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Machine Learning-Aided Localization-Based Attack
Detection in Movable Antenna Systems

Tiep M. Hoang and Alireza Vahid

Abstract—Physical-layer (PHY) attacks increasingly pose a
threat to location-based services. To secure the localization
mechanism against PHY attacks, we propose a novel framework
based on localization and user-and-attacker detection, with the
help of unsupervised machine learning (ML) algorithms and
multiple signal classification (MUSIC) spectra. Our proposed
framework consists of two stages: i) uplink localization and
detection; and ii) downlink secure transmission. Noticeably, in
the proposed framework, a reciprocal relationship between the
localization mechanism and the user/attacker detection is devel-
oped, where the localization supports the detection and vice versa.
This reciprocal relationship allows wireless systems to detect
localization attacks and further localize the attacker. Through
simulation, we show the efficacy of combining localization and
detection in the uplink. We then demonstrate the benefit of
employing both localization and movable-antenna arrays for
secure downlink transmission.

Index terms—Physical layer security, anomaly detection,
localization, machine learning, multi-user detection, MUSIC
spectrum.

I. INTRODUCTION

Location-based services (LBSs) like location-based adver-
tisements and tracking systems have been more and more
popular and ubiquitous in many aspects of everyday life. The
systems that provide LBSs include global navigation satellite
systems, IEEE 802.11 (i.e., Wi-Fi) systems and cellular sys-
tems. In general, wireless signals can be used by different
wireless networks for performing localization and providing
LBSs [1], [2]. As expected, wireless localization systems
will also suffer from multi-user interference and physical-
layer (PHY) attacks. Thus, it is worth designing a robust
localization system that can alleviate the negative impact of
interference, as well as PHY attacks, in order to enhance
localization performance. In doing so, an important task is
to detect multiple users and PHY attacks at the same time, as
well as being able to differ PHY attacks from interference.

When it comes to wireless intrusion detection, some recent
advanced methods rely on machine learning algorithms [3],
[4]. While ML can be categorized into many categories,
unsupervised learning seems to be suitable for the case of
not having prior-knowledge of adversaries/attackers. However,
so far, there has been no clear usage of ML in detecting
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PHY attacks in localization systems. Motivated by this, we
will consider integrating unsupervised ML algorithms into our
proposed localization system in this paper. It should also be
noted that the usage of ML normally comes with the creation
of suitable datasets for training and testing. In the case of
localization, PHY characteristics like time-of-arrival (TOA),
angle-of-arrival (AOA), and received signal strength (RSS) can
be used as fingerprints for the classification purposes, as can
be exemplified in [5]. Thus, it is also an open question of how
unsupervised ML can support a localization system against
interference and PHY attacks.

A. Main Challenges and Contributions

Although both secure and robust localization have received
growing attention, most existing works either focus on improv-
ing positioning accuracy under normal conditions or address
intrusion detection separately from localization. In practice,
interference and PHY attacks often appear together, and their
effects are difficult to distinguish. This creates a dual challenge
for both system security and localization accuracy. Local-
ization algorithms that overlook adversarial behavior may
produce misleading results, reducing the reliability of LBSs.

To address this challenge, it is important to develop a
unified framework that can detect anomalies while maintaining
accurate localization. This is especially relevant in multi-user
uplink settings, where the presence of multiple users transmit-
ting at once complicates the task of identifying and isolating
a potential attack from legitimate signals. The combined use
of machine learning and signal processing methods (such
as ML-aided anomaly detection and MUSIC-based distance
estimation) offers a promising solution.

Motivated by these challenges, our work introduces a re-
ciprocal integration of localization and detection mechanisms
that support and enhance each other, resulting in a more
resilient wireless system. The contributions of this paper are
summarized as follows:

o We consider the localization and security aspects of a
wireless system, where the localization process undergoes
PHY attacks in the uplink. To protect the system against
PHY attacks, we propose a joint localization-detection
method, where localization and detection support each
other in a reciprocal manner. Note that the concept of
detection encompasses both multi-user detection (MUD)
and attacker detection.

o As for user localization, we use the trilateration technique
that relies on estimated distances from legitimate users
to access points (APs). To consolidate the localization
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performance in the case of multi-user uplink, we propose
an iterative algorithm for the distance estimation process
(DEP), which can respectively extract the distances for
each user by combining an MUD technique and multiple
MUSIC spectra inside the DEP.

o As for attacker detection, we employ anomaly detection
algorithms for classifying normal received signals and
abnormal ones. Furthermore, the detection of PHY at-
tacks not only improves the reliability of the localization
mechanism, but also allows for localizing the attacker and
removing its negative impact. We consider two different
data structures and demonstrate the significant difference
in overall performance when applying anomaly detection
algorithms to those datasets, highlighting the importance
of feature selection and structure in our learning-aided
localization-detection method.

o Finally, we demonstrate the benefit of our secured lo-
calization mechanism by evaluating the performance of
position-aware transmission in the downlink, especially
with the use of movable-antenna arrays at the APs.!

B. Related works and comparisons

In the context of PHY authentication, most previous works
adopt non-learning approaches based on hypothesis testing.
For example, the authors of [6] propose a PHY authentication
scheme for a UAV-based mmWave system by leveraging im-
age processing techniques to model angular-domain channels.
Authentication performance is evaluated through hypothesis
testing, with an approximation method applied to determine
the detection threshold. Considering the 5G NR specifications,
[7] investigates attacks on the physical broadcast channel block
and proposes a hypothesis test for detection. A hypothesis
testing problem is also formulated in [8], where the authors
focus on detecting attacks in RIS-aided systems by extracting
features from both the direct and cascaded channels. Addi-
tionally, auxiliary information from second-order statistics is
leveraged to enhance the authentication process. In [9], a
binary hypothesis test is formulated to authenticate groups
of backscatter devices by analyzing the sum of differences
across multiple channel impulse responses. More recently, [10]
proposes a PHY authentication method for mmWave systems
based on propagation features and hardware impairments. It
uses binary hypothesis testing with weighted decision fusion to
detect spoofing. In general, hypothesis testing-based methods
rely on predefined decision rules and require prior knowledge
of both legitimate and attacker signal distributions. In contrast,
our proposed framework employs unsupervised learning meth-
ods that can be trained solely on legitimate data, thus enabling
the detection of unseen attacks without fixed decision rules.

