
HITTING TIMES FOR SHAMIR’S PROBLEM

JEFF KAHN

ABSTRACT. For fixed r ≥ 3 and n divisible by r, let H = Hr
n,M be the random M -edge r-graph on V =

{1, . . . , n}; that is, H is chosen uniformly from the M -subsets of K :=
(V
r

)
(:= {r-subsets of V }). Shamir’s

Problem (circa 1980) asks, roughly,

for what M = M(n) is H likely to contain a perfect matching

(that is, n/r disjoint r-sets)?
In 2008 Johansson, Vu and the author showed that this is true for M > Crn logn. More recently the author

proved the asymptotically correct version of that result: for fixed C > 1/r and M > Cn logn,

P(H contains a perfect matching)→ 1 as n→∞.

The present work completes a proof, begun in that recent paper, of the definitive “hitting time” statement:

Theorem. If A1, . . . is a uniform permutation of K, Ht = {A1, . . . , At}, and

T = min{t : A1 ∪ · · · ∪At = V },

then P(HT contains a perfect matching)→ 1 as n→∞.

1. INTRODUCTION

A (simple) r-graph (or r-uniform hypergraph) is a set H of r-subsets (edges) of a vertex set V = V (H); a
matching of such an H is a set of disjoint edges; and a perfect matching (p.m.) is a matching of size |V |/r.
Write Hr

n,M for the random M -edge r-graph on [n] := {1, . . . , n}; that is, Hr
n,M is chosen uniformly from

the M -subsets of K :=
(

[n]
r

)
. (Usage notes are collected at the end of this section.)

This paper completes a proof, begun in [23], of the definitive answer to Shamir’s Problem, which asks,
roughly: for fixed r and n ranging over (large) multiples r,

for what M is Hr
n,M likely to contain a perfect matching?

In what follows we work with a fixed r and omit it from our notation—so Hr
n,M becomes Hn,M—and

restrict to n divisible by r.

The story of Shamir’s Problem has been told at some length in [23] and we will be briefer here. The
problem first appeared in print in [9], where Erdős says he heard it from Eli Shamir in 1979, and, following
initial results of Schmidt and Shamir in [30], became one of the most intensively studied questions in prob-
abilistic combinatorics; for example, [21, Section 4.3] calls Shamir’s Problem and its graph factor analogue
(see below) “two of the most challenging, unsolved problems in the theory of random structures.”

For precise statements define the threshold for containing a perfect matching, denoted Mc = Mc(n), to
be the least the least M for which

P(Hn,M contains a perfect matching) ≥ 1/2.

2010 Mathematics Subject Classification. Primary 05C80, 05C65; Secondary 60C05, 60G40, 60G42.
Key words and phrases. Shamir’s Problem, threshold, hitting time, random hypergraph, perfect matching.
Supported by NSF Grants DMS1501962 and DMS1954035, BSF Grant 2014290, and a Simons Fellowship.

1



2 JEFF KAHN

(This is also a threshold in the original sense of Erdős and Rényi [11]; see [7] or [21, Theorem 1.24].)

A natural guess—though not recognized as such in [9, 30]—is that in the random setting the main obstacle
to existence of a perfect matching is isolated vertices (vertices not in any edges), which typically disappear
when M ≈ (n/r) log n. There are three progressively stronger versions of this intuition that one might hope
to establish. The first, called Erdős-Rényi threshold, involves the order of magnitude of Mc:

Theorem 1.1. For each r there is Cr such that if M > Crn log n then Hn,M contains a perfect matching w.h.p.1

(Equivalently, Mc = Θ(n log n), where the implied constant depends on r.) This was shown in [22], with
best earlier progress in [15] and [25]. (See also [16, Sec. 13.2] for an exposition.)

The more precise second and third versions—asymptotics of the threshold and hitting time—are:

Theorem 1.2. For fixed C > 1/r and M > Cn log n, Hn,M contains a perfect matching w.h.p.

(Equivalently, Mc(n) ∼ (n/r) log n.)

Theorem 1.3. If A1, . . . is a uniform permutation of K, Ht = {A1, . . . , At}, and

T = min{t : A1 ∪ · · · ∪ At = V },

then HT contains a perfect matching w.h.p.

(Here T is the aforementioned hitting time. It is easy to see that Theorem 1.3 implies Theorem 1.2.) For r = 2,
Theorems 1.2 and 1.3 were shown by Erdős and Rényi [12] and Bollobás and Thomason [6] respectively.

Theorem 1.2 was first formally conjectured (in a stronger form corresponding to what’s shown in [12])
in [8] and Theorem 1.3 was proposed in [22], though each was probably considered plausible by the time
it was recorded. (That Theorem 1.1 was apparently not on the radar in [9, 30]—Erdős specifically says he
has no idea what to expect for Shamir’s Problem—seems odd in view of [12], but perhaps suggests that the
above results were initially thought too much to expect.)

The predecessor, [23], of the present work proved Theorem 1.2 and began a proof of Theorem 1.3 whose
completion is our main objective here. The proof proceeds by way of a reduction—given in [23]—to a
conditional version of Theorem 1.2 (Theorem 1.5 below). The proof of the conditional statement is similar to
the proof of Theorem 1.2; but the conditioning—on a low probability event—makes even formerly routine
points tricky to deal with, and the point of the separate proof of Theorem 1.2 was to show the structure of
the argument unencumbered by these extra difficulties.

Graph factors (briefly; see [22, 23] for a little more). Recall that, for graphs H and G, an H-factor of G is a
collection of copies of H in G whose vertex sets partition V (G). The graph factor counterpart of Shamir’s
Problem asks (roughly): for a fixed H , when is the random graph Gn,M likely to contain an H-factor? This was
first suggested (for H = K3) by Ruciński [29].

The factor analogue of Theorem 1.1 was shown in [22] for strictly balanced H (more or less those H’s for
which one expects it to hold; see [22, Conjecture 1.1] for what should be true in general). For certain nice
H’s—e.g. cliques—beautiful coupling arguments of Riordan and Heckel [28, 20] derive the factor versions
of Theorems 1.1 and 1.2 from their Shamir versions, a connection that seems unlikely to extend to Theo-
rem 1.3. As suggested in [23], I expect that the work there and here extends to factors, though, at least for
what we do here, this looks fairly excruciating absent some simplification of the material below.

1“with high probability,” meaning with probability tending to 1 as n→∞
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In recent work, Frankston, Narayanan, Park and the author [14] used a new approach inspired by [2]
to prove a general threshold result (a relaxation, suggested by Talagrand [31], of a still open conjecture of
Kalai and the author [24]) that easily implies Theorem 1.1 and much more. It is, however, hard to imagine
Theorem 1.2 (a fortiori Theorem 1.3) being proved along similar lines. It would be very interesting to decide
whether the approach of [14] can recover the factor version of Theorem 1.1 proved in [22].

As in [22, 23], the proofs of Theorems 1.2 and 1.3 depend crucially on establishing stronger counting
versions; thus for Theorem 1.3, with Φ(H) denoting the number of perfect matchings ofH, we show:

Theorem 1.4. For Ht and T as in Theorem 1.3, w.h.p.

(1) Φ(HT ) >
[
e−(r−1) log n

]n/r
e−o(n).

(Up to a subexponential factor, the right-hand side of (1) is the expected value of its left-hand side.)

Our assignment here is to prove the following conditional statement, which, as shown in [23, Section 10],
implies Theorem 1.4. (The same reduction gets Theorem 1.3 itself from the weaker version of Theorem 1.5
corresponding to Theorem 1.2, but, again, we don’t know how to prove the weaker version without proving
the stronger.)

Theorem 1.5. Fix a small positive ε and suppose δx ∼ ε log n for each x ∈ V := [n]. Let M = M(n) ∼ (n/r) log n

and let H be distributed as Hn,M conditioned on

{dH(x) ≥ δx ∀x ∈ V }.

Then w.h.p.

(2) Φ(H) >
[
e−(r−1) log n

]n/r
e−o(n).

In other words: for ς � 1 there is %� 1 such that if M = (1± ς)(n/r) log n and δx = (1± ς)ε log n for each
x, then

P
(

Φ(H) ≤
[
e−(r−1) log n

]n/r
e−%n

)
< %.

(It should perhaps be stressed that our argument doesn’t work if we allow ε = o(1); see the Outline at the
end of Section 2 and the note following (101) in Section 9.)

In Section 2 we derive Theorem 1.5 from several statements whose proofs will be the main work of this
paper. Outlining that work will be easier once we have the framework of Section 2, so is postponed until
then, at which point we’ll also say a bit about how what we do here relates to [23]. We won’t assume
familiarity with [23]—and will wind up more or less repeating parts of it—but, as said above, it shows the
present argument in simpler form, and a reader of the present work might find it a useful companion.

Usage

Throughout the paper we fix r ≥ 3; take V = [n] := {1, . . . , n}, with n divisible by r; and use K for
(
V
r

)
.

We use v, w, x, y, z for vertices and E ,F ,G,H,J for r-graphs (subsets of K), or, often, bold versions of these
when the r-graphs in question are random. As above, we abbreviate Hr

n,M = Hn,M .

We use dH(·) and dH(·, ·) for degree and codegree in H (thus dH(x) = |{A ∈ H : x ∈ A}| and dH(x, y) =

|{A ∈ H : x, y ∈ A}|), and ∆H, δH and DH for maximum, minimum and average degrees in H. We use
Hx = {A ∈ H : x ∈ A} and, for X ⊆ V , H[X] = {A ∈ H : A ⊆ X} and H−X = H[V \X]. We will tend to
abusively write Y ∪ a and Y \ a for Y ∪ {a} and Y \ {a} (in particularH \A forH \ {A}).
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For a setX and p ∈ [0, 1], we useXp for the random subset in which elements ofX appear independently,
each with probability p. In all our uses of this X will be some H; so Hp is formally in conflict with Hx, but
there will never be any question as to which is meant. (We will also, beginning with (5), see Ht—this always
with a bold H, though there would be no confusion in any case.)

As above, we will sometimes use bold for random objects: consistently for r-graphs except when we use
Hp, but otherwise only when we need to distinguish between a random object and its possible values.

We use mathfrak characters (A,B,C,D, . . .) for properties and events. A property A will usually be a
property of r-graphs (thus A ⊆ 2K), and we will say, as convenient, “H has property A,” “H satisfies A,”
“H ∈ A” or “H |= A.” An event is then {H |= A} for some property A and random H, and may be denoted
simply A if we have specified H. According to what feels natural (or typographically preferable), we use
any of the synonymous A∧R, A∩B, AR. As usual, a property of r-graphs on V is increasing if it cannot be
destroyed by addition of edges.

We assume (as in Theorem 1.5) that ε is fairly small. We will always assume n is large enough to support
our assertions and, following a common abuse, pretend large numbers are integers.

Asymptotic notation is interpreted as n→∞. We use a� b and a = o(b) interchangeably and, similarly,
a <∼ b is the same as a < (1 + o(1))b. We use both “a.e.” and “a.a.” to mean “for all but a o(1)-fraction.” We
use log for natural logarithm and a± b for a quantity within b of a.

Where not otherwise stated, implied constants in Ω(·) and O(·) are allowed to depend on ε. (Usually
they won’t, but we will only worry about this when it matters.) A typographical convention: in exponents
only, we will use c as a substitute for Ω(1); thus different c’s in a single statement need not (and will not) be
equal. (For consistency we allow dependence on ε, but in our uses of c this will never make any difference.)

Finally, we set T = |K| −M (M as in Theorem 1.5) and throughout the paper take

(3) mt = |K| − t (=
(
n
r

)
− t) and Kt =

( K
mt

)
.

(So m
T

= M , but we will usually use m
T

. We will always have t ∈ [T ].) We will often use m for mt (we
think of this as a default, but won’t use it without notice). We use Dm for the common value of DH for H’s
of size m (so when m = mt and H ∈ Kt, DH is Dm, not the equally plausible Dt). This may all take a little
getting used to, but eventually seemed less annoying than various alternatives.

2. SKELETON

Here we derive Theorem 1.5 from several assertions whose proofs will be the main content of the paper.
The discussion here is similar to that of [23, Sec. 2].

Recalling that T = |K|−M , we would like to proceed as in [22, 23], starting from H0 := K and randomly
deleting edges one at a time to produce the sequence H0,H1, . . . ,HT , with HT the H of Theorem 1.5. Here
uniform deletions will not do, but we may proceed as follows.

Let

(4) L = {J ⊆ K : dJ (x) ≥ δx ∀x ∈ V },

and to generate {Ht}: choose HT uniformly from L
T

:= L ∧ KT ; let A1, . . . , AT be a uniform ordering of
K \HT ; and for t ∈ {0, . . . , T} set

(5) Ht = K \ {A1, . . . , At} (= HT ∪ {At+1, . . . , AT }).
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(One peculiarity of the present approach is that we start with the object of interest, HT , but analyze it as the
output of the random sequence it has been used to generate.)

The following two rules governing the law of {Ht} are not needed for the present outline but will be the
basis for much of what follows; the easy verifications are left to the reader. For H ⊆ K of size at least m

T
,

we use UH for a uniform m
T

-subset ofH and set

(6) β(H) = P(UH ∈ L).

Observation 2.1. AmongH’s in Kt,
P(Ht = H) ∝ β(H).

Observation 2.2. Among A’s inH ∈ Kt−1,

P(At = A|Ht−1 = H) ∝ β(H \A).

Set Φ(Ht) = Φt and let ξt be the fraction of perfect matchings of Ht−1 that contain At (so ξt = Φ(Ht−1−
At)/Φt−1). Then

Φt = Φ0(1− ξ1) · · · (1− ξt),

or, equivalently,

(7) log Φt = log Φ0 +
∑t
i=1 log(1− ξi).

