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We propose a framework for developing wall models for large-eddy simulation that is able to capture pressure-

gradient effects using multi-agent reinforcement learning. Within this framework, the distributed reinforcement

learning agents receive off-wall environmental states, including pressure gradient and turbulence strain rate,

ensuring adaptability to a wide range of flows characterized by pressure-gradient effects and separations. Based

on these states, the agents determine an action to adjust the wall eddy viscosity and, consequently, the wall-shear

stress. Themodel training is in situwith wall-modeled large-eddy simulation grid resolutions and does not rely on the

instantaneous velocity fields from high-fidelity simulations. Throughout the training, the agents compute rewards

from the relative error in the estimated wall-shear stress, which allows them to refine an optimal control policy that

minimizes prediction errors. Employing this framework, wall models are trained for two distinct subgrid-scale

models using low-Reynolds-number flow over periodic hills. Thesemodels are validated through simulations of flows

over periodic hills at higherReynolds numbers and flows over theBoeingGaussian bump.The developedwallmodels

successfully capture the acceleration and deceleration of wall-bounded turbulent flows under pressure gradients and

outperform the equilibrium wall model in predicting skin friction.

Nomenclature

a = action of reinforcement learning agent
B = intercept constant of the log law of the wall
Cf = mean skin friction coefficient
Cp = mean pressure coefficient
f = geometrical function of the Boeing Gaussian

bump surface
H = height of periodic hill
h = maximum height of the Boeing Gaussian bump
hm = wall-normal distance of the reinforcement

learning agent
L = width of the Boeing Gaussian bump
Lx, Ly, Lz = dimensions of computational domain in x, y,

and z directions
NCV = total number of mesh cells
Nx, Ny, Nz = number of mesh cells in x, y, and z directions
n = wall-normal direction pointing toward the

interior of flowfield
p = pressure
Re = Reynolds number
r = reward of reinforcement learning agent
S1, S2, S3, S4 = the first, second, third, and fourth environmen-

tal states of the developed reinforcement learn-
ing wall model

S12 = turbulence shear strain rate
s = wall-parallel direction pointing toward the pos-

itive x direction
t = dimensionless time
Ub = bulk velocity at the top of hill
U∞ = freestream velocity
un = velocity in wall-normal direction
up = velocity scale based on pressure gradient

us = velocity in wall-parallel direction
ux = velocity in x direction
uy = velocity in y direction
uτ = friction velocity
uτp = composite friction velocity
x, y, z = coordinates in the streamwise (freestream-

aligned), vertical, and spanwise directions
xrea = mean reattachment location
xsep = mean separation location
yn = wall-normal distance
α = action scale of reinforcement learning agent
ΔT = simulation time step size
Δx, Δy, Δz = mesh resolutions in x, y, and z direction
κ = von Kármán constant
ν = kinematic viscosity
νt = eddy viscosity
ρ = fluid density
τw = wall-shear stress
j ⋅ j = absolute value operator
h⋅i = temporal and spanwise averaging operator
��⋅� = temporal averaging operator

Subscripts

i = index of time step
m = modeled quantity
rms = root-mean-squared value
w = quantity defined on the wall
∞ = freestream value

Superscripts

ref = reference value
0 = fluctuation from mean value
� = quantity in wall unit (nondimensionalized with

uτ and ν)
� = quantity nondimensionalized with uτp and ν

I. Introduction

L ARGE-EDDY simulation (LES) is an essential technology for
the simulation of turbulent flows. The basic premise of LES is

that energy-containing and dynamically important eddies must be
resolved consistently throughout the domain. However, this require-
ment is hard to meet in the near-wall region as the stress-producing
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eddies become progressively smaller. Because of the considerable
cost involved in resolving the near-wall region, routine use of wall-
resolvedLES (WRLES) is far from being an industry standard, where
short turnaround times are needed to explore high-dimensional
design spaces. Consequently, most industrial computational fluid
dynamics (CFD) analyses still rely on cheaper, albeit potentially less
precise, lower-fidelity Reynolds-averaged Navier–Stokes (RANS)
tools. This has motivated the development of the wall-modeled
LES (WMLES) approach. In WMLES, LES predicts turbulence in
the outer region of the boundary layer, while a reduced-order model
on a comparatively coarser grid addresses the impact of the energetic
near-wall eddies. It not only significantly reduces the grid resolution
requirement but also allows for a larger time step size. Because of
such characteristics, WMLES has been anticipated as the next step to
enable the increased use of high-fidelity LES in realistic engineering
and geophysical applications.
The most popular and well-known WMLES approach is the so-

called RANS-based wall modeling [1–7], which computes the wall-
shear stress using the RANS equations. To account for the effects of
nonlinear advection and pressure gradient, the unsteady three-
dimensional RANS equations are solved [3,5]. However, thesemodels
assume explicitly or implicitly a particular flow state close to the wall
(e.g., fully developed turbulence in equilibriumover a flat plate) and/or
rely on RANS parameterization, which is manually tuned for varying
pressure-gradient effects. To remove the RANS legacy in wall model-
ing, Bose and Moin [8] and Bae et al. [9] proposed a dynamic wall
model using slip wall boundary conditions for all three velocity
components. Although these models are free of a priori specified
coefficients and add negligible additional cost compared to the tradi-
tional wall models, they were found to be sensitive to the numerics of
the flow solver and subgrid-scale (SGS) model, which hinders the
application of these wall models in WMLES. The recent rise of
machine learning has prompted supervised learning as an attractive
tool for discovering robust wall models that automatically adjust for
different conditions, such as variations in the pressure gradient. Zhou
et al. [10] proposed a data-driven wall model that considers pressure-
gradient effects, developed through supervised learning fromWRLES
data of periodic-hill channel flow. They subsequently refined this
model, using a similar training strategy while integrating the law of
the wall [11]. While these trained models performed well in a priori
testing for a single time step, they broke down in a posteriori testing
due to integrated errors that could not be taken into account via
supervised learning [12]. Moreover, supervised learning typically
demands an abundance of training data that is generated from
higher-fidelity simulations such as direct numerical simulation
(DNS) or WRLES in the form of instantaneous flowfield data. This
requirement can add additional costs to the learning process. It isworth
noting that Lozano-Durán and Bae [13] recently introduced an inno-
vative LES wall modeling approach through supervised learning,
termed the “building-block-flow wall model.” This model is tailored
to account for various flow configurations, including wall-bounded
turbulencewith pressure gradients and separations, by representing the
flow as a combination of simple canonical flows (or building blocks).
Themodel integrates a classifier that discerns local flow characteristics
by comparing them to an array of predefined building-block flows,
alongwith a predictor that estimates thewall-shear stress by integrating
these building blocks. A salient feature of this model is its reliance on
data sourced directly from WMLES, which not only ensures training
data consistency with both the numerical discretization and the mesh-
ing strategy of the flow solver but also reduces the costs of the training
process. This approach was later extended to a unified SGS and wall
model, demonstrating promising results in simulating realistic flow
configurations [14–16].
Reinforcement learning (RL) is an important machine learning

