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of geographically distributed, decentralized data silos as is
typically found in multi-stakeholder infrastructure systems.

As a result, SplitVAEs can potentially be extended to
operate in hybrid edge-cloud environments based on con-
tainerized applications enabling significant reductions in data
transmission. Additionally, it is capable of succinctly capturing
spatiotemporal interdependencies in a decentralized manner
despite the inherent non-linearities in the underlying data
among multiple stakeholder subsystems while maintaining
high scalability. SplitVAEs complement existing stochastic
optimization frameworks by supplying high-fidelity scenarios
generated from siloed datasets. SplitVAEs are not meant to
be a replacement of stochastic optimization solution method-
ologies. Instead, they help generate spatiotemporally inter-
dependent scenarios from siloed or geographically dispersed
datasets, which can then be used as input for solving stochastic
optimization problems. As a result, we can concisely summa-
rize the contributions of our study as follows:

• We design a computationally efficient learning paradigm
that combines edge-based autoencoders with a server
driven variational autoencoder to jointly learn spatiotem-
poral interdependencies of siloed data.

• We develop a scalable algorithmic framework that decom-
poses global backpropagation steps into edge and server-
based sub-problems, enabling the bi-directional flow of
learning insights, eliminating the movement of data.

• We propose a distributed memory-based computational
paradigm that can be seamlessly adopted to enable a
scalable, real-world implementation of the SplitVAEs
framework to generate scenarios for SO problems.

• We demonstrate the ability of SplitVAEs to handle hetero-
geneous datasets across diverse areas by comparing the
generated scenarios with established benchmark methods.

The remaining parts of this study are organized in the fol-
lowing manner. Section II provides a literature review of prior
work. Sections III and IV describe the architecture and the
algorithmic design of our proposed framework, respectively.
Section V provides a summary of benchmark methods as
well as statistical evaluation metrics. Section VI analyzes the
performance of the SplitVAEs framework across different ap-
plication domains and diverse computational settings. Section
VII serves as the concluding section of this study.

II. RELATED WORKS

There have been several scenario generation mechanisms
that have been proposed including auto-regressive integrated
moving average (ARIMA) methods [9], [10], Gaussian copula-
based approaches [11], [12] and deep generative adversarial
networks (GANs) [7], [13]. A majority of these studies,
however, dealt with data centralization leading to computa-
tional and data privacy concerns [7]. From a computational
standpoint, centralized methods such as ARIMA and copula-
based approaches rely on the construction and factorization of
covariance matrices [12], [14] aided by the accumulation of
stakeholder data. Meanwhile, centralized GAN-based methods
suffer from high instability and challenges in convergence [15]

during model training. As a result, scalability remains an issue
with these methods, especially for large-scale networks and
systems consisting of myriad sources of uncertainty.

Further, centralized methods depend on nonlinear modeling
of relationships between predictor feature variables and the
generated scenarios that are connected in space and time. The
authors in [14] used wind speed data to construct scenarios of
wind power generation via the power curve of wind turbines.
The work in [16] leveraged the nonlinear relationship between
temperature and power consumption using epi-spline functions
to generate scenarios. These approaches assume homogenous
sources of data. When integrating heterogeneous sources of
data such as wind, PV farms, and alternative fuel sources like
hydrogen, these approaches might become infeasible.

On the other hand, VAEs [17] serve as a potential alternative
to methods that rely on non-linear modeling requirements.
VAEs can help synthesize new, previously unseen scenarios
by capturing the distribution of more concise, low-dimensional
embeddings in a latent space. By sampling from the learned
latent space distributions, VAEs can be used to generate
scenarios that are spatially and temporally interdependent.
Unlike GANs however, the VAEs provide a scalable, and
decomposable implementation paradigm which is suited for
data silos with heterogenous features as well.

Additionally, challenges with respect to siloed data arise
in several application domains. For example, visibility across
stakeholder subsystems is a major hindrance in supply chain
and logistics owing to heterogeneity and incompatibility of
local data storage systems [18]. Similarly, in the medical field,
data privacy is the primary reason for the existence of data si-
los [19]. Privacy obstacles to scenario generation could poten-
tially stem from the sensitivity of underlying datasets from the
commercial standpoint [20]. Such data sharing challenges are
especially prevalent in the case of variable renewable energy
(VRE) stakeholders [8], [21]. Overall, conventional methods
of scenario generation face several limitations in terms of
their applicability to heterogeneous data and requirements for
privacy preservation from diverse stakeholders.

