HITTING TIMES FOR SHAMIR’S PROBLEM

JEFF KAHN

ABSTRACT. For fixed r > 3 and n divisible by r, let H = HJ ,, be the random M-edge r-graph on V' =
{1,...,n}; that is, H is chosen uniformly from the A -subsets of K := (‘7/) (:= {r-subsets of V'}). Shamir’s
Problem (circa 1980) asks, roughly,

for what M = M (n) is H likely to contain a perfect matching
(that is, n/r disjoint r-sets)?
In 2008 Johansson, Vu and the author showed that this is true for M > Crnlogn. More recently the author
proved the asymptotically correct version of that result: for fixed C > 1/r and M > Cnlogn,

P(H contains a perfect matching) — 1 asn — oo.
The present work completes a proof, begun in that recent paper, of the definitive “hitting time” statement:
Theorem. If Ay, ... is a uniform permutation of K, H¢ = {A1, ..., A¢}, and
T=min{t: Ay U---UA =V},

then P(H r contains a perfect matching) — 1 asn — oo.

1. INTRODUCTION

A (simple) r-graph (or r-uniform hypergraph) is a set H of r-subsets (edges) of a vertex set V. = V(H); a
matching of such an H is a set of disjoint edges; and a perfect matching (p.m.) is a matching of size |V|/r.
Write H;, , for the random M-edge r-graph on [n] := {1,...,n}; thatis, H,, ), is chosen uniformly from
the M-subsets of K := ([Z]). (Usage notes are collected at the end of this section.)

This paper completes a proof, begun in [23], of the definitive answer to Shamir’s Problem, which asks,
roughly: for fixed r and n ranging over (large) multiples r,

for what M is ‘H,, »; likely to contain a perfect matching?

In what follows we work with a fixed 7 and omit it from our notation—so H,, ,, becomes H,, ,;—and
restrict to n divisible by r.

The story of Shamir’s Problem has been told at some length in [23] and we will be briefer here. The
problem first appeared in print in [9], where Erd&s says he heard it from Eli Shamir in 1979, and, following
initial results of Schmidt and Shamir in [30], became one of the most intensively studied questions in prob-
abilistic combinatorics; for example, [21, Section 4.3] calls Shamir’s Problem and its graph factor analogue
(see below) “two of the most challenging, unsolved problems in the theory of random structures.”

For precise statements define the threshold for containing a perfect matching, denoted M, = M_(n), to
be the least the least M for which

P(H ., contains a perfect matching) > 1/2.
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2 JEFF KAHN
(This is also a threshold in the original sense of Erdés and Rényi [11]; see [7] or [21, Theorem 1.24].)

A natural guess—though not recognized as such in [9, 30]—is that in the random setting the main obstacle
to existence of a perfect matching is isolated vertices (vertices not in any edges), which typically disappear
when M ~ (n/r)logn. There are three progressively stronger versions of this intuition that one might hope
to establish. The first, called Erdds-Rényi threshold, involves the order of magnitude of M,:

Theorem 1.1. For each r there is C, such that if M > C,nlogn then H.,, nr contains a perfect matching w.h.p.'

(Equivalently, M. = ©(nlogn), where the implied constant depends on r.) This was shown in [22], with
best earlier progress in [15] and [25]. (See also [16, Sec. 13.2] for an exposition.)

The more precise second and third versions—asymptotics of the threshold and hitting time—are:

Theorem 1.2. For fixed C > 1/r and M > Cnlogn, Hy, a contains a perfect matching w.h.p.

(Equivalently, M.(n) ~ (n/r)logn.)
Theorem 1.3. If Ay, ... is a uniform permutation of IC, H; = {A1,..., A}, and
T:min{tZAlLJ"'UAt:V},

then Hr contains a perfect matching w.h.p.

(Here T is the aforementioned hitting time. It is easy to see that Theorem 1.3 implies Theorem 1.2.) For r = 2,
Theorems 1.2 and 1.3 were shown by Erd6s and Rényi [12] and Bollobas and Thomason [6] respectively.

Theorem 1.2 was first formally conjectured (in a stronger form corresponding to what’s shown in [12])
in [8] and Theorem 1.3 was proposed in [22], though each was probably considered plausible by the time
it was recorded. (That Theorem 1.1 was apparently not on the radar in [9, 30]—Erd&s specifically says he
has no idea what to expect for Shamir’s Problem—seems odd in view of [12], but perhaps suggests that the
above results were initially thought too much to expect.)

The predecessor, [23], of the present work proved Theorem 1.2 and began a proof of Theorem 1.3 whose
completion is our main objective here. The proof proceeds by way of a reduction—given in [23]—to a
conditional version of Theorem 1.2 (Theorem 1.5 below). The proof of the conditional statement is similar to
the proof of Theorem 1.2; but the conditioning—on a low probability event—makes even formerly routine
points tricky to deal with, and the point of the separate proof of Theorem 1.2 was to show the structure of
the argument unencumbered by these extra difficulties.

Graph factors (briefly; see [22, 23] for a little more). Recall that, for graphs H and G, an H-factor of G is a
collection of copies of H in G whose vertex sets partition V(G). The graph factor counterpart of Shamir’s
Problem asks (roughly): for a fixed H, when is the random graph Gy, likely to contain an H-factor? This was
first suggested (for H = K3) by Rucinski [29].

The factor analogue of Theorem 1.1 was shown in [22] for strictly balanced H (more or less those H’s for
which one expects it to hold; see [22, Conjecture 1.1] for what should be true in general). For certain nice
H’s—e.g. cliques—beautiful coupling arguments of Riordan and Heckel [28, 20] derive the factor versions
of Theorems 1.1 and 1.2 from their Shamir versions, a connection that seems unlikely to extend to Theo-
rem 1.3. As suggested in [23], I expect that the work there and here extends to factors, though, at least for
what we do here, this looks fairly excruciating absent some simplification of the material below.

Lisyith high probability,” meaning with probability tending to 1 as n — oo
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In recent work, Frankston, Narayanan, Park and the author [14] used a new approach inspired by [2]
to prove a general threshold result (a relaxation, suggested by Talagrand [31], of a still open conjecture of
Kalai and the author [24]) that easily implies Theorem 1.1 and much more. It is, however, hard to imagine
Theorem 1.2 (a fortiori Theorem 1.3) being proved along similar lines. It would be very interesting to decide
whether the approach of [14] can recover the factor version of Theorem 1.1 proved in [22].

As in [22, 23], the proofs of Theorems 1.2 and 1.3 depend crucially on establishing stronger counting
versions; thus for Theorem 1.3, with ®(#) denoting the number of perfect matchings of #, we show:

Theorem 1.4. For H, and T as in Theorem 1.3, w.h.p.
] n/r

e—om)

1) ®(Hy) > |e " Viogn

(Up to a subexponential factor, the right-hand side of (1) is the expected value of its left-hand side.)

Our assignment here is to prove the following conditional statement, which, as shown in [23, Section 10],
implies Theorem 1.4. (The same reduction gets Theorem 1.3 itself from the weaker version of Theorem 1.5
corresponding to Theorem 1.2, but, again, we don’t know how to prove the weaker version without proving
the stronger.)

Theorem 1.5. Fix a small positive ¢ and suppose 6., ~ elogn for each x € V := [n]. Let M = M (n) ~ (n/r)logn
and let H be distributed as H.,, ps conditioned on

{da(z) > 6, Yz € V}.
Then w.h.p.

n/r
] eom,

(2) O(H) > {67(“1) logn

In other words: for ¢ < 1 there is ¢ < 1 such that if M = (1 +¢)(n/r)logn and d, = (1 & ¢)e logn for each
x, then

n/r
P <<I>('H) < [e_(’"_l) log n} 6_9”) < .

(It should perhaps be stressed that our argument doesn’t work if we allow € = o(1); see the Outline at the
end of Section 2 and the note following (101) in Section 9.)

In Section 2 we derive Theorem 1.5 from several statements whose proofs will be the main work of this
paper. Outlining that work will be easier once we have the framework of Section 2, so is postponed until
then, at which point we’ll also say a bit about how what we do here relates to [23]. We won’t assume
familiarity with [23]—and will wind up more or less repeating parts of it—but, as said above, it shows the
present argument in simpler form, and a reader of the present work might find it a useful companion.

Usage

Throughout the paper we fix r > 3; take V' = [n] := {1,...,n}, with n divisible by 7; and use K for (V).
We use v, w, z, y, z for vertices and £, F, G, H, J for r-graphs (subsets of K), or, often, bold versions of these
when the r-graphs in question are random. As above, we abbreviate H,, ,; = H, -

We use dy(-) and dy (-, -) for degree and codegree in H (thus dy(z) = |[{A € H:z € A}| and dy(z,y) =
HA € H : z,y € A}|), and Ay, 6y and Dy for maximum, minimum and average degrees in . We use
Hy={AeH:z€A}and, for X CV, H[X]|={AeH: AC X}and H — X = H[V \ X]. We will tend to
abusively write Y Uaand Y \ a for Y U {a} and Y \ {a} (in particular H \ A for H \ {A}).
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Foraset X and p € [0, 1], we use X, for the random subset in which elements of X appear independently,
each with probability p. In all our uses of this X will be some H; so #,, is formally in conflict with H,, but
there will never be any question as to which is meant. (We will also, beginning with (5), see H;—this always
with a bold #, though there would be no confusion in any case.)

As above, we will sometimes use bold for random objects: consistently for r-graphs except when we use
H,, but otherwise only when we need to distinguish between a random object and its possible values.

We use mathfrak characters (2,8, ¢, D, ...) for properties and events. A property 2 will usually be a
property of r-graphs (thus 21 C 2%), and we will say, as convenient, “ has property 2I,” “H satisfies 2,”
“H € A” or “H [= A.” An event is then {H |= A} for some property 2 and random H, and may be denoted
simply 2 if we have specified H. According to what feels natural (or typographically preferable), we use
any of the synonymous A AR, ANB, ANR. As usual, a property of r-graphs on V' is increasing if it cannot be
destroyed by addition of edges.

We assume (as in Theorem 1.5) that ¢ is fairly small. We will always assume n is large enough to support
our assertions and, following a common abuse, pretend large numbers are integers.

Asymptotic notation is interpreted as n — co. We use a < b and a = o(b) interchangeably and, similarly,
a S bis the same as a < (1 + o(1))b. We use both “a.e.” and “a.a.” to mean “for all but a o(1)-fraction.” We

use log for natural logarithm and a + b for a quantity within b of a.

Where not otherwise stated, implied constants in €(-) and O(-) are allowed to depend on e. (Usually
they won't, but we will only worry about this when it matters.) A typographical convention: in exponents
only, we will use c as a substitute for Q(1); thus different c’s in a single statement need not (and will not) be
equal. (For consistency we allow dependence on ¢, but in our uses of c this will never make any difference.)

Finally, we set T' = |K| — M (M as in Theorem 1.5) and throughout the paper take

3) my = K| —t (= (") —t) and Kt = ().

me

(So m, = M, but we will usually use m,. We will always have ¢t € [T'].) We will often use m for m; (we
think of this as a default, but won't use it without notice). We use D,,, for the common value of Dy for H’s
of size m (so when m = m; and H € K, Dy is D,,, not the equally plausible D;). This may all take a little
getting used to, but eventually seemed less annoying than various alternatives.

2. SKELETON
Here we derive Theorem 1.5 from several assertions whose proofs will be the main content of the paper.
The discussion here is similar to that of [23, Sec. 2].

Recalling that T' = |K| — M, we would like to proceed as in [22, 23], starting from #,, := K and randomly
deleting edges one at a time to produce the sequence Ho, H1, . .., Hr, with Hr the # of Theorem 1.5. Here
uniform deletions will not do, but we may proceed as follows.

Let
4) L={TJCK:dgy(x) >,V eV}

and to generate {H,}: choose Hr uniformly from £, := £ A KT; let Aq,..., A7 be a uniform ordering of
K\ Hr;and fort € {0,...,T} set

®) Hy =K\ {A1, ..., A} (=Hr U{Ap1,..., Ar}).
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(One peculiarity of the present approach is that we start with the object of interest, 7, but analyze it as the
output of the random sequence it has been used to generate.)