paradigmwith foundations on dynamic programming [17], and it has
been used in the applications of flow control [18,19] and SGS model
development [20]. Recently, Bae and Koumoutsakos [21] proposed a
framework for wall model development based on multi-agent RL
(MARL) and demonstrated its efficacy in canonical channel and
zero-pressure-gradient (ZPG) boundary-layer flows. Vadrot et al.
[22] further improved the framework and trained a wall model

capable of predicting the log law in channel flows across an extended
range of Reynolds numbers. These studies underscore the consider-
able potential of RL as a model development tool. In the frameworks
proposed by Bae and Koumoutsakos [21] and Vadrot et al. [22], a
series of RL agents are distributed along the computational grid
points, with each agent receiving local states and rewards and then
providing local actions at each time step. The trained RL-based wall
models (RLWMs) match the performance of the RANS-based equi-
librium wall model (EQWM) [23,24], which has been tuned for the
log law of the wall. However, the RLWMs are able to achieve these
results through training onmoderate Reynolds number flows, guided
by a reward function solely based on the recovery of the correct mean
wall-shear stress. Furthermore, instead of relying on a priori knowl-
edge or RANS parameterization to perfectly recover the wall boun-
dary condition computed from filtered DNS data, RL can develop
novel models that are optimized to accurately reproduce the flow
quantities of interest. This is achieved by discovering the dominant
patterns in the flow physics, which enables the model to generalize
beyond the specific conditions used for training. Therefore, the
models are trained in situ with WMLES and do not require any
higher-fidelity velocity fields.
Building upon the methodologies of Bae and Koumoutsakos [21]

and Vadrot et al. [22], we adapt the frameworks in the present study
for turbulent flows subject to pressure gradients. Specifically, we
train wall models using low-Reynolds-number flow over periodic
hills with states that inform pressure-gradient effects and sub-
sequently test them on flows with higher Reynolds numbers and
different configurations. Our first objective is to developwall models
for LES based on MARL that are robust to pressure-gradient effects
in a data-efficient way. Another objective of this study is to evaluate
the applicability of the trained wall models by simulating a flow
configuration distinct from the one used in training. Specifically, we
focus on the flow over a three-dimensional tapered Gaussian bump
[25], commonly referred to as the Boeing Gaussian bump. It is a
canonical case of smooth-body separation of a turbulent boundary
layer (TBL) subject to pressure-gradient and surface-curvature
effects. As a widely studied flow configuration, extensive experi-
mental data exist [26–30] for validating CFD codes, and various
computational approaches, including RANS methods [26], DNS
[31], hybrid LES-DNS [32,33], WMLES [34–36], and detached-
eddy simulations (DES) [37], have been evaluated and compared
for the flow around the bump. The WMLES studies [34–36] showed
that the performance of the classical EQWM is still less than sat-
isfactory, particularly for predicting the separation bubble and the
peak value of skin friction. In the current study, a detailed comparison
between simulations using the EQWMand the developed RLWMs is
conducted in terms of the mean skin friction as well as the mean
pressure on the bump surface, and the prediction of the velocity field.
Earlier iterations of this study are documented in [38,39].
The remainder of this paper is organized as follows: In Sec. II, the

details ofwall-model training based on the flowover periodic hills are
introduced. In addition, the validation results of the developed wall
models for flowover periodic hills at theReynolds number of training
and higher Reynolds numbers are presented. Section III outlines the
simulation setup for the flow over the Boeing Gaussian bump and
demonstrates the results of mean skin friction, mean pressure coef-
ficients on the bump surface, and mean velocity in the flowfield.
Additionally, the simulations with the developed wall models are
compared to those using the EQWM and experimental data. Finally,
Sec. IV summarizes the conclusions drawn from this study.

II. Model Development and Validation

A. Methodology

1. Flow Simulation

For the flow solver, we utilize a finite-volume, unstructured-mesh
LES code [40]. The spatially filtered incompressible Navier–Stokes
equations are solved with second-order accuracy using cell-based,
low-dissipative, and energy-conservative spatial discretization and a
fully implicit, fractional-step time-advancement method with the
Crank–Nicolson scheme. The Poisson equation for pressure is solved
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using the biconjugate gradient stabilized method [41]. In addition, to
study the effect of the SGSmodel on the training and performance of
thewallmodel, both the dynamic Smagorinskymodel (DSM) [42,43]
and the Vreman model [44] are used in the training and test simu-
lations. More specifically, the model constant c in the Vreman model
is set to 0.025 in the present study, as Zhou and Bae [45] suggest that
this value potentially offers a more robust performance in simulating
separated turbulent flow. The reliability of this LES code in accu-
rately simulating turbulent flows has been demonstrated in various
configurations, such as rough-wall TBLs [46], flow over an axisym-
metric body of revolution [47], and rotor interactions with thick
axisymmetric TBLs [48].
For training the wall model, we prefer a flow configuration that i)

has widely available wall-shear stress profiles for several Reynolds
numbers and ii) does not require tuning of the inlet profile or other
boundary conditions. The flow over periodically arranged hills in a
channel, as proposed byMellen et al. [49], haswell-defined boundary
conditions, can be computed at affordable costs, and nevertheless
inherits all the features of a flow separating from a curved surface and
reattaching on a flat plate. Furthermore, the periodic-hill channel
does not require configuring the inlet boundary condition for differ-
ent grid resolutions and wall models, which is necessary for non-
periodic flows. This configuration has become a popular benchmark
test case for validatingCFDcodes.Numerous experimental and high-
fidelity numerical references, such as [50–54], exist and provide
extensive data across a wide range of Reynolds numbers, spanning
700 ≤ ReH ≤ 37;000, where ReH is the Reynolds number based on
hill height H and bulk velocity at the top of hill Ub.
The periodic-hill channel flow configuration has the dimensions of

9H × 3.035H × 4.5H in streamwise (x), vertical (y), and spanwise
(z) directions, respectively. In the simulations of the present study,
periodic boundary conditions are applied on streamwise and span-
wise boundaries, and the EQWM is employed at the top wall. To
maintain constant bulk velocity in time, the flow is driven by a time-
varying body force following the control algorithm proposed by
Balakumar et al. [55]. Two meshes with different densities are used
in the present study, and the details of themeshes are listed in Table 1.
The meshes are evenly spaced in z direction, and approximately
uniform in both x and y directions. Moreover, a maximum Cou-
rant–Friedrichs–Lewy (CFL) number of 1 is used for all simulations.

