wi1,...,iω ↔ [0 : t]d (with the same subscript notation). An
example of a cluster representative vector would be the average
of all vectors within the cluster. Once a query is received,
the r-level hierarchical ANN search protocol follows the steps
shown in Algorithm 1 to approximately find the closest vector
vi, i ↔ [1 : M ] to q.

With the above definitions, we now present the main result
of this paper (the proof of which can be found in Section IV).

Theorem 1 For a given query q, Algorithm 1 (r-level ANN
search with M vectors) can be applied to approximate (2)
while guaranteeing perfect privacy in (5) with a communica-
tion cost in (6) given by,

C =





O
(
d
→
M

)
, for r = 2,

O
(
r2M

1
r

)
, for r > 2,

(7)

with N ↑ r + 1 if r > 2, and N ↑ r if r = 2.

2We assume: M
1
r→Z+ and each cluster has the same number of vectors.
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Fig. 1. An example setting with M = 27 vectors in each database for a 3-level hierarchical ANN search.

Corollary 1 With N non-colluding databases, a user can
perform N↗1-level private ANN search with a communication
cost of O(N2M

1
N→1 ) if N > 2, and 2-level private ANN

search with a communication cost O(d
→
M) if N = 2.3

Remark 1 In Section IV we show that the computation com-
plexity of the proposed scheme at each database over r
rounds is O(Md), i.e., independent of r. At the user’s end,
the number of computations decreases as r increases. This
is because as r increases the tree of clusters gets narrower
(since M1/r decreases) and deeper (since r increases). This
reduces the number of dot products that the user needs to
compute. Therefore, choosing a large value of r in the r-level
ANN search decreases the overall number of computations and
communications. However, to perform the r-level hierarchical
ANN search with perfect privacy, the proposed scheme requires
at least r + 1 non-colluding databases (except when r=2).
Moreover, in practice, to maintain a certain level of accuracy,
ANN is usually performed T times [34] with different cluster
initializations, where T ⇑ M

1
r in general. However, since we

perform ANN for a total of r rounds, T increases exponentially
with r as the clusters in level ω depend on the realization of
clusters in level ω↗1. Therefore, r cannot be made arbitrarily
large even with a sufficient number of databases.

IV. PROPOSED SCHEME

In this section, we prove Theorem 1. In particular, we first
provide an example of the proposed scheme with N = 4,
M = 27, and r = 3 (Fig. 1), followed by the general scheme.

A. Representative Example
In this example, the goal is to privately retrieve the closest

vector to a given query q out of all the vectors vi, i ↔ [1 : 27],
stored in each of the four databases. The cluster structure is
fixed to have M

ω
r = 3ω clusters in each level ω ↔ [0 : 2],

3The special case of N = 2 is described in Section IV-D.

as shown in Fig. 1. To approximate (2), we follow the same
steps as in Algorithm 1 with added steps to ensure the privacy
constraint in (5). The scheme consists of r = 3 rounds. In
rounds 1 and 2, the user obtains the clusters in levels 1 and 2,
respectively, to which the query q is the closest. In round 3,
the user finds the closest vector to q among the vectors in
the selected cluster in the last level of the hierarchy using
exhaustive search. We next describe these rounds in detail.

For each n ↔ [1 : 4], we let S[i]
n denote the part of the

content stored at the nth database that will be useful at round
i ↔ [1 : 3]. These are given by,

S[1]
n =

[
w1 w2 w3

]
, (8)

S[2]
n =




w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3



 , (9)

S[3]
n =





x1,1,1 x1,1,2 x1,1,3

x1,2,1 x1,2,2 x1,2,3

x1,3,1 x1,3,2 x1,3,3
...

...
...

x3,1,1 x3,1,2 x3,1,3

x3,2,1 x3,2,2 x3,2,3

x3,3,1 x3,3,2 x3,3,3





, (10)

where each w is the respective cluster representative vector
and xi,j,k refers to the kth vector in the jth cluster in level 2
of the ith cluster in level 1, i.e., the triplet (i, j, k) in each
xi,j,k corresponds to the cluster index in level 1, cluster index
in level 2, and vector index in the cluster identified by Ci,j ,
respectively. Each vector wi, wi,j , xi,j,k is of size d≃ 1.