In the context of localization, it remains an important topic
because of its wide practical applications. Recent studies
include [5], [11]-[16]. In particular, [11] first presents the use
of a pair of RISs for channel estimation, and then harnesses the

The use of movable-antenna arrays for localization and detection in the
uplink may be complicated because the rotation of movable-antenna arrays
will make it hard to estimate AoAs, which are inherently random in multi-
path environments. Thus, we leave this for future works and instead consider
movable-antenna arrays in the downlink.

estimated channel parameters for user localization. In spite of
the high complexity, the framework in [11] is only considered
for the single-user uplink scenario, making it difficult to be
applied to multi-user uplink. In [5], the authors consider the
information of angles, delays and powers as the positioning
fingerprints of users and train a convolutional neural network
on the fingerprint dataset to localize users. [12] considers an
integrated sensing and communication (ISAC) system, where
mmWave communication signals are also leveraged for multi-
user location sensing. Also in [12], under the assumption
that there is no direct path between transceivers, the authors
introduce RISs as intermediate relays for creating new paths
and AOAs, which will then be estimated and employed for user
localization. The authors of [13] first consider the deployment
of mmWave 5G NR systems in industrial environments and
then propose a joint multi-user positioning and clock syn-
chronization based on TOA and AOA measurements. [14]
proposes a joint localization and communication framework,
where time slots are respectively allocated for localization
and communication purposes. Similar to [11] and [12], the
framework in [14] also relies on RISs to support transmission
under the assumption that the line-of-sight (LoS) path between
transceivers is obstructed. In [16], the authors present a method
of tracking targets based on simultaneously localizing and
detecting them. Considering real-time positioning services in
practical environments, [15] develops a testbed to validate the
feasibility of AoA-based localization in ultra dense networks.

All the aforementioned works [5], [11]-[16] only focus on
improving localization performance in benign environments
where no adversary exists. Moreover, given that wireless
propagation is susceptible to PHY attacks, it is also crucial
to consider the localization performance degradation under
PHY attacks and the countermeasures against them. In this
vein, only a few recent works address the need for robust
localization mechanisms against PHY attacks [17]-[19]. To
be more specific, the authors of [17] develops an anomaly-
detection-based framework for enhancing the reliability of
LoS-AoA estimation and eliminating low-quality data during
the localization process. Meanwhile, the authors of [18] focus
on dealing with cooperative localization attacks. The authors
of [19] consider a two-way TOA positioning process and
propose a security solution against the attacks that corrupt
distance measurements at anchor nodes. However, the security
solution [19] is not for the case of multiple users; and yet,
the attacker detection method is based on classical hypothesis
testing rather than ML models. Some recent studies have
partially explored the impact of location on security and au-
thentication performance [20]-[22]. For example, [20] presents
an authentication framework to protect an unmanned aerial
vehicle communication system by distinguishing jamming
attacks from legitimate signals. In [21], although localization
attacks are not the primary focus, co-located attacks are
partially addressed through a physical-layer authentication
framework that leverages intrinsic hardware characteristics and
analyzes beam pattern deviations. In contrast to these works,
[22] proposes an attack rather than a security method, using
reinforcement learning to track the locations of mobile devices
based on RSS indicator data. Noticeably, none of the works
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[17]-[22] apply anomaly detection algorithms for attacker
detection.

Different from the works in [5], [11]-[16] that ignore
security threats in user positioning, we consider the security
threats caused by adversaries and design a robust localization
mechanism against PHY attacks. Additionally, compared to
the related works [17]-[19] that partially touch upon reliable
localization, our work considers the use of anomaly detection
algorithms in detecting PHY-attack-related anomalies and re-
covering the reliability of the localization mechanism. We note
that [17] considers the identification of anomalies in the AoA-
based localization mechanism, but does not focus on protecting
positioning systems against PHY attacks. In [18], a method
of detecting PHY localization attacks is proposed, but ML
is not applied. By contrast, we consider the application of
ML algorithms in detecting PHY attacks. Finally, while the
joint topic of localization and detection has been witnessed
in previous works [16]-[19], these works do not build a
reciprocal relationship between localization and detection. Our
work, however, establishes a mutually supportive relationship
between localization and detection mechanisms. In short,
while previous works often address localization and attack
detection as separate tasks, our approach integrates them into
a unified framework where each function enhances the other.
This integration not only improves the robustness and security
of wireless localization systems but also advances the role of
ML in enabling this reciprocal framework.

C. Organization and Notations

Organization: The rest of the paper is organized as follows.
Section II presents the proposed system model, the problem
statement and the proposed framework. Section III presents
how to process the received signals at access points for uplink
localization and detection. In Section IV, we address the
detection of PHY attacks based on ML and the positioning of
the attacker based on statistical knowledge of users’ positions.
In Section V, we first present numerical results related to
uplink localization and detection, and then demonstrate the
efficiency of our proposed method through evaluating the
position-aware payload transmission in the downlink. Finally,
Section VI concludes the paper.

Notations: R™*™ denotes the real field that includes all real-
valued matrices of size mxn; C™*™ denotes the complex field
that includes all complex-valued matrices of size m x n; Bold
lowercase letters and bold uppercase letters denote vectors
and matrices, respectively; I,, denotes the identity matrix of
size n x n; The superscripts (-) T, (-)*, and (-)' represent the
transpose, conjugate, and Hermitian operators, respectively;
z ~ CN(m, X) is a complex Gaussian random vector with
mean m and covariance matrix X.

II. MODELING AND PROBLEM STATEMENT

We consider a wireless system that consists of three access
points (APs) cooperating with each other to perform local-
ization and detection in the uplink. When U legitimate users
(namely, B,,) transmit their signals to the APs, the adversary
(namely, T) also sends jamming (or spoofing) signals to

interfere with (or to deceive) the APs, whereby deteriorating
the reception and localization processes. The positions of the
APs and the position of the attacker are assumed to be fixed.
By contrast, the users move around and their positions are
spatially distributed around some landmarks. We assume that
there are M receive antennas at each AP, while there is a single
antenna at each user and the adversary. Due to the presence of
the adversary, we have two hypotheses: i) under (Hg), there
is no attack; ii) under (71), there is an attack.