2. Reinforcement Learning Architecture

TheMARL architecture of wall-model training in the present study
is based on the one proposed by Bae and Koumoutsakos [21]. During
model training, the agents distributed above the wall receive states
based on local instantaneous flow information and a reward based on
the estimatedwall-shear stress, then provide local actions to update the
wall boundary condition at each time step. The agents infer a single
optimized policy through their repeated interactions with the flowfield
to maximize their cumulative long-term rewards.
In order to utilizeMARL as a tool for wall-model development, an

RL toolbox, smarties [56], is coupled with the aforementioned
unstructured-mesh flow solver. The RL tool is an open-source
C++ library and is optimized for high CPU-level efficiency through

fine-grained multithreading, strict control of cache-locality, and
computation-communication overlap. It implements many estab-
lished deep RL algorithms as well as methods that have been sys-
tematically tested for data-driven turbulence modeling [20]. In our
current research, we adopt a deep RL algorithm that combines an off-
policy actor-critic method, V-RACER, with the Remember-and-For-
get Experience Replay (ReF-ER) algorithm [56]. It can efficiently
identify optimal policies within the wide action space inherent to
fluid flow systems, even in situations with partial measurements and
limited observability. The effective coupling between theRL tool and
the flow solver has been validated using the same training and testing
configurations as the study of Bae and Koumoutsakos [21].

3. Training of the Wall Model

The RLWM training is conducted using the LES of periodic-hill
channel flow at ReH � 10; 595 with a baseline mesh (Nx × Ny ×
Nz � 128 × 64 × 64). A total of 512 agents are uniformly distributed
along the bottomwall, and thewall-normal locations of the agents hm
are randomly selected between 0.01H and 0.09H at each agent
location. Compared to fixed agent locations, this approach increases
the diversity of the environmental state samples encountered during
model training. Moreover, the friction Reynolds number Reτ for the
flow at the bottom of the channel reaches a maximum value of
approximately 1900.
Considering the existence of a log law for the inner-scaled

mean streamwise velocity profile (husi� � �1∕κ� ln y�n � B) in
the near-wall region of turbulent flows, Bae and Koumoutsakos
[21] developed a wall model for flat-plate channel flow using two
instantaneous flow states based on the log law: �∂us∕∂n��h�m and
u�s − �∂us∕∂n��h�m ln�h�m�. Note that the inner scaling of the instan-
taneous quantities for the training uses the modeled uτ rather
than the true uτ, without relying on any empirical coefficients.
Recently, Vadrot et al. [22] improved the performance and effec-
tiveness of the model at different Reynolds numbers by using
��∂us∕∂n��h�m − 1∕κref � ln�h�m� and u�s − �∂us∕∂n��h�m ln�h�m� as
model states, where κref is a reference von Kármán constant. On
the foundation of these studies, for the current RLWMs, we set the
local instantaneous flow quantities

S1 �
∂us
∂n

�
h�m−

1

κref
ln�h�m� and S2 � u�s −

∂us
∂n

�
h�m ln�h�m�

(1)

as the first two model states, where κref � 0.41. Our objective with
the MARL framework is to develop a wall model that adapts to
varying pressure gradients and accurately captures flow separation.
Ideally, this wall model should be capable of recognizing different
flow regimes (e.g., those with favorable or adverse pressure gra-
dients) based on local instantaneous flow states and then providing
appropriate action accordingly. To enhance adaptability for flows
with varying pressure gradients and separations, we have incorpo-
rated the turbulence strain rate and the local wall-parallel pressure
gradient parameter:

S3 � S�12 �
1

2

∂us
∂n

�
� ∂un

∂s

�
and S4 �

∂p
∂s

�
h�m (2)

as the third and fourth model states, respectively. Furthermore, to
increase the applicability of the wall model for a wide range of flow
parameters, the states are nondimensionalized using kinematic viscos-
ity ν and the composite friction velocity uτp � �u2τ � u2p�1∕2 intro-
duced by Manhart et al. [57], where up � j�ν∕ρ��∂pw∕∂s�j1∕3, pw is
the pressure on the bottomwall, anduτ is the frictionvelocity based on
the modeled wall-shear stress.
It iswell known that the approach to applying thewall stressmodel in

WMLESaffects thepredictionofmean flowquantities [58].Aprevious
study [38] tested two formulations of the boundary condition, namely
the wall-shear-stress and the wall eddy-viscosity formulations, to
determine the more appropriate action for the wall model. It

Table 1 Simulation cases in comparison to reference data, including

mesh size, mean separation location xsep, and mean reattachment
location xrea at ReH � 10;595

Case Mesh size (Nx × Ny × Nz) xsep∕H xrea∕H

RLWM-DSM 128 × 64 × 64 0.29 4.57

RLWM-DSM, coarse mesh 64 × 32 × 32 0.43 3.66

RLWM-VRE 128 × 64 × 64 0.39 3.96

RLWM-VRE, coarse mesh 64 × 32 × 32 0.36 4.68

EQWM-DSM 128 × 64 × 64 0.57 3.05

EQWM-VRE 128 × 64 × 64 0.58 3.28

DNS [52] 896 × 448 × 448 0.20 4.51

WRLES [53] 512 × 256 × 256 −0.11 4.31
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was found that the wall eddy-viscosity formulation offers greater
robustness for WMLES of separated flows, leading us to adopt this
approach for the current wall model. Specifically, in the model, each
agent acts to adjust the local wall eddy viscosity νt;w at each time
step through a multiplication factor νt;w�ti�1� � aνt;w�ti�, where a ∈
�1 − αΔTUb∕Δx; 1� αΔTUb∕Δx� and α is selected to be 10−3. The
local wall-shear stress can be calculated using the formula
τw � ρν�1� ν�t;w��∂us∕∂n�w. It should be noted that Vadrot et al.
[22] recommended limiting the action range for adjusting wall-shear
stress, which is helpful in alleviating log-layermismatch (LLM). Addi-
tionally, the reward r is calculated based on r�ti� � �jτrefw − τw�ti−1�j −
jτrefw − τw�ti�j�∕τrefw;rms at each location, where τrefw and τrefw;rms are the
mean and root-mean-square wall-shear stress from the reference high-
fidelity simulation. The reward is proportional to the improvement in
the modeled wall-shear stress compared to the one obtained in the
previous time step, and an extra reward of 0.1 is added when the
modeled τw is within 10% of the reference value.
Duringmodel training, each episode (one simulation) is initialized