The following two rules governing the law of {#;} are not needed for the present outline but will be the
basis for much of what follows; the easy verifications are left to the reader. For # C K of size at least m,,,
we use Uy for a uniform m.-subset of H and set

(6) B(H) =PUy € L).
Observation 2.1. Among H's in K¢,
P(H: =H) o B(H).
Observation 2.2. Among A'sin H € K'™1,
P(A; = A[H, 1 = H) x BH\ A).

Set ®(H;) = ®; and let &, be the fraction of perfect matchings of #,_; that contain A; (so & = ®(H,—1 —
At)/q)t—l)- Then
Q= P(1-&1)---(1-&),

or, equivalently,

7) log ®; = log ®o + °_, log(1 — &).

The proof of Theorem 1.5 depends on showing that ®; is likely to stay reasonably close to its expectation
throughout the above evolution. As will appear, this is self-reinforcing, with past good behavior favoring
good behavior going forward.

An issue here is that there are possibilities for the H,’s that don’t support our analysis. (The same
was true, but in far milder form, in [22, 23].) To deal with this we define (in Section 5) a collection R of
(“reasonable” or “generic”) H’s, write R, for the event {#; € R},

and show (mainly in Section 13)

®) P(Ni<r?Ry) — 1L

The resulting license to ignore #;’s not belonging to YR will underpin much of what happens below.
Let

) A= (r—Dn/r

and observe that (recall log = In)

n!

(10) log g = log W

= ;log (,")) —A+O(logn).

Now using m for m; (= |K| — t), set
(11) Y =mn/(r(m+1)).

Then +, is the reciprocal of the average degree in H;_1, and would be equal to E¢; if A; were uniform from
H.—1. That was the situation in [22, 23], but here the E&,;’s will require some care; we will show (recall we
are using c for a positive constant)

(12) if He K1 NRNEL, then E[&|Hi—1 = H] < (1+n")y.
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This will mean that, as long as we have not wandered out of R, we may think of E; as essentially ;. (Of
course if H ¢ £, the conditioning event is vacuous.)

Let 2l; be the event
t
(13) {log ®; > logdy — Z% — o(n)} .
i=1
(We note, probably unnecessarily, that (13) refers to some specific o(n), so that it makes sense to talk about 2,

for a particular n. Related points will be common below, and, somewhat departing from common practice,
we will elaborate in a couple places where doing so seems possibly helpful.)

Noting that

(14) ;v ~ ~log [(Z) /m] +0(1),

provided m > n, and recalling the expression for @, in (10), we find that 27 says
(15) log @1 > (n/r)log(rm,/n) — A — o(n),

which is the same as (2); so Theorem 1.5 is

(16) P(RAr) = o(1).

(We will in fact show P(U;<72;) = o(1); see (22).)

For (16) we use the method of martingales with bounded differences. Here it is natural—though we will
need a variant of this—to consider the martingale

{X; = 22:1(51 —E[&]Ar, ..., Aia])}
with associated difference sequence

{Zz = fz — E[fz‘Ala ey Ai—l]}-

In general, proving concentration for such X;’s depends on maintaining some control over the |Z;|’s,
to which end we track, in addition to the R;’s, a second sequence of events B;. These will be defined
in Section 7; roughly B, says that no edge of H, is in too much more than its natural share of perfect
matchings.

For t < T it will follow trivially from B;_; (see (87)) that
17) & = O(m).

This is more than enough for the desired concentration but can occasionally fail, since B;_; may fail. To
allow for this, as well as possible failures of the R;’s, we slightly modify the above X’s and Z’s, setting

{1s) 7, = 1 &~ BlGlAL. Aia] 1 B;%, holds forall j <4,
Sl otherwise

(and X; = >°!_, Z,). As shown in Section 3, a martingale analysis along the lines of Azuma’s Inequality
then gives

(19) P(X; > ) < n~ W for A > /n.

We next observe that if 8,0, holds for: < t < T—so

X = 2221(@ —E[&|Ar, ..., Ai1])
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—and |X;| < y/nlogn (say; there is plenty of room here), then we have 2. For with these assumptions we
have (using (12) and > 7; = O(nlogn), the latter from (14), and with sums over i € [t])

Y& = X+ Y E&IAL, ... Ai]
(20) < X+ (1409 Ty = Tyl

(recall the c’s needn’t agree); while §; = O(;) for i <t (see (17) and recall we have B;_;) gives (using (11))

22:1 51‘2 = 0(22:1 %2)
(1) < O((n/r)?*X{i~?:j > my}) = O(n/logn).
Thus, using (7) (and &; = o(1), as follows from (11) and (17)), we have

log ®; > log &g — Z(& +&7) > log ®g — Z% — O(n/logn)

(where the O(n/log n) absorbs the smaller error in (20)).

Thus the first failure, if any, of an 2; must occur either because X; is too large or because B;4; fails for
some i < t; formally, we have
(22) P(Ui<ei < P(Uici®s) + > PLRB,) + D P((N,<iB;9R;) NAy).
i<t i<t
Here we have already promised in (8) that the first term is o(1); the last is n=“(!) by (19) and the discussion
following it; and we will show—this is the main point—

(23) fori < T, P(AR;B;) = n—vW),

Thus the Lh.s. of (22) is o(1), which in particular gives (16) and, as already discussed, Theorem 1.5. ]

Outline. The structure of our central argument is described in the easy Section 8, and an early look at that,
with the (even easier) Section 7, might be helpful. Here we briefly list contents of the sections and then say
a little about the comparison with [23].

After recalling a few large deviation facts, Section 3 records what we need in the way of martingale
concentration, in a form convenient for a second application in Section 10, and gives the calculation for
(19). Section 4 develops some reasonably simple machinery for dealing with 5(#)’s, the main point being
the comparisons of Lemma 4.5. Section 5 introduces the rather long list of requirements for the property R,
with support for (8) mostly postponed to Section 13. Section 6 proves (12), a first application of Lemma 4.5.
Section 7 finally defines the central property 95, slightly reformulates (23) (as (86)), and disposes of the
trivial (17). The next five sections are then devoted to the proof of (86) (which, as noted following (23),
completes the proof of Theorem 1.5), as follows.

Section 8 introduces a few auxiliary properties, with assertions concerning them—Lemmas 8.1-8.4—that
together easily imply (86). Lemmas 8.1 and 8.4 are from [23] and are just quoted here; the latter is easy,
but the entropy-based Lemma 8.1 was a key ingredient in the earlier paper (and is again here), being a first
improvement on [22] that opens the door to the rest. Lemma 8.3 is proved in Section 9. (It is here that the
(log n) lower bound on degrees provided by £ becomes crucial; see following (101).) Lemma 8.2, which
may be considered the core of the whole business, is proved in Sections 10-12, with Section 10 mostly setting
out what needs to be done and Sections 11-12 doing it.

Finally, as mentioned above, Section 13 is concerned with justifying (8), with Sections 13.1-13.2 mainly
developing machinery and Section 13.3 appying it. (Sections 13.1-13.2 are largely self-contained and maybe
amusing in themselves.)
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All that in idea seemed simple became in practice immediately complex; as the waves shape themselves symmetrically
from the cliff top, but to the swimmer among them are divided by steep gulfs, and foaming crests.

Virginia Woolf, To the Lighthouse

The basic difference between this paper and [23] is that #, is now chosen according to Observation 2.1,
rather than uniformly from K'; in a sense all we are doing here is dealing with difficulties occasioned by
that change. This has to date proved harder than one might wish (and maybe harder than it needs to be,
given that there is quite a lot of room in some of the arguments). We briefly summarize similarities and
differences.

As already mentioned, the above sketch is similar to the one in [23, Sec. 2]. The easy Section 3 is nearly
the same as [23, Sec. 3] (and gets to skip a couple proofs given there). Sections 4 and 6 have no counterparts
in [23]; and Sections 5 and 13 have only a faint, routine echo in the parts of [23] (Section 5 and the appendix)
that deal with the present R (there called ).

The (central) parts of the argument in the remaining sections have rough parallels in [23], Sections 7-9
(here) corresponding to Sections 5-7 (there) and Sections 10-12 to Section 9. (Sections 4 and 8 of [23] prove
the present Lemma 8.1 and correspond to nothing here.) The biggest changes are in Sections 9-11; it is
here that we see most clearly the difference between handling the present H;’s and those of [23], which
are ordinary M, »’s. An additional complication is that we must also deal with (H — Z)’s (with Z € K),
which in our setting—unlike in [23] where they are again ‘H,, ,,'s—are different from, and trickier than, the
already fairly nasty H,’s. See e.g. the proof of Lemma 8.2, in particular the parallel setup at the beginning
of Section 10, and then the arguments of Section 11, which think mainly of G = H — Z and simplify
considerably when G = #. (The present Section 12 is just far enough from the corresponding portion of
[23, Sec. 9] that it seems necessary to repeat.)

3. CONCENTRATION

Recall that a r.v. £ is hypergeometric if, for some s, a and k, it is distributed as |X N A|, where A is a fixed
a-subset of the s-set S and X is uniform from (“Z) For the standard bounds in Theorem 3.1, see e.g. [21,
Theorems 2.1 and 2.10].

Theorem 3.1. If ¢ is binomial or hypergeometric with EE = p, then for t > 0,
(24) Pr(€ > pu+t) < exp [—pp(t/m)] < exp [—17/(2(n+1/3))] |
(25) Pr(¢ < u—t) < expl—pp(—t/n)] < expl—t2/(2u)],

where o(z) = (1 + z)log(l 4+ x) — x for x > —1and p(—1) = 1.

For larger deviations the following consequence of the finer bound in (24) is helpful.

Theorem 3.2. For £ and p as in Theorem 3.1 and any K,

Pr(¢ > Ku) < exp[—Kulog(K/e)l.

The next result, proved in [17], will save us some trouble at one point (see Lemma 13.8). Say the {0,1}-
valued r.v.’s (1,...,{; are a read-k family if there are independent r.v.’s 1, ...,%, such that each (; is a
function of (¢; : ¢ € S;) (for some S; C [s]) and |{j : i € S;}| < k for each i € [s]. (That is, each ¢; affects at
most k of the (;’s.)
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Theorem 3.3. For (1,...,( aread-k family with > E(; < tp, and any X € [p, 1],

P(G+ -+ G > M) <exp[=D(Ap)t/k],

where D(A[|p) = Alog(A/p) + (1 = A)log[(1 — A)/(1 = p)].

(The statement in [17] assumes ) E&; = tp, but implies the present version since D(A||p) is decreasing in
p < A. We will not need the similar lower tail bound.)

We now turn to martingales and (19). Lemma 3.4 and Proposition 3.5, which we use here and again in
Section 12, are Lemma 3.3 and Proposition 3.4 of [23] and will not be reproved here. The argument for (19)
is really the same as that for (17) in [23], but is superficially different enough that it seems best to repeat it.

Lemma 3.4. If Z1, ..., Z; is a martingale difference sequence with respect to the random sequence Y1, . ..,Y; (that
is, Z; is a function of Y1, ..., Y; and E[Z;|Y1,...,Y;_1] = 0), then for Z =" Z; and any 9 > 0,

(26) Ee?? < HEZI max E[e?Z:

Yty - 7yi—1}
and, consequently, for any A > 0,
(27) P(Z > \) < e P[], maxE[e"Z |y, ..., yi1]

(where y; ranges over possibilities for Y; and the conditioning in (26) and (27) has the natural meaning).