The proof of Theorem 1.5 depends on showing that Φt is likely to stay reasonably close to its expectation
throughout the above evolution. As will appear, this is self-reinforcing, with past good behavior favoring
good behavior going forward.

An issue here is that there are possibilities for the Ht’s that don’t support our analysis. (The same
was true, but in far milder form, in [22, 23].) To deal with this we define (in Section 5) a collection R of
(“reasonable” or “generic”)H’s, write Rt for the event {Ht ∈ R},

and show (mainly in Section 13)

(8) P(∩t≤TRt)→ 1.

The resulting license to ignore Ht’s not belonging to R will underpin much of what happens below.

Let

(9) Λ = (r − 1)n/r

and observe that (recall log = ln)

(10) log Φ0 = log
n!

(n/r)!(r!)n/r
=
n

r
log
(
n
r−1

)
− Λ +O(log n).

Now using m for mt (= |K| − t), set

(11) γt = n/(r(m+ 1)).

Then γt is the reciprocal of the average degree in Ht−1, and would be equal to Eξt if At were uniform from
Ht−1. That was the situation in [22, 23], but here the Eξt’s will require some care; we will show (recall we
are using c for a positive constant)

(12) if H ∈ Kt−1 ∩R ∩ L, then E[ξt|Ht−1 = H] < (1 + n−c)γt.
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This will mean that, as long as we have not wandered out of R, we may think of Eξt as essentially γt. (Of
course ifH 6∈ L, the conditioning event is vacuous.)

Let At be the event

(13)

{
log Φt > log Φ0 −

t∑
i=1

γi − o(n)

}
.

(We note, probably unnecessarily, that (13) refers to some specific o(n), so that it makes sense to talk about At
for a particular n. Related points will be common below, and, somewhat departing from common practice,
we will elaborate in a couple places where doing so seems possibly helpful.)

Noting that

(14)
t∑
i=1

γi =
n

r
log

[(
n

r

)
/m

]
+ o(1),

provided m� n, and recalling the expression for Φ0 in (10), we find that AT says

(15) log ΦT > (n/r) log(rm
T
/n)− Λ− o(n),

which is the same as (2); so Theorem 1.5 is

(16) P(AT ) = o(1).

(We will in fact show P(∪t≤TAt) = o(1); see (22).)

For (16) we use the method of martingales with bounded differences. Here it is natural—though we will
need a variant of this—to consider the martingale

{Xt =
∑t
i=1(ξi − E[ξi|A1, . . . , Ai−1])}

with associated difference sequence

{Zi = ξi − E[ξi|A1, . . . , Ai−1]}.

In general, proving concentration for such Xt’s depends on maintaining some control over the |Zi|’s,
to which end we track, in addition to the Rt’s, a second sequence of events Bt. These will be defined
in Section 7; roughly Bt says that no edge of Ht is in too much more than its natural share of perfect
matchings.

For t ≤ T it will follow trivially from Bt−1 (see (87)) that

(17) ξt = O(γt).

This is more than enough for the desired concentration but can occasionally fail, since Bt−1 may fail. To
allow for this, as well as possible failures of the Rj ’s, we slightly modify the above X’s and Z’s, setting

(18) Zi =

{
ξi − E[ξi|A1, . . . , Ai−1] if BjRj holds for all j < i,
0 otherwise

(and Xt =
∑t
i=1 Zi). As shown in Section 3, a martingale analysis along the lines of Azuma’s Inequality

then gives

(19) P(Xt > λ) < n−ω(1) for λ�
√
n.

We next observe that if BiRi holds for i < t ≤ T—so

Xt =
∑t
i=1(ξi − E[ξi|A1, . . . , Ai−1])
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—and |Xt| <
√
n log n (say; there is plenty of room here), then we have At. For with these assumptions we

have (using (12) and
∑
γi = O(n log n), the latter from (14), and with sums over i ∈ [t])∑

ξi = Xt +
∑

E[ξi|A1, . . . , Ai−1]

≤ Xt + (1 + n−c)
∑
γi =

∑
γi + n1−c(20)

(recall the c’s needn’t agree); while ξi = O(γi) for i ≤ t (see (17) and recall we have Bi−1) gives (using (11))∑t
i=1 ξ

2
i = O(

∑t
i=1 γ

2
i )

< O((n/r)2
∑
{j−2 : j > m

T
}) = O(n/ log n).(21)

Thus, using (7) (and ξi = o(1), as follows from (11) and (17)), we have

log Φt > log Φ0 −
∑

(ξi + ξ2
i ) > log Φ0 −

∑
γi −O(n/ log n)

(where the O(n/ log n) absorbs the smaller error in (20)).

Thus the first failure, if any, of an At must occur either because Xt is too large or because BiRi fails for
some i < t; formally, we have

(22) P(∪i≤tAi < P(∪i<tRi) +
∑
i<t

P(AiRiBi) +
∑
i≤t

P((∩j<iBjRj) ∩ Ai).

Here we have already promised in (8) that the first term is o(1); the last is n−ω(1) by (19) and the discussion
following it; and we will show—this is the main point—

(23) for i < T , P(AiRiBi) = n−ω(1).

Thus the l.h.s. of (22) is o(1), which in particular gives (16) and, as already discussed, Theorem 1.5. �

Outline. The structure of our central argument is described in the easy Section 8, and an early look at that,
with the (even easier) Section 7, might be helpful. Here we briefly list contents of the sections and then say
a little about the comparison with [23].

After recalling a few large deviation facts, Section 3 records what we need in the way of martingale
concentration, in a form convenient for a second application in Section 10, and gives the calculation for
(19). Section 4 develops some reasonably simple machinery for dealing with β(H)’s, the main point being
the comparisons of Lemma 4.5. Section 5 introduces the rather long list of requirements for the property R,
with support for (8) mostly postponed to Section 13. Section 6 proves (12), a first application of Lemma 4.5.
Section 7 finally defines the central property B, slightly reformulates (23) (as (86)), and disposes of the
trivial (17). The next five sections are then devoted to the proof of (86) (which, as noted following (23),
completes the proof of Theorem 1.5), as follows.

Section 8 introduces a few auxiliary properties, with assertions concerning them—Lemmas 8.1-8.4—that
together easily imply (86). Lemmas 8.1 and 8.4 are from [23] and are just quoted here; the latter is easy,
but the entropy-based Lemma 8.1 was a key ingredient in the earlier paper (and is again here), being a first
improvement on [22] that opens the door to the rest. Lemma 8.3 is proved in Section 9. (It is here that the
Ω(log n) lower bound on degrees provided by L becomes crucial; see following (101).) Lemma 8.2, which
may be considered the core of the whole business, is proved in Sections 10-12, with Section 10 mostly setting
out what needs to be done and Sections 11-12 doing it.

Finally, as mentioned above, Section 13 is concerned with justifying (8), with Sections 13.1-13.2 mainly
developing machinery and Section 13.3 appying it. (Sections 13.1-13.2 are largely self-contained and maybe
amusing in themselves.)
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All that in idea seemed simple became in practice immediately complex; as the waves shape themselves symmetrically
from the cliff top, but to the swimmer among them are divided by steep gulfs, and foaming crests.

Virginia Woolf, To the Lighthouse

The basic difference between this paper and [23] is that Ht is now chosen according to Observation 2.1,
rather than uniformly from Kt; in a sense all we are doing here is dealing with difficulties occasioned by
that change. This has to date proved harder than one might wish (and maybe harder than it needs to be,
given that there is quite a lot of room in some of the arguments). We briefly summarize similarities and
differences.

As already mentioned, the above sketch is similar to the one in [23, Sec. 2]. The easy Section 3 is nearly
the same as [23, Sec. 3] (and gets to skip a couple proofs given there). Sections 4 and 6 have no counterparts
in [23]; and Sections 5 and 13 have only a faint, routine echo in the parts of [23] (Section 5 and the appendix)
that deal with the present R0 (there called R).

The (central) parts of the argument in the remaining sections have rough parallels in [23], Sections 7-9
(here) corresponding to Sections 5-7 (there) and Sections 10-12 to Section 9. (Sections 4 and 8 of [23] prove
the present Lemma 8.1 and correspond to nothing here.) The biggest changes are in Sections 9-11; it is
here that we see most clearly the difference between handling the present Ht’s and those of [23], which
are ordinary Hn,m’s. An additional complication is that we must also deal with (H − Z)’s (with Z ∈ K),
which in our setting—unlike in [23] where they are again Hn,m’s—are different from, and trickier than, the
already fairly nasty Ht’s. See e.g. the proof of Lemma 8.2, in particular the parallel setup at the beginning
of Section 10, and then the arguments of Section 11, which think mainly of G = H − Z and simplify
considerably when G = H. (The present Section 12 is just far enough from the corresponding portion of
[23, Sec. 9] that it seems necessary to repeat.)

3. CONCENTRATION

Recall that a r.v. ξ is hypergeometric if, for some s, a and k, it is distributed as |X ∩ A|, where A is a fixed
a-subset of the s-set S and X is uniform from

(
S
k

)
. For the standard bounds in Theorem 3.1, see e.g. [21,

Theorems 2.1 and 2.10].

Theorem 3.1. If ξ is binomial or hypergeometric with Eξ = µ, then for t ≥ 0,

Pr(ξ ≥ µ+ t) ≤ exp [−µϕ(t/µ)] ≤ exp
[
−t2/(2(µ+ t/3))

]
,(24)

Pr(ξ ≤ µ− t) ≤ exp[−µϕ(−t/µ)] ≤ exp[−t2/(2µ)],(25)

where ϕ(x) = (1 + x) log(1 + x)− x for x > −1 and ϕ(−1) = 1.

For larger deviations the following consequence of the finer bound in (24) is helpful.

Theorem 3.2. For ξ and µ as in Theorem 3.1 and any K,

Pr(ξ > Kµ) < exp[−Kµ log(K/e)].

The next result, proved in [17], will save us some trouble at one point (see Lemma 13.8). Say the {0, 1}-
valued r.v.’s ζ1, . . . , ζt are a read-k family if there are independent r.v.’s ψ1, . . . , ψs such that each ζj is a
function of (ψi : i ∈ Sj) (for some Sj ⊆ [s]) and |{j : i ∈ Sj}| ≤ k for each i ∈ [s]. (That is, each ψi affects at
most k of the ζj ’s.)
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Theorem 3.3. For ζ1, . . . , ζt a read-k family with
∑

Eζj ≤ tρ, and any λ ∈ [ρ, 1],

P(ζ1 + · · ·+ ζt > λt) < exp[−D(λ‖ρ)t/k],

where D(λ‖ρ) = λ log(λ/ρ) + (1− λ) log[(1− λ)/(1− ρ)].

(The statement in [17] assumes
∑

Eξj = tρ, but implies the present version since D(λ‖ρ) is decreasing in
ρ ≤ λ. We will not need the similar lower tail bound.)

We now turn to martingales and (19). Lemma 3.4 and Proposition 3.5, which we use here and again in
Section 12, are Lemma 3.3 and Proposition 3.4 of [23] and will not be reproved here. The argument for (19)
is really the same as that for (17) in [23], but is superficially different enough that it seems best to repeat it.

Lemma 3.4. If Z1, . . . , Zt is a martingale difference sequence with respect to the random sequence Y1, . . . , Yt (that
is, Zi is a function of Y1, . . . , Yi and E[Zi|Y1, . . . , Yi−1] = 0), then for Z =

∑
Zi and any ϑ > 0,

(26) EeϑZ ≤
∏t
i=1 maxE[eϑZi |y1, . . . , yi−1]

and, consequently, for any λ > 0,

(27) P(Z > λ) < e−ϑλ
∏t
i=1 maxE[eϑZi |y1, . . . , yi−1]

(where yi ranges over possibilities for Yi and the conditioning in (26) and (27) has the natural meaning).

Both here and in Section 12, bounds on the factors in (26) are given by the next observation.

Proposition 3.5. For a r.v. W ∈ [0, b] with EW ≤ a and ϑ ∈ (0, (2b)−1],

(28) max{Eeϑ(W−EW ),Ee−ϑ(W−EW )} ≤ eϑ
2ab.

Proof of (19). Let ςi = O(γi) be the bound on ξi in (17). We will apply Lemma 3.4 with Yi = Ai and Zi as
in (18) (so Z = Xt), using Proposition 3.5 with b = ςi and a = ai the bound in (12) (with t = i; thus a =

(1 + n−c)γi) to bound the factors in (27) (or (26)). (For relevance of the proposition notice that, conditioned
on any particular values A1, . . . , Ai−1, Zi is either identically zero (as happens if BjRj has failed for some
j < i) or Zi = ξi − E[ξi|A1, . . . , Ai−1], where ξi ∈ [0, ςi] and (12) bounds the conditional expectation by ai.)
This combination (i.e. of Lemma 3.4 and Proposition 3.5) gives

P(Xt > λ) < exp[ϑ2
∑t
i=1 ςiai − ϑλ]

for any λ > 0, provided, say, ϑ ≤ 1 (≤ (2 max ςi)
−1). So with

J =
∑t
i=1 ςiai = O(

∑
γ2
i ) = O(n/ log n)

(see (21)) and ϑ = min{1, λ/(2J)}, we have

Pr(Xt > λ) <

{
exp[−λ2/(4J)] if λ ≤ 2J ,
exp[−λ/2] otherwise,

and (19) follows (using λ�
√
n and, in the first case, J = O(n/ log n)). �
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4. COMPARING β’S

A basic difficulty in the present work is that we don’t know how to estimate the probabilities β(H). As
a substitute, this section develops some simple machinery for comparing β(H)’s that will allow us to say,
roughly, that under reasonable restrictions, small changes inH don’t cause unmanageable changes in β(H).