with a normalized wall eddy viscosity ν�t;w randomly chosen from (0,
10]. Furthermore, the process of randomly selecting the wall-normal
locations for all RL agents is repeated at the beginning of each
episode. To generate the initial condition for training, the simulation
is started from a flowfield generated by the EQWM and run with the
given initial ν�t;w for 20 flow-through times (FTTs) to remove numeri-
cal artifacts. Each episode of the model training is then conducted for
five FTTs. Throughout these five FTTs, RL agents collect local
instantaneous flow states and the corresponding rewards at every
100 time-step interval, while concurrently updating the local ν�t;w
based on the action of each agent. The model training is advanced for
200 episodes with approximately 1.6 million policy gradient steps.
Throughout these 200 episodes, the extensive interaction with the
flowfield allows the RL agents to progressively learn and refine a
single optimized control policy for adjusting ν�t;w, with the goal of
maximizing their cumulative rewards. Specifically, the learning proc-
ess utilizes a neural network architecture with identical parameters to
the one described in the study of Bae and Koumoutsakos [21],
featuring two hidden layers, each with 128 units, and employing
the Softsign activation function.More details regarding the history of
the cumulative rewards and the convergence of model training are
introduced in Appendix A. Besides, training a single RLWM based
on the periodic-hill channel flow at ReH � 10; 595with the baseline
mesh requires approximately 51,000 core hours.
Previous studies [35,36,45,59–61] have highlighted the substan-

tial impact of the SGS model on WMLES, particularly in separated
turbulent flows. To investigate the influence of the SGS model on
RLWM training outcomes, we utilized two distinct SGS models,
namely, the DSM and the Vreman model. As detailed in Table 1, the
model trained using the DSM is denoted as RLWM-DSM, while the
one trained with the Vreman model is labeled RLWM-VRE.

B. Validation

1. Testing for Flow over Periodic Hills at ReH � 10;595

To evaluate the performance of the trained RLWMs, a series of
simulations for the periodic-hill channel flow at ReH � 10;595 are
carried out usingmeshes with different resolutions. The details of the
simulation cases are listed in Table 1. Specifically, for the baseline
mesh (Nx × Ny × Nz � 128 × 64 × 64), also used in model training,
themaximumcell sizes in the streamwise, wall-normal, and spanwise
directions are 98, 52, and 93 wall units, respectively, based on the
mean wall-shear stress on the bottom wall from reference DNS [52].
For the coarse mesh (Nx × Ny × Nz � 64 × 32 × 32), these dimen-
sions increase to maximum values of 197, 104, and 185 wall units,
respectively. Moreover, the number of agents above the bottom wall
is consistentwith the number ofmesh cells on thewall. TheRLagents
are located at the upper surface of wall-adjacent mesh cells in the
simulations, and this placement is similar to the one adopted by
Vadrot et al. [22]. The wall eddy viscosity νt;w is updated based on
the model action at every time step. All simulations are run for about
50 FTTs after initial transients. The flow statistics of all simulations
are averaged over spanwise direction and time. For comparison, two

baseline-mesh simulations using the EQWM that employs the tradi-
tional wall-shear stress boundary condition are carried out, one with
the DSM and the other with the Vreman model. In these EQWM
simulations, the center of the second off-wall cell is selected as the
matching location. Additionally, the results from two high-fidelity
simulations for this flow [52,53] are included as references.
Figure 1 shows the contours of themeanvelocity in x direction and

the mean-flow streamlines. The flow separates on the leeward side of
the hill due to a strong adverse pressure gradient (APG), and a shear
layer is generated near the top of the hill. The flow reattaches in the
middle section of the channel, and as the flow approaches the wind-
ward side of the downstream hill, it is subjected to a strong favorable
pressure gradient (FPG) and accelerates rapidly. The simulations
with the RLWMs successfully capture the separation bubble on the
leeward side of the hill and yield more accurate results than the
EQWM (see Table 1 for quantitative comparison).
The predictions of the mean skin friction coefficient Cf and

the mean pressure coefficient Cp are shown in Fig. 2. The mean
skin friction coefficient is defined as Cf � hτwi∕�0.5ρU2

b�, where
the positive direction of τw points toward the opposite direction
of bulk flow. The mean pressure coefficient is defined as
Cp � �hpwi − hprefi�∕�0.5ρU2

b�, where the pressure at x∕H � 0

on the top wall is chosen as reference pressure pref [52]. The Cf

and Cp are evaluated at the center of the wall boundary for each
wall-adjacent control volume. Regarding Cf, the results from the
RLWMsimulations are in reasonable agreement with the DNS data,
with large deviations found only near the top of the hill on the
leeward side, where the skin friction rapidly decreases from its
maximum value to a negative value. However, the results are better
than the EQWM simulations, which largely under-predict the skin
friction on the windward side of the hill. Furthermore, the mean
locations of the separation and reattachment points (listed in
Table 1) are better predicted by the RLWMs, consistent with the
streamline shown in Fig. 1. All simulations capture the qualitative
trend of the mean Cp on the bottom wall, including the APG and
FPG regimes, but large deviations among the simulation cases are
visible near the top of the hill (x∕H ≥ 8.5 or x∕H ≤ 0.5) where the
pressure sees a sudden change from strong FPG to strong APG and
the flow separation emerges. Overall, the RLWMs provide more
accurate predictions of Cf and Cp than the EQWM. When compar-
ing the two developed wall models, it is evident that their predic-
tions differ. Specifically, noticeable variations are seen in the results
for Cf and Cp, particularly within the regions of the separation
bubble and the windward side of the hill. Additionally, the perfor-
mance of these models displays sensitivity to mesh resolution. This
sensitivity is evident not only in Cf and Cp but also in the velocity
field, as depicted in Fig. 1. It should be mentioned that the envi-
ronmental states used for the developed wall models do not contain
any information related to the mesh resolution, which could poten-
tially contribute to the sensitivity.
A quantitative comparison of mean velocity and Reynolds stress

components at five streamwise locations (x∕H � 0.05; 2; 4; 6, and 8)
are shown in Fig. 3. The mean velocity and Reynolds stress profiles
from the baseline-mesh RLWM simulations align closely with the
reference DNS data. However, discrepancies are visible for the loca-
tions on the hill where the pressure gradient is strong. The EQWM
simulations do not match up as well to the developed wall models,
especially regarding the Reynolds stress components. Moreover, the
predictions from the coarse-mesh simulations using both RLWM-
DSM and RLWM-VRE are less ideal when compared to their
baseline-mesh counterparts. It should bementioned that the prediction
of the velocity field not only depends on the wall boundary conditions
but also on the SGS model, and the inconsistent results of RLWM
simulations across different mesh resolutions may also be influenced
by the varying performance of the SGS model in each mesh.
To better understand the mechanism of the trained models, we

examine the state-action maps obtained from the baseline-mesh test
simulations, which are the probability density functions (PDFs) of the
likelihood that the models take a particular action conditioned on the
occurrence of positive rewards. Such state-action maps could offer
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valuable insights that aid in the development of empirical models for
turbulent flows subjected tovarying pressuregradients. Figures 4 and5
show themaps for RLWM-DSMaswell as RLWM-VRE based on the
distributions of instantaneous states and actions of the RL agents at
three streamwise positions x∕H � 0.1; 2, and 8.5 which are located
near the top of the hill on its leeward side, within the separation bubble,
and the windward side of the hill, respectively. It is worth noting that
while rewards are computed for illustrative purposes in this context,

they are not employed during the test simulations. Overall, the action
contour lines for increasing and decreasing νt;w are well separated,
which illustrates that the models are able to distinguish flow states and
provide appropriate actions. In particular, it is evident that RLWM-
VRE offers clearer separation in the contour lines of these state-action
maps than RLWM-DSM does. This suggests better performance by
RLWM-VRE in the baseline-mesh simulations at ReH � 10;595,
especially in areas near the top of the hill on its leeward side andwithin

Fig. 2 Comparison ofmean skin friction coefficient (a, b) andmean pressure coefficient (c, d) along the bottomwall atReH � 10;595. The left column (a,
c) presents WMLES with the DSM, while the right column (b, d) features cases with the Vreman model.