Regarding signal modeling, we denote K, as the number
of subcarriers. The set of frequencies is F = {f., fc +
Ap,...,fe+ (Kap — 1)AFr}, where the frequency spacing
A between two adjacent subcarriers is a constant. Due to
scattering, there are Lpans paths between a legitimate trans-
mitter and a receiver. A signal that originates from a user and
follows the /-th path will be associated with the TOA 74; and
the AOA ;. Denote {71,..., 7L, } as the set of ToAs, and
{01,...,01,, ) as the set of AoAs. We will delineate that
¢ =1 indicates the LoS path and ¢ > 1 indicates NLoS paths.

A. Signal Modeling for Single-User Uplink

Before presenting the case of multi-user uplink, we first
present the case of a single user to clarify concepts and
terminologies in this sub-section. In the case that only the
u-th user transmits its signals while other nodes (including
the adversary) do not transmit anything, the received signals,
at the m-th receive antenna (m € {1,...,M}) of the i-
th AP and over all K, subcarriers, are arranged in the
VeCtOr Ty s i2,(t) € CHwx1 The explicit expression of
T'u—m,i|H, () can be given by (1), as shown at the bottom of
the next page. In (1), s(t) € C is the transmitted signal, Pry
is the transmit power, £§‘> is the path loss that corresponds
to the (-th path, and n,,(t) € CKwx1 is the additive white
Gaussian noise (AWGN) vector. Note that s(¢) is normalized
so that with IE {|s(¢)|*} = 1, while the average power of each
element of n,,(t) is No.

Still concerning the hypothesis (Hg), the received signals at
the i-th AP (over all M receive antennas and K, subcarriers)
can be arranged in the following vector:

Tusi, (1) = {rz—u,imo (). arI—>M,imo (t)} € CMHEwxt,
(2)
Define V(Tu) L [17 e—jQWAFTh7 o 7e—jQﬂAF(Ksub—1)7'21'] T
-, e dspacing .
Ym(O) 2 e IR0 g (tT) 2
Q,(.IZ)T;V s(t), and n(t) = [an(t), .. ,n&(t)] . We
can re-write r,,_,;j3;,(t) in (2) as follows:
Loans | ¥1(02i)v(72i)
NOED D : S(u)(t)e 72T 4 n(t)
=1 s (Oes) v (7es)
Lpalhs
= a(70i,00)8(u,0)(t)e 7T 4 m(t),  (3)
(=1
where a(r,6) é[@/} 7)o (O)V T (T )]T Each el-
ement in a(, ) is a functlon of 7 and 6. Note that the constant
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Fig. 1: The proposed system model and framework are depicted. The sub-figure (a) depicts the uplink stage in the case that
there are multiple users and an adversary. The sub-figure (b) depicts the usage of movable-antenna arrays in the downlink
stage, when the APs are aware of the positions of nodes. The sub-figure (c) depicts the proposed framework that includes
related processes such as localization, user and attacker detection.

vector a(7e;,0¢;) in (3) is a(7e;,04) = a(r, 6>‘T:T[,-,0:0“'
The expression in (3) is a mathematical model of how a
wireless signal is received after propagation. It captures how
the signal is affected by distances (modeled through time
delays), directions (modeled through AoAs), and noise as it
travels from a transmitter (i.e., B,,) to a receiver (i.e., the i-th
AP) along multiple paths.

Recall that the expression of the received signal in (3) holds
true for the case of no attack (i.e., under Hg). By contrast,
under the assumption (#;) that there is an attack from the
adversary, the received signal can be given by

Lpa(hs

ru_M“Hl (t) = Z a(T[i, 9,&')3(“7@) (t)eijﬂ'chéi

=1
Lijum

+ > a(ri, )5 (t)e 72T (1),
=1

related to attacker

é@/ £ a(Tg/i, eg/i)e_jzﬂchz/i, for El (S {1, ey Ljam}a
Hu~>7,' é |:§17 o ’ngmhsjl )
A |~ ~

i = |:§1, PN ,ngum:| 9
A T
su(t) £ [ ()3 Su, L) ()]
~ - ~ T
S(t) 2 [Sl(t)a ceey SLjam(t)]

Then, (3) and (4) can be shorten into the following:

Tusifio (t) = Huoisu(t) + Ii(t)y
Fusize, (£) = Hy sy (£) + HS(E) + n(t).

]

(&)
(6)

B. Signal Modeling for Multi-User Uplink

The expressions in (3) and (4) only hold true for the case
of a single user. However, when U > 2 users are transmitting
simultaneously, the received signals have to be revised. Under
Ho, the received signal at the i-th AP, can be given by

4
( ) U Lpalhs
where Ljuy, is the number of paths from the jammer to the rin, (1) = Z Z a,50,,0)(t) | +n(t)
receiver, and 5y (t) is defined as sy (t) = 25“;‘“]\[ 5(¢). u=1 \ (=1
i 0 — . ;
Herein, s(t) is the signal transmitted by the attacker, Py, is =Hisisi(t) + ...+ Hysisu(t) + n(t)
the transmit power of the attacker, and SEE ) is the path loss = Hs(t) +n(1), 0
corresponding to the ¢'-th path, ¢’ € {1,..., Lijan}. where H, s, (t),s(t) are defined as
To further simplify the expressions, we first define the .
following vectors and matrices: H; = [Hi, ..., Hyol,
. AT T T
a, 2 a(Tgi, 937;)67J27rfc7—“, for ¢ € {1, ey Lpalhs}a S(t) = [Sl (t)7 Tt ’SU(t)]
1
Lpalhs e*jQWAFTZi Fedan P
— g ieTspacing (o 1Y sin(6,; Tx — G2 fo s
ru—>m,i|7'lo(t) = : e~ 72 e ( 1) sin(0¢:) W‘S(t)e 327 feTei + Ilm(t) (1)
=1 ; for the m—th antenna element i 0

e*j27TAF(Ksub71)Tli

for Kb subcarriers

noise over K, subcarriers

for the £—th path
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Similarly, under H;, the received signal at the i-th AP can
be given by

U Lpa!hs Ljam
v, () =Y | D asue(t) | + Y .50 (t) +n(t)
u=1 \ (=1 /=1
—_————
related to attacker
— H,s(t) + Hi3(t) + n(t). )

Note that (5) and (6) are the special cases of (7) and (8),
when the number of users is set to 1. Moreover, from (7) and
(8), we can generally express the received signal vector at the
i-th AP as follows:

under (Ho);
under (H1).