In general our lives are simpler if we can work with “binomial” surrogates for UH (recall from (6) that
this is a uniform m

T
-subset ofH). Set

(29) δ = ε log(3/ε).

For perspective note that for U = UK (and its binomial relatives below), any x ∈ V (and large enough n),

(30) P(dU (x) < δx) < n−1+δ,

since the first, more precise part of (25) bounds the l.h.s. of (30) by exp[−(1 − ε log(e/ε) + o(1)) log n]. (We
note that δ is not meant to suggest δx.)

Let

(31) % = n−(1−λ)/2, with λ > δ small and fixed

(for concreteness we may take λ = 2δ, but the actual value barely matters), and for H ⊆ K with |H| = m ≥
(1 + %)m

T
, define

(32) XH = Hp, ZH = Hq ,

where p = (1 + %)m
T
/m and q = (1 − %)m

T
/m. (Recall that Hp includes edges of H independently, with

probability p. The restriction on m is needed to keep p below 1; of course ZH could be defined more
generally.) We will compare UH, XH and ZH, with the basic observations in Lemma 4.2 and the main
point of the section Lemma 4.5.

Set

(33) ξ = exp[−%2m
T
/3] (= n−Ω(nλ)).

This value, which is far smaller than we will really need it to be, is chosen so that (by Theorem 3.1)

(34) max{P(|Z | > m
T

),P(|X | < m
T

)} < ξ.

Before turning to the main business of this section we record one crude observation that will sometimes
allow us to more or less ignore very small values of mt (recall L was defined in (4)):

Lemma 4.1. IfH ∈ L, |H| = m < (1 + n−(2δ+c))m
T

, and

(35) |{x : dH(x) < 1.5ε log n}| = O(n2δ),

then β(H) > 1− n−c.

Proof. Set U = UH and let X be the set in (35). If U 6∈ L thenH \ U must contain either

(i) an edge on some x ∈ X , or
(ii) for some x ∈ V \X , at least 1.5ε log n− δx > 0.4ε log n of any given 1.5ε log n edges ofHx;
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and the probability that one of these occurs is at most

O(n2δ log n · n−(2δ+c)) + n

(
1.5ε log n

0.4ε log n

)
n−(2δ+c)0.4ε log n < n−c.

�

Call J ⊆ K anemic if

(36) J has at least 2rn2δ vertices of degree less than 2ε log n.

In Lemma 4.2 and Corollary 4.3, U ,X and Z are UG , X G and ZG for some G ⊆ K of size at least (1+%)m
T

,
and S is a property of r-graphs. As in much of this work, there is room in the bounds—also, e.g., in the
definition of anemic—and we aim for (relative) simplicity rather than anything like optimality.

Lemma 4.2. (a) If S is increasing, then

(37) P(Z ∈ S)− ξ ≤ P(U ∈ S) ≤ (1− ξ)−1P(X ∈ S).

(b) Suppose S is increasing and membership of J in S is determined by {x : dJ (x) ≥ ρx}, with ρ := max ρx ≤
1.5ε log n. If

(38) P(X anemic) < ηP(X ∈ S),

then P(Z ∈ S) > (1− η − n−c))P(X ∈ S).

(Note (38), though we will need to check it whenever we use (b), is not much of a requirement.)

Proof. (a) Since S is increasing, we have

P(Z ∈ S) ≤ P(|Z | > m
T

) + P(U ∈ S)

(yielding the first inequality in (37)) and

P(X ∈ S) ≥ P(|X | ≥ m
T

)P(U ∈ S)

(yielding the second).

(b) We couple X and Z in the usual way: Z = X 1−ς , with ς = 1 − (1 − %)/(1 + %) < 2%. The desired
inequality is then

(39) P(Z ∈ S|X ∈ S) > 1− η − n−c.

From (38) we have
P(X anemic|X ∈ S) ≤ P(X anemic)/P(X ∈ S) < η.

On the other hand, {X ∈ S,Z 6∈ S} implies existence of an x for which

(40) dZ(x) < ρx ≤ dX (x),

meaning that the passage from X to Z deletes at least dX (x)− ρx + 1 members of X x. But the probability
of deleting at least k edges at x is at most

(
dX (x)
k

)
ςk; so whenever X is non-anemic, the probability that (40)

occurs for some x is less than

2rn2δρς + n

(
2ε log n

0.5ε log n

)
ς0.5ε logn.

Combining these observations gives (39):

P(Z ∈ S|X ∈ S) ≥ P(X non-anemic|X ∈ S)P(Z ∈ S|X ∈ S,X non-anemic)

> 1− η − n−c. �
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In Corollary 4.3 and Lemma 4.5 we use a � b for a > (1− n−c)b.

Corollary 4.3. If S is as in Lemma 4.2(b) and

(41) P(X ∈ S) > nc max{ξ,P(X anemic)},

then

(42) P(Z ∈ S) � P(U ∈ S) � P(X ∈ S) (≥ P(Z ∈ S)).

(Like (38), (41) should be considered a minor annoyance.)

Proof. This is three applications of Lemma 4.2: the second part of (a) of the lemma gives P(X ∈ S) � P(U ∈
S); (b), with the second bound in (41), gives P(Z ∈ S) � P(X ∈ S); and combining this with the first
bound in (41), and using the first part of (a), gives P(U ∈ S) � P(Z ∈ S). �

Corollary 4.4. β(K) >∼ exp[−nδ].

(In fact β(K) ∼ exp[−nδ], but we don’t need this.)

Proof. With Z = ZK, Theorem 3.1 gives

P(dZ(x) < δx) < n−1+δ

(the calculation, which is essentially the same as that for (30), is valid provided % = o(1)), and combining
this with Harris’ Inequality [19] yields

P(Z ∈ L) > (1− n−1+δ)n ∼ exp[−nδ].

The corollary then follows from Lemma 4.2(a) (with ρx = δx and S = L, the subtracted ξ in (37) being
obviously irrelevant here). �

Say x is dangerous for J (⊆ K) if

(43) dJ (x) < 1.5εDJ

(recall DJ is average degree in J ). For the next lemma we assume J ,J ′ ⊆ K, E = J ∩ J ′,

(44) |J | = |J ′| = m ≥ (1 + %)m
T
,

J \ E = {A1, . . . , Aσ} and J ′ \ E = {B1, . . . , Bσ},

with

(45) {A1, . . . , Aσ} a matching

and

(46) (1 ≤) σ = no(1);

let κ be the number of Ai’s containing vertices that are dangerous for J ; and set W = A1 ∪ · · · ∪Aσ , noting
that

(47) |W | = σr and |{x ∈W : x dangerous for J }| ≤ κr.
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Lemma 4.5. With the above setup, assume: J ′ ∈ L;

(48) if m > 2rmT then dE(x) ≥ 1.5εDJ ∀x ∈W

(so κ = 0); and

(49) β(J ) > nΩ(σ) max{ξ,P(XJ anemic)},

where the implied constant doesn’t depend on ε. Then

(50) β(J ′) � n−O(κε)β(J )

(where, of course, the implied constant is again universal).

Notes. The assumptions in (46) and (49), while supporting the lemma, are much weaker than what we will
have when we come to use it; on the other hand, the ε in (50) will be critical at one point (see (137)). Of
course the “�” (vs. “>′′) in (50) is unnecessary if κ 6= 0. (It is only in our first application of Lemma 4.5—in
the proof of (12) in Section 6—that the precision of “�” in (50) is needed.)

Proof. Recalling that β(H) = P(UH ∈ L), we first observe that it suffices to show (50) with Z in place of U ;
that is,

(51) P(ZJ ′ ∈ L) � n−O(κε)P(ZJ ∈ L).

To see that this is enough, notice that Corollary 4.3, with S = L (and ρx = δx) and (41) given by (49) and
Lemma 4.2(a) (the latter to say P(XJ ∈ S) >∼ β(J )), gives

(52) P(ZJ ∈ L) � β(J );

that this with (51) and (49) gives

P(ZJ ′ ∈ L) > n−O(κε)+Ω(σ)ξ (> ncξ),

which by Lemma 4.2(a) gives

(53) β(J ′) � P(ZJ ′ ∈ L);

and, finally, that the combination of (53), (51) and (52) gives (50).

For the proof of (51) set ZJ = Z and ZJ ′ = Z ′. We may couple these by taking Z ′ ∩ E = Z ∩ E ,
with the remaining decisions (those involving the Ai’s and Bi’s) made independently, and show a mild
strengthening of (51):

(54) P(Z ′ ∈ L|Z ∈ L) � n−O(κε).

Here Harris’ Inequality gives

P(Z ′ ∈ L|Z ∈ L) = P(dZ′(x) ≥ δx ∀x ∈W |Z ∈ L)

≥
∏
x∈W P(dZ′(x) ≥ δx).(55)

On the other hand, now using J ′ ∈ L and (48) (the latter just to say that if the first case in (56) is not vacuous
then q (= (1− %)m

T
/m) = Ω(1)), we have, for x ∈W ,

(56) P(dZ′(x) ≥ δx) ≥

{
qδx = n−O(ε) if dE(x) < 1.5εDJ − 1,
1− n−Ω(ε) otherwise.

Here the second bound is given by Theorem 3.1 since EdZ′(x)>∼ 1.5ε log n, as follows from dJ ′(x) ≥ dE(x) ≥
1.5εDJ ′ − 1. Finally, inserting the bounds from (56) in (55), noting that (45) implies that all x’s in the first
part of (56) are dangerous for J , and using (46) and (47), gives (54). �
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5. GENERICS

Here we define the property R, with most of the discussion supporting (8) postponed to Section 13.
As we will do elsewhere (see Sections 7, 8 and 10), we give the definition for a general r-graph H, with
n := |V (H)| and m := |H| � n, so average degree

DH = mr/n.

The event Rt of Section 2 is then {Ht ∈ R}. (In line with our “default,” we may think of t =
(
n
r

)
−m, but,

apart from a pseudo-exception at (61), the present definitions don’t involve t.)

We number the several requirements for R—thus R = R0 ∩ · · · ∩R4 (with, again, Ri
t = {Ht ∈ Ri})—to

allow later pointers to what exactly is being used. The first of these, R0 consists of standardish genericity
conditions for degrees; viz.

(57) a.a. degrees inH are asymptotic to DH

(formally: there is ς = o(1) such that dH(x) = (1± ς)DH for all but (1− ς)n vertices x);

(58) ∆H = O(DH), δH = Ω(εDH);

and

(59) max dH(x, y) = o(DH)

(the max over distinct x, y ∈ V ).

Note that R0 is robust in that, for any fixed C,

(60) ifH satisfies R0 then so doesH− Z for each Z ⊆ V with |Z| ≤ C.

(Note—though it doesn’t matter—this refers to a slightly changed n and m.) We omit the easy justification,
just noting that (58) implies DH−Z ∼ DH and that (57) and (the lower bound in) (58) for H− Z depend on
having (59) forH. We will only use (60) with Z a member of K or the union of two disjoint members.

For the next item, m
T

is the M = M(n) of Theorem 1.5 (so the definition makes sense for a general H,
though we will use it only withH = Ht). SayH is in R1 provided that

(61) if |H| > 2rm
T

then δH > 2εDH.

(So—irrelevantly—smaller H are automatically in R1. This item is minor but will sometimes allow us to
focus on |H| closer to m

T
, which is where most of the interest lies. Of course for H = Ht (61) implies the

second part of (58), since Ht ∈ L.)

That

(62) P(∩t≤T (R0
t ∩R1

t ))→ 1

is shown in Section 13.3.

For Z ⊆ V (andH ⊆ K), set

(63) JZ(H) = {H′ ⊆ K : |H′| = |H|,H′ − Z = H− Z},

(64) ϕZ(H) =
∑
{β(H′) : H′ ∈ JZ(H)}



HITTING TIMES FOR SHAMIR’S PROBLEM 15

and

(65) ϕZ(H) = |JZ(H)|−1ϕZ(H)

(the average of β(H′) over H′ of size |H| agreeing with H off Z; note each of the items in (63)-(65) is deter-
mined by |H| andH− Z). Let

(66) R2 = {H : ϕZ(H) > n−(2r+1)β(K) ∀Z ∈ {∅} ∪ K},

noting in particular (taking Z = ∅ and recalling Corollary 4.4) that

(67) H ∈ R2 ⇒ β(H) > n−(2r+1)β(K) > exp[−(1 + o(1))nδ].

In Section 13.3 we will show that for any Z ⊆ V (and any t ∈ [T ] and η > 0),

(68) P(ϕZ(Ht) < ηβ(K)) < η,

whence

(69) P(∃tHt 6∈ R2) < n−1 (= o(1)).

With α = m
T
/m and, as in (36), J anemic if dJ (v) < 2ε log n for at least 2rn2δ vertices v, let

R3 = {H : P(Hα anemic) < exp[−(1− o(1))n2δ]}.

Again in Section 13.3, we will show

(70) P(Ht 6∈ R3) < exp[−(1− o(1))n2δ].

We will usually use membership in R3 in combination with the next little point.

Observation 5.1. For fixed c > 0,H of size asymptotic to m and ζ ∼ m
T
/m, if

(71) P(Hζ anemic) < exp[−Ω(n2δ)],

then

(72) |{x : dH(x) < (2− c)εDH}| < 2rn2δ.

In particular, (72) holds whenH ∈ R3.