Fig. 1 Contours of the mean velocity in x direction and the streamlines at ReH � 10;595 from the simulations of a) RLWM-DSM; b) RLWM-VRE;

c) RLWM-DSM, coarse mesh; d) RLWM-VRE, coarse mesh; e) EQWM-DSM; f) EQWM-VRE; and g) WRLES [53].
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the separation bubble (as seen in Figs. 2 and 3). Additionally, some
discrepancies can be observed in the state-action maps between the
simulations withRLWM-DSMandRLWM-VRE, particularly regard-
ing the range of instantaneous flow states and the trends in actions. It is
important to note that different SGS models are employed in each test
simulation, leading tovariations in the flowfield, especially in the near-
wall region. The impact of the SGSmodel on the flowfield inWMLES
has been found to be significant for nonequilibrium turbulent flows
[36,45,61]. Given that the behavior of the developedRLWMs relies on
the information of the near-wall flowfield, these variations lead to the
observed discrepancies in the state-action maps. Furthermore,
the RLWMs are trained using simulations that employ different SGS
models, leading to variations in their control policies, which also
contribute to the observed discrepancies. However, this comparison
underscores the importance of considering the coupling effect between
the SGSmodel and thewall model during both the training and testing
phases of wall model development.
In addition, it has been shown that history effects of the pressure

gradient could play a significant role in nonequilibrium wall-bounded
turbulent flows [62]. The developed RLWMs implicitly account for
these effects through their design and the training process. Specifically,
during the model training, each episode is conducted for 5 FTTs,
enabling RL agents at various locations to collect local instantaneous

flow states and corresponding rewards over time. This approach
ensures that a degree of historical information about flow states is
embedded within the training dataset. Moreover, through repeated
interactionswith the flowfield across these episodes, the agents deduce
a single optimized policy to maximize their cumulative long-term
rewards. This process inherently incorporates historical data, as the
decisions of agents are influenced by the outcomes of their previous
actions on the flow dynamics. Additionally, in test simulations, the
RLWM operates by dynamically adjusting wall eddy viscosity in
response to local instantaneous flow states. This real-time adaptation,
informed by temporally varying flow states, naturally integrates the
history effects into the decision-making process of RLWMs.

2. Testing for Flow over Periodic Hills at Higher Reynolds Numbers

In this section, the RLWMs are applied toWMLES of periodic-hill
channel flow at ReH � 19;000 and 37,000. The Reτ for the flow on
the bottom of the channel reaches the maximum value of approx-
imately 3,300 and 5,400, respectively. The simulations are conducted
by using the baseline mesh (128 × 64 × 64) and the coarse mesh
(64 × 32 × 32), and the implementation of the RLWMs is similar to
the simulations at ReH � 10;595. All simulations are run for about
50 FTTs after initial transients. The results from the EQWM with
baseline mesh and the WRLES [53] are included for comparison.

Fig. 3 Comparison of mean streamwise velocity (a, b), mean vertical velocity (c, d), streamwise Reynolds stress (e, f), vertical Reynolds stress (g, h), and
Reynolds shear stress atReH � 10;595 (i, j). The left column (a, c, e, g, i) presentsWMLESwith theDSM,while the right column (b, d, f, h, j) features cases

with the Vreman model.
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The mean skin friction coefficients along the bottom wall at
ReH � 19;000 and 37,000 are shown in Fig. 6. The distributions
of Cf at higher Reynolds numbers have a similar shape as the one
shown in Figs. 2a and 2b.As theReynolds number increases, the peak

value of the Cf on the windward side of the hill decreases. The
RLWM simulations align more closely with the WRLES results on
hill windward side than the EQWM simulations do. Regarding the
separation point, the predicted locations from theRLWMsimulations

Fig. 5 PDFs of states forRLWM-VREconditioned to eventswith r > 0.1 anda < 0.9995 (blue) ora > 1.0005 (red) at x∕H � 0.1 (a, d, g), x∕H � 2 (b, e,
h), and x∕H � 8.3 (c, f, i) from the baseline-mesh simulation atReH � 10;595: S2 andS1 (a–c),S1 andS3 (d–f), andS1 andS4 (g–i). Contour levels are 25,
50, and 75% of the maximum value.

Fig. 4 PDFs of states forRLWM-DSMconditioned to eventswith r > 0.1 anda < 0.9995 (blue) ora > 1.0005 (red) at x∕H � 0.1 (a, d, g), x∕H � 2 (b, e,
h), and x∕H � 8.3 (c, f, i) from the baseline-mesh simulation atReH � 10;595: S2 andS1 (a–c),S1 andS3 (d–f), andS1 andS4 (g–i). Contour levels are 25,
50, and 75% of the maximum value.
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are further downstream than those from the WRLES. Moreover, the
RLWMs predict a reattachment location further upstream. Unlike the
EQWM simulations, which considerably underestimate the size of
the separation bubble, the RLWM simulations are more accurate.
Similar to the aforementioned results observed atReH � 10;595, the

RLWM predictions at these higher Reynolds numbers display sensi-
tivity to mesh resolutions.
Figure 7 presents the profiles of the streamwise components for

both mean velocity and Reynolds stress at five streamwise stations
(x∕H � 0.05; 2; 4; 6, and 8) for ReH � 19;000 and 37,000. As the

Fig. 6 Comparison ofmean skin friction coefficient along the bottomwall atReH � 19;000 (a, b) andReH � 37;000 (c, d). The left column (a, c) presents
WMLES with the DSM, while the right column (b, d) features cases with the Vreman model.

