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Abstract—In this paper, our focus is on enhancing steering
angle prediction for autonomous driving tasks. We initiate
our exploration by investigating two veins of widely adopted
deep convolutional neural architectures, namely ResNets and
InceptionNets. Within both families, we systematically evaluate
various model sizes to understand their impact on performance.
Notably, our key contribution lies in the incorporation of
an attention mechanism to augment steering angle prediction
accuracy and robustness. By introducing attention, our models
gain the ability to selectively focus on crucial regions within
the input data, leading to improved predictive outcomes. Our
findings showcase that our attention-enhanced models not only
achieve state-of-the-art results in terms of steering angle Mean
Squared Error (MSE) but also exhibit enhanced adversarial
robustness, addressing critical concerns in real-world deploy-
ment. For example, in our experiments on the Kaggle SAP and
our created publicly available datasets, attention can lead to
over 6% error reduction in steering angle prediction and boost
model robustness by up to 56.09%.

Index Terms—Steering angle prediction, attention, adversar-
ial robustness

I. INTRODUCTION

As we approach the era of autonomous vehicles, precise
and reliable prediction of steering angles is essential in ensur-
ing safe and efficient self-driving operations of a vehicle. The
accuracy of this steering angle prediction directly impacts
the vehicle’s ability to navigate complex and dynamic envi-
ronments. Deep learning models have emerged as powerful
tools to tackle this challenge [1]. Although deep learning
models can increase the accuracy of steering angle prediction,
it is important to acknowledge their shortcomings, including
inefficiency and susceptibility to adversarial attacks. Such is-
sues prevent deep neural networks’ wide deployment in real-
world steering angle prediction. This paper first embarks on
a comprehensive exploration of the two most popular veins
of deep convolutional neural networks (i.e., InceptionNet and
ResNet variations) for the task of steering angle prediction.
Specifically, we explore the two types of networks positioned
towards the compact end of the complexity spectrum. More
importantly, in this paper, we introduce an attention mech-
anism to the task of steering angle prediction, which can
enhance both the prediction accuracy and robustness. For
example, for ResNet32, the introduction of attention leads
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Fig. 1: Illustration of deep-learning-based steering angle
prediction utilizing visual data captured by left, central, and
right cameras.

to a 6.83% error reduction in steering angle prediction and
a robustness increase of up to 53.96%. Qualitatively, we
demonstrate that through our incorporation of the attention
mechanism, our models gain the capability to selectively
concentrate on vital regions within the input images.

II. RELATED WORK

Autonomous driving is a rapidly evolving field that can
potentially revolutionize the future of mobility. The current
state of the work done in steering angle prediction is early
compared to other areas like visual recognition and detection.
Steering angle prediction continues to rely more heavily
on visual processing and understanding. For example, Tesla
has attempted to use pure vision in their cars [2]. Steering
angle prediction needs to be accurate, efficient, and robust.
Gidado et al. [3] survey different deep learning (DL) methods
for steering angle prediction. Most works in this direction
focus on improving the accuracy with large models, but
few explore the accuracy-efficiency trade-off and robustness
issues. While there are continuous changes in the field, the
ResNet architecture remains a key player in steering angle
prediction [4; 5; 6], utilizing input from cameras, lidars,
and/or radars. Oussama and Mohamed [4] showed that a
ResNet50-based architecture gives a satisfactory prediction
of the due wheel angle. However, for on-board steering
angle prediction, the cost to train and deploy ResNet50 is
high, due to its large number of parameters [7]. Navarro et
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al. [1] presents complex models and shows that these new
end-to-end models have better optimization from the use of
additional data information, like speed. Al-Qizwini et al. [8]
found InceptionNet as a best model for various autonomous
driving tasks. McNeely-White et al. [9] discovered that
InceptionNet can extract qualitatively equivalent information
as its ResNet counterpart. Based on one single image, He et
al. [10] utilized an aggregated set of large VGG16 models
to extract features for steering angle prediction. The LSTMs
utilized further contributed to the approach’s inefficiency. On
an unpublished dataset, Zhu et al. [11] proposed a multi-task
MapNet to simultaneously search the passable area, detect
the intersection, and predict the steering angle with many
expensive 5×5 conv filters.