Round 1: In round 1, the user finds the closest cluster to q in
level 1. For that, the user sends the following privatized query,

R[1]
n = q + εnZ (11)

to database n, n ↔ [1 : 4] where Z ⇓ unif(Fd
p) is a random

noise vector and ε↓
ns are distinct constants from Fp. Note



that, by Shannon’s one-time pad theorem [35], no information
on q is revealed to the databases from each individual R[1]

n .
In round 1, answers from only two out of the four databases
suffice to decode the closest cluster in level 1. The response
from database n, n ↔ [1 : 2] is given by,

A[1]
n =S[1]T

n R[1]
n =

[
wT

1 q+εnwT
1 Z . . . wT

3 q+εnwT
3 Z

]T (12)

from which the user obtains wT
i q by solving

[
1 ε1

1 ε2

 [
wT

i q
wT

i Z


=


A[1]

1,i

A[1]
2,i


, i ↔ [1 : 3], (13)

where A[1]
n,i is the ith entry of the answer vector from database

n↔ [1 :2]. The user obtains the closest cluster to q in level 1 as
i↑1=argmaxi→[1:3] w

T
i q. For this example, assume that i↑1 = 2.

Round 2: The goal of round 2 is to find the cluster
index within C2 that is the closest to q, without revealing
any information on q or on the chosen cluster in level 1,
i.e., C2. To indicate the cluster chosen in level 1 that is
investigated in level 2, the user sends the randomized query
R[2]

n = [0 1 0]T + εnZ̃ to database n, n ↔ [1 : 4],
where Z̃ ⇓ unif(F3

p) is a random noise vector of size 3 ≃ 1
independent of Z. Each database then combines the privatized
queries from rounds 1 and 2 to obtain,

R̃[2]
n = R[2]

n ↓R[1]
n =

(
[0 1 0]T + εnZ̃

)
↓ (q + εnZ) (14)

=
[
0Td qT 0Td

]T
+ εnϑ1 + ε2

nϑ2, (15)

where 0d is the all zeros vector of size d≃1 and ϑj , j ↔ [1 : 2]
(size 3d≃1) represents the coefficient of εj

n in the polynomial
in (15) that is common to all databases. In round 2, the scheme
only requires answers from three out of the four databases. The
response of database n ↔ [1 : 3] is given by,

A[2]
n =S[2]T

n R̃[2]
n =




wT

1,1 w
T
2,1 w

T
3,1

wT
1,2 w

T
2,2 w

T
3,2

wT
1,3 w

T
2,3 w

T
3,3












0d
q
0d



+
2∑

i=1

εi
nϑi



 (16)

=
[
wT

2,1q wT
2,2q wT

2,3q
]T

+ εnϑ̃1 + ε2
nϑ̃2, (17)

where ϑ̃i, i ↔ [1 : 2] (size 3≃ 1) is the coefficient of εi
n in the

polynomial in (17) that is common to all databases. Then, the
user obtains the dot products between q and the representative
vectors of the sub clusters in C2 by solving,




1 ε1 ε2

1

1 ε2 ε2
2

1 ε3 ε2
3








wT

2,iq

ϑ̃1,i
ϑ̃2,i



 =




A[2]

1,i

A[2]
2,i

A[2]
3,i



 , i ↔ [1 : 3], (18)

where A[2]
n,i and ϑ̃k,i are the ith elements of A[2]

n and ϑ̃k.
The user obtains the closest cluster to q in level 2 as i↑2 =
argmaxi→[1:3] w

T
2,iq. For this example, we assume that i↑2 = 1.

Round 3: In this round, the user performs exhaustive
search among the vectors in cluster C2,1, without revealing
any information on q or the closest cluster indices found in
rounds 1 and 2. Note that database n ↔ [1 : 4] has already
received the privatized queries on q and the chosen cluster

index in level 1 via R[1]
n and R[2]

n . To indicate the cluster
index in level 2 on which exhaustive search is performed, the
user sends R[3]

n = [1 0 0]T + εnẐ to database n, n ↔ [1 : 4],
where Ẑ ⇓ unif(F3

p) is a random noise vector of size 3 ≃ 1
independent of Z and Z̃. Then, each database n ↔ [1 : 4]
combines the privatized queries from all the three rounds as,

R̃[3]
n = R[2]

n ↓R[3]
n ↓R[1]

n (19)

=
(
[0 1 0]T+εnZ̃

)
↓
(
[1 0 0]T +εnẐ

)
↓(q+εnZ) (20)

= [0T3d qT 0T5d]
T +εnϖ1+ε2

nϖ2+ε3
nϖ3, (21)

where ϖi is the coefficient of εi
n in the polynomial in (21),

that is common to all databases. The response of database n,
n ↔ [1 : 4] is given by,

A[3]
n = S[3]T

n R̃[3]
n (22)