Proof. If W is a (2rn2δ)-subset of the set in (72), then Harris’ Inequality (with Theorem 3.1) gives

P(Hζ anemic) ≥ P(dHζ (x) < 2ε log n ∀x ∈W ) > (1− o(1))|W | = exp[−o(n2δ)],

contradicting (71). �

For R4 we use a parameter ω that tends to infinity slowly; precisely, we want

(73) 1� ω � ν,

where conditions on ν are included in the parameter requirements of (143)-(147). Those requirements could
instead have been given here, but really belong in Section 12, where they become relevant. As explained
there, they are functions of some γ = o(1) that in turn depends on the “quality” of A and R0 (e.g. the speed
of the o(1) in A), meaning the most we can ask of ν is that it tend to infinity; this leaves room for (73), but
no more. (We could also make ω a suitably large constant, but this feels less natural.)

For Z ⊆ V , let

(74) DZ = {H ∈ KT :
∑
y∈V \Z(δy − dH−Z(y))+ > ω},



16 JEFF KAHN

and let D = ∪Z∈KDZ (and Dx = D{x}). It is shown in Lemma 13.9 (see (188)) that

(75) P(HT ∈ D) < n−ηω

for some fixed η > 0 (not depending on ε, though we don’t need this).

For t ∈ [T ] and Z ∈ K, sayH ∈ Kt is in R4(Z) if

(76) P(HT ∈ DZ |Ht − Z = H− Z) < n−ηω/2,

and set R4 = ∩Z∈KR4(Z). Then for any Z (∈ K),

n−ηω > P(HT ∈ D)

≥ P(Ht 6∈ R4(Z))P(HT ∈ DZ |Ht 6∈ R4(Z))

≥ P(Ht 6∈ R4(Z))n−ηω/2,(77)

implying P(Ht 6∈ R4(Z)) < n−ηω/2 and

(78) P(∃tHt 6∈ R4) < n2rn−ω/2 = n−Ω(ω) (= o(1)).

(To make sense of (77) notice that membership of Ht in R4(Z) is decided by Ht − Z, and the conditioning
says precisely that (76) does not hold.)

To recap: (8) will follow from (62), (68) (which implies (69)), (70) and (75) (which implies (78)); as noted
above, these are all shown in Section 13.

6. EXPECTATIONS

In this section we take m = mt and prove (12); recall this said (with γt = n/(r(m+ 1)); see (11))

(79) H ∈ Kt−1 ∩R ∩ L ⇒ E[ξt|Ht−1 = H] < (1 + n−c)γt.

GivenH as in (79), set, for A ∈ H,

pA = pH(A) = P(At = A|Ht−1 = H) (∝ β(H \A); see Observation 2.2)

and

ξA = ξH(A) = Φ(H− A)/Φ(H).

Then ξA is the fraction of perfect matchings ofH that contain A, and

(80) E[ξt|Ht−1 = H] =
∑
pAξA.

We will show that no pA is much more than the average; concretely,

(81) pA < (1 + n−c)/(m+ 1) ∀A ∈ H.

Since (m + 1)−1
∑
A∈H ξA = γt (equivalently,

∑
Φ(H − A) = (n/r)Φ(H)), this bounds the r.h.s. of (80) by

(1 + n−c)γt, as desired.

Proof of (81). Set

H0 = {B ∈ H : dH(x) ≥ 1.5εDH + 1 ∀x ∈ B}

and notice that, by Observation 5.1 and (61) (so we useH ∈ R3 ∩R1),

|H0|

{
≥ m+ 1− 3εrn2δDH > (1− n−c)(m+ 1) if m ≤ 2rm

T
,

= m+ 1 otherwise.



HITTING TIMES FOR SHAMIR’S PROBLEM 17

This implies that for (81) it is enough to show

(82) β(H \A) < (1 + n−c)β(H \B) ∀B ∈ H0,

since then

pA =
β(H \A)∑

B∈H β(H \B)
≤ β(H \A)∑

B∈H0 β(H \B)
< (1 + n−c)/(m+ 1).

For m < (1 + n−3δ)m
T

(say), (82) is give by Lemma 4.1, according to which β(H \ B) > 1 − n−c for
any B ∈ H0 (the lemma’s hypotheses, H \ B ∈ L and (35), following from B ∈ H0 (with H ∈ L) and the
combination ofH ∈ R3 and Observation 5.1 respectively).

For larger m we show (82) assuming (81) fails (which suffices for our purposes). We have

1

m+ 1

∑
B∈H

β(H \B) = β(H) > exp[−(1 + o(1))nδ].

[The inequality holds since H ∈ R2 (see (67)), and for the equality we have, with sums over B ∈ H (and
L
T

= L ∩ KT ),∑
β(H \B) =

(
m
m
T

)−1∑ |{U ∈ L
T

: U ⊆ H \B}|

=
(
m
m
T

)−1
(m+ 1−m

T
)|{U ∈ L

T
: U ⊆ H}| = (m+ 1)β(H).]

We thus have

(83) pA =
β(H \A)∑

B∈H β(H \B)
<

1

m+ 1

β(H \A)

exp[−(1 + o(1))nδ]

and may assume

(84) β(H \A) > exp[−(1 + o(1))nδ],

since otherwise (83) implies (81).

Then for (82) we apply Lemma 4.5 with J = H \ A and J ′ = H \ B (so E = H \ {A,B}, σ = 1 and,
unfortunately, A1 = B and B1 = A). Here B ∈ H0 implies κ = 0, so the lemma, if applicable, does give
(82); but its first hypothesis, (48), holds because B ∈ H0, and its second, (49), is a weak consequence of (84)
andH ∈ R3, which implies P(XH anemic) < exp[−(1− o(1))n2δ]. (Note Lemma 4.5 also assumes the lower
bound in (44), but here we have the stronger m ≥ (1 + n−3δ)m

T
.) �

7. PROPERTIES A AND B

As in Section 5, properties in this section, as well as Sections 8 and 10, are defined for a general r-graph
H, and St is the event {Ht ∈ S}. Here and in Section 8—but not quite in Section 10—we again use n and
m for the numbers of vertices and edges ofH, and K for

(
V (H)
r

)
.

For the remainder of the paper we will tend to use A for edges and Z or U for general r-sets. We assume
throughout that we have fixed some positive ε (it will be essentially the one in Theorem 1.5), upon which
the implied constants in “O(·)” and “Ω(·)” may depend.

We sayH has the property A if

(85) log Φ(H) > log Φ0 −
n

r
log

[(
n

r

)
/m

]
− o(n).

(Recall from (14) that for m = mt, the main subtracted term here is essentially
∑t
i=1 γi; so, as promised,

{Ht ∈ A} is the At of Section 2.)
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For B a little notation will be helpful. For a finite set S and w : S → <+ (:= [0,∞)), set

w(S) = |S|−1
∑
a∈S

w(a),

maxw(S) = max
a∈S

w(a),

and
maxr w(S) = w(S)−1 maxw(S).

ForH ⊆ K define wH : K → <+ by
wH(Z) = Φ(H− Z),

and sayH has the property B if
maxr wH(H) = O(1).

(So B says the number of p.m.s containing any particular A ∈ H is not too large compared to the average.
Note that the implied constant here does depend on ε, its natural value being roughly 1/ε: on average over
A 3 x, the fraction of p.m.s of H containing A is 1/dH(x); and the dH(x)’s, while typically around DH, can
be as small as (about) εDH.)

Then Bt (= {Ht |= B}) is as in Section 2 and (23) is

(86) for t < T , P(Ht |= ARB) = n−ω(1).

(More formally: there is a fixed C, depending on the o(·)’s and implied constants in A and R, such that
P({Ht |= AR} ∧ {maxr wHt(Ht) > C}) = n−ω(1).)

As mentioned at the end of Section 2, (86) is shown in Sections 8-12, and with (8) (likelihood of the Rt’s,
established in Section 13) will complete the proof of Theorem 1.5.

We conclude this section with the promised

(87) Bt−1 implies (17).

(Recall (17) says ξt = O(γt), where, as in (11), γt = n/(r(m+ 1)).)

Proof. If Ht−1 = H, then ξt ≤ maxA∈H wH(A)/Φ(H), while γt is the average of these ratios, since∑
A∈H wH(A) = Φ(H)n/r

(and |H| = m+ 1). This gives (87). �

8. MORE PROPERTIES

We will get at B via several auxiliary properties. We introduce the first three of these here (there will
be a couple more in Section 10), together with assertions concerning them that, as shown below, easily
imply (86). As mentioned earlier, two of these assertions are from [23] and the others (which also have
counterparts in [23]) are proved in the next four sections.

With n and K again the size and collection of r-subsets of V (H), the properties of interest here are:

C: if Z ∈ K satisfies

(88) wH(Z) > Φ(H)e−o(n),

then for any x ∈ Z,

(89) wH((Z \ x) ∪ y) >∼ wH(Z)d(x)/DH for a.e. y ∈ V \ Z;
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E: wH(A) ∼ Φ(H)/DH for a.e. A ∈ H;
F: wH(Z) ∼ Φ(H)/DH for a.e. Z ∈ K.

(More formally, e.g. for E: there is ς = ς(n) = o(1) such that |{A ∈ H : wH(A) 6= (1± ς)Φ(H)/DH}| < ς|H|.)
For perspective on E and F, notice that

(wH(H) =) |H|−1
∑
A∈H

wH(A) = |H|−1Φ(H)n/r = Φ(H)/DH.

For the next little bit we use
X
∗

=⇒ Z

to mean P(XZ) = n−ω(1); e.g. the probability bound of (86) is

(90) {Ht |= AR} ∗
=⇒ {Ht |= B}.

The aforementioned assertions are as follows. (In Lemmas 8.2 and 8.3 we assume t ∈ [T ].)

Lemma 8.1. IfH satisfies AR0 then it satisfies E.

Lemma 8.2. With ∧Z ranging over Z as in (88) (with H = Ht),

{Ht |= AR} ∗
=⇒ {Ht |= F} ∧

∧
Z{Ht − Z |= F}.

Lemma 8.3. For x ∈ Z ∈ K,

(91) {Ht |= R} ∧ {Ht − Z |= F} ∗
=⇒ {(Ht, Z, x) |= (89)}.

Lemma 8.4. IfH satisfies R0FC then it satisfies B.

Lemmas 8.2-8.4 immediately imply (86) (in the form (90)): the first two give

{Ht |= AR} ∗
=⇒ {Ht |= FC}

and the story is then completed by Lemma 8.4.

Remarks. The crucial contribution of Lemma 8.1 is that it allows us to replace AR by ARE in Lemma 8.2;
more precisely: recall from (60) that H |= R0 implies H − Z |= R0 for every Z ∈ K, and note that H |= A

easily impliesH− Z |= A for any Z as in (88); these observations, with Lemma 8.1, say that in proving any
of the assertions {Ht |= AR} ∗

=⇒ {G |= F} of Lemma 8.2, we may we replace the l.h.s. by

(92) {Ht |= AR} ∧ {G |= E}.

Lemma 8.2 then embodies the idea that EF is unlikely for a random G (here either Ht or Ht − Z) because
the distribution of the wG(A)’s (A ∈ G) should reflect that of the wG(Z)’s (Z ∈ K). As said in [23], we regard
this natural point as the heart of our argument.

The more important part of Lemma 8.2 is that involving Ht − Z, which provides input for Lemma 8.3.
Its other use, allowing us to assume F in Lemma 8.4, is convenient but less critical: with more effort one can
show directly that {Ht |= RCB} is unlikely.

The nonprobabilistic Lemmas 8.1 and 8.4 are Lemmas 6.1 and 6.4 of [23] (the R there being the present
R0), and their proofs will not be repeated here. (As mentioned in Section 2, Lemma 8.4 is easy, but
Lemma 8.1 was one of the main points of [23].) Lemmas 8.3 and 8.2 are proved (in this reverse order)
in Sections 9 and 10-12 respectively.
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9. PROOF OF LEMMA 8.3

Fix x ∈ Z ∈ K and let H = Ht, Y = Z \ x and W = V \ Z. We now use dx for dH(x).

Recall (see (5)) that H = HT ∪J with HT uniform from L
T

and J uniform from the (T − t)-subsets of
K \HT . This gives a joint distribution on (G,GT ,N T ,Hx \N T ), where G = H − x, GT = G ∩HT and
N T = HT \ GT (= (HT )x). Given G = G we choose GT ,N T ,Hx \N T (in this order), and set g = |G| and
g
T

= |GT |.

The law of GT will not concern us, but the next two observations will be helpful. First, the law of N T

depends only on GT : it is uniform measure on

(93) {N ⊆ Kx : |N | = m
T
− g

T
, N ∪ GT ∈ L

T
}.

Second, Hx \N T is chosen uniformly from the (m − g − |N T |)-subsets of Kx \N T ; in particular its law
depends only on N T and g.

We are really interested in the choice of Hx, for which we may assume whatever consequences of H ∈ R

can be read off from (G,GT ); of these we will use just DH−Z ∼ DH, dx = Ω(ε log n) (both given by (58))
and H ∈ R4(Z). We are then also entitled to assume

(94) HT 6∈ Dx

(see (74)), since H ∈ R4(Z) says that the probability that HT ∈ DZ (⊇ Dx)—an event decided by GT—is
n−Ω(ω) (recall ω was introduced at (73)). Armed with these assumptions, we continue.

Set Φ′ = Φ(H− Z)/DH (a function of G) and recall that H− Z ∈ F says (using DH−Z ∼ DH)

(95) wH−Z(U) ∼ Φ′ for a.e. U ∈ K[W ].