Split learning [22]–[24] presents a more generalized ap-
proach to handling siloed data sources in a decentralized,
privacy-friendly fashion. Instead of relying on horizontal par-
titioning of data, split learning relies on model partition-
ing schemes that yield low-dimensional embeddings from
heterogeneous data. Split learning paradigms leverage these
embeddings to learn the interdependencies of the features
contained in the siloed heterogeneous datasets without the
need to move local data. As a result, split learning methods can
potentially help resolve the data heterogeneity and data silo
challenges that are inherent in scenario generation methods.
Thus, our approach combines the split learning paradigm
with the VAE to yield a computationally efficient, privacy-
enhancing framework capable of delivering high-quality sce-
narios from decentralized and siloed datasets.
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B. Edge-level autoencoder (AE) formulation

Given the aforementioned reasons, at the edge-level, we
implement an AE-based framework comprising deep neural
network (DNN) encoder and decoder models. We denote the
siloed time series data located at each edge location n 2 N
as yn. The functional forms of the encoder and decoder
components are denoted by xn  F✓n

E
(yn) and ỹn  

G✓n
D
(xn), respectively. For the edge-based AE framework,

let xn, ỹn, ✓nE , ✓
n
D be the low-dimensional embedding, the

reconstructed vector, and the model parameters of the encoder
and decoder, respectively. Unlike conventional AE training,
a unique aspect of the SplitVAEs training mechanism is the
independent training of the encoder and decoder components
to holistically capture spatial and temporal interdependencies
among all the edge devices.

C. Server-level VAE formulation

At the server level, we implement a conventional VAE
framework. However, unlike the Central-VAE, in each training
epoch, the server model consumes the set of low dimensional
embeddings, denoted by {x1, . . . , xN�1, xN}, supplied by the
edge-based AEs at the various stakeholders. Let q�(z|x) be the
probabilistic encoder, responsible for deriving the latent vector
z from the input embeddings {x} in terms of empirical mean
and standard deviation - denoted by µ̂ and �̂, respectively.
Additionally, we denote z  Rµ̂,�̂(✏) as the reparametrization
function akin to Equation (2). The second core component is
the latent vector z representing the compressed data in a lower
dimension. The size of z becomes a crucial hyperparameter
that necessitates careful tuning, in conjunction with the overall
architecture of the entire network. The final component is
the probabilistic decoder, denoted by p✓(x|z), responsible for
reconstructing a data point x from a given latent vector z.

D. Loss Functions

Here, we discuss the relevant formulations of the reconstruc-
tion error and the KL loss that are utilized by the SplitVAEs
framework for training.
Reconstruction Loss: We employ the binary cross-entropy
(BC) loss function at the n-th edge location for all n 2 N
to measure the mean reconstruction error between predicted
values ỹn and observed values yn as represented in Equation
(7).

LBC
n = � 1

B

BX

b=1

h
ỹblog(yb) + (1� ỹb)log(1� yb)

i
(7)

In Equation (7), let B, ỹb, yb be the batch size, predicted,
and target data for scenario generation, respectively. To pre-
serve the simplicity of notations, we assume without loss of
generality that the loss function LBC

n is computed with respect
to flattened representations of local tensor data and estimates
both yn and ỹn of dimension dn. We note that the computation
of LBC

n can be carried out independently at each edge location
since it relies purely on siloed data, represented by yn.

KL Loss: We utilize the formulation given in Equation (8) to
derive the relevant KL loss function as follows:

LKL = �1

2

h
1 + 2 log(�̂)� µ̂2 � �̂

i
(8)

In Equation (8), the computed KL loss depends only on the
latent space embeddings resulting from the reparametrization
trick described in Section III-A. Consequently, the backpropa-
gation of the error resulting from the KL loss can be initiated
from the server level itself. Therefore, the decomposed re-
construction and KL error terms can be leveraged to effect a
computationally efficient training mechanism of the SplitVAEs
framework.