Fig. 7 Comparisonofmean streamwise velocity (a, b, e, f) and streamwiseReynolds stress (c, d, g, h) atReH � 19;000 (a–d) andReH � 37;000 (e–h).The
left column (a, c, e, g) presents WMLES with the DSM, while the right column (b, d, f, h) features cases with the Vreman model.
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Reynolds number increases, the discrepancies between the RLWM
simulations and the WRLES profiles become more pronounced,
suggesting a diminishing efficacy in the RLWMs. Among the sim-
ulations employing the developed wall models, those with RLWM-
DSM yield better velocity-field predictions compared to those with
RLWM-VRE, especially at ReH � 37;000. Furthermore, when the
Reynolds number rises to ReH � 37;000, the EQWM simulations
deliver velocity-field results that match or even surpass the RLWM
simulations, despite their inaccurate predictions of Cf, as illustrated
in Figs. 6c and 6d.
Overall, the test simulations of periodic-hill channel flows dem-

onstrate that the trained RLWMs are viable for handling spatially and
temporally varying pressure gradients and for use at higher Reynolds
numbers. However, these test simulations are limited to the same
geometrical configuration as that used during training. To further
assess the applicability of the trained wall models across different
geometrical setups, we conducted preliminary test simulations for
flat-plate channel flow at different Reynolds numbers. For the sake of
conciseness, the results of these simulations are not described here in
detail but are presented in Appendix B. Additionally, we also carry
out test simulations for flow over the Boeing Gaussian bump, which
will be the focus of the next section.

III. Testing: Flow over Boeing Gaussian Bump

The geometry of the Boeing Gaussian bump is given by the
analytic function

y � f�x; z� � h

2
e−�x∕x0�2 1� erf

L

2
− 2z0 − jzj ∕z0 (3)

where h � 0.085L, x0 � 0.195L, and z0 � 0.06L. The cross sec-
tions of the bump are shown in Fig. 8. Additionally, the length scaleL
is used to define the Reynolds number ReL � U∞L∕ν. This geom-
etry has been the subject of extensive experimental research in recent
years [26–30]. The experimental geometry includes side and top
walls, as the Gaussian bump is wall-mounted on a splitter plate inside
a wind tunnel. In this work, this geometry with side and top walls is
considered. Particularly, the case ofReL � 2 × 106 is simulated, and
the WMLES results are compared with the experimental measure-
ments. Experimental measurements [27–30] indicate that, under the
condition of ReL � 2 × 106, a maximum Reτ of around 2000 is
observed in the region ahead of the bump peak. Downstream of the
separation bubble, Reτ experiences a rapid increase, reaching an
approximate value of 7500 at x∕L � 0.5, with a further increase
observed at downstream locations. The range of Reτ is beyond what
was encountered during the training of the RLWMs.

A. Computational Details

The present simulations employ a rectangular computational
domain with the dimension of Lx × Ly × Lz � 2.5L × 0.5L×
0.5L, which has the same blockage ratio as in the wind tunnel
experiment [27–30]. The origin of the coordinate system in the
domain is located at the base of the bump peak, as shown in Fig. 8.
Because symmetry exists with respect to the center plane at z∕L � 0
in the geometry, the simulation domain only covers half of the entire
bump span with a symmetry boundary condition applied at z∕L � 0.
Besides the developed RLWMs at the bottom wall, we set the

simulations with a plug flow inlet at x∕L � −1. The side at z∕L �
0.5 and top boundary conditions at y∕L � 0.5 are treated as inviscid
walls to approximate the wind tunnel condition. The outlet is placed
at x∕L � 1.5 with a convective outflow boundary condition. Note
that the experimental measurements [27–30] indicate the flow
on the leeward side of the bump is largely unaffected by variations
in the incoming TBL thickness. Previous WMLES studies [35,36]
also suggest an insensitivity to inlet and tunnel wall boundary con-
ditions. The simulations are conducted using the aforementioned
unstructured-mesh, incompressible, finite-volume flow solver that
is coupled with the RL toolbox, smarties [56]. For consistency, both
the DSM and the Vreman model, previously utilized in the wall-
model training, are adopted in separate simulations. Apart from the
developed RLWMs, we employ the EQWM at the bottom wall in the
benchmark simulations for comparison, and the center of the second
off-wall cell is selected as the matching location in these simulations.
Additionally, a maximumCFL number of 2 is used in all simulations.
To study the effect of mesh resolution on the simulation results,

three computational meshes with increasing resolutions in each
direction are considered. These meshes consist of structured-mesh
blocks covering the entire bump surface and the flat wall surfaces
in both the upstream and downstream, and unstructured-mesh
blocks elsewhere. Thewall-normal dimension of the structured-mesh
blocks is equal to 0.12L, which covers the entire TBL on the bottom
wall. Furthermore, uniform mesh resolutions are used within the
structured-mesh blocks in both streamwise and spanwise directions.
Along the wall-normal direction, the mesh size gradually coarsens
away from the wall with an approximate stretching ratio of 1.013.
Referring to the TBL thickness at x∕L � −0.683 from the experi-
ment [27–30], the TBL is approximately resolved by 3 cells in the
coarse mesh, 6 cells in themediummesh, and 9 cells in the finemesh,
respectively. For the unstructured-mesh blocks, the outermost
unstructuredmesh has a resolution of 0.03L, and the control volumes
are refined gradually toward the bottomwall. More parameters of the
computational meshes are provided in Table 2.
In the simulations using the developed RLWMs, the number of

agents above the bottom surface is consistent with the number of wall
cells in each mesh. Similar to the aforementioned test simulations of
periodic-hill channel flows, the RL agents are positioned at the upper
surface of thewall-adjacentmesh cells in the current simulations. The
wall eddy viscosity νt;w is updated at each time step based on the
model action. To eliminate numerical artifacts, all simulations are run
for 1.5 FTTs at first to pass the transient process. After that, these
simulations are run for another 1.5 FTTs to collect flow statistics.

B. Results and Discussion

Figure 9 shows contours of the instantaneous streamwise velocity
ux∕U∞ in an x − y plane at z∕L � 0 obtained from the medium-
mesh simulations with different wall models and SGS models. The
flow gradually accelerates on thewindward side of the bump, and the
velocity reaches its maximum value at the bump peak. Downstream
of the peak, the flow decelerates over the leeward side of the bump,
and the boundary layer thickens rapidly. Note that the flow is attached
over the entire bump surface in the simulations, which is qualitatively
different from the experimental observations that the flow is sepa-
rated on the leeward side of the bump [26–30]. A detailed quantitative
comparison of mean velocity from different simulations will be
discussed later.
Additional quantities of interest for the bump-flow simulations

include the mean skin friction coefficient Cf and the mean pressure
coefficient Cp, which are defined as

Fig. 8 Cross sections of theBoeingGaussianbumpgeometry showing a)
a slice along the centerline (z∕L � 0) and b) a slice along the span
(x∕L � 0).