TiH, (t)’

rld) = ri, (1),

€))

C. Problem Statement and Proposed Framework

Since the process of localizing users and the process of
user and attacker detection occur in the uplink, a question
may be raised: Can these processes be combined into a single
framework, where both localization and user/attacker detection
support each other? Especially, in the presence of multiple
users and an adversary, the attack from the adversary can
be mistaken for multi-user interference, making it difficult
to detect the adversary. Thus, this paper aims to clarify this
question and propose a framework for building the reciprocal
relationship between localization and detection against PHY
attacks with the aid of ML.

The proposed framework, which is illustrated in the third
sub-figure of Figure 1, encompasses four main phases. Phase
(1) performs a joint localization and multi-user detection;
Phase (2) involves the use of ML to detect potential PHY
localization attacks; Phase (3) addresses the restoration of
reliable localization in response to detected attacks; and Phase
(4) evaluates downlink performance based on the results from
the previous phases. As previously mentioned, the interplay
between localization and detection is central to the proposed
framework, because they reinforce each other. To be more
specific, as for localization, we first estimate the distances
between the user and the access points based on the time-
of-arrivals (TOAs) of signals and then use the trilateration
technique to estimate the positions of users. As for detection,
we apply different anomaly detection algorithms to learn the
normal data and identify outliers (i.e., anomalies), whereby
detecting if the received signals are associated with an attack
or not. Since the detection returns one of the two results, i.e.,
no attack (Hg) or under attack (#,), we can decide whether
or not the localization is deteriorated by attacks. Thus, in the
case of an attack, we can localize the position of the attacker.

At a higher level, the proposed framework demonstrates
how integrating anomaly detection with PHY signal processing
can support secure and robust localization in wireless sys-
tems. For instance, in location-aware downlink transmission,
accurate localization can ensure efficient signal delivery. This
integration is adaptable to various networks, where accurate
positioning and resilience against interference or malicious
attacks are essential.

III. PHASE (1): LOCALIZATION AND MULTI-USER
DETECTION

In this section, we present Phase (1) of the proposed
framework, in which localization and multi-user detection are
jointly performed.

A. Localization

1) Distance Estimation based on MUSIC Spectrum: Denote
Tsamples as the number of samples received at an AP. With
respect to (w.r.t.) the i-th AP, the sample covariance can be
calculated as follows:

Tsamplc»

LS o),

T,
samples =1

C;, = (10)
We can use the singular value decomposition (SVD) to de-
compose C; to find a unitary matrix U;, and then extract the
noise subspace U‘;"ise from the last (M Kgyp — 1) columns of
U,. Consequently, at the i-th AP, the spectrum of MUSIC can
be formulated as a function of the time delay 7 and the angle
0 (see [23], [24]):

Si(t,0 L T (11)

=3

’a(T7 g)uherse
Figure 2 illustrates the use of (11) in estimating the TOAs and
AOAs of a signal. Based on (11), we can estimate the TOAs
and AOAs of incoming signals. Denote (7, 6) as the pair that
maximizes the spectrum S;(7, §). We have

(7, 5) = argmax S;(7,0). (12)
7,0

Conventionally, the LoS-path-following signal has the

strongest power; thus, on the receiver side, it is reasonable to

consider that (7, 6) is the estimate of (71,0;). Consequently,

the distance between the transmitter and the receiver can be

estimated as follows:

-~

d = c7, (13)

where c is the speed of light.

2) Trilateration-based Localization: We consider that lo-
calization is performed by the trilateration technique that
measures the distances from the APs to a certain user.”

On the Cartesian plane, the coordinates of A; (i € {1,2,3})
and those of Bob are (za,,ya,) and (s, ys), respectively. De-
note d; as the true distance between A; and B. Also, denote d;
as the estimated distance between A; and B. It is obvious that
B is on the circle (zg—xa,)?+(yp—ya,)? = d7, i € {1,2,3},
and (zp,yp) is the unique solution of the system of three
equations. In practice, the true distance d; is not attainable
because the measurement of distance comes with errors. Thus,
we will deal with the following system of three equations:

(wp —xa)" + (yp —ya)* = d7, i €{1,2,3}. (14
We can simply transform (14) into the following:
Qz =b, (15)

2The trilateration is based on TOAs. Apart from the trilateration technique,
localization can also be performed by using hyperbolic curves, where hyper-
bolas are formed based on TDOAs instead of TOAs [25].
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GHz, Ar = 5 MHz, M = 10 receive antennas, % =20 dB,

£2 = £5 = 17 dB. The The TOAs and AOAs are correctly
0 Q

estimated at (714, 01;) = (15ns,10°), (72;,62;) = (50ns, 20°)
and (73;,03;) = (80ms, 25°).
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The equation (15) can be handled by using the method of
least squares. A least-squares solution of Qz = b is z*¥ =
(Q'Q) Qb2 [Zg, 7] . Finally, the estimated position of
B is (z,y) = (¥, yp) in the Cartesian coordinate system.