=




xT
1,1,1 xT

1,2,1 xT
1,3,1 . . . xT

3,1,1 xT
3,2,1 xT

3,3,1

xT
1,1,2 xT

1,2,2 xT
1,3,2 . . . xT

3,1,2 xT
3,2,2 xT

3,3,2

xT
1,1,3 xT

1,2,3 xT
1,3,3 . . . xT

3,1,3 xT
3,2,3 xT

3,3,3





≃

[0T3d qT 0T5d]

T + εnϖ1 + ε2
nϖ2 + ε3

nϖ3


(23)

=
[
xT
2,1,1q xT

2,1,2q xT
2,1,3q

]T
+

3∑

i=1

εi
nϖ̃i, (24)

where ϖ̃i (size 3 ≃ 1) is the coefficient of εi
n in (24) that

is common to all databases. Then, the user obtains the dot
products between q and the vectors in C2,1 by solving,




1 ε1 ε2

1 ε3
1

...
...

...
...

1 ε4 ε2
4 ε3

4




[
xT
2,1,iq

ϖ̃[1:3],i


=





A[3]
1,i
...

A[3]
4,i



 , i ↔ [1 : 3],

(25)

where A[3]
n,i and ϖ̃[1:3],i represent the ith elements of A[3]

n and
ϖ̃[1:3] = [ϖ̃1, ϖ̃2, ϖ̃3]T , respectively. Finally, the user approxi-
mates the closest vector to q out of all the M = 27 vectors as
xi↑1 ,i

↑
2 ,i

↑
3

where i↑3 = argmaxi→[1:3] x
T
2,1,iq.

B. General Scheme
The proposed scheme that guarantees perfect privacy with

N ↑ r+1 databases consists of r rounds. The stored content
relevant to each round in database n, n ↔ [1 : N ] is given by,

S[1]
n =


w1 . . . w

M
1
r


, (26)

S[ω]
n =





wε1,1 wε1,2 . . . w
ε1,M

1
r

wε2,1 wε2,2 . . . w
ε2,M

1
r

...
...

...
...

wεε,1 wεε,2 . . . w
εε,M

1
r




, ω ↔ [2 : r], (27)

where ϱ = M
ω→1
r , with each w replaced by x for ω = r based

on the notation in Section IV-A. Each ςi in level ω refers to
the subscripts of the root clusters in level ω↗ 1. In particular,
column i of S[ω]

n contains the representative vector of the ith
sub cluster of each of the clusters in level ω ↗ 1 in the exact
order shown in Fig. 1.



Round 1: The user sends the privatized query R[1]
n in (11)

to database n, n ↔ [1 : N ]. The user downloads the following
answers from any two databases,

A[1]
n =S[1]T

n R[1]
n ={wT

i q + εnw
T
i Z; i ↔ [1 : M

1
r ]}. (28)

As εi ⇔= εj , the user obtains wT
i q, i ↔ [1 : M

1
r ] and computes

the closest cluster in level 1 as i↑1 = argmax
i→[1:M

1
r ]
wT

i q.
Round 2: The user finds the closest cluster to q in level 2
among those generated from Ci↑1 . The user sends the following
privatized query to database n, n ↔ [1 : N ] to indicate that
the search is narrowed down to cluster Ci↑1 in level 1,

R[2]
n = e

M
1
r
(i↑1) + εnZ2, (29)

where e
M

1
r
(i↑1) is the all zeros vector of size M

1
r ≃ 1 with

a 1 in the i↑1th position and Z2 is a random noise vector from
FM

1
r

p , independent of Z. The user downloads the answers from
any three databases as,

A[2]
n = S[2]T

n

(
R[2]

n ↓R[1]
n

)
=

wT

i↑1 ,1
q . . . wT

i↑1 ,M
1
r
q
T
+

2∑

j=1

εi
nϑ̃i,

(30)

where the notation is the same as the one used in Section IV-A.
As (30) is a polynomial of εn of degree 2, the user can obtain
wT

i↑1 ,k
q for k ↔ [1 : M

1
r ] using the answers from any three

databases. The user then computes the closest cluster in level 2
as i↑2 = argmax

i→[1:M
1
r ]
wT

i↑1 ,i
q.