Table 2 Mesh parameters of the simulations for the
flow over Boeing Gaussian bump at ReL � 2 × 106

Mesh NCV minΔx∕L minΔy∕L minΔz∕L
Coarse 6 × 106 3.8 × 10−3 2.6 × 10−3 2.6 × 10−3

Medium 37 × 106 1.9 × 10−3 1.3 × 10−3 1.3 × 10−3

Fine 100 × 106 1.3 × 10−3 9 × 10−4 9 × 10−4
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Cf � �τw
�1∕2�ρ∞U2

∞
and Cp � �pw − p∞

�1∕2�ρ∞U2
∞

(4)

respectively. Here, the mean pressure at the inlet near the top boun-
dary is chosen as the reference freestream pressure p∞. Figure 10
presents the distribution of the mean skin friction coefficient over the
bump surface. For comparison, the data from the experiment using
the samegeometry at the sameReynolds number fromGray et al. [28]
is also shown. Additionally, the results from the coarse-mesh and
medium-mesh EQWM simulations conducted by Agrawal et al. [36]
are depicted in the figure. It is important to note that the Reynolds
number in their EQWM simulations is ReL � 3.41 × 106. However,
experimental measurements [28] suggest that the variations inCf are
not significant when ReL increases from 2 × 106 to 3.41 × 106. In
their simulations, both the DSM [42,43] and the Vreman model
(c ≈ 0.07) [44] are employed separately, with a plug flow inlet
condition applied at x∕L � −1, identical to the approach taken in
our simulations. Moreover, isotropic Voronoi meshes are used.
Within the boundary layer, their coarse mesh offers slightly better
resolution compared to the medium mesh in our study, and their
medium mesh is more refined than our fine mesh. Specifically, the
size of their medium-mesh cell is 40% smaller than that of our fine-
mesh cell. From the results in Fig. 10, it can be noted that upstream
of the bump, the Cf results from these simulations exhibit a similar
trend as the experiments. However, in the experiments, a large
separation bubble appears downstream of the bump peak, which is
not captured in all simulations. Considering the performance of
different wall models, the simulations using the EQWM overpredict
Cf near the bump peak. In contrast, the developed RLWMs provide

more accurate predictions for this region, and as the mesh resolutions
increase, the predictions of Cf are consistent and agree well with the
experimental data. While the performance of the current RLWMs
within the region upstream of the bump is better than that of the
EQWM, it is still suboptimal. This is expected as the model training
does not encompass laminar or transitional flows.On the leeward side
of the bump, the predictions of Cf from both wall models are
comparable. However, further downstream, the developed RLWMs
provide lower skin friction than the EQWM. Experimental studies
[27–30] have shown that the friction Reynolds numberReτ increases
rapidly downstream of the bump as the flow recovers from a non-
equilibrium state. Specifically, Reτ becomes larger than 7000 when
x∕L ≥ 0.5, and this Reτ significantly exceeds what the RLWMs
encountered during training. As detailed in Appendix B, the error
inCf prediction by theRLWMs in flat-plate channel flow simulations
grows with increasing Reτ. This trend potentially explains the sub-
optimal predictions of RLWMs in the downstream ZPG region of the
bump flow. In addition, compared to the results from our simulations,
theCf data fromAgrawal et al. [36] exhibit strong undulations ahead
of the bump. More significantly, with mesh refinement, the flow
separation observed in the coarse-mesh simulations disappears. This
phenomenon is likely related to the behavior of the SGS model
[36,45].
Figure 11 shows the distribution of Cp along the bump surface at

z∕L � 0. Results from all simulations with different computational
meshes are included along with the experimental measurements of
Gray et al. [28] at the same Reynolds number. The Cp distributions
illustrate a strong FPG immediately upstream of the bump peak.
Downstream of the peak, the flow is first subjected to a very strong

Fig. 9 Instantaneous streamwise velocity ux∕U∞ in an x − y plane at z∕L � 0 from medium-mesh simulations.

Fig. 10 The distributions ofmean skin friction coefficient along the bump surface at z∕L � 0 from the simulationswith coarsemesh (a, d),mediummesh
(b, e), and fine mesh (c, f). The top row presents simulations using the DSM, while the bottom row features cases using the Vreman model.
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APG, followed by amild FPG.Comparison of simulation resultswith
experimental data reveals significant differences on the leeward side
of the bump, which is expected due to the imprecise capture of the
separation bubble in the simulations. Furthermore, the variations in
mesh resolution do not significantly affect Cp predictions in these
simulations. In terms of wall model performance, the RLWMs and
EQWM provide similar Cp predictions, with only minor differences
observed on the leeward side of the bump. In addition, when exam-
ining theCp distributions along the span, the simulation results align
closely with each other and with the experimental data in the outer-
span region (z∕L > 0.2). However, discrepancies become noticeable
near the center of the bump,where a downstream separation bubble is
expected. For brevity, detailed results are omitted here but can be
found in [39].
In Fig. 12, profiles of the mean streamwise velocity are depicted at

four streamwise stations x∕L � −0.4;−0.1; 0.1, and 0.2, which are
located within the regions with mild APG, strong FPG, and strong
APG, respectively. These results quantitatively show the flow accel-
eration as well as deceleration and boundary-layer thickening on the
bump surface. Based on the comparison in the figure, the simulation
results downstream of the bump exhibit significant differences from
the experiment conducted by Gray et al. [29], with the simulations
predicting a thinner TBL. This finding is consistent with the earlier
observation of the instantaneous flowfield. The simulations employ-
ing the two different RLWMs display significant differences at
x∕L � −0.1, where the FPG is pronounced. However, for most other
locations, the results from both simulations align closely. When
examining the EQWM simulations, velocity predictions exhibit
small variation across different SGS models, and these predictions
are comparable to those from the RLWM simulations on the leeward
side of the bump. Nevertheless, at x∕L � −0.4, the EQWM outper-
forms the RLWMs in velocity prediction, even though its prediction
of mean skin friction is less ideal, as illustrated in Fig. 10.
While data-driven turbulence models often have limited appli-

cability across different flow configurations [63], the current
RLWMs, originally trained on the low-Reynolds-number periodic-
hill channel flow, show promise in simulating the flow over the
Boeing Gaussian bump, which has a different geometry as well as
a higher Reynolds number and is likely to exhibit different flow
physics. Specifically, the RLWMs provide improved predictions
for the skin friction near the peak of the bump and perform compa-
rably to the EQWM with respect to the wall pressure and velocity
field. For the sake of consistency, the SGSmodels used in the present
bump-flow RLWM simulations correspond to those employed dur-
ing model training. However, there is no strict requirement to utilize

the sameSGSmodel. In fact, previous simulations byZhou et al. [39],
which combined RLWM-DSM with the anisotropic minimum-
dissipation SGS model [64], yielded improved predictions for the
flow. In addition, a sensitivity analysis of WMLES by Zhou and Bae
[45] highlighted the significant impact of SGS models on separated
flow simulations. Specifically, this study revealed that the influence
of wall boundary conditions on the predicting separation bubble is
overshadowed by that of the SGS models. Thus, the inability to
capture separation in all the bump-flow simulations from this study
can be largely attributed to the SGS models.
In addition, a comparison of the computational costs for different

wall models in all test simulations reveals that the developedRLWMs
consistently incur slightly higher costs than the EQWM. Specifically,
the computational cost per time step for theRLWMs is approximately
7% higher than that for the EQWM. It should be noted that the cost
comparison focuses solely on evaluating thewall model and does not
account for communication or flow solver costs.