Connecting the position estimation with the possibility of
an attack, we can re-express (Tp,yp) as follows:

(/x\B\'Hov :/U\B\’Ho) under (H0)7

Z - (16)
(fUB\Hlvmel) under (’Hl)

(EB,@\B) =

Herein, (Zg|%,,¥s|#,) implies the estimated position of B
under the assumption that there is no influence from the at-
tacker; whereas, (Z|3, , Us|2(, ) implies the estimated position
of B under the influence of an attack. Fig. 4 illustrates the
location estimation of a legitimate user under Hy and Hi,
respectively. It is shown that the trilateration-based localization
method works well when there is no attack (i.e., under Hy);
however, the estimated position of the user is significantly far
away from the actual position when there is an attack (i.e.,
under H;). It is thus necessary to detect if a received signal
is affected by an attack.

AP 3

((R))

User u |

((R))

AP1 ‘

- ((i) }
AP 2

Fig. 3: An illustration of using the trilateration technique for
localizing the position of a certain user u.

B. Multi-user Detection

In order to deal with multi-user interference, we will apply

a multi-user detection (MUD) method based on zero-forcing

(ZF) or minimum mean square error (MMSE) at each AP [26],

[27]. In the case of MMSE, we calculate the pseudo-inverse
of H; as follows:?

G*

(mmse,1—14)

G} (I, + a1) THi2 17)

mmse,i)

G*

(mmse,U —1)
Note that G, sy € Crro M and w € {1,..., U}

With small «, we have Gfmmse i)Hi ago I, which leads to
the following:

?mmse,l—)i)
His,....Hyo) =1

*
(mmse,U—»1)

o ?mmse,uﬁi)Huai ~ 1
G?mmse,y,—)i)Hv—)i ~ 0, for u 7é V.

W.rt. the u-th user, we calculate the following post-
processing signal:

(18)

~ . A
Su—ilHo = G(mmse,u%i)rﬂ'lo (t)

U
= Gfmmse’u%i)Hu%i Sy + Z Gfmmse,u%i)Hvﬁi Sy
~ 1 s;zétlb ~ 0
+ Gz(mmse,uﬁi)n
~ S, + G?mmse7u_>i)n. (19)

From (19), we can also identify which user index is as-
sociated with the detected signal. Then, we can define the
seud -~ .

term 175, (t) = HuoiSuinm, + n(t) and find the pair
(7hseudo gpsendoy pased on emulating the process described in

u—1 ) u—1 weudo  bseud
Sub-section II-Al. The pair (70°57°,62°°) can be under-

u—i

stood as the (TOA, AOA) fingerprints of the u-th user on the
MUSIC spectrum.

3The case of ZF corresponds to a = 0.
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Fig. 4: Left-side sub-figure shows the position estimation of an STA (e.g., Bob 1) in the case of H,. Right-side sub-figures

shows the the position estimation of Bob 1 in the case of H;.

C. Relationship between Localization and MUD in Phase (1)

The third sub-figure of Figure 1 depicts the proposed
framework, where both localization and MUD are performed
in Phase (1). Herein, MUD does not only help the APs detect
the signals of different users, but also help the APs localize the
positions of users. The role of MUD in improving localization
is clarified in the sequel.

Firstly, as for localization, the APs use the trilateration tech-
nique to estimate the position of a certain user u. Noticeably,
the trilateration technique relies on the estimation of distances
from the APs to the u-th user. In the case of a single user,
the localization method in Sub-section III-A1l can be directly
applied, because the peaks on MUSIC spectra at the APs are
associated the u-th user. However, in the case of multiple users,
it is difficult to decide whether the peak of MUSIC spectrum
at the 7-th AP is associated with the u-th user or not. Thus, it is
important to consider a distance estimation process (DEP) at
each AP so that the impact of interference on MUSIC spectra
can be reduced. Figure 5 depicts the DEP at the i-th AP. To
differ the DEP at different APs, the DEP at the :-th AP will
be named i-DEP. Note that :-DEP is itself insufficient for user
positioning To localize a certain user u, we need di,, dgu and
ds3,. Herein, dlu is provided by 1-DEP at the 1-st AP, dzu is
provided by 2-DEP at the 2-nd AP, and d3u is provided by
3-DEP at the 3-rd AP. This means that all the DEPs have to
be performed by all the APs to provide necessary information
for user positioning. The following flowchart depicts what has
just been discussed:

1-DEP — dy,,
2-DEP — do,,
3-DEP — d3,

trilateration
—— position of user wu.

Secondly, since the presence of multiple users can cause
confusion in estimating distances, it is necessary to eliminate
the negative impact of multiple users to improve localization
performance. Given that the DEP plays the most pivotal role
in performing localization, we consider the elimination of
multi-user impact in the DEP. As shown in Figure 5, -

DEP yields {d;,,...,d;y} in an iterative manner.* At each
iteration, we update the MUSIC spectrum, determine the user
index that is associated with the peak of the spectrum, and
then estimate the distance based on the estimated TOA. As
for determining the user index, there is a need to combine
both MUSIC spectrum and MUD. To be more specific, at each
iteration, after finding the (TOA, AOA) pair of the peak of the
MUSIC spectrum, we compare this pair with the (TOA, AOA)
fingerprints (7%, §P*19°) (a5 described in Sub-section I11-B)
in order to determine which user is associated with the peak.
Once the peak of the MUSIC spectrum has been determined
to associate with a particular user u, we can then remove the
contribution of the u-th user from the received signal r;(t)
in the next iteration. Denote fgq] (t) as the remainder of the
received signal r;(t) after subtraction at the g-th iteration
within i-DEP. Denote Z/{detected as the set of the indices of
detected users. The cardinality of U‘g ut? —1.

etected is | detected
If w is admitted to u(igt]ected at the g-th iteration, this means that
the u-th user is associated with the peak of MUSIC spectrum
at the g-th iteration within i-DEP. Mathematically, ¥ [*/(t) is

iteratively updated as follows:

gl gy = STt =15
’ ri(t) = 2 eyta HusiSusipn (1), 42> 2.
(20)

By using T Eq] (t), we can first calculate the sample covariance
C Eqi in a similar way to (10), and then calculate the spectrum
Sl(7.6) in a similar way to (11).

IV. PHASES (2) AND (3): ML-AIDED ATTACKER
DETECTION AND RECOVERY OF RELIABLE LOCALIZATION

In this section, we present Phases (2) and (3) of the
proposed framework. While Phase (2) employs ML to detect
localization attacks, Phase (3) aims to restore the reliability of
the localization process.