Both here and in Section 12, bounds on the factors in (26) are given by the next observation.
Proposition 3.5. Forar.o. W € [0,b] with EW < aand 9 € (0, (2b)71],
(28) maX{Eeﬁ(W—IEW)7]Ee—ﬁ(W—IEW)} < ed%ab.
Proof of (19). Lets; = O(+y;) be the bound on &; in (17). We will apply Lemma 3.4 with ¥; = A; and Z; as
in (18) (so Z = X}), using Proposition 3.5 with b = ¢; and a = a; the bound in (12) (with ¢ = 4; thus a =
(14 n~)y;) to bound the factors in (27) (or (26)). (For relevance of the proposition notice that, conditioned
on any particular values A,,. .., A;_1, Z; is either identically zero (as happens if B ;91 has failed for some

j<i)or Z; =& —E[§|A1, ..., Ai—1], where & € [0,;] and (12) bounds the conditional expectation by a;.)
This combination (i.e. of Lemma 3.4 and Proposition 3.5) gives

P(X; > \) < exp[92 Y!_, Giai — O]
for any A > 0, provided, say, ¥ < 1 (< (2maxg;)~!). So with
J =3 st = O(X77) = O(n/ logn)
(see (21)) and ¥ = min{1, \/(2.J)}, we have

exp[—A2/(4J)] if A < 2J,

Pr(X; > ) <
r(Xe ) { exp[—A/2] otherwise,

and (19) follows (using A > /n and, in the first case, J = O(n/log n)). O
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4. COMPARING f'S

A basic difficulty in the present work is that we don’t know how to estimate the probabilities 3(H). As
a substitute, this section develops some simple machinery for comparing 3(7)’s that will allow us to say,
roughly, that under reasonable restrictions, small changes in H don’t cause unmanageable changes in 5(H).

In general our lives are simpler if we can work with “binomial” surrogates for U, (recall from (6) that
this is a uniform m,.-subset of H). Set

(29) 6 = elog(3/e).
For perspective note that for Y = U (and its binomial relatives below), any « € V' (and large enough n),
(30) P(dy () < 6,) < n~1+°,

since the first, more precise part of (25) bounds the Lh.s. of (30) by exp[—(1 — clog(e/e) + o(1)) log n]. (We
note that J is not meant to suggest d.)

Let
(31) 0=n"1"%/2 with A > § small and fixed

(for concreteness we may take A = 24, but the actual value barely matters), and for # C K with |H| = m >
(14 o)m,., define

(32) X”H = Hp/ ZH = Hq/

where p = (1 + ¢)m,/mand g = (1 — o)m,/m. (Recall that H,, includes edges of H independently, with
probability p. The restriction on m is needed to keep p below 1; of course Z4 could be defined more
generally) We will compare U4, X', and Z4;, with the basic observations in Lemma 4.2 and the main
point of the section Lemma 4.5.

Set
(33) ¢ = exp[—o*m, /3] (= n~ "),
This value, which is far smaller than we will really need it to be, is chosen so that (by Theorem 3.1)

(34) max{P(|Z| > m,),P(|X]| <m,)} <&.

Before turning to the main business of this section we record one crude observation that will sometimes
allow us to more or less ignore very small values of m, (recall £ was defined in (4)):

Lemmad.l. IfH € £ |H|=m < (1 +n~2+Nm_, and
(35) @ dy(z) < 1.5elogn}| = O(n?°),

then B(H) > 1—n"¢.

Proof. SetU = U4, and let X be the setin (35). If U ¢ £ then H \ U must contain either

(i) anedge onsome z € X, or
(i) forsomez € V'\ X, atleast 1.5¢logn — ¢, > 0.4clogn of any given 1.5¢ logn edges of H,;
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and the probability that one of these occurs is at most

O<n26 logn . n—(25+c)) +n 1.5¢ logn n—(26+c)0.45 logn < n~C.
0.4 logn

Call J C K anemic if
(36) J has at least 2rn?® vertices of degree less than 2¢ log n.
In Lemma 4.2 and Corollary 4.3, U, X and Z areUg, X g and Z; for some G C K of size atleast (1+9)m,,,

and & is a property of r-graphs. As in much of this work, there is room in the bounds—also, e.g., in the
definition of anemic—and we aim for (relative) simplicity rather than anything like optimality.

Lemma 4.2. (a) If & is increasing, then

(37) P(Ze®)—¢ <PUES) < (1-&'P(X €6).

(b) Suppose & is increasing and membership of J in & is determined by {x : ds(x) > pg}, with p := max p, <
1.5elogn. If

(38) P(X anemic) < nP(X € 6),

thenP(Z € 6) > (1—-n—n"))P(X € 6).

(Note (38), though we will need to check it whenever we use (b), is not much of a requirement.)

Proof. (a) Since & is increasing, we have
P(Ze6)<P(Z]|>m,)+PUEcE)
(yielding the first inequality in (37)) and
P(X €6) > P(|X[ = m,)PU € &)

(yielding the second).

(b) We couple X and Z in the usual way: 2 = X;_, with¢ =1 — (1 — 9)/(1 + 9) < 2p. The desired
inequality is then
(39) P(ZeGlXe6)>1—n—n""
From (38) we have
P(X anemic|X € &) < P(X anemic)/P(X € &) < 7.
On the other hand, {X € &, Z ¢ G} implies existence of an x for which
(40) dz(z) < pr < dx(),

meaning that the passage from X to Z deletes at least dx (z) — p, + 1 members of X,. But the probability
of deleting at least k edges at « is at most (dxk.(x))gk ; so whenever X is non-anemic, the probability that (40)

occurs for some z is less than

2el
27“7’l26p§ + Tl( ogmn )CO.E’)s logn.

0.5¢logn
Combining these observations gives (39):

P(Z € 6|X € &) > P(X non-anemic|X € &)P(Z € G6|X € &, X non-anemic)
>1—n—n""° O
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In Corollary 4.3 and Lemma 4.5 we use a > bfora > (1 — n™)b.

Corollary 4.3. If & is as in Lemma 4.2(b) and

(41) P(X € &) > n®max{, P(X anemic)},
then
(42) P(Ze6)~PUecS)~PXc) (>P(Zec6)).

(Like (38), (41) should be considered a minor annoyance.)

Proof. This is three applications of Lemma 4.2: the second part of (a) of the lemma gives P(X € &) >~ P(U €
G); (b), with the second bound in (41), gives P(Z € &) > P(X € &); and combining this with the first
bound in (41), and using the first part of (a), gives P(U € &) >~ P(Z € G). O

Corollary 4.4. B(K) > exp[-n?].
(In fact (K) ~ exp[—n’], but we don’t need this.)

Proof. With Z = Z, Theorem 3.1 gives
P(dz(x) < §,) <n 1+°

(the calculation, which is essentially the same as that for (30), is valid provided ¢ = o(1)), and combining
this with Harris” Inequality [19] yields

P(Z € £)> (1 —n 1+ ~ exp[-n].

The corollary then follows from Lemma 4.2(a) (with p, = 0, and & = £, the subtracted & in (37) being
obviously irrelevant here). O

Say « is dangerous for J (C K) if
(43) ds(x) < 1.5eDy
(recall Dy is average degree in 7). For the next lemma we assume J,J' C K, E =T NJ/,
(44) [T =T =m = 1+ g)m,,

j\EZ{Alvu-aAo} and j/\EZ{Bl,...,BU},

with

(45) {41, ..., A,} amatching
and

(46) (1<) o =n;

let x be the number of A;’s containing vertices that are dangerous for J; and set W = A, U --- U 4,, noting
that

(47) |[W| =or and |[{x € W : x dangerous for J}| < k.
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Lemma 4.5. With the above setup, assume: J' € £;
(48) if m > 2rmyp then dg(x) > 1.5e D7 Vo € W
(sok =0); and
(49) B(T) > n?) max{¢, P(X 7 anemic)},
where the implied constant doesn’t depend on €. Then
(50) B(T') = n~ 9 B(T)
(where, of course, the implied constant is again universal).
Notes. The assumptions in (46) and (49), while supporting the lemma, are much weaker than what we will
have when we come to use it; on the other hand, the ¢ in (50) will be critical at one point (see (137)). Of

course the “>" (vs. “>") in (50) is unnecessary if £ # 0. (It is only in our first application of Lemma 4.5—in
the proof of (12) in Section 6—that the precision of “>" in (50) is needed.)

Proof. Recalling that 3(H) = P(Uy € £), we first observe that it suffices to show (50) with Z in place of U;
that is,
(51) P(Z7 € &) =nOFIP(Z; € 2).

To see that this is enough, notice that Corollary 4.3, with & = £ (and p, = ¢,) and (41) given by (49) and
Lemma 4.2(a) (the latter to say P(X 7 € &) > 8(J)), gives

(52) P(Z5 € &) - B(T);
that this with (51) and (49) gives
P(Z7 € £) > n” Ot (> ncg),
which by Lemma 4.2(a) gives
(53) BT) = B(Z5: € £);
and, finally, that the combination of (53), (51) and (52) gives (50).

For the proof of (51) set Z7 = Z and Z4 = Z’. We may couple these by taking Z' N € = ZNE,
with the remaining decisions (those involving the A;’s and B;’s) made independently, and show a mild

strengthening of (51):
(54) P(Z' € £ Z e L) »n 0k,
Here Harris’ Inequality gives
P(Z' etlZel) = Plg(xr)>,VeeW|Zeg)
(55) > [Lew Pldz (2) > 6,).

On the other hand, now using J’ € £ and (48) (the latter just to say that if the first case in (56) is not vacuous
then ¢ (= (1 — o)m,./m) = Q(1)), we have, for z € W,

¢’ =n"9E) ifdg(z) < 1.5eDs — 1,

(56) P(dz/(z) > 6,) > { —a(e)

1—n otherwise.

Here the second bound is given by Theorem 3.1 since Ed z/ (z) > 1.5¢ log n, as follows from d 7/ (z) > dg(x) >
1.5¢D 4+ — 1. Finally, inserting the bounds from (56) in (55), noting that (45) implies that all z’s in the first
part of (56) are dangerous for 7, and using (46) and (47), gives (54). |



14 JEFF KAHN
5. GENERICS
Here we define the property R, with most of the discussion supporting (8) postponed to Section 13.

As we will do elsewhere (see Sections 7, 8 and 10), we give the definition for a general r-graph #, with
n = |V(H)| and m := |H| > n, so average degree

Dy = mr/n.

The event R, of Section 2 is then {#; € R}. (In line with our “default,” we may think of ¢t = (') — m, but,
apart from a pseudo-exception at (61), the present definitions don’t involve t.)

We number the several requirements for R—thus R = R° N - - N R* (with, again, Ri = {H,; € R})—to
allow later pointers to what exactly is being used. The first of these, R° consists of standardish genericity
conditions for degrees; viz.

(57) a.a. degrees in H are asymptotic to Dy

(formally: there is ¢ = o(1) such that dy(z) = (1 £ ¢) Dy for all but (1 — ¢)n vertices x);

(58) Ag.[ = O(DH), (57.[ = Q(EDH),
and
(59) max dy (z,y) = o(Dy)

(the max over distinct x,y € V).

Note that RY is robust in that, for any fixed C,
(60) if H satisfies R° then so does H — Z for each Z C V with |Z| < C.

(Note—though it doesn’t matter—this refers to a slightly changed n and m.) We omit the easy justification,
just noting that (58) implies D3,z ~ D4 and that (57) and (the lower bound in) (58) for # — Z depend on
having (59) for #. We will only use (60) with Z a member of K or the union of two disjoint members.

For the next item, m,, is the M = M (n) of Theorem 1.5 (so the definition makes sense for a general X,
though we will use it only with % = H,). Say H is in R provided that
(61) if |H| > 2rm,. then 03y > 2eDy,.

(So—irrelevantly—smaller A are automatically in R'. This item is minor but will sometimes allow us to
focus on |H| closer to m,., which is where most of the interest lies. Of course for H = H, (61) implies the
second part of (58), since H; € £.)

That
(62) P(Ni<r (R NRy)) = 1

is shown in Section 13.3.

For Z CV (and ‘H C K), set

(63) Jz(H) ={H CK:|H|=H|.H - Z=1- 2},

(64) pz(H) =Y {BH'):H €Jz(H)}
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and

(65) Pz(H) = 3z(H)| " pz(H)

(the average of B(H') over H’ of size |H| agreeing with H off Z; note each of the items in (63)-(65) is deter-
mined by |H| and H — Z). Let

(66) R2={H :7,(H) >n"@TVE(K) VZ € {0} UK},
noting in particular (taking Z = () and recalling Corollary 4.4) that
(67) HeR = B(H)>n @ TVB(K) > exp[—(1+ o(1))n’].