IV. Conclusions

UsingMARL, we develop twowall models capable of adapting to
varying pressure-gradient effects. These models are trained based on
LES of low-Reynolds-number periodic-hill channel flow, each incor-
porating a different SGS model. Both models function as control
policies for wall eddy viscosity, aiming to predict the correct wall-
shear stress. During the training process, the optimized policy for
each wall model is learned from LES with cooperating agents, using
the recovery of the correct wall-shear stress as a reward. The devel-
oped wall models are first validated in the LES of the periodic-hill
configuration at the same Reynolds number of model training. The
wall models provide good predictions of mean wall-shear stress,
mean wall pressure, and mean velocity, as well as Reynolds stress
in the flowfield. The test results also show that the developed models
outperform the EQWM. The performance of the developedmodels is
further evaluated at two higher Reynolds numbers (ReH � 19;000
and 37,000). Themodels achieve good predictions for themeanwall-
shear stress and show promising results for velocity statistics
at ReH � 19;000.
To further investigate the applicability and robustness of the

developed wall models, simulations of flow over the Boeing Gaus-
sian bump at amoderately high Reynolds number are conducted. The
flow geometry is consistent with the experiments [27–30], and the
Reynolds number based on the freestream velocity and the width of
the bump is 2 × 106. The results ofmean skin friction and pressure on
the bump surface and the velocity statistics of the flowfield are
compared to those from the EQWM simulations and published

Fig. 11 The distributions ofmean pressure coefficient along the bump surface at z∕L � 0 from the simulations with coarsemesh (a, d),mediummesh (b,

e), and fine mesh (c, f). The top row presents simulations using the DSM, while the bottom row features cases using the Vreman model.
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experimental data sets. It shows that the developed wall models
successfully capture the acceleration and deceleration of the TBL
on the bump surface. In addition, these models offer more accurate
predictions of skin friction around the peak of the bump, and their
performance in predicting wall pressure and the velocity field is
comparable to that of the EQWM.
On the foundation of the test simulations across various flow con-

figurations, it is evident that the RLWMs in this study, developed based
on the training with low-Reynolds-number periodic-hill channel flow,
have gained valuable insights into the key physics of complex flows
with diverse pressure gradients. More importantly, this study under-
scores the promise of the MARL framework for sophisticated turbu-
lence modeling. However, these test simulations also indicate that the
performanceof thedevelopedRLWMs is not yet optimal, particularly at
higher Reynolds numbers, and these models show sensitivity to mesh

resolution. It is important to highlight that the RLWMs were trained in
situ with WMLES for periodic-hill channel flow at a relatively low
Reynolds number (ReH � 10;595), without specific optimization of
model components, including environmental states, rewards, and
actions. Consequently, further enhancements in model performance
and robustness could potentially be realized by broadening the training
across a wider range of Reynolds numbers and flow geometries or
through meticulous optimization of the model components. Moreover,
the role of SGS models in shaping the wall model development is also
discernible, especially given their significant influence in simulations of
separated turbulent flow [45]. To improve the reliability and versatility
of RL-based wall models in wider applications, a potential avenue
worth exploring is extending thewall model to become a unifiedmodel
that encompasses both SGS and wall boundary modeling, as seen in
models like the building-block flow model [14–16].

Fig. 12 Profiles of mean velocity �ux∕U∞ on an x − y plane of z∕L � 0 at x∕L � −0.4 (a–c), x∕L � −0.1 (d–f), x∕L � 0.1 (g–i), and x∕L � 0.2 (j–l) from
the simulations with coarse mesh (left), medium mesh (center), and fine mesh (right).
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Appendix A: Convergence of Model Training

As detailed in Sec. II.A.3, the training of models is based on a
series of periodic-hill channel flow simulations. In order to accelerate
the training, eight simulations (episodes) were run in parallel. Sub-
sequently, the policies of the trained models are updated after every
set of eight episodes, defining one iteration. Figure A1 shows the
averaged episode rewards Rep for all iterations during the training of
the aforementioned two RLWMs with different SGS models. The
averaged episode reward for each iteration is defined as Rep �
�1∕8� 8

l�1
Nk

k�1

Nj

j�1 rj;k;l, where j denotes the jth sampling step
in one episode, Nj represents the total number of sampling steps in
one episode, k denotes the index of RL agent,Nk is the total count of
RL agents in each episode, and l marks the index of episode in one
iteration. From the presented results, it is evident that the training
converges around 200 episodes or 25 iterations for both cases.

Appendix B: Testing for Flat-Plate Channel Flow

To validate the trained models and assess the influence of LLM,
test simulations of flat-plate channel flows are conducted at two
distinct friction Reynolds numbers, Reτ � 2000 and Reτ � 5000.
The computational domain dimensions are set to 10Hc × 2Hc × 3Hc

in the streamwise (x), wall-normal (y), and spanwise (z) directions,
respectively, with Hc representing the half-channel height. This
domain is discretized uniformly into 200, 64, and 60 cells in the x,
y, and z directions, respectively. The flow is driven by a constant
pressure gradient in the x direction. Periodic boundary conditions are

applied at both ends of the domain in the streamwise and spanwise
directions, while the bottom and top boundaries employ the pre-
viously developed RLWM-DSM and RLWM-VRE. The number of
RL agents positioned above the bottom and top walls matches the
number of wall cells, with each agent situated at the upper surface of
the wall-adjacent mesh cells. The effective wall eddy viscosity νt;w
is dynamically updated at each time step in response to local
instantaneous flow states. To ensure consistency across simula-
tions, both the DSM [42,43] and the Vremanmodel [44] are utilized
in separate simulations. A maximum CFL number of 1 is employed
throughout all simulations. Initially, each simulation runs for 100
FTTs to pass the initial transient phase. Subsequently, an additional
100 FTTs are executed to collect flow statistics. We first assessed
the capability of RLWMs to predict the skin friction coefficient at
the wall. Table B1 presents the errors in the mean skin friction
coefficient obtained from the RLWM simulations, which exhibit an
increase in error with Reynolds number. Additionally, Fig. B1 dis-
plays the inner-scaled mean streamwise velocity profiles. Overall,
the RLWMs demonstrate reasonable predictions for flat-plate chan-
nel flows, but LLM becomes apparent at higher Reτ, aligning with
the observed trends in skin friction errors. It is important to note that
the RLWMs were originally trained using periodic-channel flow
simulations characterized by spatially and temporally varying pres-
sure gradients. In these training scenarios, the maximum Reτ is
approximately 1900, lower than that of the flat-plate channel flow
cases examined here.
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