4The first estimated distance is not necessarily linked with v = 1 (i.e.,
User-1), because the (TOA, AOA) peak of the MUSIC spectrum in the 1-st
iteration may be associated with another user (e.g., User-2). Also, the last
estimated distance may not be necessarily linked with v = U.
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Fig. 5: The DEP is performed as part of the localization mechanism in Phase (1). The DEP, which is performed at the i-th
AP, is called ¢-DEP. The principle of +-DEP is described in Sub-section III-C.

A. Phase (2): ML-Aided Attacker Detection

Anomaly detection models are trained on a training dataset
(namely 7") before being tested on a separate testing dataset
(namely, 7"°%). Note that the training dataset T — Tain
contains [7;/4"| legitimate data points associated with the
hypothesis H, (i.e., non-attack behavior). Meanwhile, the
testing dataset 7;7°' U T,/ is the disjoint union of the set 7™
and the set 7'7‘_51“, 1e., T = T;_fj‘ U Tef‘, where the set 72?3‘
contains | 77| data points associated with the hypothesis Ho
and the set 777 contains |7;%| data points associated with
the hypothesis H;. Since the detection performance depends
on the data, it is important to form the structure of data
for the learning purpose. For example, we have observed
that the performance is not optimal if the training data uses
(TB21» UB| 7, ) as features. On the other hand, the performance
can be improved if the training data uses estimated distances
and RSS values as described in Table III.

Moreover, since the detection is based on training the data
with one label (i.e., H), while the testing data contains both
Ho and Hi, we apply unsupervised learning. To be more
specific, we will consider the following anomaly detection
algorithms:

¢ One-class support vector machine (OC-SVM) is a special
version of SVM, where a certain kernel function is
employed for transforming the original feature space to a
new separable feature space [28]-[30]. In the new feature
space, a boundary that surrounds normal data points will
be used as the decision function to identify the outliers
outside the boundary. The training complexity is approxi-
mately O(|7""[3); meanwhile, the testing complexity is
O(|T*"Y ngyndim), Where ngy is the number of support
vectors, and ng;y, is the data dimension [31].

e Local outlier factor (LOF) belongs to the family of
nearest-neighbor algorithms [28]-[30], [32]. In LOF, the
distances from a data point to its nearest neighbors are

calculated to determine the density of that point. By com-
paring the densities of data points, LOF can distinguish
abnormal data points (i.e., outliers) from normal data
points (i.e., inliers). The densities of outliers are lower
than those of inliers. The training and testing complexi-
ties are O(| T 2ngi, ) and O(| T |*ngin ), respectively.
LOF is computationally expensive for large datasets [33].

o Isolation forest (iForest) generates random trees that
partition the feature space and isolate individual instances
[4], [29], [30], [34]. Unlike OC-SVM or LOF, iForest
does not depend on learning a boundary or computing dis-
tances to detect anomalies. Instead, iForest computes the
path lengths of trees and uses these values for scoring data
points. By sorting the scores in descending order, the first
top scores will be treated as outliers. The training com-
plexity is approximately O (neest log 10); meanwhile, the
testing complexity is O(|T|nuees log 1), Where ngees is
the number of trees and 1) is the sub-sampling size [35].

« Elliptic envelope (EE) hypothesizes that normal data
points are drawn from a distribution [29], [36], [37].
Thus, EE estimates the covariance of the training data and
models an ellipse so that the majority of normal training
data points fit into the estimated ellipse. The Mahalanobis
distance is then used as a metric for determining if a
data point is an inlier or an outlier. The training com-
plexity is approximately O (|7""n3, + n%,,); mean-
while, the testing complexity is O(|7"!n2 ), suitable
for moderate-sized datasets [38].

B. Phase (3): Recovery of Reliable Localization

In this section, we showcase that the use of a landmark can
help the APs detect the attacker’s position. Herein, a landmark
is a node whose position is known to the APs. When being
observed by the i-th AP, the set of TOAs of the landmark and
the set of AOAs of the landmark are {%gyi}fi“l'“ and {ég,i}fi“lh ",
respectively.
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Scope | Index Training True labels
data points

T T
3 1 (x%li,{o,y]%,%g (+1) z
3 2 ~[2
% 2 (IBIHo’yBIHo) (+1) §
2 ~ -
k= N ) -~
3 in | ATER T £
= T':_rtd(;n (IB|'H(()) ’yB\'Hg ) (+1) ~

TABLE I: The structure of the training dataset with 2 features.

Scope Index Testing True labels
data points
ST AT
N R s e R
~[2 ~[2
» 2| @iy Uang) (+1) 2
< = ~
= - [Tles[ ] [Tlesl ] ;ﬂ
< = s M) A5
o ||| Gagi Gy | ) || €
Z | iz ! (@70, pj3,) (=1 >
SR 2 | el a | D g
5 B|H1 YB|Hy )
E 3 5
= T3 AT ~
= T’}.etsll ($B\'Hi ’yB\'Hi ) (_1)

TABLE II: The structure of the testing dataset with 2 features.

When the landmark communicates with the i-th AP, the
received signal vector at the i-th AP is denoted as ¥;(t) =
P21, (t) in the case of no attack or ¥(t) = ¥y_ip, ()
in the case of an attack. The expressions of ¥, ,;,(t)
and ¥, (t) are the same as those of r,_,(f) and
ru—in, (t) in (3) and (4). Since the landmark is known to
all the APs, it is reasonable to consider that the APs know
about the landmark’s TOAs and AOAs. This means that the

i-th AP has the information about {7 ;,...,7; .} and
(By4,....0

(R
can be estimated/recorded by an AP. We have Lpaths < Lpaths-
For example, a signal from the landmark arrives at an AP
following Lpans = 100 paths; however, only f/paths = 5 paths
have significant contribution in the received signal and can be
recognized by the AP through a localization method like the
MUSIC spectrum.