Attention has been used in a variety of computer vision
tasks, and there exists a varied interpretation of its definition.
In contrast to the costly attention mechanism in modern
transformers [12], this paper explores attention mechanisms
for convolutional neural networks (CNNs), aiming to improve
steering angle prediction on the edge. Specifically, we focus
on task-dependent soft attention [13; 14] for CNNs. Wang et
al. [15] introduced a residual attention network that empha-
sizes the most informative regions of an image to enhance
classification accuracy and efficiency. The attention mech-
anism works by adaptively weighing different features of
the image, based on the context and spatial location. Within
each attention module, a bottom-up feed-forward structure
generates feature maps with strong semantic information
at lower resolutions, while a top-down network generates
dense features at the pixel level to serve as the attention
mask. Inserting skip connections between the bottom and
top feature maps is found to be beneficial in applications
like image segmentation [16]. Due to its effectiveness, such
attention mechanisms have been adopted in many deep clas-
sification models. However, no works have investigated such
attention mechanisms in the regression task of steering angle
prediction. It is worth mentioning that He et al. [10] adopted a
different sparse attention mechanism, which is impractical for
edge applications due to its cumbersome VGG16 backbone
and its reliance on LSTMs. Also, it is based on a single input
image.

The robustness of steering angle predictors is also of
paramount importance. Prior studies have highlighted the
impact of adversarial attacks in the realm of image classifica-
tion [17]. This inherent susceptibility raises concerns about
the safety and reliability of neural networks, particularly
in the safety-critical field of self-driving cars [18]. While
adversarial attacks on neural networks have been extensively
explored in different fields, mainly in image classification,
the investigation of these attacks on autonomous steering
angle prediction is limited, if any. In this paper, particularly
in the context of steering angle prediction, we evaluate the
vulnerability of neural networks to adversarial attacks such
as Fast Gradient Sign Method (FGSM) [17] and Projected
Gradient Descent (PGD) [19]. We can successfully improve

the robustness of steering angle prediction by incorporating
an attention mechanism.

III. METHODOLOGY

Figure 1 offers a high-level overview of our utilization
of deep learning models and visual data for steering angle
prediction. Our deep models are created to process visual
information from the left, central, and right cameras, enabling
the inference of steering angles. Given the limited resources
for on-board steering angle prediction, we focus our attention
on compact deep models in this paper. We will begin by
providing a comparison of the two classic families of deep
CNN models for steering angle prediction. Subsequently,
we will introduce an attention mechanism to enhance the
precision and robustness of steering angle prediction models.

A. Classic Deep CNN Models for Steering Angle Prediction

Our first goal is to find a compact model with an accuracy
score that is comparable to or better than its larger coun-
terparts. This paper explores the two most popular veins
of CNNs (ResNet [20] and InceptionNet [21] variations)
with compact capacities. We present the outcomes of various
sizes for each of the two families. For example, we built
and trained eight ResNet architectures; ResNet20, ResNet22,
ResNet24, ResNet26, ResNet28, ResNet30, ResNet32, and
ResNet34. We built seven InceptionNet models to match
similar numbers of parameters so that we could compare the
architectures at different complexity levels. The number of
parameters and detailed configurations for each of the ResNet
and InceptionNet models are illustrated in Table I and II. We
will provide the comparison results in Sec. IV.

TABLE I: ResNet Model Parameters & Block Layers

ResNet Model Parameters Block Layers

ResNet20 12.8 million (2,2,3,2)
ResNet22 13.1 million (2,3,3,2)
ResNet24 14.3 million (2,3,4,2)
ResNet26 17.9 million (3,3,3,3)
ResNet28 19.1 million (3,3,4,3)
ResNet30 19.4 million (3,4,4,3)
ResNet32 20.6 million (3,4,5,3)
ResNet34 21.7 million (3,4,6,3)

TABLE II: InceptionNet Model Parameters & Block Layers

InceptionNet Model Parameters Block Layers

InceptionNet 13.0 million (2,5,2)
InceptionNet a 14.5 million (5,5,2)
InceptionNet b 15.5 million (2,8,2)
InceptionNet c 17.0 million (5,8,2)
InceptionNet d 17.6 million (2,5,5)
InceptionNet e 20.2 million (2,8,5)
InceptionNet f 21.7 million (5,8,5)
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c o nsists of t w o b asi c br a n c h es: t h e tr u n k br a n c h a n d t h e att e nti o n m as k br a n c h. M or e d et ails ar e i n S e c. III- B.