On the other hand, for any y ∈W ,

(96) wH(Y ∪ y) =
∑
{wH−Z(S ∪ y) : S ∈

(
W\y
r−1

)
, S ∪ x ∈H},

and (95) implies

(97) for a.e. y ∈W , wH−Z(S ∪ y) ∼ Φ′ for a.e. S ∈
(
W\y
r−1

)
.

It is thus enough to show that (under the assumptions in the preceding paragraph) the inequality in (89) is
unlikely to fail for any y as in (97).

We are now choosing Hx = N T ∪ (Hx \N T ). Given y as in (97), let2

I = {S ∈
(
W\y
r−1

)
: wH−Z (S ∪ y) 6∼ Φ′} ∪ {S ∈

(
V \x
r−1

)
: S ∩ (Y ∪ y) 6= ∅}

and Ĩ = {S ∪ x : S ∈ I}, and notice that

(98) |Ĩ| = |I| = o(nr−1).

(The first set in the definition of I consists of the exceptional S’s in (97), so is of size o(nr−1); the second has
size Θ(nr−2) and should be ignored.)

2A more formal version: (97) says there is ς = o(1) so that for all but ςn y’s,

|{S ∈
(W\y
r−1

)
: wH−Z(S ∪ y) 6= (1± ς)Φ′}| < ςnr−1.

Then “y as in (97)” is one of these, and the condition in J is wH−Z(S ∪ y) 6= (1± ς)Φ′.
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Noting that dx (= dH(x)) is determined by G, we observe that the sum in (96) is at least (1−o(1))dxΦ′—so
the inequality in (89) holds—provided

|Hx ∩ Ĩ| = o(dx).

So it is enough to show, for some ζ = o(1),

(99) max{P(|N T ∩ Ĩ| > ζdx),P(|(Hx \N T ) ∩ Ĩ| > ζdx)} = n−ω(1);

as we will see, this is true whenever

(100) ζ � max{(log(nr−1/|I|))−1, ω/ log n}.

(Recall we assume ω →∞ slowly, so the second bound is small.)

Note that for Hx uniform from
(Kx
dx

)
and ζ satisfying (just) the first bound in (100), P(|Hx ∩ Ĩ| > ζdx) =

n−ω(1) is given by Theorem 3.2, using (98) and dx = Ω(ε log n); namely, since E|Hx ∩ Ĩ| � n−(r−1)|I|dx,
Theorem 3.2 bounds the probability in question by

(101) exp[−ζ log(ζnr−1/(e|I|))dx] = exp[−ω(log n)].

(It is this point—more precisely, its analogues below—that collapses if Theorem 1.5 allows δx = o(log n).)
So we are trying to show that the present distribution (see (93)) doesn’t behave too differently.

For any choice of N T , Hx \N T is a uniform subset of some size less than dx from a universe of size
Θ(nr−1), so, as above,

P(|(Hx \N T ) ∩ Ĩ| > ζdx) = n−ω(1).

While something similar is clearly true for P(|N T ∩ Ĩ| > ζdx), I don’t see how to say it’s just trivial. A nice
fly-with-a-sledgehammer argument runs as follows.

Given GT , let uz = δz − dGT (z), J = {z ∈ V \ x : uz > 0} and

(102) u =
∑
z∈J uz ≤ ω

(with the inequality from (94); again see (74)). Then N T is distributed as a uniform (m
T
− g

T
)-subset, N ,

of Kx conditioned on

S := {dN (z) ≥ uz ∀z ∈ J}.

Set N = {|N ∩ Ĩ| > ζdx} and N′ = {|N ∩ Ĩ| > ζdx − u}, and notice that if SN holds (at N ), then S

and N′ occur disjointly at N ; that is, there are disjoint A,B ⊆ N such that N ⊇ A implies S (for N ) and
N ⊇ B implies N′ (see [4] or e.g. [18]). But a beautiful result of van den Berg and Jonasson [3] bounds the
probability of this disjoint occurrence by P(S)P(N′), yielding

(P(|N T ∩ Ĩ| > ζdx) =) P(N|S) ≤ P(N′) = n−ω(1),

with the n−ω(1) again given by Theorem 3.2 (now using u ≤ ω, the second bound in (100) and, again,
dx = Ω(ε log n) to say the subtracted u in N′ is irrelevant).

10. PROOF OF LEMMA 8.2: SETTING UP

In this and the next two sections, H is Ht, we use m for mt and D for Dm, and G is either H or H − Z
(with Z as in (88)), with law in either case denoted ϕ; thus

(103) ϕ(G) := ϕ(G = G) ∝

{
β(G) if G = H,∑
H−Z=G β(H) if G = H− Z,
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where G ranges over possibilities for G and H over Kt (or just over possibilities for H, since the rest don’t
contribute to (103)). Note that the sum in the second part of (103) is the common value of ϕZ(H) forH ∈ Kt

withH− Z = G; see (64).

We will refer to the two parts of (103) as Case 1 and Case 2 (respectively). Note that Case 2 includes Case
1 if we allow Z = ∅; we have included the first part of (103) to emphasize the distinction, but from this
point (until the end of Section 12) Z is either empty or as in (88), and we set V ′ = V \ Z and K′ = K − Z.
In what follows we will usually be thinking of the more demanding Case 2; but the arguments also make
sense in Case 1, where they often simplify, sometimes drastically. A few comments on Case 1 appear in
square brackets.

As observed at (92), Lemma 8.1 says that Lemma 8.2 is equivalent to the assertion that for each G in (103),

(104) P(H |= AR,G |= EF) = n−ω(1).

Note we may assume here that

(105) |K| −m = Ω(|K|);

for H |= R0 implies that |G| ∼ m for each G in (103), so if (105) fails then for each such G, E and F are
equivalent and (104) is vacuous. (This rather silly point will be needed for (140).)

It will be convenient to further reformulate as follows. For any G set

η(G) = inf{η : |{U ∈ K : wG(U) 6= (1± η)Φ(G)/DG}| < η|K|}.

Then {G |= F} = {η(G) = o(1)} and (104) is equivalent to3

(106) for any fixed θ > 0, P(H |= AR,G |= E, η(G) > 2θ) = n−ω(1).

(The 2θ will be convenient below.) So for the rest of this section we fix θ > 0 and aim for (106).

Set

(107) Φ′ = Φ(G)/DG .

Notice that {G |= E} ∧ {η(G) > 2θ} implies

Q: wG(A) ∼ Φ′ for a.e. A ∈ G, but wG(U) 6= (1± 2θ)Φ′ for at least a (2θ)-fraction of the U ’s in K′ \ G.

So it is enough to show

(108) P(H |= AR,G |= Q) = n−ω(1).

For the proof of this we work with an auxiliary random set T chosen uniformly from
(G
τ

)
, where τ , which

will be specified later (see the paragraph containing (143)-(147)), will at least satisfy

(109) ω log n� τ � log2 n.

(As explained following (73), ω is really chosen after the parameters of (143)-(147).) We set F = G \ T and

ζ = e−τ/D,

3With G = {H |= AR,G |= E} and H(ν) = {η(G) > ν}, (104) says

there is ς = o(1) such that P(G ∧ H(ς)) = n−ω(1),

while (106) implies
∀k, P(G ∧ H(1/k)) < n−k for n ≥ nk;

and we get the former from the latter by taking ς(n) = (max{k : nk ≤ n})−1.
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and will be interested in a property of the pair (G,T ) (or (F ,T )), viz.

V: wF (A) ∼ ζΦ′ for a.e. A ∈ T , but wF (U) 6= (1± θ)ζΦ′ for at least a θ-fraction of the U ’s in K′ \ G,

Note ζwG(U) is a natural approximate value for wF (U), since each p.m. of G − U survives in F with
probability roughly (actually, asymptotically) (1− τ/m)n/r ∼ ζ; cf. (162).

We will exploit the familiar leverage derived from the interplay of two natural ways of generating (G,T ):

(A) choose G and then T (as above);
(B) choose F and then T (determining G = F ∪ T ).

(In Case 2, analysis for (A) will involve choosing H rather than just G.)

Notice that, given F = F , the law of T is given by

(110) P(T = T ) = P(F = F ,T = T )/P(F = F) = P(G = F ∪ T )
(|F|+τ

τ

)−1
/P(F = F) ∝ ϕ(F ∪ T ),

where T ranges over τ -subsets of K′ \ F (and ϕ is as in (103)).

We will not need to know much about the law of F , but will want to restrict attention to reasonably
well-behaved possibilities. Thus we will define a property N specifying a few desirable features of F , and,
now writing AR for {H |= AR}, Q for {G |= Q}, N for {F |= N}, and V for {(G,T ) |= V}, show

(111) P(VN|ARQ) = 1− o(1)

and

(112) P(VN) = n−ω(1).

These give (108), since

P(ARQ) = P(ARQVN)/P(VN|ARQ) ≤ P(VN)/P(VN|ARQ).

(So (111) is more than is really needed here.)

Noting that we have specified m and Z, we take N to be the property comprising (118)-(121) below. The
first of these takes a little preparation. Set, for g ≤ m (in what follows, g will be |G|):

(113) I(g) =

(
KZ
m− g

)
,

with KZ := ∪x∈ZKx, and

(114) I∗(g) = {I ∈ I(g) : dI(x) ≥ δx ∀x ∈ Z};

for G′ ∈
(K′
g

)
,

ϕ(G′) = |I(g)|−1ϕ(G′)

(with ϕ as in (103)); and for F ⊆ K′ with |F| = g − τ ,

(115) H(F) = {G′ ∈
(K′
g

)
: G′ ⊇ F}

and

(116) H∗(F) = {G′ ∈ H(F) : dG′(x) ≥ δx ∀x ∈ V ′}.

Like ϕ itself, ϕ should recall R2: ϕ(G′) is ϕZ(H) for any H ∈ Kt with H − Z = G′. [In Case 1, g = m,
I∗(g) = I(g) = {∅}, and ϕ(G) = ϕ(G) = β(G).] Note that H(F) includes possibilities for G given F = F ,
but typically also some (irrelevant) impossibilities; e.g. in Case 1 anything in H(F) \ H∗(F).
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In two places below it will be convenient to first dispose of the easy case of very small m, allowing us to
restrict attention to (say)

(117) m > (1 + n−3δ)m
T
.

With g = |F|+ τ , the first requirement for F |= N is

(118) ϕ(G′) >∼

{
|I∗(g)|/|I(g)| ∀G′ ∈ H∗(F) if m violates (117),
n−(2r+1)β(K) ∀G′ ∈ H(F) if m satisfies (117).

A little perspective: For (112) we will use viewpoint (B), bounding P(V|F = F) for F ∈ N, and will want
to say that the law of G under this conditioning is not too awful, meaning that the ratios between different
P(G′)’s are not too large; but as these probabilities are governed by ϕ (again, see (103)), the lower bounds of
(118) will be useful in bounding their ratios. (See e.g. (139) for the role of (118) in the (more important) case
where (117) holds.)

The other, more easily stated requirements (for F |= N) are

(119) if m > 2rm
T

then dF (x) > 1.5εD ∀x ∈ V ′;

(120) with α = m
T
/m, P(Fα anemic) < exp[−(1− o(1))n2δ]

(see (36) for “anemic”); and (with ω as in (73) and (109))

(121)
∑
y∈V ′(δy − dF (y))+ ≤ ω.

Of course for (111) it is enough to show (as above using N for F |= N and so on)

(122) for anyH ∈ Kt ∩R, P(N|H = H) = 1− o(1)

and (our main point)

(123) P(V|ARQ) > 1− o(1).

We prove (122) and (112) in Section 11 and (123) in Section 12, organizing in this way because the proofs
of (122) and (112) are slightly similar (mainly in their use of Lemma 4.5) and unrelated to the proof of (123).

11. PROOFS OF (122) AND (112)

Proof of (122). We will show that (120) follows (deterministically) from H ∈ R, while the other parts of N
hold (forH ∈ R) whenever

(124) T is a matching

and

(125) T covers no x for which dG(x) ≤ 1.5εD.

(Recall we are using H, m and D for Ht, mt and Dm.) This gives (122) since (under H ∈ R) the upper
bound on τ in (109) implies that each of (124), (125) holds with probability 1− o(1): for (124) this is a weak
consequence of ∆H = O(DH) (see (58)); and for (125) it holds because H ∈ R3 (with Observation 5.1) and
the codegree condition (59) bound the number of x’s in (125) by 2rn2δ .

Turning to the deterministic assertions preceding (124), we first note that (119) is immediate from H ∈ R

(specifically, (61) and (59)) and (124), while (121) follows easily from H ∈ R4, (124) and (125) (the first
trivially implies (121) with G in place of F , and the others say the passage to F doesn’t affect this).
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To get (120) from H ∈ R, notice that

exp[−(1− o(1))n2δ] > P(Hα anemic) ≥ P(Fα anemic) · (1− α)|H\F |

(the first inequality is H ∈ R3 and the second is trivial). Thus for (120) it is enough to show

(126) (1− α)|H\F | = exp[−o(n2δ)]

—which isn’t close: we have (using (58))

(127) |H \F | = |H \ G|+ τ = O(D) + τ = O(m/n) + τ ;

so the l.h.s. of (126) is (crudely)

(1− α)O(m/n)+τ =


exp[−O(

m
T

m {
m
n + τ})] if α < 1/2 (say),

exp[−O(mn + τ) log n] otherwise

(the latter since 1−α > 1/m), and (126) follows easily, using the upper bound on τ in (109) andm
T
< n log n

(which when α ≥ 1/2 also implies m = O(n log n)).