As discussed in the previous section, ML algorithms have
been applied to detect whether the received signal is associ-
ated with an attack or not. Since tracing a target by using
ToA/TDoA is possible [39], [40], we consider localizing the
detected attacker with the aid of landmarks in this section.

Recall that the user moves around the landmarks. When
the positions of landmarks are known to the APs, the i-th
AP can keep a record of the TOAs and the AOAs {6, ZLjTS
of the landmark. The received signal vector at the i-th AP
is denoted as 1;(t) = T3, (t) in the case of no attack or
t;(t) = Ty3, () in the case of an attack. The expressions of
fi7,(t) and T4, () are the same as those of r;y, () and
riz, () in (3) and (4). Since the landmark is known to all
the APs, it is reasonable to consider that the i-th AP has the
information about the landmark’s TOAs {7y ;,...,7;  ;}and
AOAs {él,i, ) mehs’i}, where f/paths is the number of paths
that can be estimated/recorded by the i-th AP.

}, where ipaths is the number of paths that

Once an attack has been correctly detected by an ML
algorithm, the next goal is to extract the attacker’s position
from the received signal ¥;3;, (t). Since 13, (t) includes both
the contributions of the landmark (i.e., the contributions from
Lpams paths) and those of the attacker (i.e., the contributions
from Lyy,cker paths). Meanwhile, the landmark’s contributions
W.I.t. ﬁpaths has been recognized. Thus, the i-th AP can remove
the f/paths contributions of the landmark from the received
signal as follows:

Frpy et = Firy, —  a(F1i, 01,4)51 (t)e 92 T 21

the contribution of the landmark’s LoS path

An important note from (21) is that the extracted signal ¥7;, ex
may be mostly constituted by the contributions of attacker.
Thus, the MUSIC spectrum based on ¥z, o Will be likely
to result in estimating the TOAs and AOAs of the attacker,
because the f/paths biggest contributions of landmark have been
previously removed. Since the user is close to one of the
landmarks, the user’s TOA and AOA values are also close
to those of one of the landmarks. If the user is close to
one landmark instead of another, the subtraction in (21) will
result in the attenuation of a peak that is close to the location
of the landmark’s peak of the MUSIC spectrum. Therefore,
by performing the subtraction for different landmarks and
then comparing the MUSIC spectra, we can determine which
landmark the user is closest to. Finally, the highest peak of
the MUSIC spectrum after subtraction will be determined to
be associated with the attacker.

V. NUMERICAL RESULTS AND DISCUSSIONS

This section presents numerical results. We consider a
scenario with U = 3 users. The geometric setup of the APs,
the users and the attacker are as follows: The APs are located
at (4,-7), (—8,10), and (17, —2), respectively. The positions
of users By, B>, and B3 are uniformly distributed within
circles of radius 6 meters centered at the landmarks (15,7),
(21,3), and (11,5), respectively. Meanwhile, the position of
the attacker is uniformly distributed within a circle of radius
6 meters centered at (—11,2).

As for the path loss, we use the free-space path loss model.
Then, the path loss between a transmitter (e.g., the user) and
the i-th AP can be modelled as £” = (47d\")2/(GaxA?).
where Gg;; is the directivity, and die) is the distance traveled
when the signal follows the ¢-th path. For simplicity, we set
Ggr = 0.01. In the case of the LoS path (i.e., £ = 1), dgl)
is the Euclidean distance between the transmitter and the ¢-
th AP. Note that the symbol d; defined in Section III-A2 is
exactly the same as dgl). In the case of NLoS paths (i.e.,
¢ > 1), we always have dl(-e) > dgl). In simulations, we
consider a scenario where each user has Ly,ns = 3 paths,
and the attacker has Lj,, = 3 paths. Each user has a transmit
power of Pry, = 1 mW, and the attacker has the transmit power
of Pam = 1 mW. As for the noise, we model the noise variance
as No = kpoltzmann TkelvinBW, where kpolzmann = 1.38 X 1072
is the Boltzmann constant, Txevin 1S the temperature in Kelvin,
and BW is the bandwidth. Regarding the MMSE detectors at
the APs, we set o = 0.1. Regarding the MUSIC spectrum,
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Scope | Index Training data points True labels
] ] ] (1] ] (1]
g ! (113007 L2130 Ta51200> RS 151300 RSS 51340 RS54, ) (+1) z
&0 : g
E . I_{T[ram] /{T‘Iﬂl“] /{T(ram] [Tlram] [T[Yﬂl“] [T!ram] >~
train Ho Ho o Ho Ho o
= T3y | (i Bojiaag Fajireg RS 11320 RSS2 1300 RSS 5174, +1)
TABLE III: The structure of the training dataset with 6 features.
Scope Index Testing data points True labels
U] ] ] [1] (1] 1]
2o ! (dljl?‘lo’ d2.7\Ho’d3j\Ho’Rsle'|H0’ Rss?.i\HO’RSS3J\Ho) (+1) OZ
& : B
s | F AT AT AT T T T &
s T (‘ftlljllﬂr?o’ Atzljjlﬁo’ﬁa‘llfzo’Rssllﬂlﬁo’RSS@J‘JHSO’RSS%HSO) (+1)
S o | Y| Yo daien Baiia 0 RSSia RS0, RSSjpa,) | (21 .
& | & : g
.S /{Tlcsl ] /\[T‘CS‘ ] /{TlCR[ ] .[Tlcsl ] [T\CS\ ] [Tlcsl ] OW‘
H H H H H H
T;_etslt (dljlﬁl’d%\?{ll’d3j\?-?1’Rssljl?il’Rss2j|7i1’RSS?>j\7i1) (-1)
TABLE IV: The structure of the testing dataset with 6 features.
Tsamples = 100 samples are used for peak finding, with a A w.r.t. user 1 A w.r.t. user 2 ‘ w.r.t. user 3
TOA resolution of 1079 s and an AOA resolution of (/180) o P T e v o — |
radians. Unless stated otherwise, other system parameters are B Abnormal B Abnormal !
as follows: Pry = 1 mW; Py, = 1 mW; M = 10 antennas; 20 1 20 1 20 1
Kb = 64 subcarriers; f. = 2.4 GHz; Arp =5 MHz.