Round ω: The user requires to find the cluster i↑ω (or vector
i↑ω when ω = r) that is the closest to q among the clusters
(or vectors if ω = r) within Ci↑1 ,...,i

↑
ω→1

. The user sends the
following privatized query,

R[ω]
n = e

M
1
r
(i↑ω↔1) + εnZω, n ↔ [1 : N ], (31)

where Zω ⇓ unif(FM
1
r

p ) is independent of all the previous
Zj , j ↔ [1 : ω↗ 1]. Database n ↔ [1 : N ] responds as,

A[ω]
n = S[ω]T

n

(
R[2]

n ↓ . . .↓R[ω]
n ↓R[1]

n

)
(32)

=

wT

i↑1 ,...,i
↑
ω→1,1

q . . . wT

i↑1 ,...,i
↑
ω→1,M

1
r
q
T
+

ω∑

i=1

εi
nϑ̂i,ω, (33)

where the notation is the same as the one used in Section IV-A
with the exception of ϑ̂i,ω that indicates the coefficient of εi

n

in the polynomial in (33) in the ωth round (this coefficient is
common to all databases). As (33) is a polynomial of εn of
degree ω, the user can obtain wT

i↑1 ,...,i
↑
ω→1,k

q for k ↔ [1 : M
1
r ]

using the answers from any ω + 1 databases. Note that N ↑
ω+1 must be satisfied for each ω ↔ [2 : r] to solve (33), which
imposes the constraint N ↑ r+1 on the number of databases.
The user then computes the closest cluster in level ω ↔ [2 : r]
as i↑ω = argmax

i→[1:M
1
r ]
wT

i↑1 ,...,i
↑
ω→1,i

q, (replace w by x for
ω = r). The vector index denoted by (i↑1, . . . , i

↑
r), i.e., xi↑1 ,...,i

↑
r

is the approximately closest vector to q in the databases.

Remark 2 The main idea of the proposed scheme is to

privately traverse the branch that leads to the approximately
closest vector to q within the tree-structure of clusters. It
is essentially PIR that is used in each level to hide the
intermediate clusters investigated, to prevent the information
leakage on q. For example, obtaining information on cluster
C2 in level 1 of Fig. 1 without revealing the index 2 is a
PIR problem with 3 files. Once this information on C2 is used
to find the cluster index to be investigated in level 2 (e.g.,
C2,1) obtaining information on cluster C2,1 without revealing
its index is another PIR problem with 9 files corresponding to
the nine Ci,j’s in level 2. Note that the number of files in these
PIR formulations increases exponentially with the number of
levels. As capacity-achieving PIR schemes have an optimal
upload cost that scales with the number of files [28], using
such approaches in this problem increases the upload cost up
to O(M) in level r. Therefore, we have proposed a coding
theoretic approach that serves as a sub-optimal PIR scheme
(order-wise optimal) with respect to the communication cost,
which only requires the user to upload O(M

1
r ) symbols,

resulting in a total communication cost that scales with M
1
r .

C. Privacy and Communication Cost
Privacy: All the information sent by the user to each database
n ↔ [1 : N ] is of the form R[ω]

n , ω ↔ [1 : r]. Note that the private
information (query and cluster indices) in each R[ω]

n is one-time
padded with the noise vectors Zω that are randomly selected
from FM

1
r

p . This makes q and the cluster indices independent
of all the R[ω]

n ’s sent to each database, which guarantees (5).
Communication cost: The cost CU of the proposed scheme
(total number of uploads in R[ω]

n , ↖ω, n, by noting that the
user needs to query only at most r+1 databases) is given by
CU = O(r2M

1
r ) since, in practice, d is much smaller than M

in vector databases [8]. The download cost is CD = O(r2M
1
r )

since M
1
r single-symbol dot products are downloaded from at

most r+1 databases in each round. Therefore, with reference
to (6), we have that C = O(r2M

1
r ).

Remark 3 The proposed scheme can be directly extended to
general r-level ANN structures with Ki clusters in each branch
of each level for i ↔ [1 : r ↗ 1]. In particular, each of the
Ki clusters contains M/

(i
j=1 Kj

)
vectors. The resulting

communication cost is O
(
r
r↔1

i=1 Ki +Mr/
(r↔1

j=1 Kj

))
.

D. The Special Case N = 2

For the case N = 2, round 1 is identical to what is described
above. In round 2, the user sends the privatized query R[2]

n =

(e
M

1
r
(i↑1)↓q)+εnZ̄ to database n ↔ [1 : 2], where Z̄ ↔ FM

1
r d

p

is a random noise vector independent of Z. Each database
answers with A[2]

n = S[2]T
n R[2]

n , which is the same as (30) with
a polynomial of degree 1. This lets the user decode the dot
products with only two answers. The upload cost of this case
is O(2M

1
r d). As this modification can only be done in the

first two rounds (the order of the Kronecker products matters
after round 2) the only value of r that allows this is r = 2,
which makes the upload cost of this case O(

→
Md).
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