In Section 13.3 we will show that for any Z C V (and any ¢ € [T] and 1 > 0),

(68) P(@4(Hi) <nB(K)) <,
whence
(69) P(3t H, € R?) <n~' (= o(1)).

With a = m../m and, as in (36), J anemic if d(v) < 2¢logn for at least 2rn?° vertices v, let
M3 = {H : P(H,, anemic) < exp[—(1 — o(1))n*]}.
Again in Section 13.3, we will show
(70) P(H; & R°) < exp[—(1 - o(1))n*].
We will usually use membership in R? in combination with the next little point.

Observation 5.1. For fixed ¢ > 0, H of size asymptotic to m and { ~ m,, /m, if

(71) P(H, anemic) < exp[—Q(n?)],
then
(72) [z : dy(z) < (2 — c)eDy}| < 2rn?.

In particular, (72) holds when H € R3.

Proof. If W is a (2rn?°)-subset of the set in (72), then Harris’ Inequality (with Theorem 3.1) gives
P(H; anemic) > P(dy, (z) < 2clogn Ve € W) > (1 - o(1))"1 = exp[—o(n?)],

contradicting (71). O

For R* we use a parameter w that tends to infinity slowly; precisely, we want
(73) I<w<Ky,

where conditions on v are included in the parameter requirements of (143)-(147). Those requirements could
instead have been given here, but really belong in Section 12, where they become relevant. As explained
there, they are functions of some v = o(1) that in turn depends on the “quality” of 2 and R° (e.g. the speed
of the o(1) in 2), meaning the most we can ask of v is that it tend to infinity; this leaves room for (73), but
no more. (We could also make w a suitably large constant, but this feels less natural.)

For Z C V, let

(74) Dz={He K" Eer\Z((Sy —dy-z(y))" > w},
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and let® = Uzcc®z (and D, = Q{I}). It is shown in Lemma 13.9 (see (188)) that
(75) P(Hr € D) <n™ ™
for some fixed > 0 (not depending on ¢, though we don’t need this).
Fort € [T]and Z € K, say H € K is in R*(Z) if
(76) P(Hr € Dz|Hi— Z =M —Z) <n~"™/2
and set R* = NzexR?(Z). Then for any Z (€ K),
n~ " > PHreD)
> P(H, € RYZ)P(Hr € Dz M, ¢ R (2))
(77) > P(H; g R(Z))n ™72,
implying P(H; ¢ R*(Z)) < n~™/2 and
(78) P(3t H, ¢ R*) < n?'n=/2 = =) (= o(1)).

(To make sense of (77) notice that membership of H; in R*(Z2) is decided by H; — Z, and the conditioning
says precisely that (76) does not hold.)

To recap: (8) will follow from (62), (68) (which implies (69)), (70) and (75) (which implies (78)); as noted
above, these are all shown in Section 13.

6. EXPECTATIONS

In this section we take m = m,; and prove (12); recall this said (with v, = n/(r(m + 1)); see (11))

(79) HeKTI'NRNEL = Bl&|Hi1 =H] < (1 +n" ).

Given H as in (79), set, for A € H,
pa=pu(A) =P(A; = AlHi1 =H) (x f(H \ A); see Observation 2.2)
and
§a=E&n(A) = D(H - A)/O(H).
Then & 4 is the fraction of perfect matchings of # that contain A, and
(80) El&e|Hi—1 = H] = >_paga.
We will show that no p4 is much more than the average; concretely,
(81) pa<(l+n"°)/(m+1) VAcH.
Since (m +1)7' > 1y €4 = v (equivalently, - ®(H — A) = (n/r)®(H)), this bounds the r.h.s. of (80) by
(1 4+ n=c)v, as desired.

Proof of (81). Set
H° ={B e H:dy(zx)>15eDy +1 Vz € B}

and notice that, by Observation 5.1 and (61) (so we use H € R* N RY),

HO) >m+1-3ern®Dy > (1 —n")(m+1) ifm < 2rm,,
=m+1 otherwise.
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This implies that for (81) it is enough to show
(82) BH\A) < (14+n°)B(H\B) VB € H°,

since then
I AV M AV
2pen BHNB) = Y peyo B(H\ B)
For m < (1 +n=3%)m, (say), (82) is give by Lemma 4.1, according to which S(# \ B) > 1 — n~¢ for
any B € H' (the lemma’s hypotheses, # \ B € £ and (35), following from B € H° (with H € £) and the
combination of H € R* and Observation 5.1 respectively).

< (L+n7)/(m+1).

For larger m we show (82) assuming (81) fails (which suffices for our purposes). We have

L ST B B) = B(H) > expl-(1+ o).

m+1B€H

[The inequality holds since H € R? (see (67)), and for the equality we have, with sums over B € H (and
£, =£nkKk7),

STBH\B) = ()Y HUeL, :ucCH\BY
= (M) 1= m){U € £, U CHY = (m+ 1B(H)]
We thus have
(83) pHNA) 1 B(H\ A)

P S aen BHNB) ~ m+ Lexp[—(L+o(D)n]
and may assume
(84) B(H\ A) > exp[—(1 + o(1))n?],
since otherwise (83) implies (81).

Then for (82) we apply Lemma 4.5 with 7 = H\ Aand J' = H\ B (so £ = H\ {A4,B}, 0 = 1 and,
unfortunately, A; = B and B; = A). Here B € H° implies x = 0, so the lemma, if applicable, does give
(82); but its first hypothesis, (48), holds because B € H’, and its second, (49), is a weak consequence of (84)

and H € M3, which implies P(X3, anemic) < exp[—(1 —o(1))n?°]. (Note Lemma 4.5 also assumes the lower
bound in (44), but here we have the stronger m > (1 +n"3%)m,..) O

7. PROPERTIES 2l AND ‘B

As in Section 5, properties in this section, as well as Sections 8 and 10, are defined for a general r-graph

H, and &, is the event {#H; € &}. Here and in Section 8—but not quite in Section 10—we again use n and
V(?—L)) .

T

m for the numbers of vertices and edges of #, and K for (

For the remainder of the paper we will tend to use A for edges and Z or U for general r-sets. We assume
throughout that we have fixed some positive ¢ (it will be essentially the one in Theorem 1.5), upon which
the implied constants in “O(-)” and “€2(-)” may depend.

We say H has the property 2 if
(85) log ®(H) > log @y — glog [(:) /m] —o(n).

(Recall from (14) that for m = m,, the main subtracted term here is essentially Zle 7i; SO, as promised,
{H. € 2} is the 2; of Section 2.)
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For B a little notation will be helpful. For a finite set Sand w : S — RT (:= [0, >0)), set

w(S) =151"") wla),

a€eS

maxw(S) = max w(a),

and
maxr w(S) = w(S) ! maxw(S).
For H C K define wy, : K — R by

wy(2) = ®(H - Z),
and say H has the property B if

maxr wy (H) = O(1).
(So B says the number of p.m.s containing any particular A € # is not too large compared to the average.
Note that the implied constant here does depend on ¢, its natural value being roughly 1/e: on average over

A > z, the fraction of p.m.s of A containing A is 1/dy (z); and the dy (x)’s, while typically around Dy, can
be as small as (about) e Dy,.)

Then B; (= {H: = B}) is as in Section 2 and (23) is
(86) fort <T, P(H; = ARDB) = n—«1).

(More formally: there is a fixed C, depending on the o(-)’s and implied constants in 2 and R, such that
P({#H; = AR} A {maxr way, (H;) > C}) =n~—wD))

As mentioned at the end of Section 2, (86) is shown in Sections 8-12, and with (8) (likelihood of the fR;’s,
established in Section 13) will complete the proof of Theorem 1.5.

We conclude this section with the promised
(87) B;_1 implies (17).
(Recall (17) says & = O(y:), where, as in (11), v, = n/(r(m + 1)).)

Proof. If H,—1 = H, then § < maxacy wy(A)/P(H), while v, is the average of these ratios, since

ZAEH W (A) = (I)(%)n/r
(and |H| = m + 1). This gives (87). O

8. MORE PROPERTIES

We will get at B via several auxiliary properties. We introduce the first three of these here (there will
be a couple more in Section 10), together with assertions concerning them that, as shown below, easily
imply (86). As mentioned earlier, two of these assertions are from [23] and the others (which also have
counterparts in [23]) are proved in the next four sections.

With n and K again the size and collection of r-subsets of V (#), the properties of interest here are:
¢ if Z € K satisfies
(89) wii(Z) > B(H)e ™,
then for any x € Z,
(89) wi((Z\ x) Uy) 2 wu(Z)d(x)/Dy forae.yeV\Z
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¢ wy(A) ~ ®(H)/Dy forae AcH;
S wy(Z) ~®(H)/Dy forae Z € K.

(More formally, e.g. for €: there is ¢ = ¢(n) = o(1) such that [{A € H : wy(A) # (1 £<)P(H)/Dy}| < s|H].)

For perspective on € and §, notice that

(W (M) =) [H|™" D wa(A) = [H| 7' ®(H)n/r = ®(H)/Dy.
AeH

For the next little bit we use

X=3
to mean P(X3) = n=“(); e.g. the probability bound of (86) is
(90) {H; = AR} = {H, = B}.

The aforementioned assertions are as follows. (In Lemmas 8.2 and 8.3 we assume ¢ € [T7].)
Lemma 8.1. If H satisfies AR then it satisfies €.
Lemma 8.2. With Az ranging over Z as in (88) (with H = H.,),
{H: E AR} = {H EFIANAH - Z =5}

Lemma8.3. Forz € Z € K,
o1 (e ERIA M~ ZET = {(He. Z,2) = (89)}-
Lemma 8.4. If H satisfies ROFC then it satisfies B.

Lemmas 8.2-8.4 immediately imply (86) (in the form (90)): the first two give
{#Hs =A%} = (M, | 5
and the story is then completed by Lemma 8.4.

Remarks. The crucial contribution of Lemma 8.1 is that it allows us to replace AR by AR ¢ in Lemma 8.2;
more precisely: recall from (60) that # = R implies H — Z = R for every Z € K, and note that H = 2
easily implies H — Z |= 2 for any Z as in (88); these observations, with Lemma 8.1, say that in proving any
of the assertions {#; = AR} == {G = F} of Lemma 8.2, we may we replace the Lh.s. by

(92) {H; = AR} A {G E ¢}

Lemma 8.2 then embodies the idea that ¢F is unlikely for a random G (here either ‘H; or H,; — Z) because
the distribution of the wg(A)’s (A € G) should reflect that of the wg(Z)’s (Z € K). As said in [23], we regard
this natural point as the heart of our argument.

The more important part of Lemma 8.2 is that involving #; — Z, which provides input for Lemma 8.3.
Its other use, allowing us to assume § in Lemma 8.4, is convenient but less critical: with more effort one can
show directly that {#; = RE€B} is unlikely.

The nonprobabilistic Lemmas 8.1 and 8.4 are Lemmas 6.1 and 6.4 of [23] (the R there being the present
M), and their proofs will not be repeated here. (As mentioned in Section 2, Lemma 8.4 is easy, but
Lemma 8.1 was one of the main points of [23].) Lemmas 8.3 and 8.2 are proved (in this reverse order)
in Sections 9 and 10-12 respectively.
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9. PROOF OF LEMMA 8.3

FixxeZeKandletH=H; Y =Z\zand W =V \ Z. We now use d,, for ds(z).

Recall (see (5)) that H = Hr U J with Hp uniform from £ and J uniform from the (7" — t)-subsets of
K\ Hr. This gives a joint distribution on (G,Gr, N1, H, \ Nr), where G = H — z, Gr = G N Hr and
N1 =Hr\Gr (= (Hr).). Given G = G we choose G, N7, H,. \ N7 (in this order), and set g = |G| and
9r = |gT|

The law of G7 will not concern us, but the next two observations will be helpful. First, the law of N1

depends only on G7: it is uniform measure on
(93) NCK,:Nl=m, —g,, NUGr e L,}.

Second, H, \ N7 is chosen uniformly from the (m — g — | N 7|)-subsets of K, \ N'r; in particular its law
depends only on N7 and g.