Finally, we turn to the two cases of (118). For m violating (117), we use Lemma 4.1. Here the assumption
(35) holds even for F—as follows from H ∈ R (specifically, (72) and (59)), (124) and (125)—so also for any
G′ ∈ H(F). Thus the lemma gives β(G′ ∪ I) = 1− o(1) whenever G′ ∪ I ∈ L (with G′ ∈ H(F) and I ∈ I(g)),
which in particular is true whenever G′ ∈ H∗(F) and I ∈ I∗(g); so we have (118) in this case.

For m satisfying (117), recall from (66) [or, in Case 1, its specialization (67)] that H ∈ R2 implies the
inequality in (118) for G′ = G (since ϕ(G) is the same as ϕZ(H)); so it is enough to show

(128) ϕ(G′) >∼ ϕ(G) ∀G′ ∈ H(F).

It’s also easy to see that ϕ(G) >∼ n
−(2r+1)β(K) (as in (118)) implies (say)

(129) ϕ(G) ∼
∑
{β(G ∪ I) : I ∈ I(g), β(G ∪ I) > n−(2r+2)β(K)}.

But we claim that for any I as in (129) and G′ ∈ H(F),

(130) β(G′ ∪ I) >∼ β(G ∪ I),

which (in view of (129)) gives (128).

For (130) we apply Lemma 4.5 with J = G ∪ I and J ′ = G′ ∪ I (so E ⊇ F ∪ I, σ ≤ τ and W ⊆ V ′).
Note that here the κ of the lemma is zero, since all Ai’s lie in T , so by (125) are not dangerous for J . So the
lemma’s conclusion is (130), and we just need to check its hypotheses (assuming J ∈ L, without which the
r.h.s. of (130) is zero):

First, (44) holds because we assume (117), and (45) is given by (124). Second, J ′ ∈ L follows from J ∈ L,
using J \J ′ ⊆ T with (124) and (125). Third, (124) implies dE(x) ≥ dG(x)−1 for each x ∈ V ′ (⊇W ), which
gives (48) since (using (61) and (59), and noting |H| = |J |)

m > 2rm
T
⇒ [dH(x) > 2εDJ ∀x ∈ V ] ⇒ [dG(x) > (2ε− o(1))DJ ∀x ∈ V ′].

Last, (49) holds because β(J ) > exp[−(1 − o(1))nδ] (by Corollary 4.4, since I is as in (129)) and, by (120),
P(XJ anemic) (≤ P(Fα anemic)) < exp[−(1− o(1))n2δ]. �
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Proof of (112). Implied constants in this argument do not depend on ε or θ. We actually show

(131) for any F ∈ N, P(V|F = F) = e−Ω(θτ)

(which is n−ω(1) by (109)). Here we use viewpoint (B). The (natural) idea is roughly: F determines the
weights wF (U) (for all U ∈ K′, though here we are only interested in U ∈ K′ \ F ), and V then requires that
T be (pathologically) drawn almost entirely from U ’s with weights close to ζΦ′, though this group excludes
a constant fraction of K′ \ F .

In fact (112) would be more or less routine if we were choosing T uniformly rather than as in (110). The
crude comparison in Lemma 11.1 below will allow us to move between these two regimes.

Fix F ∈ N and set g = |F|+ τ , I = I(g), I∗ = I∗(g),H = H(F) and H∗ = H∗(F) (see (113)-(116)). We now
regard the P of (110) as a probability measure on H—thus

(132) P(G′) ∝ ϕ(G′) for G′ ∈ H

—and use µ for uniform measure on H. (It’s perhaps worth noting—though this won’t matter—that, unlike
P, µ can assign positive probability to T ’s for which F ∪ T is not a possible value of G.)

Lemma 11.1. With notation as above, if X ⊆ H and µ(X) = e−Ω(θτ), then

P(X) = e−Ω(θτ).

Proof. Notice first that (121) and τ ≥ ω (see (109)) imply

(133) µ(H∗) > n−ω.

For m violating (117) we now finish easily: combining (118) and the trivial ϕ(G′) ≤ |I∗| (∀G′ ∈ H) with
(133) (and (132)) gives P(X) <∼ nωµ(X) for any X ⊆ H; and this gives the lemma since τ � ω log n (again see
(109)). So we assume from now on that m satisfies (117).

For G′ ∈ H, let λ(G′) be the number of edges of G′ \ F containing vertices x with

(134) dF (x) < 1.5εD.

By (120) and Observation 5.1, the number of such vertices is less than 2n2δ , implying that, for any b,

(135) µ(G′ : λ(G′) ≥ b) = n−Ω(b)

(In more detail: if there are x’s as in (134), then a very crude application of (119)—all that’s needed here is
|K′ \ F| = Ω(nr)—bounds the fraction of members of K′ \ F containing such x’s by O(n−1+2δ), and the
upper bound in (109)—again, very crudely; τ = no(1) would suffice—then gives (135).)

Fix G0 ∈ H∗ with ϕ(G0) minimum. We will show that for any G′ ∈ H,

(136) ϕ(G′)/ϕ(G0) <∼ n
O(ελ(G′)).

(Of course we can replace “ <∼ ” by “<” if λ(G′) 6= 0.)

Before proving (136) we show it gives Lemma 11.1 (for m satisfying (117)). Since (by (133))∑
{ϕ(G′) : G′ ∈ H} > n−ω|H|ϕ(G0),
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we have, for any G′ ∈ H (using (136), and with G′′ running over H),

P(G′) =
ϕ(G′)∑
ϕ(G′′)

<
nω

|H|
ϕ(G′)
ϕ(G0)

<∼
nωnO(ελ(G′))

|H|
= nωµ(G′)nO(ελ(G′)).

Combining this with (135), τ � ω log n and µ(X) = e−Ω(θτ) gives the desired bound: with λ0 = θτ/ log n,

�(137) P(X) <∼ nω
[
µ(X)nO(ελ0) +

∑
b>λ0

µ(G′ : λ(G′) = b)nO(εb)
]

= e−Ω(θτ).

Proof of (136). Set I0 = {I ∈ I : β(G′ ∪ I) > n−(2r+2)β(K)} (⊆ I∗) and notice that it is enough to show

(138) β(G′ ∪ I) <∼ n
O(ελ(G′))β(G0 ∪ I) ∀ I ∈ I0;

for if this is true then, recalling that F ∈ N implies ϕ(G0) >∼ n
−(2r+1)β(K) (see (118)), we have

ϕ(G′) ≤ |I|−1
∑
{β(G′ ∪ I) : I ∈ I0}+ (1 + o(1))n−1ϕ(G0)(139)

<∼ nO(ελ(G′))ϕ(G0)/|I|+ n−1ϕ(G0) <∼ n
O(ελ(G′))ϕ(G0).

[In Case 1, (118) says I0 = {∅} (= I), and (138) is (136).]

For (138) we will again use Lemma 4.5, now withJ = G′∪I andJ ′ = G0∪I (and E = (G′∩G0)∪I ⊇ F ), so
should check hypotheses: first, (44) holds since we assume (117), and (45) is given by (124) (since J \E ⊆ T );
second, assuming (as we may) that J ∈ L, we have J ′ ∈ L, since G0 ∈ H∗ and J ,J ′ agree on edges meeting
Z; third, (48) holds since (for m > 2rm

T
) (119) gives dE(x) ≥ dF (x) > 1.5εD (= 1.5εDJ ) for x ∈ V ′ (⊇ W );

last, (49) follows from I ∈ I0 (with Corollary 4.4) and (120) (with P(XJ anemic) ≤ P(Fα anemic)).

So the lemma applies and we just need to check that κ (the number of edges of J \J ′ containing vertices
dangerous for J ) is at most λ(G′); but this is true because J \ J ′ ⊆ G′ \ F and any x that is dangerous for
J satisfies (134) (since dF (x) ≤ dJ (x)). �

This completes the proof of Lemma 11.1.

We return to (131), which by Lemma 11.1 will follow from its “µ-version,” viz.

(140) for any F ∈ N, µ(V|F = F) = e−Ω(θτ).

A small complication here is that F doesn’t determine the “target” ζΦ′ appearing in V. Among several
ways of dealing with this, the following seems nicest.

Given F , let U1, . . . be an ordering of K′ \ F with wF (U1) ≤ wF (U2) ≤ · · · , and let Y and Z be (resp.) the
first and last θ|K′ \ F|/3 of the Ui’s. Then, whatever Φ′ turns out to be, the second part of V requires that at
least one of Y , Z be contained in

W := {U ∈ K′ \ F : wF (U) 6= (1± θ)ζΦ′}

(or |W| < |Y|+|Z| < 2(θ|K′\G|+τ)/3 < θ|K′\G|, the last inequality since (105) and (109) imply τ � |K′\G|).
But then, since (now regarding µ as the law of T )

Eµ|T ∩ Y| = Eµ|T ∩ Z| = θτ/3

and θ is fixed, Theorem 3.1 bounds the probability that the first part of V holds by (say)

µ(max{|T ∩ Y|, |T ∩ Z|} < θτ/4) = e−Ω(θτ).

�
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12. PROOF OF (123)

(We continue to use H = Ht, m = mt and D = Dm.) We now need to pay some attention to parameters.
We first observe that if H |= AR0 and G = H− Z (with Z either empty or as in (88)), then there is γ = o(1)

(depending on the o(n) in A and, in R0, the (explicit or implicit) o(·)’s in (57) and (59), and the implied
constants in (58)), such that for each U ∈ K′ with (say)

(141) (wG(U) =) Φ(G − U) > Φ(G)n−r,

G∗ := G − U and Φ∗ := Φ(G∗) satisfy

(142)
∑
{wG∗(A) : A ∈ G∗,wG∗(A) 6= (1± γ)Φ∗/D} < γnΦ∗.

To see this, recall from the remarks following Lemma 8.4 that each relevant G∗ satisfies AR0, so also E by
Lemma 8.1. But then G∗ contains (1 − o(1))|G∗| ∼ nD/r edges A with wG∗(A) ∼ Φ∗/DG∗ ∼ Φ∗/D, with
(both) asymptotics following easily from G |= R0 (see (59)); so such edges account for all but a o(1)-fraction
of the total weight Φ∗(n− r)/r ∼ Φ∗n/r. This gives (142) for a suitable γ = o(1).

We now choose τ = νmin{log n,D} (∼ ν log n)—noting that then

(143) ζ (= e−τ/D) ≥ e−ν

—together with M and η, satisfying

(144) log n� ν � ω

(which is (109));

(145) e−ν � γ;

(146) τ �M

{
� γτ,

> 1 + γ;

and

(147) e−ν � η �
√
τM/ log n.

Note this is possible: we may choose ν →∞ as slowly as we like (which in particular gives (144) and (145));
we then want to chooseM as in (146) satisfying (to leave room for η) e−ν �

√
τM/ log n; and this is possible

if e−ν � max{ν√γ,
√
ν/ log n}, which is true for a slow enough ν.

For the proof of (123) we use viewpoint (A) (choose H—so also G—and then T ). We assume we have
chosen H = H, with H |= AR and G := H− Z |= Q; so P now refers just to the choice of T , and (123) will
follow from

(148) P((G,T ) |= V) = 1− o(1).

It will be enough to show that for U ∈ K′ as in (141) (i.e. wG(U) > Φ(G)n−r),

P(wF (U) ∼ ζwG(U)) = 1− o(1) if U ∈ K′ \ G,(149)

P(wF (U) ∼ ζwG(U)|U ∈ T ) = 1− o(1) if U ∈ G.(150)

Before proving this we show that it does give (148). If G satisfies Q then for a suitable ς = o(1),

(151) |{A ∈ G : wG(A) 6= (1± ς)Φ′}| � |G|
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(where Φ′ = Φ(G)/DG ; see (107)). Thus, with G0 the set in (151), we have E|T ∩ G0| = τ |G0|/|G| � τ, so

|T ∩ G0| � τ w.h.p.

(by Theorem 3.1 or just Markov’s Inequality). But for the first part of V to fail we must have either |T ∩G0| =
Ω(τ), which we have just said occurs with probability o(1), or

|{A ∈ T \ G0 : wF (A) 6∼ ζwG(A)}| = Ω(τ),

which has probability o(1) by (150) (and Markov).

Similarly, failure of the second part of V implies

(152) wF (U) = (1± θ)ζwG(U) 6∼ ζwG(U)

for at least θ|K′ \ G| of those U ’s in the second part of Q that satisfy

(153) wG(U) > (1− θ)ζΦ′ > n−o(1)Φ(G)/D

(since those failing (153) cannot satisfy (152); for the second bound in (153) see (143) and (144)). But since
the bound in (153) is larger than the one in (141), (149) implies that the probability that (152) holds for such
a set of U ’s is o(1).

Finally, we prove (149); the proof of (150) is almost literally the same and is omitted. (Note the probability
in (150) is just P(wG\T 0

(U) ∼ ζwG(U)), with T 0 uniform from
(G\{U}
τ−1

)
.)

Proof of (149). We now fix U as in (141) (and recall G∗ = G−U and Φ∗ = Φ(G∗)). (We will, pedantically, keep
track of the microscopic numerical differences between Cases 1 and 2—in Case 2 the number of vertices is
n− r and |G| is not exactly m—but stress they are wholly irrelevant.)

Say A ∈ G is heavy if A ∈ G∗ and wG∗(A) > MΦ∗/D, and note that by (142) (and M > 1 + γ; see (146)),

(154) the number of heavy edges in G is less than γnD/M = γmr/M ,

implying

(155) P(T contains a heavy edge) <∼ γτr/M = o(1)

(see (146); we need “ <∼ ” because we only have |G| ∼ m). So it is enough to show (149) conditioned on

(156) {T contains no heavy edges}.