B. Att e nti o n- a w ar e D e e p St e eri n g A n gl e Pr e di cti o n

I n t his s e cti o n, w e dr a w i ns pir ati o n fr o m t h e s u c c ess of
att e nti o n m e c h a nis ms ( e. g., [ 1 5]) a n d pr o p os e t o i nt e gr at e
att e nti o n i nt o t h e r e gr essi o n t as k of st e eri n g a n gl e pr e di cti o n.
As a n e x a m pl e, w e t a k e t h e b est- p erf or mi n g R es N et 3 2 as
t h e b as eli n e m o d el f or o ur e x p eri m e nts. Fi g ur e 2 c o m p ar es
t h e b asi c R es N et 3 2 n et w or k a n d o ur R es N et 3 2 n et w or k
wit h att e nti o n m o d ul es a d d e d, w h er e b ot h n et w or ks h a v e
t h e s a m e n u m b er of r esi d u al u nits a n d a si mil ar n u m b er
of p ar a m et ers f or f air c o m p aris o n. As s h o w n i n Fi g ur e
2, t h e att e nti o n m o d ul e c o nsists of t w o br a n c h es, i. e., t h e
tr u n k br a n c h a n d t h e att e nti o n br a n c h. T h e tr u n k br a n c h
w or ks as a st a n d ar d f e at ur e e xtr a ct or. T h e att e nti o n br a n c h
l e ar ns a n att e nti o n m as k of t h e s a m e di m e nsi o n as t h e tr u n k
o ut p ut. T o c a pt ur e gl o b al c o nt e xt a n d hi g h-l e v el s e m a nti c
m e a ni n g, t h e i n p ut f e at ur es u n d er g o s e v er al l a y ers of d o w n-
s a m pli n g. S u bs e q u e ntl y, t h es e r es ult a nt gl o b al f e at ur es ar e
s y m m etri c all y u p-s a m pl e d t o t h eir ori gi n al si z es t o g e n er at e
t h e att e nti o n m as k. B y c o m p uti n g t h e d ot pr o d u ct b et w e e n
t h e m as k a n d t h e o ut p ut of t h e tr u n k br a n c h, att e nti o n is
f o c us e d o n r e gi o ns r el e v a nt t o t h e t as k at h a n d. O ur att e nti o n-
e q ui p p e d n et w or k c o m pris es t hr e e att e nti o n bl o c ks d esi g n e d
t o pr o gr essi v el y e n h a n c e att e nti o n, e a c h c o nsisti n g of t hr e e
st a g es: r e gi o n s el e cti o n, f e at ur e a m pli fi c ati o n, a n d f e at ur e
f usi o n. T h e r e gi o n s el e cti o n o p er ati o n i d e nti fi es a n d c h o os es
v al u a bl e r e gi o ns w hil e disr e g ar di n g u ni m p ort a nt o n es usi n g
b ott o m- u p t o p- d o w n att e nti o n, w hil e t h e f e at ur e a m pli fi c ati o n
o p er ati o n r e- w ei g hts t h e f e at ur e m a ps fr o m t h e tr u n k b y
t h e att e nti o n m as k g e n er at e d. T h e fi n al f e at ur e f usi o n st a g e

s u ms t h e ori gi n al tr u n k f e at ur es wit h t h e att e nti o n- w ei g ht e d
f e at ur es t o i m pr o v e t h eir r e pr es e nt ati o n.

C. M o d el R o b ust n ess Ass ess m e nt

T h e att e nti o n m o d ul e, as e x pl ai n e d pr e vi o usl y, i n c or p o-
r at es tr u n k a n d att e nti o n m as k br a n c h es, f a cilit ati n g a n
eff e cti v e att e nti o n m e c h a nis m t h at s el e cti v el y e m p h asi z es
ess e nti al f e at ur es i n t h e i n p ut d at a. I n a d diti o n t o e n h a n ci n g
a c c ur a c y t hr o u g h att e nti o n m e c h a nis ms, o ur r es e ar c h als o
d el v es i nt o t h e m o d els’ a bilit y t o r esist a d v ers ari al att a c ks,
s u c h as F ast Gr a di e nt Si g n M et h o d ( F G S M) a n d Pr oj e ct e d
Gr a di e nt D es c e nt ( P G D). We e v al u at e h o w a d v ers ari al att a c ks
i m p a ct o ur b est- p erf or mi n g m o d els, b ot h wit h a n d wit h o ut
t h e att e nti o n m e c h a nis m. T hr o u g h t h es e a d v ers ari al t ests, w e
ai m t o ass ess w h et h er t h e att e nti o n m e c h a nis m e n h a n c es t h e
m o d el’s s e c urit y a n d its c a p a cit y t o c o p e wit h a d v ers ari al
m a ni p ul ati o ns [ 1 7; 1 9]. A g ai n, t o e ns ur e a f air c o m p aris o n,
t h e n et w or ks b ei n g c o m p ar e d ar e c o n fi g ur e d wit h t h e s a m e
n u m b er of r esi d u al u nits a n d a si mil ar n u m b er of p ar a m et ers.