We are really interested in the choice of #,, for which we may assume whatever consequences of H € R
can be read off from (G, Gr); of these we will use just Dy _z ~ Dy, d = Q(elogn) (both given by (58))
and ‘H € R*(Z). We are then also entitled to assume

(see (74)), since H € R*(Z) says that the probability that H7 € Dz (2 D,)—an event decided by Gr—is
n~) (recall w was introduced at (73)). Armed with these assumptions, we continue.

Set @' = ®(H — Z)/D (a function of G) and recall that H — Z € § says (using Dy _z ~ Dy)
(95) wy—z(U) ~ @ fora.e. U € K[W].

On the other hand, for any y € W,

(96) wa (Y Uy) =Y {waz(SUy): S € (1Y), Suz e},
and (95) implies
(97) fora.e.y € W, way_z(SUy) ~ @ forae Se (V).

It is thus enough to show that (under the assumptions in the preceding paragraph) the inequality in (89) is
unlikely to fail for any y as in (97).

We are now choosing H, = N1 U (H, \ N'r). Given y as in (97), let’
I={S e (VW) tw, L (SUY £¥IULS € (V1) : SN (Y Uy) £0)
and J = {SUz : S € 7}, and notice that
(98) 3] = 3] = o(n"1).
(The first set in the definition of J consists of the exceptional S’s in (97), so is of size o(n"~!); the second has

size ©(n"~?) and should be ignored.)

2A more formal version: (97) says there is ¢ = o(1) so that for all but sn y’s,
{5 € (1) swa—z(SUw) # (1 £)2"} <n’ "

Then “y as in (97)” is one of these, and the condition in Jis way—z (S Uy) # (1 £ ¢)P’.
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Noting that d,; (= ds(z)) is determined by G, we observe that the sum in (96) is at least (1—o(1))d, ®—so
the inequality in (89) holds—provided
[H. N3] = o(ds).
So it is enough to show, for some { = o(1),
(99) max{P(W7 03] > ¢do), P((Ha \ N'7) N3] > ()} ==,
as we will see, this is true whenever
(100) ¢ > max{(log(n"~*/|3])) !, w/logn}.
(Recall we assume w — oo slowly, so the second bound is small.)

Note that for #, uniform from (’;j) and ¢ satisfying (just) the first bound in (100), P(|#, N 3| > (d,) =
n~“() is given by Theorem 3.2, using (98) and d, = Q(clogn); namely, since E|H, N 3| =< n~"~V|7J|d,,
Theorem 3.2 bounds the probability in question by

(101) exp[—(log(¢n" " /(e[3]))ds] = exp[~w(logn)].
(It is this point—more precisely, its analogues below—that collapses if Theorem 1.5 allows d,, = o(logn).)
So we are trying to show that the present distribution (see (93)) doesn’t behave too differently.

For any choice of N7, H, \ N7 is a uniform subset of some size less than d, from a universe of size
©(n""1), s0, as above,
]P)(|(HI \NT) N j| > Cdz) = niw(l)'
While something similar is clearly true for P(JA/7 N J| > (d,.), I don’t see how to say it’s just trivial. A nice

fly-with-a-sledgehammer argument runs as follows.

Given Gr,letu, =0, —dg,(2), J={z €V \z:u, >0} and
(102) U=y e U <w

(with the inequality from (94); again see (74)). Then N7 is distributed as a uniform (m,. — g,.)-subset, N,
of I, conditioned on

S = {dn(z) > u, Vz € J}.
Set M = {INNJ| > (d,} and W = {IN NJ| > ¢d, — u}, and notice that if &N holds (at N), then &
and N occur disjointly at N; that is, there are disjoint A, B C A such that N’ O A implies & (for M) and

N D Bimplies 9V (see [4] or e.g. [18]). But a beautiful result of van den Berg and Jonasson [3] bounds the
probability of this disjoint occurrence by P(G)P(9V), yielding

(PN 7 NI| > ¢dy) =) PNS) <POV) =n D),

with the n=“(!) again given by Theorem 3.2 (now using u < w, the second bound in (100) and, again,
d, = Q(elogn) to say the subtracted u in N’ is irrelevant).

10. PROOF OF LEMMA 8.2: SETTING UP

In this and the next two sections, ‘H is H.;, we use m for m; and D for D,,,, and G is either Hor H — Z
(with Z as in (88)), with law in either case denoted (; thus

B(G) ifG =%,

(103) p(9) == p(G =9) x { S BH) fG=H-2Z,
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where G ranges over possibilities for G and H over K (or just over possibilities for H, since the rest don’t
contribute to (103)). Note that the sum in the second part of (103) is the common value of ¢ z(H) for H € K*
with H — Z = G; see (64).

We will refer to the two parts of (103) as Case 1 and Case 2 (respectively). Note that Case 2 includes Case
1 if we allow Z = (); we have included the first part of (103) to emphasize the distinction, but from this
point (until the end of Section 12) Z is either empty or as in (88), and weset V! =V \ Zand K' = £ — Z.
In what follows we will usually be thinking of the more demanding Case 2; but the arguments also make
sense in Case 1, where they often simplify, sometimes drastically. A few comments on Case 1 appear in
square brackets.

As observed at (92), Lemma 8.1 says that Lemma 8.2 is equivalent to the assertion that for each G in (103),
(104) P(H = AR, G = ¢F) = n~~W.
Note we may assume here that
(105) K| =m = Q(IK]);

for H E RO implies that |G| ~ m for each G in (103), so if (105) fails then for each such G, € and § are
equivalent and (104) is vacuous. (This rather silly point will be needed for (140).)

It will be convenient to further reformulate as follows. For any G set

n(G) = inf{n: {U € £:wg(U) # (1 £1)@(G)/Dg}| < n|K[}.
Then {G = §} = {n(G) = o(1)} and (104) is equivalent to’

(106) for any fixed 0 > 0, P(H = AR, G |= €, n(G) > 20) = n—<1),

(The 26 will be convenient below.) So for the rest of this section we fix § > 0 and aim for (106).
Set

(107) &' =d(G)/Dg.

Notice that {G = €} A {n(G) > 20} implies
Q: wg(A) ~ @ forae. Ae G, but wg(U) # (1 £ 20)d’ for at least a (20)-fraction of the U's in K' \ G.

So it is enough to show
(108) P(H = AR, G E Q) =n“W.

For the proof of this we work with an auxiliary random set 7 chosen uniformly from (f) , Where 7, which
will be specified later (see the paragraph containing (143)-(147)), will at least satisfy
(109) wlogn < 7 < log®n.
(As explained following (73), w is really chosen after the parameters of (143)-(147).) We set F = G \ T and

(=P,

Swith & = {# = AR, G = ¢} and H(v) = {n(G) > v}, (104) says
there is ¢ = o(1) such that P(& A $(¢)) = n~«@),

while (106) implies
Yk, P(& AH(1/k)) < n~* forn > ng;
and we get the former from the latter by taking ¢(n) = (max{k : ny, < n})~ L.
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and will be interested in a property of the pair (G, T") (or (F,T)), viz.
B: wr(A) ~ (P forae. Ae T, butwe(U) # (1 £ 0)CD for at least a O-fraction of the U's in K' \ G,
Note (wg(U) is a natural approximate value for wx(U), since each p.m. of G — U survives in F with
probability roughly (actually, asymptotically) (1 — 7/m)™" ~ ¢; cf. (162).
We will exploit the familiar leverage derived from the interplay of two natural ways of generating (G, T ):

(A) choose G and then T (as above);
(B) choose F and then T (determining G = F U T).

(In Case 2, analysis for (A) will involve choosing H rather than just G.)

Notice that, given F = F, the law of T is given by
(110) P(T=T)=P(F =F, T =T)/P(F=F) =BG =FUT)(F") " /B(F = F)  o(FUT),
where T ranges over 7-subsets of K’ \ F (and ¢ is as in (103)).

We will not need to know much about the law of F, but will want to restrict attention to reasonably
well-behaved possibilities. Thus we will define a property 91 specifying a few desirable features of F, and,
now writing AR for {H = AR}, Q for {G = Q}, Nfor {F =N}, and VY for {(G, T) = UV}, show

(111) P(UNARQ) =1 — o(1)
and

(112) P(TUN) = n~—vW,
These give (108), since

P(ARQ) = P(ARQVN) /P(VN|ARQ) < P(VN)/P(VN|ARY).

(So (111) is more than is really needed here.)

Noting that we have specified m and Z, we take 91 to be the property comprising (118)-(121) below. The
first of these takes a little preparation. Set, for ¢ < m (in what follows, g will be |G|):

(113) 3(g) = ( *s )

m-—g
with Kz := Uzez Ky, and
(114) J(g9) ={Z € 3(g) : dz(z) > 6, Vx € Z};
](:I
for G’ € ( g ), 1
?(G") =13(g)I (G
(with ¢ as in (103)); and for F C K’ with |F| =g — T,

(115) H(F)={G" € (X):¢ 2 F}
and
(116) H(F)={9" € H(F) :dg/(x) > 6, Yz € V'}.

Like ¢ itself, % should recall % $(G’) is 4 (H) forany H € K' with H — Z = G'. [InCase 1, g = m,
J*(g) = 3(g) = {0}, and B(G) = ¢(G) = B(G).] Note that H(F) includes possibilities for G given F = F,
but typically also some (irrelevant) impossibilities; e.g. in Case 1 anything in $(F) \ $*(F).
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In two places below it will be convenient to first dispose of the easy case of very small m, allowing us to
restrict attention to (say)

(117) m > (1+n")m,.

With g = | F| + 7, the first requirement for F |= 9t is

(G > { 13%(9)|/13(g)| VG’ € H*(F) if m violates (117),

(118) n~@rHUB(K) VG € H(F)  if m satisfies (117).

A little perspective: For (112) we will use viewpoint (B), bounding P(|F = F) for F € N, and will want
to say that the law of G under this conditioning is not too awful, meaning that the ratios between different
P(G’)’s are not too large; but as these probabilities are governed by ¢ (again, see (103)), the lower bounds of
(118) will be useful in bounding their ratios. (See e.g. (139) for the role of (118) in the (more important) case
where (117) holds.)

The other, more easily stated requirements (for F = N) are

(119) if m > 2rm,, thendz(x) > 1.5e D Vz € V/;
(120) with a = m,./m, P(F, anemic) < exp[—(1 — o(1))n?’]
(see (36) for “anemic”); and (with w as in (73) and (109))

(121) 2yev 0y —dr(y))" < w.

Of course for (111) it is enough to show (as above using 91 for F = 9 and so on)
(122) forany H € K'NR, POYH =H) =1—0o(1)
and (our main point)
(123) P(U|ARQ) > 1 —o(1).
We prove (122) and (112) in Section 11 and (123) in Section 12, organizing in this way because the proofs
of (122) and (112) are slightly similar (mainly in their use of Lemma 4.5) and unrelated to the proof of (123).

11. PROOFS OF (122) AND (112)

Proof of (122). We will show that (120) follows (deterministically) from H € R, while the other parts of 0
hold (for H € R) whenever

(124) T is a matching
and
(125) T covers no z for which dg(z) < 1.5¢D.

(Recall we are using H, m and D for H;, m; and D,,.) This gives (122) since (under H € fR) the upper
bound on 7 in (109) implies that each of (124), (125) holds with probability 1 — o(1): for (124) this is a weak
consequence of Ay, = O(Dy) (see (58)); and for (125) it holds because H € R?* (with Observation 5.1) and
the codegree condition (59) bound the number of z’s in (125) by 2rn%.

Turning to the deterministic assertions preceding (124), we first note that (119) is immediate from H € R
(specifically, (61) and (59)) and (124), while (121) follows easily from H € 9*, (124) and (125) (the first
trivially implies (121) with G in place of F, and the others say the passage to F doesn’t affect this).
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To get (120) from ‘H € R, notice that
exp[—(1 — 0(1))n%*] > P(H, anemic) > P(F, anemic) - (1 — o) *\7!
(the first inequality is H# € R? and the second is trivial). Thus for (120) it is enough to show
(126) (1= )"Vl = exp[—o(n®)]
—which isn’t close: we have (using (58))
(127) [H\F|=|H\G|+7=0(D)+7=0(m/n)+;
so the Lh.s. of (126) is (crudely)

o exp[—O(ZL {2 +7})] if e < 1/2 (say),
(1_a) 7an+T:

exp[—O(™ 4 7)logn] otherwise

(the latter since 1 —a: > 1/m), and (126) follows easily, using the upper bound on 7 in (109) and m,. < nlogn
(which when a > 1/2 also implies m = O(nlogn)).