IV. SPLITVAES ALGORITHMIC FRAMEWORK

There are two crucial characteristics of the SplitVAE de-
composition scheme that can be advantageous to its training.
First, the KL loss, LKL, is purely a factor of the latent space
embeddings estimated by the server-based VAE framework.
Second, the reconstruction error can be computed in a fully
decentralized fashion by each of the edge locations locally
without revealing the siloed datasets themselves. Thus, only
the local reconstruction loss needs to be back-propagated from
the edge-based AE decoder to the server-based VAE decoder.
This step can be immediately followed by a backpropagation
of the total loss, Lrecon + LKL, from the server-level VAE
encoder to the edge-based AE encoders. As a result of our
two-pronged backpropagation mechanism, we can enable the
flow of insights back and forth between edge and server-
level devices, leading to seamless learning of the overall
spatiotemporal interdependencies among stakeholders.

A single training epoch in our proposed framework can be
divided based on edge and server level algorithmic frame-
works. In the following sections, we discuss the decomposition
of the forward and backward passes of the server-level VAE
as well as the encoders and decoders of edge-level AEs.
Specifically, without loss of generality, we consider a set
of N edge nodes wherein |N | = N . To accomplish the
training of SplitVAEs, we leverage several common distributed
memory aggregation primitives such as the scattering and gath-
ering operations, denoted by DM.Scatter and DM.Gather,
respectively. Let Tensor.Concat, Tensor.Split, and
BACKPROP functions indicate tensor concatenation, split and
backpropagation primitives, respectively. We designate the
server as the root process r, while the edge-level processes
are denoted by n and are similar to the concept of ranks in
distributed memory frameworks. We use k to denote iterative
updates of the model parameters represented by ✓nE , ✓

n
D,�, ✓.

A. Edge-based Algorithmic Framework

One training epoch of the edge-based AE framework con-
sists of the following computational steps.
AE Encoder Forward Pass: The computational steps associ-
ated with the forward pass of the AE encoder are represented
by the function EdgeEncFP. In EdgeEncFP, we consider
local siloed training data ybe that is passed through the AE
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encoder F(✓n
E)k to yield the low dimensional embedding (xb

e)
n.

We utilize a DM.Gather operation to aggregate the embed-
dings at the server level.

Algorithm 1 AE Encoder Forward Pass
function ENCEDGEFP(root:r, agent:n, epoch:e, batch:b)

Acquire local data ybe
Obtain (xb

e)
n  F(✓n

E)k(y
b
e)

Execute DM.Gather
�
root:r, data:(xb

e)
n
�

end function

AE Decoder Forward Pass: The function EdgeDecFP

represents the reconstruction of siloed edge data. We leverage
a DM.Scatter operation to collect the predicted values
of the low-dimensional embedding outcomes of the server-
level training denoted by (x̃b

e)
n. These predictions are passed

through the AE decoder G✓k
D

to generate reconstructions and
the BCE loss through Equation (7).

Algorithm 2 AE Decoder Forward Pass
function EDGEDECFP(root:r, agent:n, epoch:e, batch:b)
(x̃b

e)
n  DM.Scatter(root:r, data:NULL)

Obtain ỹbe  G✓k
D
(x̃b

e)

Compute reconstruction loss (LBCE)be using (7)
end function

AE Decoder Backward Pass: As an immediate next step,
our implementation leverages EdgeDecBP to back-propagate
the errors based on the reconstruction losses. In EdgeDecBP

(g✓D )
b
e = r✓D (L

recon
n )be represents the gradient of (Lrecon

n )be
concerning ✓D and �(x̃)be represents the error at the in-
put layer of the edge-based decoder. Finally, we use a
DM.Gather operation to collect the errors of the low-
dimensional embeddings (x̃b

e)
n at the server.

Algorithm 3 AE Decoder Backward Pass
function EDGEDECBP(root:r, agent:n, epoch:e, batch:b)

Obtain (�x̃)be
Obtain (gD)be  BACKPROP

�
G(✓n

D)k , (L
BC

n )be
�

Update ✓k+1
D  ✓kD � ⌘D.(gD)be

DM.Gather

�
root:r, data:(�x̃b

e)
n
�

end function

AE Encoder Backward Pass: The last step of the edge
based training epoch is presented in EdgeEncBP. We leverage
DM.Scatter operation that collects errors of low dimen-
sional embeddings (�xb

e)
n computed by the server. Conse-

quently, the AE encoder back-propagates these errors through
the local encoder F(✓n

E)k to complete the training epoch.