We will instead show a slight variant, replacing T by T ′ = {A1, . . . , Aτ}, with the Ai’s chosen uniformly
and independently from the non-heavy edges of G; thus:

(157) P(wG\T ′(U) ∼ ζwG(U)) = 1− o(1).

Of course this suffices: we may couple T (conditioned on (156)) and T ′ so they agree whenever the edges
of T ′ are distinct, which occurs w.h.p. (more precisely, with probability greater than 1 − τ2/m), and the
probability in (149) is then at least the probability in (157) minus P(T ′ 6= T ).

For the proof of (157), let

X = X(A1, . . . , Aτ ) = Φ(G∗ \ {A1, . . . , Aτ}) = wG\T ′(U).

Since η � ζ (see (143) and (147)), (157) will follow from (recall wG(U) = Φ∗)

(158) EX ∼ ζΦ∗
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and

(159) P(|X − EX| > ηΦ∗) = o(1).

Proof of (158). LetMi run through the p.m.s of G∗ and let xi be the number of heavy edges inMi. Then with
m′ the number of non-heavy edges in G, we have (with, irrelevantly, ι = j in Case j for j = 1, 2),

EX =
∑
i(1− (n/r − ι− xi)/m′)τ

and, by (142),

(160)
∑

xi =
∑
{wG∗(A) : A ∈ G∗, A heavy} < γnΦ∗.

These imply, with % = (n/r − ι)/m′,

(1− %)τΦ∗ ≤ EX <
∑
i e
−(%−xi/m′)τ(161)

<
[
e−%τ + γrn/(n− ιr)

]
Φ∗.

Here the last inequality follows from (160) and convexity of the exponential function, which imply that the
sum in (161) is at most what it would be with γnΦ∗

n/r−ι = γrnΦ∗

n−ιr of the xi’s equal to n/r − ι and the rest (the
number of which we just bound by Φ∗) equal to zero.

In view of (161), (158) will follow from

(162) (1− %)τ ∼ e−%τ ∼ e−τ/D (= ζ)

(and γ � ζ, which is given by (143) and (145)). For the two parts of (162) we need (resp.) %2 � 1/τ and
|%− 1/D| � 1/τ . The first of these follows from (154) (which gives m′ ∼ m, though here m′ = Ω(m) would
suffice) and (109). For the second, now using (154) more precisely (and recalling D = mr/n), we have∣∣∣∣n/r − ιm′

− n/r

m

∣∣∣∣ ≤ ι

m′
+
n

r

m−m′

mm′
<

ι

m′
+
n

r

γr

Mm′
� 1

τ
,

with the last inequality a (weak) consequence of (146). �

Proof of (159). We consider the (Doob) martingale

(163) Xi = Xi(A1, . . . , Ai) = E[X|A1, . . . , Ai] (i = 0, . . . , τ ),

with difference sequence Zi = Xi −Xi−1 (i ∈ [τ ]) and Z =
∑
Zi (= X − EX). For the next little bit we use

ES for expectation with respect to (Ai : i ∈ S).

Given A1, . . . , Ai−1 we may express

(164) Zi = EW −W,

where E refers to A chosen uniformly from the non-heavy edges of G and

(165) W (A) = E[i+1,τ ]Φ(G∗ \ {A1, . . . , Ai−1, Ai+1, . . . , Aτ})

−E[i+1,τ ]Φ(G∗ \ {A1, . . . , Ai−1, A,Ai+1, . . . , Aτ}).

For (164) just notice that

Xi(A1, . . . , Ai−1, A) = E[i+1,τ ]Φ(G∗ \ {A1, . . . , Ai−1, A,Ai+1, . . . , Aτ}),

while
Xi−1(A1, . . . , Ai−1) = E[i,τ ]Φ(G∗ \ {A1, . . . , Ai−1, Ai, Ai+1, . . . , Aτ}).

(The first term on the r.h.s. of (165) is chosen to give (166) and, not depending on A, doesn’t affect (164).)
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We also have

(166) 0 ≤W (A) ≤ wG∗(A),

since these bounds hold even if we remove the E’s in (165). Thus W satisfies the conditions in Proposi-
tion 3.5 with b = MΦ∗/D and a ∼ Φ∗/D (the latter since |G|−1

∑
A∈G wG∗(A) = |G|−1Φ∗(n/r− ι) <∼ Φ∗/D—

note wG∗(A) := 0 if A ∈ G \ G∗—and averaging instead only over non-heavy edges can only decrease this).
So for any

(167) ϑ ∈ [0, (2b)−1],

we may apply Lemma 3.4 to each of Z, −Z, using Proposition 3.5 (with (164)) to bound the factors in (26),
yielding

max{EeϑZ ,Ee−ϑZ} ≤ eτϑ
2ab = exp[(1 + o(1))τϑ2M(Φ∗/D)2]

and, for any λ > 0,

(168) max{P(Z > λ),P(Z < −λ)} < exp[(1 + o(1))τϑ2M(Φ∗/D)2 − ϑλ].

For (159) we use (168) with λ = ηΦ∗ and

(169) ϑ = min

{
ηΦ∗

2τM(Φ∗/D)2
,

D

2MΦ∗

}
=

D

2MΦ∗
min

{
ηD

τ
, 1

}
(the first value in “min” essentially minimizes the r.h.s. of (168) and the second enforces (167)), and should
show that the exponent in (168) is then −ω(1).

Suppose first that ηD ≤ τ , so ϑ takes the first value(s) in (169). Then the negative of the exponent in (168)
is asymptotically (using (147) and D >∼ log n)

(ηΦ∗)2

4τM(Φ∗/D)2
=
η2D2

4τM
= ω(1).

If instead ηD > τ , then ϑ = D/(2MΦ∗) and the exponent in (168) is

(1 + o(1))
D2

(2MΦ∗)2
τM

(
Φ∗

D

)2

− D

2MΦ∗
ηΦ∗ = (1 + o(1))

τ

4M
− ηD

2M
= −ω(1),

where we used ηD > τ and, from (146), τ �M . �

This completes the proof of (149). �

13. FOUNDATION

Finally, we return to the assertions listed at the end of Section 5 that will complete the proof of (8). As
suggested earlier, this is currently a much longer story than it seems ought to be necessary, but we do the
best we can, as usual aiming for “simplicity” rather than strongest statements.

Most of of this involves behavior atm
T

. This “foundation” is covered in Sections 13.1-13.2, with the final
points needed for (8) mostly in Section 13.3.
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13.1. Configurations and simplicity. With V = [n], the degree sequence ofH ⊆ K is d(H) = (dH(1), . . . , dH(n)).
In what follows d is always in

(170) S = {(d1, . . . , dn) :
∑
di = mr}

(m for now unspecified), and we set

(171) K(d) = {H ⊆ K : d(H) = d}.

We will work with the hypergraph version of the “configuration model” of Bollobás [5] (see [32] for a
good discussion of the model and antecedents). Let T be a set of size mr and T1 ∪ · · · ∪ Tn a partition of T
(into pre-verts) with |Tj | = dj ∀j (so mr =

∑
di). A configuration is an (unordered) partition of T into pre-edges

of size r; it is simple if

(172) no pre-edge meets any pre-vert more than once

and

no two pre-edges meet exactly the same pre-verts.

The projection π : T → V given by π(Tj) = {j} ∀j maps each simple configuration to some H ∈ K(d),
and for any suchH we have

|π−1(H)| =
∏
dj !.

Thus

(173) |K(d)| = Ψγ(d)(
∏
dj !)

−1,

where Ψ = Ψ(m, r) is the number of configurations (which of course depends only on m and r) and γ(d) is
the probability that a uniformly chosen configuration is simple. The (easily calculated) Ψ is irrelevant here,
since we are only interested in ratios, but we will need some crude information on the γ(d)’s. (Much better
estimates can be gotten by adapting the switching methods of McKay and Wormald; see [26, 27] or, again,
[32].)

Since it costs nothing to do so, and perhaps helps clarify what’s relevant, we state our basic result here
in some generality, assuming the setup in the paragraph containing (172), with r ≥ 3 fixed and D = max di.

Lemma 13.1. If

(174) m2r−3 > nr−1D2r−1,

then γ(d) = e−O(D).

(We will use this withD = no(1)—or, really, withD growing at most a little faster than log n—so (174) won’t
be an issue.)

Proof of Lemma 13.1. Here we think of configurations in terms of maps, as follows. Let E = E1 ∪ · · · ∪ Em,
with theEi’s disjoint r-sets. A bijection σ : E → T gives the configuration {σ(E1), . . . , σ(Em

T
)}, and we say

σ is simple if the configuration is. Thus for a uniform σ, γ(d) = P(σ is simple) and Lemma 13.1 becomes

(175) under the assumptions of Lemma 13.1, P(σ is simple) = e−O(D).

The proof of this uses the Lovász Local Lemma [10] in the following form (see [1], Lemma 5.1.1 and the
remark beginning near the bottom of p. 71).
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Lemma 13.2. Let A1, . . . , As be events in a probability space, Γ a graph on [s] (thought of as a set of edges), and
x1, . . . , xs ∈ [0, 1). Suppose that for any i ∈ [s] and S ⊆ [s] \ ({i} ∪ {j : ij ∈ Γ}),

(176) P(Ai| ∧j∈S Āj) ≤ xi
∏
ij∈Γ(1− xj).

Then
P(∧iĀi) ≥

∏
(1− xi).

Our use of this, which is reminiscent of [13] (or see [1, Sec. 5.6]), depends on the following observation.

We consider bijections σ : [N ]→ [N ], each for now regarded as a set of N cells (i, σ(i)) of an N ×N array
M . We use pattern to mean a set of cells (in M ), no two on a line (i.e. row or column), and define patterns
X,Y to be adjacent (X ∼ Y ) if some line meets both. Let σ be a uniform bijection and, for a pattern X , let
AX be the event {σ ⊇ X}, noting that (with (a)t = a(a− 1) · · · (a− t+ 1))

(177) P(AX) = 1/(N)|X|.

Proposition 13.3. If X,X1, . . . , Xt are patterns with X 6∼ Xi ∀i, then

P(AX | ∧ti=1 ĀXi) ≤ P(AX).

Proof. We may assume X = {(i, i) : i ∈ [k]}, so

(178) ∪Xj ⊆ {k + 1, . . . , N}2.

Set R = {σ : σ(i) = i ∀i ∈ [k]} (so AX = {σ ∈ R}). With B = ∧ti=1ĀXi , it is enough to exhibit, for any
distinct j1, . . . , jk ∈ [N ], an injection ψ : R → T := {σ : σ(i) = ji ∀i ∈ [k]} satisfying

(179) σ ∈ B ⇒ ψ(σ) ∈ B.

Here it’s convenient to interpret a bijection σ as a perfect matching of KN,N (whose vertex set we regard
as two copies of [N ]). For σ ∈ R and τ := {(i, ji) : i ∈ [k]} (also thought of as a matching of KN,N ), the
components of σ∪ τ are paths and cycles, each alternating with respect to (σ, τ) (with the obvious meaning;
in particular an edge of σ∩τ is considered an alternating 2-cycle), and with the ends of the paths the vertices
not covered by τ . (Some—many—of these paths may be single edges of σ.)

We then take ψ(σ) to consist of τ together with all edges that complete path components of σ ∪ τ to
cycles. It is straightforward to check that ψ has the desired properties; that is, it maps R injectively to T
and satisfies (179). (Both of these follow from the observation that the edges of ψ(σ) not in σ are precisely
those not of the form (i, i) that meet at least one of the two copies of [k].) �

We return to (175). We will use Proposition 13.3 with N = mr and E and T our two copies of [N ] (so M
is an E × T array). Define a block to be a subarray indexed by some Ei × Tj (denoted Bij). We consider two
types of patterns (“loops” and “repeats”):

(L) two cells in the same block;
(R) for some i 6= j and distinct l1, . . . , lr, 2r cells, one in each of the blocks indexed by {i, j}×{l1, . . . , lr}.

Then a bijection σ : E → T is simple iff it contains none of these patterns, and

(180) each cell lies in O(D) patterns of type L and O(mnr−1D2r−1) of type R.

Now let X1, . . . , Xs run over patterns of types L and R, write Ai for AXi , and let Γ be the graph on [s]

with adjacency corresponding to adjacency of patterns as in Proposition 13.3 (so i ∼ j iff Xi ∼ Xj). Since
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lines have size mr = O(m) (and patterns have size O(1)), each pattern is adjacent to O(mD) patterns of
type L and O(m2nr−1D2r−1) of type R. So if we take (say)

xi =

{
x := 2N−2 if Xi is of type L,
y := 2N−2r if Xi is of type R,

then each of the products
∏
ij∈Γ(1− xj) in (176) is

(1− x)O(mD)(1− y)O(m2nr−1D2r−1) ∼ 1

(the asymptotic following from (174)), which with (177) implies (176).

Thus, since (180) bounds the numbers of type L and R patterns byO(m2D) andO(m3nr−1D2r−1) respec-
tively, Lemma 13.2 gives (again using (174))

(181) P(σ is simple) ≥ (1− x)O(m2D)(1− y)O(m3nr−1D2r−1) = e−O(D),

which is (175) and completes the proof of Lemma 13.1. (Note (181) fails for r = 2—as it should, since
Lemma 13.1 is not true in this case.) �

13.2. Degrees. In this section only we take m = m
T

and H = HT . Notice that we may choose H by first
choosing d := d(H) ∈ S (= {(d1, . . . , dn) :

∑
di = mr} as in (170)) and then H itself uniformly from K(d)

(see (171)).