Finally, we turn to the two cases of (118). For m violating (117), we use Lemma 4.1. Here the assumption
(35) holds even for F—as follows from H € R (specifically, (72) and (59)), (124) and (125)—so also for any
G’ € H(F). Thus the lemma gives 5(G' UZ) = 1 — o(1) whenever G'UZ € £ (with G’ € $H(F)and T € J(g)),
which in particular is true whenever G’ € $*(F) and Z € J*(g); so we have (118) in this case.

For m satisfying (117), recall from (66) [or, in Case 1, its specialization (67)] that H € 9R? implies the
inequality in (118) for G’ = G (since B(G) is the same as @, (H)); so it is enough to show

(128) p(G') 2 9(G) VG" € H(F).

It’s also easy to see that 3(G) > n~(2"+1 3(K) (as in (118)) implies (say)

(129) p(G) ~ Y {BGUT):TeI(g),B(GUI)>n *FB(K)}.
But we claim that for any Z as in (129) and G’ € H(F),
(130) B(G'VI) z BGUI),

which (in view of (129)) gives (128).

For (130) we apply Lemma 45 with 7 = GUZ and J' =G UZ (so £ D FUZ,0 < tand W C V).
Note that here the x of the lemma is zero, since all A4;’s lie in T, so by (125) are not dangerous for 7. So the
lemma’s conclusion is (130), and we just need to check its hypotheses (assuming J € £, without which the
r.h.s. of (130) is zero):

First, (44) holds because we assume (117), and (45) is given by (124). Second, J’ € £ follows from J € £,
using J\ J' C T with (124) and (125). Third, (124) implies d¢(z) > dg(x) — 1 for each z € V' (O W), which
gives (48) since (using (61) and (59), and noting |H| = |J|)

m > 2rm, = [dy(x) >2eDsVx € V] = [dg(z) > (2¢ —o(1))Ds Vz € V'].

Last, (49) holds because 3(J) > exp[—(1 — o(1))n°] (by Corollary 4.4, since Z is as in (129)) and, by (120),
P(X 7 anemic) (< P(F, anemic)) < exp[—(1 — o(1))n?°]. O
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Proof of (112). Implied constants in this argument do not depend on ¢ or 6. We actually show
(131) forany F e i, P(Y|F =F) = e—(07)

(which is n=%() by (109)). Here we use viewpoint (B). The (natural) idea is roughly: F determines the
weights wx(U) (for all U € K’, though here we are only interested in U € K’ \ F), and U then requires that
T be (pathologically) drawn almost entirely from U’s with weights close to (&', though this group excludes
a constant fraction of K’ \ F.

In fact (112) would be more or less routine if we were choosing 7 uniformly rather than as in (110). The
crude comparison in Lemma 11.1 below will allow us to move between these two regimes.

Fix F € Mand set g = |F|+7,3 =3(g9),T* =T*(g9),H = H(F) and H* = H*(F) (see (113)-(116)). We now
regard the IP of (110) as a probability measure on H—thus
(132) P(G") x p(G’) for G’ € $

—and use p for uniform measure on $). (It’s perhaps worth noting—though this won’t matter—that, unlike
PP, it can assign positive probability to 7”s for which F U 7 is not a possible value of G.)

Lemma 11.1. With notation as above, if X C $) and p(%) = e=07), then

P(X) = e~ 07,

Proof. Notice first that (121) and 7 > w (see (109)) imply
(133) p(H*) >n"x.

For m violating (117) we now finish easily: combining (118) and the trivial p(G") < |J*| (VG' € $) with
(133) (and (132)) gives P(X) < n“u(X) for any X C §; and this gives the lemma since 7 > wlogn (again see
(109)). So we assume from now on that m satisfies (117).

For G’ € $, let A\(G') be the number of edges of G’ \ F containing vertices = with
(134) dr(z) < 1.5eD.

By (120) and Observation 5.1, the number of such vertices is less than 29, implying that, for any b,
(135) w(G'NG') > b) = n~ 90

n more detail: if there are x’s as in (134), then a very crude application o —all that’s needed here 1s
I detail: if th ! in (134), th y crude applicati f (119 11 that’ ded here i

= n")—bounds the fraction of members o containing such x’s n- , and the
K'\ F Q bounds the fracti f b f K\ F ining such z’s by O(n~1+2° d th
upper bound in (109)—again, very crudely; 7 = n°") would suffice—then gives (135).)
Fix GY € $* with ¢(G°) minimum. We will show that for any G’ € ),

(136) (G') /(") S nOENID,

(Of course we can replace “ < ” by “<” if A(G') # 0.)

Before proving (136) we show it gives Lemma 11.1 (for m satisfying (117)). Since (by (133))
D {p(@): G € 9} > nI9|0(G°),
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we have, for any G’ € §) (using (136), and with G” running over £)),

, p(G)  _ n¥ (@) o nenOENID)
p) = A9 ell) o
@)= 5560 < Flee) 5]

Combining this with (135), 7 > wlogn and u(X) = e~ ") gives the desired bound: with \q = 67/logn,

— nwﬂ(g/)nO(E/\(g/)) )

(137) P(X) Sn® [p(X)nCE) 437, 1 (G s MG) = b)nOE)] = =207, O

Proof of (136). Set3° ={ZT € J: B(G' UT) > n~"+2B(K)} (C 7*) and notice that it is enough to show
(138) B(G'UT) SnOPENINBGOUT) VT €3,
for if this is true then, recalling that 7 € 9 implies %(G°) > n~ "1 3(K) (see (118)), we have

(139) 2(9") 9171 32{B(G'UT) : T € 3% + (1+0(1))n~'5(G°)

<
< nO(a/\(g'))w(gO)/|j| + n—la(QO) < no(e/\(g/))a(go).
[In Case 1, (118) says 3% = {0} (= J), and (138) is (136).]

For (138) we will again use Lemma 4.5, now with 7 = G’'UZ and J' = G°UZ (and € = (G'NG°)UZ D F), so
should check hypotheses: first, (44) holds since we assume (117), and (45) is given by (124) (since 7\E C T);
second, assuming (as we may) that 7 € £, wehave J’ € £, since G° € $* and .7, J' agree on edges meeting
Z; third, (48) holds since (for m > 2rm,,) (119) gives dg¢(z) > dr(z) > 1.5¢D (= 1.5eDy) forz € V' (2 W);
last, (49) follows from Z € 3° (with Corollary 4.4) and (120) (with P(X 7 anemic) < P(F, anemic)).

So the lemma applies and we just need to check that « (the number of edges of 7\ J' containing vertices
dangerous for ) is at most A(G'); but this is true because J \ J’' C G’ \ F and any z that is dangerous for
J satisfies (134) (since dx(x) < d7(x)). O

This completes the proof of Lemma 11.1.

We return to (131), which by Lemma 11.1 will follow from its “p-version,” viz.
(140) forany F € N, u(B|F = F) = e~ U0,

A small complication here is that 7 doesn’t determine the “target” (®’ appearing in 2. Among several
ways of dealing with this, the following seems nicest.

Given F, let Uy, ... be an ordering of K’ \ F with wz(U;) < wz(Uz) < ---, and let Y and Z be (resp.) the
first and last 8|’ \ F|/3 of the U;’s. Then, whatever ®' turns out to be, the second part of U requires that at
least one of ), Z be contained in

W:={UeK'\F:wz(U) # (1+£0)(P'}

(or W] < |V|+|Z2| < 2(0|K'\G|+T)/3 < 0|K'\ G|, the last inequality since (105) and (109) imply 7 < |K'\G).
But then, since (now regarding 1 as the law of T)

ETNY| =E,|TNZ|=60r/3
and 6 is fixed, Theorem 3.1 bounds the probability that the first part of 20 holds by (say)

u(max{\’TﬂyL |7-m Z|} < 97’/4) = efQ(GT).
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12. PROOF OF (123)

(We continue to use H = H¢, m = my and D = D,,.) We now need to pay some attention to parameters.
We first observe that if H = AR% and G = H — Z (with Z either empty or as in (88)), then there is v = o(1)
(depending on the o(n) in A and, in RY, the (explicit or implicit) o(-)’s in (57) and (59), and the implied
constants in (58)), such that for each U € K’ with (say)

(141) (wg(U) =) ®(G-U)>®(G)n"",
G* :=G —U and ®* := ®(G*) satisfy
(142) > {wg-(A) : A€ G",wg-(A) # (1 £7)2"/D} < ynd*.

To see this, recall from the remarks following Lemma 8.4 that each relevant G* satisfies AR°, so also & by
Lemma 8.1. But then G* contains (1 — 0(1))|G*| ~ nD/r edges A with wg«(A) ~ ®*/Dg« ~ ®*/D, with
(both) asymptotics following easily from G = R (see (59)); so such edges account for all but a o(1)-fraction
of the total weight ®*(n — r)/r ~ ®*n/r. This gives (142) for a suitable v = o(1).

We now choose 7 = v min{logn, D} (~ v logn)—noting that then
(143) ((=e™P) ze

—together with M and 7, satisfying

(144) logn>v>w
(which is (109));

(145) e >y

(146) > M { fﬁ y
and

(147) eV > n > V7M/logn.

Note this is possible: we may choose v — oo as slowly as we like (which in particular gives (144) and (145));
we then want to choose M as in (146) satisfying (to leave room for ) e ™" > v/7M / log n; and this is possible
if e7” > max{r,/7, \/v/logn}, which is true for a slow enough v.

For the proof of (123) we use viewpoint (A) (choose H—so also G—and then 7). We assume we have
chosen H = H, with H = AR and G := H — Z = Q; so P now refers just to the choice of T, and (123) will
follow from

(148) PG, T) F V) =1-o0(1).

It will be enough to show that for U € K’ as in (141) (i.e. wg(U) > ®(G)n™"),
(149) P(wz(U) ~ (wg(U)) = 1 —o(1) ifU € k' \G,
(150) Pwe(U) ~ Cwg(U)|U € T)=1—0(1) ifU €g.

Before proving this we show that it does give (148). If G satisfies Q then for a suitable ¢ = o(1),
(151) {A€G:wg(4) # (1£)2} <G|
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(where ® = ®(G)/Dg; see (107)). Thus, with G" the set in (151), we have E|T N G°| = 7|G°|/|G| < T, so
[T NG% < 7 whep.

(by Theorem 3.1 or just Markov’s Inequality). But for the first part of U to fail we must have either [T NG°| =
Q(7), which we have just said occurs with probability o(1), or

{A € T\G : wr(A) # ¢wg(A)} = Qr),
which has probability o(1) by (150) (and Markov).

Similarly, failure of the second part of U implies

(152) wr(U) = (1£0)¢wg(U) # Cwg(U)
for at least 6|/’ \ G| of those U’s in the second part of 9 that satisfy
(153) wg(U) > (1 —0)¢® > n°Md(G)/D

(since those failing (153) cannot satisfy (152); for the second bound in (153) see (143) and (144)). But since
the bound in (153) is larger than the one in (141), (149) implies that the probability that (152) holds for such
aset of U’sis o(1).

Finally, we prove (149); the proof of (150) is almost literally the same and is omitted. (Note the probability
in (150) is just P(wg\ 7, (U) ~ Cwg(U)), with T uniform from (g>{_l{}) )

Proof of (149). We now fix U as in (141) (and recall G* = G—U and ®* = ®(G*)). (We will, pedantically, keep
track of the microscopic numerical differences between Cases 1 and 2—in Case 2 the number of vertices is
n —r and |G| is not exactly m—but stress they are wholly irrelevant.)

Say A € Gis heavy if A € G* and wg-(A) > M®*/D, and note that by (142) (and M > 1 + ~; see (146)),

(154) the number of heavy edges in G is less than ynD/M = ymr/M,
implying
(155) P(T contains a heavy edge) < yrr/M = o(1)

(see (146); we need “ < ” because we only have |G| ~ m). So it is enough to show (149) conditioned on
(156) {T contains no heavy edges}.