B. Server-based Algorithmic Framework

At the server, a training epoch corresponding to the VAE
can be described based on the following components.
VAE Forward Pass: The forward pass of the server VAE
framework is represented by VAEServerFP. Specifically,

Algorithm 4 AE Encoder Backward Pass
function EDGEENCBP(root:r, agent:n, epoch:e, batch:b)
(�xb

e)
n  DM.Scatter(root:r, data:NULL)

(�y)be, (gE)
b
e  BACKPROP

�
F(✓n

E)k ,�xb
e

�

Update (✓nE)
k+1  (✓nE)

k � ⌘E .(gE)be
end function

the server concatenates the low-dimensional embeddings ob-
tained as a consequence of the DM.Scatter operation.
The resulting concatenated embedding xb

e is passed through
the probabilistic encoder q� and is reparametrized with the
standard normal distribution to yield the latent space repre-
sentation z. Subsequently, we pass z through the probabilistic
decoder to yield estimated low-dimensional embeddings, x̃b

e,
which are split into N components according to the mandated
dimensions of each edge agent.
VAE Backward Pass: The backward pass of the VAE is
represented by VAEServerBP. The backpropagated set of
error values, denoted by

h
(�x̃b

e)
1, (�x̃b

e)
2, . . . , (�x̃b

e)
N
i

re-
sulting from Lrecon

n are acquired from each edge agent through
DM.Gather. These error terms are concatenated and back-
propagated through the probabilistic decoders to yield (�z)be
and (g✓)be representing latent space error terms and prob-
abilistic decoder gradients, respectively. With a subsequent
backpropagation of (�z)be through the probabilistic encoder
q�, we obtain (�x

BC
)be and (g

BC

� )be corresponding to the error
terms at the input leaves of the VAE and the gradient values for
the probabilistic encoder, respectively. More importantly, the
errors and gradients accumulated so far on the VAE correspond
to the reconstruction error terms observed at the edge level
only.

Algorithm 5 VAE Forward Pass
function VAESERVERFP(root:r, epoch:e, batch:b)h
(xb

e)
1, . . . , (xb

e)
N
i
 DM.Gather(root:r,data:NULL)

Acquire xb
e  Tensor.Concat

⇥
(xb

e)
1, (xb

e)
2, . . . , (xb

e)
N
⇤

Obtain (µ̂b
e, �̂

b
e) q�(xb

e)
Create zbe  µ̂b

e + �̂b
e � ✏be, where ✏be ⇠ N (0, Is)

Estimate x̃b
e  p✓(zbe)h

(x̃b
e)

1, (x̃b
e)

2 . . . (x̃b
e)

N
i
 Tensor.Split

⇥
x̃b
e

⇤

DM.Scatter(root:r, data:
h
(x̃b

e)
1, . . . , (x̃b

e)
N
i
)

Compute KL loss (LKL)be using (8)
end function

However, to complete VAE training, we would also need to
incorporate the KL loss. Since the KL loss is purely a function
of the latent space embeddings zbe, we backpropagate (LKL)be
computed during VAEServerFP and accumulate additional
error values at the input leaves. The final set of accumulated
errors (�x)be are split and sent back to the corresponding edge
agents using DM.Scatter.
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C. Decentralized Training Algorithm

Combining the training steps of the edge and server-level
models provides us with Algorithm 7 and 8 for VAE and
AE, respectively. In these algorithms, we abstract the training
mechanism using the set of functions detailed in Sections IV-A
and IV-B for a specific set of batch and epoch sizes.

Algorithm 6 VAE Backward Pass
function VAESERVERBP(root:r, epoch:e, batch:b)h
(�x̃b

e)
1, . . . , (x̃b

e)
N
i
 DM.Gather(root:r, data:NULL)

�x̃b
e  Tensor.Concat

⇥
(�x̃b

e)
1, . . . , (�x̃b

e)
N
⇤

. Backpropagate BC loss:
(�z)be, (g✓)

b
e  BACKPROP

�
p✓,�x̃b

e

�
h
(�µ̂)be, (��̂)be

iBC
 BACKPROP

�
Rµ̂,�̂, (�z)be

�

(�x
BC
)be, (g

BC

� )be  BACKPROP
�
q�,

h
(�µ̂)be, (��̂)be

iBC�

. Backpropagate KL loss:
[(�µ̂)be, (��̂)be]