Now thinking of the law of d(H), we set

L = {d ∈ S : di ≥ δi ∀i}.

(The δi’s are our usual δx’s, so are asymptotic to ε log n.) Then with Ph the probability measure on S given
by

Ph(d) ∝ |K(d)|,

we have
Ph(L) = β(K)

and

(182) P(d(H) = d) = Ph(d|L)

(= Ph(d)/Ph(L) if d ∈ L). We compare Ph to the probability measure Pu on S given by

Pu(d) ∝ (
∏
di!)
−1.

Thus Pu(d) is the probability that mr (= m
T
r) balls placed uniformly and independently in urns U1, . . . , Un

produce the occupation statistics d, and (by (173))

Ph(d) ∝ γ(d)Pu(d).

For better understanding the law of d(H) (as in (182)) we will use Lemma 13.1 and the following easy
observations, whose verifications we omit.

Observation 13.4. Under Pu, for any L ⊆ [n], with |L| = l,∑
i∈L di ∼ Bin(mr, l/n).

Observation 13.5. If γ(d) > ξ for all d ∈ J ⊆ S , then for any E ⊆ S ,

Ph(E)/Ph(J ) < ξ−1Pu(E)/Pu(J ).
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Observation 13.6. For any i ∈ [n], Pu(L|di = k) is decreasing on {k ≥ δi}, implying that, for any J ≥ δi,

Pu(di ≥ J |L) =

∑
k≥J Pu(di = k)Pu(L|di = k)∑
k≥δi Pu(di = k)Pu(L|di = k)

≤ Pu(di ≥ J)

Pu(di ≥ δi)
∼ Pu(di ≥ J).

(The initial assertion is a trivial coupling argument and, sincem ∼ (n/r) log n, the “∼” is a tiny consequence
of Observation 13.4 and Theorem 3.1.)

We next note that Theorem 3.1 and Observation 13.4 give (for any i, using Edi = mr/n ∼ log n)

Pu(di > 3 log n) < exp
[
−(1− o(1)) 4 log n

2(1+2/3)

]
= n−6/5+o(1).

Thus, now using Observation 13.6,

(183) Pu(max di > 3 log n|L) < n−1/5+o(1) = o(1).

Lemma 13.7. For large enough κ,

(184) P(max di(H) > κ log n) < n−κ.

Proof. Set
J = {max di ≤ 3 log n} ∧ L and E = {max di > κ log n} ∧ L.

Lemma 13.1 gives

(185) if max di ≤ 3 log n then γ(d) > n−K

for some fixed K, while Observation 13.4 and Theorem 3.2 imply

(186) Pu(di > κ log n) < n−2κ

for large enough κ (the actual bound being essentially n−κ log(κ/e)). The l.h.s. of (184) is then, again for large
enough κ,

Ph(E)/Ph(L) ≤ Ph(E)/Ph(J ) < nKPu(E)/Pu(J )

∼ nKPu(max di > κ log n|L) < (1 + o(1))n−2κ+K+1 < n−κ,

with the second inequality given by (185) and Observation 13.5; the “∼” by (183); and the third inequality
by (186) and Observation 13.6. �

Lemma 13.8. With λ = m/|K|, P(Kλ anemic) < exp[−2n2δ].

(We remind once more that m = m
T

and recall that “anemic” was defined in (36).)

Proof. With ζx the indicator of {dKλ(x) < 2ε log n}, an easy calculation gives

Eζx < n−1+2δ =: ρ.

(Like (30), this uses the first bound in (25) of Theorem 3.1; of course ζx is binomial while its counterpart in
(30) was hypergeometric, but the bound applies to both.)

On the other hand the ζx’s form a read-r family (with corresponding ψi’s the indicators 1{A∈Kλ}), so
Theorem 3.3 gives

P(Kλ anemic) = P(
∑
ξx ≥ 2rn2δ)

< exp[−D(2rρ‖ρ)n/r] < exp[−2n2δ]
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(using D(Kρ‖ρ) = (K log(K/e) + 1)ρ+O(ρ2) for fixed K and small ρ). �

Lemma 13.9. For sufficiently large ω � log n,

(187) P(max dH(x, y) > ω) < n−Ω(ω)

(the maximum over distinct vertices x, y) and

(188) P(maxZ∈K
∑
y 6∈Z(δy − dH−Z(y))+ > ω) < n−Ω(ω).

(Recall that (188) was promised at (75) and used there to show that ∩tR4
t is likely (see (78).)

Proof. Let
D = {d : max di < κ log n},

with κ = Θ(ω) chosen so

(189) d ∈ D ⇒ γ(d) > n−ω/(2r)

(see Lemma 13.1), and
N = {d : |{i : di < 2ε log n}| < 2rn2δ}

(so {d(H) 6∈ N} = {H anemic}). Then Lemma 13.7, its use justified by our assumption that ω is somewhat
large, says

(190) P(d(H) 6∈ D) < n−κ (= n−Ω(ω)),

while Lemma 13.8 implies

(191) P(d(H) 6∈ N ) (= P(H anemic)) < exp[−(2− o(1))n2δ];

this follows from

exp[−2n2δ] > P(Kλ anemic) > P(|Kλ| = m)P(Kλ ∈ L||Kλ| = m)P(Kλ anemic|Kλ ∈ LT ),

since (i) P(|Kλ| = m) � m−1/2 (this is standard and easy); (ii) P(Kλ ∈ L||Kλ| = m) = β(K) >∼ exp[−nδ] (see
Corollary 4.4); and (iii) on {Kλ ∈ LT }, Kλ is distributed as H.

By (190) and (191), Lemma 13.9 will follow if we show that, for each d ∈ D ∩N ∩L, (187) and (188) hold
with H replaced by G chosen uniformly from K(d); so we fix such a d and choose G in this way.

We will again get at this using the configuration model; thus we fix the partition T = ∪Ti with |Ti| = di,
let π : T → V (= [n]) be the corresponding projection, and for a configuration F use “F ∈ G” (with G TBA)
to mean F is simple and π(F ) ∈ G. Then for a uniformly chosen configuration F we have

(192) P(G ∈ G) = P(F ∈ G|F simple) < P(F ∈ G)nω/(2r)

(with the inequality given by (189)).

As earlier, we think of random maps; say F = {σ(E1), . . . ,σ(Em)}, with σ : E → T a uniform bijection
(and E = ∪Ei as in the proof of Lemma 13.1).

For (187), we have, with G = {G : max dG(x, y) > ω},

(193) P(F ∈ G) <

(
n

2

)(
m

ω

)
(r(r − 1))ω

(
κ log n

mr

)2ω

= O(n−ω+o(ω)+2).

The first three terms of the first bound correspond to choosing (i) x, y ∈ [n], (ii) ω of the Ei’s to map to
preimages of edges containing x, y, and (iii) elements of these Ei’s to map to Tx and Ty ; and the last term
bounds the probability that these choices behave as desired, using (177) and max di < κ log n. For the final
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bound recall κ = Θ(ω)� log n (ω = no(1) is enough) and mr ∼ n log n. The combination of (192) and (193)
then gives (187) (with G in place of H). The ω/(2r) in (189) and (192) is overkill here, but is needed for (188).

For (188), fix Z and let I = {i ∈ V \ Z : di < 2ε log n}—so |I| < 2rn2δ since d ∈ N—and let

(194) G = {G : |{A ∈ G : A ∩ Z 6= ∅ 6= A ∩ I}| > ω/r}.

Then for Σ(Z) :=
∑
y 6∈Z(δy − dG−Z(y))+ > ω, we must have either dG(x, y) > (2ε log n− δy) (> ω) for some

x ∈ Z and y ∈ V \ (Z ∪ I)—which we have just shown happens with probability n−Ω(ω)—or G ∈ G (since,
absent such a large codegree, the only y’s that can contribute to Σ(Z) are those in I and Σ(Z) is at most r−1

times the cardinality in (194)). We then have (with justification similar to that for (193))

P(F ∈ G) <

(
m

ω/r

)
(r(r − 1))ω/r

(
rκ log n

mr

)ω/r ( |I| · 2ε log n

mr

)ω/r
< n−(1+2δ−o(1))ω/r,

and combining with (192) and multiplying by nr for the choice of Z (and recalling ω is “sufficiently large”)
gives (188). �

13.3. Back to R. Here, finally, we fill in the remaining promises from Section 5, namely (62) (which means
dealing with (57)-(59) and (61)), (68) and (70).

We now use dt(·) for degree in Ht and revert to the “default” m = mt. As in Section 9, we work with the
generation of Ht in (5):

(195) Ht = HT ∪ G,

with HT uniform from LT and G uniform from
(K\HT

m−m
T

)
. This supports the following little device, which

will be useful in the arguments for (57), (68) and (70).

Given t, let (H,U) be the random pair gotten by choosing

(196) H uniformly from
(K
m

)
(= Kt) and then U uniformly from

( H
m
T

)
.

In this section H will always be as in (196) (not Ht as it was in Section 13.2). In each application we will
have some property G for which we would like to show P(Ht ∈ G) is small, and (slightly echoing Section 9)
will exploit information gotten by reversing the order in (196); that is, by choosing

U uniformly from
( K
m
T

)
and H uniformly from {H ∈ Kt : H ⊇ U}.

Thinking of the process in this way and setting

(197) Θ = P(H ∈ G,U ∈ L),

we have

(198) Θ = P(U ∈ L)P(H ∈ G|U ∈ L) = β(K)P(Ht ∈ G)

(since on {U ∈ L}, H is distributed as Ht), which we will combine with upper bounds on Θ based on the
viewpoint in (196).

Proof of (62). Recall this says that w.h.p. Ht satisfies (57)-(59) and (61) for all t ≤ T .

For (57) we may appeal to [23]: as shown there—see the paragraph containing (131)—the probability
that H as in (196) violates (57) is e−Ω(n). (Precisely, with θ = (log n)−1/3, it is shown that e−Ω(n) bounds the
probability that dH(x) 6= (1± θ)DH for at least θn vertices x.)
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Then with G = {H ⊆ K : H violates (57)} (and Θ as in (197)), we have Θ < P(H ∈ G) = exp[−Ω(n)] and,
using (198) and Corollary 4.4,

(P(Ht violates (57)) =) P(Ht ∈ G) = Θ/β(K) = exp[−Ω(n)].

For (58) and (61) (with the lower bound in the former contained in the latter, as observed following (61)),
we use (195), noting that, given HT , each dG(x) is hypergeometric with

(199) µx := EdG(x) =
DK − dT (x)

|K| −m
T

(m−m
T

) ∼ (1−m
T
/m)Dm

(since Dm = DKm/|K|).

For the upper bound in (58) we first note that ∆HT
= O(log n) w.h.p. by Lemma 13.7 (in which, recall,

H was HT ). Then for G, Theorem 3.2 gives (very wastefully but we don’t care)

P(∃x, t dt(x) > 3rDm) < nr+1 exp[−3rDm log(3r/e)] = o(1).

For (61) it will be enough to consider G. Here (199) and Dm ∼ (m/m
T

) log n imply µx >∼ (2r − 1) log n,
and then Theorem 3.1 (see the first bound in (25)) gives (for any x)

(200) P(dG(x) < 2εDm) < exp[−µxϕ(−1 + 2εDm/µx)] < n−(2r−1)+O(ε log(1/ε)).

For (59), we again use (195), noting to begin that Lemma 13.9 says that w.h.p. HT has maximum codegree
O(1). For G we again use Theorem 3.2 (with plenty of room): each dG(x, y) is hypergeometric with mean

dK(x, y)− dT (x, y)

|K| −m
T

(m−m
T

) < rDm/n,

whence P(max dt(x, y) > CDm/n) < n−(r+1) for a suitable fixed C. �

Proof of (68). Given Z ∈ K, set

G = {H ⊆ K : ϕZ(H) < ηβ(K)},

so (68) is

(201) P(Ht ∈ G) < η.

Let (H,U) and Θ again be as in (196) and (197), and set G = H − Z. Note that, as ϕZ(H) depends
only on |H| and H − Z, membership of H in G is decided by G. We now think of choosing first G and
then H \ G and U . The law of G plays no role here; what matters is that H \ G is uniform from JZ(H)

(= {H′ ∈ Kt : H′ − Z = G}; see (63)), so that (essentially by definition; see (64), (65))

P(U ∈ L|G) = ϕZ(H).

Thus

Θ = P(H ∈ G)P(U ∈ L|H ∈ G) < P(H ∈ G) · ηβ(K).

We then sacrifice the first factor on the r.h.s. and combine with (198) to get (201). (The sacrifice in this case
is substantial, but we aren’t asking much and can afford it.) �
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Proof of (70). (Recall this said P(Ht 6∈ R3) < exp[−(1 − o(1))n2δ] ∀t ≤ T .) Set q = m/|K| and (as in R3 and
Lemma 13.8 resp.) α = m

T
/m and λ = m

T
/|K|; so Kλ = (Kq)α. From Lemma 13.8 and the definition of R3

(and the fact that on {|Kq| = m}, Kq is distributed as H), we have

exp[−2n2δ] > P(Kλ anemic)

> P(|Kq| = m)P(H 6∈ R3) exp[−(1− o(1))n2δ],

which, since P(|Kq| = m) � m−1/2, implies P(H 6∈ R3) < exp[−(1 − o(1))n2δ]. We then set G = {H ⊆ K :

H 6∈ R3} to obtain, as in the above treatment of (57),

P(Ht 6∈ R3) = P(Ht ∈ G) = Θ/β(K)

≤ P(H 6∈ R3)/β(K) < exp[−(1− o(1))n2δ].

�
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