We will instead show a slight variant, replacing 7 by T = {4y,..., A, }, with the A;’s chosen uniformly
and independently from the non-heavy edges of G; thus:

(157) P(wg\ 7 (U) ~ Cwg(U)) = 1 — o(1).
Of course this suffices: we may couple 7T (conditioned on (156)) and T~ so they agree whenever the edges
of 7" are distinct, which occurs w.h.p. (more precisely, with probability greater than 1 — 72/m), and the
probability in (149) is then at least the probability in (157) minus P(7" # T).

For the proof of (157), let

X = X(Al, e ,AT) = (D(g* \ {Al, oo ,AT}) = Wg\T/(U)

Since n < ¢ (see (143) and (147)), (157) will follow from (recall wg(U) = &*)
(158) EX ~ (®*
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and

(159) P(|X — EX| > n®*) = o(1).

Proof of (158). Let M; run through the p.m.s of G* and let z; be the number of heavy edges in M;. Then with
m’ the number of non-heavy edges in G, we have (with, irrelevantly, ¢ = j in Case j for j = 1, 2),

EX=>,1—(n/r—t—a;)/m')"
and, by (142),
(160) Zml = Z{Wg*(A) : A € G*, Aheavy} < yn®™.
These imply, with o = (n/r —1)/m/,
(161) (1-0)®* < EX < Y, e (emai/m)r

< [e79 +rn/(n — )] @*.

Here the last inequality follows from (160) and convexity of the exponential function, which imply that the
Yn®* _ yrnd*
number of which we just bound by ®*) equal tonge;é). o

In view of (161), (158) will follow from

sum in (161) is at most what it would be with

of the z;’s equal to n/r — ¢ and the rest (the

(162) (1—0) ~e T ~e P (=()

(and v < ¢, which is given by (143) and (145)). For the two parts of (162) we need (resp.) ¢*> < 1/7 and
lo —1/D| <« 1/7. The first of these follows from (154) (which gives m’ ~ m, though here m’ = Q(m) would
suffice) and (109). For the second, now using (154) more precisely (and recalling D = mr/n), we have

nrov_mr) g gnmont t o
m/ m |~ m  r mm r Mm/' T’
with the last inequality a (weak) consequence of (146). ]

Proof of (159). We consider the (Doob) martingale
(163) X =X;(A1,...,4) =E[X|A41,..., 4] (i=0,...,7),

with difference sequence Z; = X; — X;_1 (i € [7]) and Z = ) Z; (= X — EX). For the next little bit we use
Egs for expectation with respect to (4; : i € S).

Given Ay, ..., A;—1 we may express
(164) Z; =EW — W,
where E refers to A chosen uniformly from the non-heavy edges of G and
(165) W(A) = E{y1, @G \{A1,.. ., Aim1, Aig, -, Ar))
“Eip1 PG\ { A1, A1, A A, ALY,

For (164) just notice that
Xi(Ar, oo A1, A) = B @G\ {Ar, - A, AV A, AL,

while
Xifl(Alv ceey Ai*l) = ]E['L,T](b(g>k \ {A17 ceey Ai*l? Aiu Ai+17 ceey AT})
(The first term on the r.h.s. of (165) is chosen to give (166) and, not depending on A, doesn't affect (164).)
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We also have
(166) 0< W(A4) < wg-(A),

since these bounds hold even if we remove the E’s in (165). Thus W satisfies the conditions in Proposi-
tion 3.5 with b = M®*/D and a ~ ®* /D (the latter since |G| ' Y , .o wg- (4) = |G| ' ®*(n/r — 1) S ®*/D—
note wg- (A) := 0if A € G\ G*—and averaging instead only over non-heavy edges can only decrease this).
So for any

(167) 0 €0, (20)71],

we may apply Lemma 3.4 to each of Z, —Z, using Proposition 3.5 (with (164)) to bound the factors in (26),
yielding

max{Ee?% Ee "%} < ™% = exp|(1 + o(1))792M (2*/D)?]
and, for any A > 0,
(168) max{P(Z > \),P(Z < —\)} < exp|[(1 + o(1))79>M (®*/D)* — 9]
For (159) we use (168) with A = n®* and
) nd* D D . [nD
— = —— 1
(169) V= min { 2rM(3* /D)2’ 2M &+ } OMT* mm{ 7 }

(the first value in “min” essentially minimizes the r.h.s. of (168) and the second enforces (167)), and should

show that the exponent in (168) is then —w(1).
Suppose first that nD < 7, so ¥ takes the first value(s) in (169). Then the negative of the exponent in (168)
is asymptotically (using (147) and D > logn)

(nq)*)Z B 772D2 B )
i@ o)~ arar ¢

If instead nD > 7, then ¥ = D/(2M ®*) and the exponent in (168) is

2 *\ 2 T
(14 o(1)) 2 M(‘I’) Do = (1o~ 12— ),

Mo \D) ~ 2Mar AM ~ 2M
where we used nD > 7 and, from (146), 7 > M. O
This completes the proof of (149). O

13. FOUNDATION

Finally, we return to the assertions listed at the end of Section 5 that will complete the proof of (8). As
suggested earlier, this is currently a much longer story than it seems ought to be necessary, but we do the
best we can, as usual aiming for “simplicity” rather than strongest statements.

Most of of this involves behavior at m,.. This “foundation” is covered in Sections 13.1-13.2, with the final
points needed for (8) mostly in Section 13.3.
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13.1. Configurations and simplicity. With V' = [n], the degree sequence of H C Kis d(H) = (du (1), ..., dx(n)).
In what follows d is always in

(170) S={(d1,...,dy): > d; =mr}

(m for now unspecified), and we set

(171) K(d) = {H C K : d(H) = d}.

We will work with the hypergraph version of the “configuration model” of Bollobés [5] (see [32] for a
good discussion of the model and antecedents). Let T" be a set of size mr and T} U - - - U T}, a partition of T’
(into pre-verts) with |T;| = d; ¥j (so mr = >_ d;). A configuration is an (unordered) partition of T' into pre-edges
of size r; it is simple if

(172) no pre-edge meets any pre-vert more than once

and

no two pre-edges meet exactly the same pre-verts.

The projection 7 : T — V given by n(T};) = {j} Vj maps each simple configuration to some H € K(d),
and for any such # we have

|7~ (H)| = [1d;".
Thus

(173) K(d)] = Uy(d)(ITd;H ™"

where U = ¥(m, r) is the number of configurations (which of course depends only on m and r) and v(d) is
the probability that a uniformly chosen configuration is simple. The (easily calculated) ¥ is irrelevant here,
since we are only interested in ratios, but we will need some crude information on the y(d)’s. (Much better
estimates can be gotten by adapting the switching methods of McKay and Wormald; see [26, 27] or, again,
[32].)

Since it costs nothing to do so, and perhaps helps clarify what'’s relevant, we state our basic result here
in some generality, assuming the setup in the paragraph containing (172), with r > 3 fixed and D = maxd;.

Lemma 13.1. If
(174) m27'—3 > n'r'—l‘DQT—l7
then v(d) = e~ 9P,

(We will use this with D = n°Y)—or, really, with D growing at most a little faster than log n—so (174) won't
be an issue.)

Proof of Lemma 13.1. Here we think of configurations in terms of maps, as follows. Let E = E; U --- U E,,,
with the E;’s disjoint r-sets. A bijection o : E — T gives the configuration {o(E1),...,0(E), )}, and we say
o is simple if the configuration is. Thus for a uniform o, y(d) = P(o is simple) and Lemma 13.1 becomes

(175) under the assumptions of Lemma 13.1, P(o is simple) = e~ 9(P),

The proof of this uses the Lovasz Local Lemma [10] in the following form (see [1], Lemma 5.1.1 and the
remark beginning near the bottom of p. 71).
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Lemma 13.2. Let A4,..., A, be events in a probability space, T a graph on [s] (thought of as a set of edges), and
Z1,...,%s € [0,1). Suppose that for any i € [s]and S C [s]\ ({i} U{j:ij € T}),
(176) P(Ai| Ajes A7) < @i []ijer (1 —5).
Then
P(AA) > TT(1 — ).

Our use of this, which is reminiscent of [13] (or see [1, Sec. 5.6]), depends on the following observation.

We consider bijections ¢ : [N] — [N], each for now regarded as a set of N cells (¢,0(i)) of an N x N array
M. We use pattern to mean a set of cells (in M), no two on a line (i.e. row or column), and define patterns
X, Y to be adjacent (X ~ Y) if some line meets both. Let o be a uniform bijection and, for a pattern X, let
Ax be the event {o O X}, noting that (with (a); = a(a—1)---(a —t + 1))

(177) P(Ax) = 1/(N)x)-
Proposition 13.3. If X, X1, ..., X, are patterns with X ¢ X, Vi, then
P(Ax| AfZy Ax,) < P(Ax).

Proof. We may assume X = {(i,1) : i € [k]}, so
(178) UX; C{k+1,...,N}2

Set R = {0 : 0(i) =i Vi € [k]} (so Ax = {0 € R}). With B = Al_, Ax,, it is enough to exhibit, for any
distinct ji, ..., jx € [N], aninjection ¢ : R — T := {0 : 0(i) = j; Vi € [k]} satisfying

(179) o€ B = (o) € B.

Here it’s convenient to interpret a bijection ¢ as a perfect matching of Ky y (whose vertex set we regard
as two copies of [N]). For 0 € R and 7 := {(i,7;) : i € [k]} (also thought of as a matching of Ky n), the
components of o Ut are paths and cycles, each alternating with respect to (o, 7) (with the obvious meaning;
in particular an edge of cN7 is considered an alternating 2-cycle), and with the ends of the paths the vertices
not covered by 7. (Some—many—of these paths may be single edges of ¢.)

We then take (o) to consist of 7 together with all edges that complete path components of o U 7 to
cycles. It is straightforward to check that ¢ has the desired properties; that is, it maps R injectively to T
and satisfies (179). (Both of these follow from the observation that the edges of )(¢) not in o are precisely
those not of the form (7, ¢) that meet at least one of the two copies of [k].) O

We return to (175). We will use Proposition 13.3 with N = mr and E and T our two copies of [N] (so M
isan E x T array). Define a block to be a subarray indexed by some E; x T} (denoted B;;). We consider two
types of patterns (“loops” and “repeats”):

(L) two cells in the same block;

(R) forsomei # j and distinctly, ..., 2r cells, one in each of the blocks indexed by {4, j} x {l1,...,1,}.

Then a bijection ¢ : £ — T is simple iff it contains none of these patterns, and

(180) each cell lies in O(D) patterns of type L and O(mn"~1D?"~1) of type R.

Now let X1, ..., X, run over patterns of types L and R, write A; for Ax,, and let I' be the graph on [s]
with adjacency corresponding to adjacency of patterns as in Proposition 13.3 (so i ~ j iff X; ~ X). Since
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lines have size mr = O(m) (and patterns have size O(1)), each pattern is adjacent to O(mD) patterns of
type L and O(m?n"~1D?"~1) of type R. So if we take (say)
z:=2N"% if X;isof typeL,
xTr; =
y:=2N"?" if X;is of typeR,

then each of the products [[,. (1 — z;) in (176) is

ijer
(1 _ x)O(mD)(l _ y)o(m"‘n“lD?T*l) ~1
(the asymptotic following from (174)), which with (177) implies (176).

Thus, since (180) bounds the numbers of type L and R patterns by O(m?D) and O(m3n"~!D?* 1) respec-
tively, Lemma 13.2 gives (again using (174))

(181) ]P(O' is 81mple) > (1 — x)o(sz)(l _ y)O(mSnT*lDZ"*l) _ e_O(D)7

which is (175) and completes the proof of Lemma 13.1. (Note (181) fails for r = 2—as it should, since
Lemma 13.1 is not true in this case.) (Il

13.2. Degrees. In this section only we take m = m, and H = Hr. Notice that we may choose H by first
choosing d := d(H) € S (= {(d1,-..,d,) : > d; = mr} asin (170)) and then H itself uniformly from K(d)
(see (171)).