KL  BACKPROP

�
Rµ̂,�̂, LKL

b
e

�

(�xKL)be, (g
KL
� )be  BACKPROP

�
q�,

h
(�µ̂)be, (��̂)be

iKL�

. Update parameters
✓k+1  ✓k � ⌘✓.(g✓)be
�k+1  �k � ⌘�.r�((g

BC

� )be + (gKL
� )be)

. Accumulate errors at leaves
(�x)be  (�xKL)be + (�x

BC
)be

. Scatter errorsh
(�xb

e)
1, . . . , (�xb

e)
N
i
 Tensor.Split

⇥
�xb

e

⇤

DM.Scatter(root:r, data:
h
(�xb

e)
1, (�xb

e)
2, . . . , (�xb

e)
N
i

end function

The sequence of computation and communication steps
outlined in Algorithms 7 and 8 is represented in Figure
2. The algorithmic architecture mentioned in this section
enables planning organizations, regulators, and control centers
to generate high-quality scenarios by sampling from the latent
distribution space.

Algorithm 7 Training Mechanism of Server-based VAE
for b=0,1,2,. . . BatchSize do

for i=0,1,2,. . . MaxEpochs do

VAESERVERFP(root:r,epoch:e,batch:b)
VAESERVERBP(root:r,epoch:e,batch:b)

end for

end for

From an implementation and deployment perspective, we
envision a scenario where the server can generate a latent
space sample to generate the low-dimensional embeddings
for different edge locations by using a pre-trained VAE. The
authority at the server level can now request the scenarios from

Algorithm 8 Training Mechanism of Edge-based Autoencoder
for b=0,1,2,. . . BatchSize do

for i=0,1,2,. . . MaxEpochs do

EDGEENCFP(root:r,agent:n,epoch:e,batch:b)
EDGEDECFP(root:r,agent:n,epoch:e,batch:b)
EDGEDECBP(root:r,agent:n,epoch:e,batch:b)
EDGEENCBP(root:r,agent:n,epoch:e,batch:b)

end for

end for

each edge location corresponding to the provided latent space
estimate. As a result, the server-based entity can effectively
gather a sufficient number of scenarios so as to facilitate the
solution of the SO problem.

V. BENCHMARK METHODS

In this section, we discuss the relevant benchmarking strate-
gies for SplitVAEs by outlining the evaluation methods as well
as the evaluation metrics employed in this study.

A. Evaluation Methods

We compare SplitVAEs with centralized scenario generation
methods, including the Gaussian copula [25], [26] and the
Centralized-VAE. The Gaussian copula models the joint proba-
bility distribution function (PDF) to capture the interdependent
structures, specifically the spatiotemporal interdependencies
within the data. Meanwhile, in SplitVAEs and Centralized-
VAE, these interdependencies are modeled within the latent
space z when training the probabilistic encoder q�(z|x) and
decoder p✓(x|z) pair, as mentioned in Section III. Further,
given that the datasets and their corresponding scenarios are
multidimensional in nature, we employ t-SNE graphs [27]
to visualize kernel density distributions of the observed and
generated data, which are transformed into one-dimensional
embeddings.

B. Evaluation Metrics

In addition to visual analyses, we employ multiple quantita-
tive evaluation metrics to evaluate the quality of the generated
scenarios. For each metric, lower values indicate a better
model performance.

Let X 2 Rm1⇥d be the real data and Y 2 Rm2⇥d be
the generated scenarios, each comprising of d features with
m1,m2 number of observations respectively. Thus, X and Y
can be expressed as: X = {x1, x2, ..., xm1}, where xi 2 Rd

for all 1  i  m1; Y = {y1, y2, ..., ym2}, where yi 2 Rd for
all 1  i  m2. Hence, we can derive each metric as follows:

Fréchet inception distance (FID): The FID score is a widely
accepted, state-of-the-art metric employed to evaluate deep
generative models (DGMs) [28], [29]. The FID measures the
Wasserstein distance between two PDFs fX(x) and fY (y). In
our study, the observed dataset and the generated scenarios,
have finite values pertaining to their respective mean and co-
variance matrices denoted by µx, µy and ⌃x,⌃y respectively.
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Under such conditions, based on [30] the FID can be defined
as follows:

dF [X,Y ] = ||µx�µy||22�Tr
⇣
⌃x +⌃y � 2

�
⌃x ·⌃y

� 1
2

⌘
(9)