I V. E X P E R I M E N T S A N D R E S U L T S

A. E n vir o n m e nt al S et u p

E x p eri m e nts w er e r u n o n t h e O hi o S u p er c o m p ut er C e nt er’s
Pit z er cl ust er wit h N VI DI A Tesl a V 1 0 0 G P Us. T h e d e e p
l e ar ni n g fr a m e w or k us e d w as P y T or c h. M e a n s q u ar e d err or
( M S E) w as us e d as t h e tr ai ni n g l oss:

M S E =
1

n

n

n = 1

(r i − r̂ i )
2 , ( 1)

2 3 4 1

A ut h ori z e d li c e n s e d u s e li mit e d t o: U NI V O F A L A B A M A- BI R MI N G H A M. D o w nl o a d e d o n S e pt e m b er 0 8, 2 0 2 5 at 2 1: 0 0: 1 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



where ri and r̂i are respectively ground-truth and predicted
steering angles (in radians) for sample i, and n is the total
number of samples. Models were trained for 50 epochs and
the batch size tested for all models varied from 16 to 128 in
search of the best outcome. Generally, the batch sizes of 32
were found to have the best results.

B. Quantitative Results

Our first analysis was with a publicly available Kaggle
Steering Angle Prediction dataset of approximately 97,330
images [22], which we denote as the Kaggle SAP dataset.
A performance comparison among different ResNet and
Inception architectures across varying levels of low-end
complexities is shown in Fig. 3. As we can see, ResNet32
achieved the lowest error of 0.05293. This is a competitive
score, comparable with or surpassing that reported in recent
studies [23; 24]. The Inception nets performed worse after
18M parameters and had the lowest error of 0.05846. In our
experiments, ResNet models also converged faster than their
Inception counterparts.

To demonstrate the effectiveness of our attention mech-
anism, we first conducted a comparison between the base-
line ResNet32 and our attention-enhanced ResNet32 variant,
employing the Kaggle SAP dataset. The outcomes depicted
in Figure 4a exhibit a significant decrease in validation
MSE following our integration of attention modules into the
baseline model, occurring around the 70th epoch of training.
Furthermore, it is noteworthy that the validation loss of our
attention-equipped model consistently decreases throughout
the entire training process, whereas we observe some abrupt
fluctuations around 60-80 epochs for ResNet32 without at-
tention. To ensure that the results were not just an anomaly of
ResNet32 on the particular Kaggle SAP dataset, we evaluated
the performance of another architecture (ResNet26) with and
without attention modules on a different dataset. Due to the
scarcity of steering angle prediction datasets, the new dataset
was created by the authors using the Udacity self-driving-
car simulator [25], which consists of approximately 10,765
images. We refer to this dataset as the custom dataset and
publish it at [26]. Figure 4b displays the results, plotting
the validation MSE against the number of training epochs.
According to Figure 4b, there is a notable decrease in MSE
observed in the attention-enhanced ResNet26 model as the
number of epochs progresses. Apart from epoch 70, where
both models perform comparably, the inclusion of attention
modules is seen to enhance the performance of the ResNet26
base. After 70 epochs, the loss of our model begins to decay
smoothly, while we can still see some fluctuations in the
MSE score for the ResNet26 without attention modules. With
the introduced attention, at epoch 100, we can observe a
6.83% reduction in MSE for the ResNet32 on the Kaggle
SAP dataset and a 6.09% reduction for the ResNet26 on
the custom dataset. This is intuitively depicted in Figure 4c,
indicating that the incorporation of attention modules can
clearly improve steering angle prediction.

In addition to improved accuracy, we are also interested in
the introduced attention mechanism’s influence on adversarial
robustness. To this end, we employed two well-established
adversarial attack techniques: the Fast Gradient Sign Method
(FGSM) [17] and Projected Gradient Descent (PGD) [19].
While numerous studies address adversarial challenges in
autonomous driving [27], our research marks the first attempt
to evaluate the adversarial robustness of attention-equipped
deep models specifically for steering angle prediction. The
results of our adversarial attack experiments, including the
MSE scores of ResNet32 and ResNet26 with and without
integrated attention modules under FGSM and PGD attacks,
are presented in Table III and Table IV. Epsilon (eps) values
control the magnitude of adversarial perturbations. While the
MSE loss does increase under attacks, our findings suggest
that the inclusion of attention modules notably mitigates the
extent of this increase. As we can see, attention boosts the
model robustness by up to 53.95% on ResNet32 (Table III)
and as high as 56.09% on ResNet26 (Table IV).