Now thinking of the law of d(H), we set

(The ¢;’s are our usual d,’s, so are asymptotic to € logn.) Then with P, the probability measure on S given
by
Pr(d) « [K(d)],

we have
Pr(£L) = B(K)
and
(182) P(d(H) = d) = Pu(d|L)

(=Pn(d)/Pr(L) if d € L). We compare P}, to the probability measure P, on S given by
Pu(d) o ([Tdi) L.

Thus P, (d) is the probability that mr (= m,.r) balls placed uniformly and independently in urns Uy, ..., U,
produce the occupation statistics d, and (by (173))

Pr(d) o< v(d)Pu(d).

For better understanding the law of d(#) (as in (182)) we will use Lemma 13.1 and the following easy
observations, whose verifications we omit.

Observation 13.4. Under P, for any L C [n], with |L| =1,
Y icr di ~ Bin(mr,1/n).
Observation 13.5. If v(d) > { foralld € J C S, then forany € C S,
Pr(E)/Pr(T) < £ Pu(E)/Pu(T).
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Observation 13.6. For any i € [n], P,,(L|d; = k) is decreasing on {k > §,}, implying that, for any J > ¢,
ZszPu(di = k)Pu(L|d; = k)

Fulds 2 J10) = = B d = AP (Lld; = F)
P.(d; > J)
< — ~ - > .
- Pu(d; >6;) Pu(di 2 J)

“u_n

(The initial assertion is a trivial coupling argument and, since m ~ (n/r) logn, the “~” is a tiny consequence
of Observation 13.4 and Theorem 3.1.)

We next note that Theorem 3.1 and Observation 13.4 give (for any ¢, using Ed; = mr/n ~ logn)

P,(d; > 3logn) < exp [_(1 — 0(1)) g8 | = /5o,

Thus, now using Observation 13.6,
(183) P, (maxd; > 3logn|L) < n~ /5 = o(1).
Lemma 13.7. For large enough «,
(184) P(maxd;(H) > klogn) <n™".
Proof. Set

J = {maxd; < 3logn} AL and & = {maxd; > klogn} A L.
Lemma 13.1 gives

(185) if maxd; < 3logn then y(d) > n=%

for some fixed K, while Observation 13.4 and Theorem 3.2 imply
(186) P.(d; > rklogn) < n™2"

for large enough « (the actual bound being essentially n™" log(r/€)). The L.h.s. of (184) is then, again for large
enough «,

P(€)/Pu(L) < Pu(€)/Pr(T) < nPu(€)/Pu(T)
~ nEP,(maxd; > klogn|L) < (14 o(1))n= 2" TE+FL < p=r

with the second inequality given by (185) and Observation 13.5; the “~” by (183); and the third inequality
by (186) and Observation 13.6. O

Lemma 13.8. With A = m/|K|, P(Ky anemic) < exp[—2n?%].
(We remind once more that m = m,. and recall that “anemic” was defined in (36).)

Proof. With ¢, the indicator of {dx, (z) < 2elogn}, an easy calculation gives

E(, < n~ 120 = p.
(Like (30), this uses the first bound in (25) of Theorem 3.1; of course (, is binomial while its counterpart in
(30) was hypergeometric, but the bound applies to both.)

On the other hand the (,’s form a read-r family (with corresponding v;’s the indicators 1;4¢x,}), S0
Theorem 3.3 gives

P(K, anemic) = P(} &, > 2rn?)
< exp[-=D(2rpl|p)n/r] < exp[—2n%]
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(using D(Kpllp) = (K log(K/e) 4+ 1)p + O(p?) for fixed K and small p). O

Lemma 13.9. For sufficiently large w < logn,
(187) P(max day (,y) > w) < n~ %)
(the maximum over distinct vertices x,y) and

(188) P(maxzex D g7 (0y —du—z(y)* >w) < n= W),
(Recall that (188) was promised at (75) and used there to show that MR} is likely (see (78).)

Proof. Let
D ={d:maxd; < klogn},

with £ = O(w) chosen so
(189) deD = y(d) >n /)
(see Lemma 13.1), and
N ={d:|{i:d; <2elogn}| < 2rn*}

(so {d(H) ¢ N'} = {H anemic}). Then Lemma 13.7, its use justified by our assumption that w is somewhat
large, says

(190) P(d(H) ¢ D) <n™" (=n~"),
while Lemma 13.8 implies
(191) P(d(H) ¢ N) (= P(H anemic)) < exp[—(2 — o(1))n*];
this follows from
exp[—2n?] > P(Ky anemic) > P(|Ky| = m)P(Ky € £[|/Kx| = m)P(Ky anemic|Ky € £7),
since (i) P(|Kx| = m) < m~1/2 (this is standard and easy); (i) P(Kx € £||Kx| = m) = B(K) > exp[-n’] (see
Corollary 4.4); and (iii) on {ICy € £}, K, is distributed as #.

By (190) and (191), Lemma 13.9 will follow if we show that, for each d € DN N N £, (187) and (188) hold
with # replaced by G chosen uniformly from K(d); so we fix such a d and choose G in this way.

We will again get at this using the configuration model; thus we fix the partition T' = UT; with |T};| = d;,
let 7 : T'— V (= [n]) be the corresponding projection, and for a configuration F' use “F € &” (with & TBA)
to mean F is simple and w(F') € &. Then for a uniformly chosen configuration F we have

(192) P(G € 8) = P(F € B|F simple) < P(F € &)n*/ (")
(with the inequality given by (189)).

As earlier, we think of random maps; say F = {a(E1),...,0(E;,)}, with o : E — T a uniform bijection
(and E = UE; as in the proof of Lemma 13.1).

For (187), we have, with ® = {G : maxdg(x,y) > w},

(193) P(F € &) < (Z) (Z‘) (r(r — 1)) (”log”>2w = O(n~wto@)+2),

The first three terms of the first bound correspond to choosing (i) z,y € [n], (ii) w of the E;’s to map to

preimages of edges containing x,y, and (iii) elements of these E;’s to map to T, and T;; and the last term
bounds the probability that these choices behave as desired, using (177) and max d; < xlogn. For the final
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bound recall k = O(w) < logn (w = n°) is enough) and mr ~ nlogn. The combination of (192) and (193)
then gives (187) (with G in place of H). The w/(2r) in (189) and (192) is overkill here, but is needed for (188).

For (188), fix Zand let I = {i € V' \ Z : d; < 2elogn}—so |I| < 2rn?® since d € N—and let
(194) S={G:{A€G  ANZ#D#ANT} >w/r}.
Then for 3(Z) := 3", (3, —dg—z(y))* > w, we must have either dg(z,y) > (2¢logn — d,) (> w) for some
x € Zandy € V \ (ZUI)—which we have just shown happens with probability n~*“)—or G € & (since,
absent such a large codegree, the only y's that can contribute to (Z) are those in I and X(Z) is at most r — 1
times the cardinality in (194)). We then have (with justification similar to that for (193))

relogn\“/" (|I] - 2elogn\“/"
mr mr

P(Fe®) < (w”;r> (r(r — 1))/ (

< n7(1+2570(1))w/7”

and combining with (192) and multiplying by n" for the choice of Z (and recalling w is “sufficiently large”)
gives (188). O
13.3. Back to fR. Here, finally, we fill in the remaining promises from Section 5, namely (62) (which means
dealing with (57)-(59) and (61)), (68) and (70).

We now use d,(-) for degree in H, and revert to the “default” m = m,. As in Section 9, we work with the
generation of . in (5):

(195) Hi=HrUG,
with 7 uniform from £7 and G uniform from (n’fgff ). This supports the following little device, which

will be useful in the arguments for (57), (68) and (70).
Given ¢, let (H,U) be the random pair gotten by choosing
(196) # uniformly from (X) (= K£*) and then ¢ uniformly from (*).

m,T
In this section H will always be as in (196) (not ‘H; as it was in Section 13.2). In each application we will

have some property & for which we would like to show P(H; € &) is small, and (slightly echoing Section 9)
will exploit information gotten by reversing the order in (196); that is, by choosing

U uniformly from (w’f ) and # uniformly from {H € K' : 1 D U}.

Thinking of the process in this way and setting

(197) O=PHeB,UCcL),
we have
(198) O =PUcLPHeBUEcL) = BK)P(H: € &)

(since on {U € £}, H is distributed as #,), which we will combine with upper bounds on © based on the
viewpoint in (196).

Proof of (62). Recall this says that w.h.p. #, satisfies (57)-(59) and (61) forall t < T..
For (57) we may appeal to [23]: as shown there—see the paragraph containing (131)—the probability

that 7 as in (196) violates (57) is e (™). (Precisely, with 6 = (log n)~1/3, it is shown that e~*(") bounds the
probability that da(x) # (1 & 0) D for at least On vertices x.)
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Then with & = {# C K : H violates (57)} (and © as in (197)), we have © < P(H € &) = exp[—§(n)] and,
using (198) and Corollary 4.4,

(P(H, violates (57)) =) P(H; € ) = 0/5(K) = exp[—Q(n)].

For (58) and (61) (with the lower bound in the former contained in the latter, as observed following (61)),
we use (195), noting that, given H, each dg(z) is hypergeometric with

- D}C — dT(.’lﬁ)

(199) P 1= Edg(l‘) = K[—m (m - mT) ~(1- mT/m)Dm

(since D,,, = Dicm/|K]).

For the upper bound in (58) we first note that A4, = O(logn) w.h.p. by Lemma 13.7 (in which, recall,
H was Hr). Then for G, Theorem 3.2 gives (very wastefully but we don’t care)

P(3xz,t dy(x) > 3rD,,) < n" ' exp[—3rD,, log(3r/e)] = o(1).

For (61) it will be enough to consider G. Here (199) and D,,, ~ (m/m,)logn imply pu, > (2r — 1) logn,
and then Theorem 3.1 (see the first bound in (25)) gives (for any x)

(200) P(dg(z) < 2eD,,) < exp[—pa@(—1 + 26Dy, /)] < n~2r—DH+0(Eloe1/e)

For (59), we again use (195), noting to begin that Lemma 13.9 says that w.h.p. 1 has maximum codegree
O(1). For G we again use Theorem 3.2 (with plenty of room): each dg(z,y) is hypergeometric with mean

dl(:(x7y) _ dT(.T, y)
|IC| —my

whence P(max d; (z,y) > CD,,/n) < n~*Y for a suitable fixed C. O

(m—m,) <rDp/n,

Proof of (68). Given Z € K, set
6 ={HCK:p,(H) <npK)},
so (68) is

(201) P(H: € &) <.

Let (#,U) and © again be as in (196) and (197), and set G = H — Z. Note that, as $,(#) depends
only on |H| and H — Z, membership of ‘H in & is decided by G. We now think of choosing first G and
then £ \ G and U. The law of G plays no role here; what matters is that £ \ G is uniform from Jz(H)
(={H e K':H' — Z = G}; see (63)), so that (essentially by definition; see (64), (65))

PU € £|G) =57 (H).

Thus
O=PHeBPUEcLIHEeB) <P(H e ®B) nsk).

We then sacrifice the first factor on the r.h.s. and combine with (198) to get (201). (The sacrifice in this case
is substantial, but we aren’t asking much and can afford it.) O
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Proof of (70). (Recall this said P(H; ¢ R?3) < exp[—(1 — o(1))n?’] ¥Vt < T.) Set ¢ = m/|K| and (as in R* and
Lemma 13.8 resp.) a = m,./mand A = m,. /|K|; so K\ = (Ky)a. From Lemma 13.8 and the definition of R?3
(and the fact that on {|C,;| = m}, K, is distributed as #), we have

exp[—2n?°] > P(K, anemic)
> P(IKy| = m)P(H & R*) exp[—(1 - o(1))n*],
which, since P(|K,| = m) =< m~1/2, implies P(H ¢ R>) < exp[—(1 — o(1))n?]. We then set & = {H C K :
H ¢ PR3} to obtain, as in the above treatment of (57),
P(H: ¢ R°) = P(H,c®) = 0/8(K)
P(H ¢ R°)/B(K) < exp[—(1 - o(1))n*].

IN
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