Energy Score: The energy score (ES) measures the dissimi-
larity in probability density between two multivariate random
variables [31], which are the observed data and generated
scenarios in our study:

✏m1,m2(X,Y ) =
1

m1m2

m1X

i=1

m2X

j=1

|xi�yj |�
1

2n2
1

m1X

i=1

m1X

j=1

|xi�xj |

(10)
Root-mean-square Error: The well-known root-mean-square
error (RMSE) measures the quadratic mean of the differences
between the observed values and generated ones:

RMSE =

vuut 1

kd

kX

i=1

dX

j=1

⇣
xi,j � yi,j

⌘2
(11)

where k = min(m1,m2).
Continuous ranked probability score: The CRPS [32]

measures the squared distance between a single multivariate
observed observation y and the median of F (x) which is the
empirical cumulative distribution of generated scenarios [33].
For m2 number of observations, the CRPS is given as:

CRPS(F, {y1, ..., ym2}) =
1

m2

m2X

i=1

1Z

�1

⇣
F (x)�1(x � yi)

⌘2
dx

(12)

VI. EXPERIMENTAL RESULTS

Our experimental results are primarily geared towards estab-
lishing the computational efficiency of the SplitVAEs method
while delivering scenarios of the same statistical quality as the
underlying dataset. In this section, we demonstrate that Split-
VAEs deliver scenarios possessing similar statistical qualities
to the observed data, while showcasing their ability of handling
heterogeneous datasets in a scalable fashion.

A. Hardware and Software Environment

All experiments were conducted using the Pete High Per-
formance Computing infrastructure from Oklahoma State Uni-
versity (OSU). All experiments pertaining to large-scale dis-
tributed processing were performed using the OpenMPI library
[34] coupled with Python bindings facilitated by mpi4py

[35]. We utilize the PyTorch library [36] for constructing,
training and evaluating the DNN models, and the inbuilt Ray
Tune framework [37] for hyperparameter tuning. Specifically,
we first tune the hyperparameters of the Centralized-VAE, then
adapt these hyperparameters for different numbers of edge
locations and desired latent dimensions in SplitVAEs.

B. Description of Key Datasets

To demonstrate the broad applicability of our proposed
framework, we primarily evaluate the decentralized scenario
generation capability of our proposed framework using the

USAID [38], ACES [39] and ACTIVSg datasets [40]. The US-
AID dataset comprises of time series data of health commodity
supplies for different countries. The ACES dataset comprises
hourly carbon dioxide (CO2) emissions from the combustion
of fossil fuels at a 1km2 resolution in the continental United
States from 2012 to 2017. In the ACES dataset, we extract
time series data for emissions from 25 refineries in the US
Gulf Coast during Summer 2017. Lastly, the ACTIVSg dataset
provides the Demand and Renewable generation data for a
power transmission network with an overall footprint for a
large section of the state of Texas. We focus on hourly demand
of 1125 individual network buses and renewable production
from 87 renewable generators respectively which are referred
to as Demand and Renewable datasets respectively.

C. Applicability to a Diversity of Use Cases

Table I presents the mean and standard deviation of each
evaluation metric for 100 iterations, with output dimension
of edge level autoencoders set to 20. The experiments for
each dataset comprises varying number of edge nodes ranging
from 25 for ACES to 1125 distinct edge processes in the
Demand dataset. From Table I, we can clearly observe that the
performance of our proposed framework is nearly identical to
those of centralized training schemes. Thus, we can expect
SplitVAEs to generate high-fidelity scenarios for different
application areas including but not limited to supply chains,
carbon credit compliance planning and forecasting renewable
energy production for power systems.

TABLE I: Means (with standard deviations measured in 10�3)
of various evaluation scores across four different datasets.