Model FGSM PGD
eps=0.01 eps=3 eps=0.01 eps=3

w/o attention 0.214 0.336 4.763 5.853
w/ attention 0.200 0.291 2.581 2.695
change 6.54% 13.39% 45.81% 53.95%

TABLE III: Adversarial attack results on ResNet32 with and
without attention. The value reported for each case is the
MSE error of steering angle prediction.

Model FGSM PGD
eps=0.5 eps=0.7 eps=0.5 eps=0.7

w/o attention 0.253 0.574 9.464 9.636
w/ attention 0.183 0.252 5.558 5.616
change 27.66% 56.09% 41.27% 41.71%

TABLE IV: Adversarial attack results on ResNet26 with and
without attention. The value reported for each case is the
MSE error of steering angle prediction.

C. Qualitative Results

To better understand the influence of our introduced atten-
tion modules, we investigated the changes in saliency maps.
The results (Fig. 5) provide insight into where the model is
focused on in an image. According to the results, we can
see that the attention modules assist ResNet in directing its
focus toward the road ahead, prioritizing it over irrelevant
areas. Sometimes (e.g., Row 2 and Row 4 in Fig. 5),
without our attention mechanism, the original ResNet model
focuses only on one side of the road, and with the attention
mechanism added, the model can pay attention to the center
and the other side of the road to a greater extent. Fig. 5
qualitatively explains our approach’s efficacy. In the future,
we will explore transformer models and their attention for
steering angle prediction. Nevertheless, network compression
techniques (e.g., [28]) are needed for edge deployment.
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MSE of series of ResNet & Inception architectures on Kaggle SAP

ResNet Model MSE InceptionNet Model MSE

ResNet20 0.06557 InceptionNet 0.06044
ResNet22 0.06371 InceptionNet a 0.05945
ResNet24 0.06721 InceptionNet b 0.05849
ResNet26 0.05832 InceptionNet c 0.05846
ResNet28 0.05552 InceptionNet d 0.05961
ResNet30 0.05641 InceptionNet e 0.05802
ResNet32 0.05293 InceptionNet f 0.05907
ResNet34 0.05425

12 13 14 15 16 17 18 19 20 21 22
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Fig. 3: ResNets vs. InceptionNets in terms of MSE loss on the Kaggle SAP dataset. The figure on the right plots the MSE
losses of the tested models against their parameter complexity measures.
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(a) ResNet32 on Kaggle SAP
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−
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ResNet26 w/ attention
ResNet26

(b) ResNet26 on Custom Data (c) MSE improvement w/ attention

Fig. 4: Validation MSE of base ResNets vs our ResNets with attention. We utilize two base models (ResNet32 and ResNet26)
on two datasets (Kaggle SAP and custom data). (c) illustrates the percentage reduction in MSE at the 100th epoch.

original image ResNet32 ResNet32 w/ attention original image ResNet32 ResNet32 w/ attention

original image ResNet32 ResNet32 w/ attention original image ResNet32 ResNet32 w/ attention

Fig. 5: Saliency maps representing the focus areas of the model with and without our introduced attention modules. Black
signifies no focus, red indicates some focus, and yellow suggests the highest level of focus. Here, a saliency map is generated
by taking the gradient of the model output with respect to the original input image. For ResNet32 and ResNet32 with attention,
the saliency maps are blended with the original image with a blending ratio of 0.75.

V. CONCLUSION

Targeting the task of steering angle prediction, this paper
first examines the two main veins of CNN architectures
and their intra-variations of various complexity (i.e., In-
ceptionNets and ResNets). In addition, we have introduced
attention modules to deep steering angle predictors, which
has increased the models’ performance by decreasing the
MSE up to 6.83% on the Kaggle SAP dataset and up to
6.09% on the custom dataset. The incorporation of our
attention modules also demonstrates a promising potential to
improve the adversarial robustness of steering angle predic-
tors. For example, it can enhance the adversarial robustness

of ResNet32 by up to 53.96% against the PGD attack.
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