Dataset Edge
Nodes Metric Copula Central-VAE SplitVAEs

ACES 25

FID 2.095 (7) 2.255 (8) 2.397 (11)
ES 0.122 (3) 0.124 (4) 0.136 (9)

RMSE 0.201 (18) 0.218 (16) 0.304 (20)
CRPS 0.209 (8) 0.2327 (14) 0.2649 (17)

USAID 85

FID 2.177 (7) 2.752 (7) 2.814 (6)
ES 0.092 (1) 0.164 (1) 0.186 (1)

RMSE 0.240 (1) 0.280 (1) 0.287 (2)
CRPS 0.168 (1) 0.250 (2) 0.280 (10)

Renewable 87

FID 2.105 (9) 2.167 (8) 2.169 (4)
ES 0.307 (6) 0.309 (4) 0.310 (6)

RMSE 0.309 (5) 0.334 (10) 0.351 (14)
CRPS 0.320 (6) 0.322 (4) 0.329 (8)

Demand 1125

FID 1.540 (9) 1.545 (16) 1.947 (18)
ES 0.129 (9) 0.143 (17) 0.148 (18)

RMSE 0.328 (8) 0.419 (15) 0.462 (19)
CRPS 0.180 (3) 0.182 (5) 0.184 (11)

Additionally, Figures 3, 4, and 5 present a comparison of
the observed data with scenarios generated by three different
methods across four case studies. Figure 3 illustrates density
curves, estimated using a Gaussian-based kernel method, of
one-dimensional embeddings constructed from generated sce-
narios and observed data by the t-SNE method [27]. Mean-
while, Figures 4 and 5 provides a comparison of centroids
- computed by averaging the quantity of interest for all the
nodes at each distinct time point - and their corresponding
autocorrelation coefficients, respectively.
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(a) USAID (b) ACES (c) Demand (d) Renewable

Fig. 3: Embedding distributions between observed data and generated scenarios using different methods across four cases.

(a) ACES time series (b) Demand time series (c) Renewable time series

Fig. 4: Comparison of centroids between observed and generated data across four datasets.

(a) ACES Autocorrelation (b) Demand Autocorrelation (c) Renewable Autocorrelation

Fig. 5: Comparison of autocorrelations between observed and generated data across four datasets.

From Figure 3, we can observe that all methods capture
the underlying distributions well, with 95% of their principal
components falling within the confidence range. Some minor
misalignments, primarily result from feature compression in
the latent dimension, do not significantly affect the overall
alignment between the generated scenarios and the observed
data. Further, Figures 4 and 5, show a close alignment
between scenarios generated by SplitVAEs and state-of-the-
art benchmark methods while capturing interdependencies
present in original datasets both in terms of centralized and
autocorrelations.

To illustrate a practical application, we present seasonal car-
bon emission scenarios from a refinery at Port Arthur, Texas, in
Figure 6. As shown, the scenarios generated by the SplitVAEs
closely align with the observed data and other benchmark
methods. Specifically, within the perimeter of the industrial
complex, the observed emission profile is approximately 180

to 190 Megagrams (Mg), which is accurately reflected in
the scenarios generated by all three methods. Moreover, the
emission patterns derived from the scenarios generated by the
SplitVAEs follow the same trend as the observed data.

D. Reduction in Data Movement

To evaluate the communication or transmission efficiency
of SplitVAEs, we measure the total payload size handled by
the system after a full cycle of our Algorithm 7 compris-
ing one forward pass of embeddings followed by backward
pass of gradients and errors. Figure 7 compares the original
dataset size with the transmission overhead for various edge
dimension choices. The results show a significant reduction in
data size as latent dimensions decrease. For instance, in the
Demand dataset, the transmission size drops from 1830 MB
for the original data to 475 MB at latent size 20, 223 MB at
size 16, and 154 MB at size 8. Data transmission reduction
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(a) Comparison of temporal information (each gray line represents a single-day scenario of emission volume generated by a particular method).

(b) Comparison of spatial information (each grid represents a 1km2 resolution of mean emission volume computed over 92 days).

Fig. 6: A breakdown analysis of the spatial and temporal information extracted from generated scenarios at Port Arthur, Texas.

Fig. 7: Analysis of reduction in transmitted data size, measured
in log-scale, across different latent dimensions.

factors at the smallest dimensions are 4.7, 2.3, 2.8, and 2.7
for the USAID, ACES, Demand, and Renewable datasets,
respectively with respect to original data sizes. Combined with
Figure 3, Figure 5, and Table I, these findings demonstrate that
SplitVAEs deliver high-fidelity scenarios with up to nearly a
5 times reduction in data transmission costs.

E. Handling Dimensional Heterogeneity

In this case study, we evaluate the ability of SplitVAEs to
handle heterogeneous data dimensions present across various
stakeholders. Dimensional heterogeneity refers to differences
in the size and structure of datasets across various edge
devices in a decentralized network. For our experiments, we

decompose the Demand dataset into regions with varying
numbers of power system buses, where each bus represents
a unique temporal demand curve. This results in multiple
region decomposition cases, with each region acting as a
distinct edge device handling a different dimensional dataset.
Our decomposition cases rely on graph-partitioning schemes
[41] that attempt to decompose the power network graph by
minimizing the total number of inter-regional transmission
lines. As a result, we obtain three different decompositions
pertaining to n = 20 regions, n = 60 regions, and n = 120
regions wherein, each region represents a distinct SplitVAE
edge node and the dimension of local data at each node is
non-homogeneous.

Figure 8 provides a visual representation of the data,
depicted as means (solid circle) and standard deviations
(whiskers), generated by the SplitVAEs model across the three
different regional decompositions. The plots demonstrate that
the model can adapt to varying local dataset dimensions, effec-
tively capturing the underlying data distributions in all cases.
Therefore, the results suggest that the SplitVAEs framework is
robust to dimensional heterogeneity, delivers high performance
across different regional decompositions. On the other hand,
Figure 9 illustrates the global training loss for the SplitVAEs
model across different regional decompositions of the Demand
dataset. The x-axis represents the number of global training
epochs, while the y-axis shows the total training loss, which
includes both reconstruction loss and KL divergence loss.
Each line in the graph corresponds to a different regional
decomposition setting. As observed, all trends show initial
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(a) 20 Regions (b) 60 Regions (c) 120 Regions

Fig. 8: An analysis of scenarios generated using three different region decompositions, compared with the observed data.

Fig. 9: Global training losses across various settings of region
decompositions in the ACTIVSg-Demand dataset.

losses that decrease over subsequent epochs, indicating the
model’s convergence.

(a) Latent dimensions

(b) Edge-level output dimensions

Fig. 10: Analysis of the SplitVAEs architecture’s robustness
on ACTIVSg Demand, presented in log-scale.

F. Architectural Robustness

In this case study, we aim to evaluate the robustness of
SplitVAEs with varying dimensions of edge-level AE outputs

and server-level VAE latent embeddings across all four evalu-
ation metrics. For each experiment, we consider 100 scenario
generation instances employed to provide a statistically sound
set of scores for evaluation. Our results are presented in
Figure 10 with respect to the Demand dataset, where means
and standard deviations are depicted as bars and whiskers,
respectively. In Figure 10a, we observe that an increase
in the VAE latent embedding size, from 2 to 32, greatly
improves the performance of the SplitVAEs, as evidenced
by lower scores across all metrics. Notably, the FID scores
exhibit a significant improvement, indicating that models with
larger latent dimensions are generating outcomes that closely
resemble trends in the original dataset. Meanwhile, Figure
10b demonstrates that increasing AE output sizes in general
leads to a higher quality of scenarios as expected. Overall,
the trends presented in Figure 10 conclusively show that the
performance of SplitVAEs remains robust to varying degree
of latent dimensions across both server and edge models.

VII. CONCLUSION

In the paper we present SplitVAEs, a novel decentralized
method to generate spatiotemporally interdependent scenar-
ios from siloed data specifically geared toward solving SO
problems. Using backpropagation, we effectively decompose
the training across edge-level autoencoders and a server-level
variational autoencoder and enable the bi-directional flow of
insights among the edge and server models. We demonstrate
the applicability of SplitVAEs specifically in the context of
multi-stakeholder infrastructure systems by leveraging real-
world datasets from various areas including supply chains,
energy, and environmental science. We show that SplitVAEs
generate scenarios that closely align with the real underlying
data distributions by benchmarking with the state-of-the-art
centralized methods and numerous statistical metrics. Using
large scale, distributed memory driven experiments, our results
indicate that SplitVAEs can significantly reduce data transmis-
sion, scale efficiently with growing number of edge locations
and help break down data silos. Overall, our analysis demon-
strates that SplitVAEs are a compelling alternative that enables
scenario generation for SO problems in multi-stakeholder-led
infrastructure systems without the need to transfer underlying
datasets.
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