As for the unsupervised learning algorithms, their hyper- 10 10 10 : ‘:
parameters are as follows. For iForest, LOF, and EE, we set the (., (= (= m ®
proportion of outliers, namely the “contamination” parameter, 0 o ol = s

. .. [~ Em
to 0.01. Meanwhile, for OC-SVM, we set a similar parameter, = "
namely v, to 0.01, where v serves as an upper bound on the # n = =

. . .. ~10 A ~10 A m ~10 A B
fraction of anomalies. Additionally, other hyper-parameters o g o Normal
are set as follows: i) For iForest, the parameter controlling - B Abnormal
randomness in feature selection is set to 30; ii) For LOF, —20 ‘%0 o —20 . T —20 . -
the number of neighbors is set to 30; iii) For OC-SVM, we z 7 z

use the widely-adopted RBF kernel function, with the kernel
coefficient equal to the inverse of the product between the
number of features (i.e., ngim) and the data variance; and iv)
For EE, the parameter controlling randomness in subsampling
is set to 30.

A. Performance of Anomaly Detection models

After training an anomaly detection model on a training
dataset, the trained model will be evaluated by a testing
dataset. Thus, the term “performance” in this section implies
the performance in the testing phase but not the training phase.
We observe that there are significant performance differences
when the datasets have different structures. We first present
an analysis using a data set with two features (the Cartesian
coordinates) and then show how considering other features
such as received signal strengths and distances to APs can
drastically improve the performance.

1) Datasets with 2 features: We first examine the datasets
with 2 features, as described in Tables I and II. These features
are the Cartesian coordinates. The distribution of data points
on the two-dimensional plane is visualized in Fig. 6, where
(z,9) is the estimated position of B.

Fig. 7 illustrates the learning curves of the four ML models
after the training process. The learning curves are formed on

Fig. 6: Visualization of data points in the space with the 2
features.

the basis that most training data points lie inside the curves.
In the testing phase, any data point inside the curves will be
predicted as a normal data point (i.e., which is associated with
Ho), while any data point outside the curves will be predicted
as an abnormal data point (i.e., which is associated with ;).
Based on the prediction, we can compute the four following
basic values:

o True positive (TP): The number of actual normal data

points that are correctly predicted as “normal”.

o False negative (FN): The number of actual normal data

points that are incorrectly predicted as “abnormal”.

o False positive (FP): The number of actual abnormal data

points that are incorrectly predicted as “normal”.

o True negative (TN): The number of actual abnormal data

points that are correctly predicted as “abnormal”.

From TP, FN, FP and TN, the sensitivity (i.e., the true
positive rate) and the specificity (i.e., the true negative rate)
are calculated. Fig. 8 shows the sensitivity and specificity
of four ML models. We can observe that the sensitivity of
each ML model is as high as approximately 99%; however,
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Fig. 7: Illustrating the learning boundaries when algorithms
are trained on the datasets with only 2 features.
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Fig. 8: The sensitivity and specificity of 4 ML algorithms are
depicted, given that the datasets have 2 features.

the specificity is less than 7%. This observation implies that
the four trained ML models miss at least 93% of actual
abnormal data points, because the specificity is the indicator
for identifying the actual abnormal data points. In terms of
security, not being able to detect 93% of all attacks is severe,
regardless of the high rate of detecting normal points.

Fig. 9 shows the receiver operating characteristic (ROC),
which is another performance evaluation for binary classifiers
when considering thresholds. The ROC depicts the true posi-
tive rate (i.e., the sensitivity) against the false positive rate (i.e.,
1— specificity). For example, if we require the false positive
rate at most 30% (i.e., 0.3), then the true positive rate can be
30%. In general, the true positive rate is almost the same as
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Fig. 9: Receiver operating characteristics (ROCs) of 4 algo-
rithms.
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Fig. 10: Visualization of data points in the space with the first
3 features.

the false positive rate, thus leading to the area under the curve
(AUC) is almost 0.5. This means that all the 4 ML models
do not perform well when being trained on the data with 2
features (i.e., the x- and y- coordinates). Obviously, using
statistical knowledge of positions is inefficient for detecting
PHY localization attacks.

2) Datasets with 6 features: Now, we consider the datasets
with 6 features, as described in Tables III and IV. These
features include the estimated distances and the received signal
strengths (RSSs) at the APs, instead of the estimated positions
obtained by the localization process. Fig. 10 visualizes the data
points in the three-dimensional space whose axes correspond
to the first three features.

In Fig. 11, the sensitivity and specificity of 4 ML models
are shown. While the all ML models have high sensitivity (i.e.,
above 85%), the specificity considerably varies with different
ML models. We can see that the specificity of OC-SVM or
LOF is quite high value (i.e., above 85%), Isolation Forest
has moderate value (i.e., around 70%), but Elliptic Envelope
has very low specificity. Comparing the specificity in Fig. 11
with that in Fig. 8, we observe an improvement for OC-SVM,
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Fig. 11: The sensitivity and specificity of 4 ML algorithms are
depicted, given that the datasets have 6 features.
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Fig. 12: Receiver operating characteristics (ROCs) of 4 algo-
rithms.

LOF and Isolation Forest. Noticeably, the performance of OC-
SVM and that of LOF are sufficiently high in terms of both
sensitivity and specificity.

Fig. 12 shows the ROC in the case the data has 6 features. It
shows that OC-SVM and LOF are the best classifiers because
their area under curves (AUCs) are highest. For example, if we
require the false positive rate at most 11%, then OC-SVM and
LOF classifiers can satisfy the requirement. Compared with the
results in Fig. 9, it is clear that the usage of datasets with 6
features is much better than the usage of datasets with only 2
features, because we can train OC-SVM and LOF models to
create classifiers with high sensitivity and specificity.

Figure 13 presents the sensitivities and specificities of the
four algorithms under different attacker power levels (i.e.
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Fig. 13: The sensitivities and specificities of 4 algorithms are
evaluated under different attacker power levels.

P.m = {0.5,5,10} mW). At low attacker power, OC-SVM
achieves moderate sensitivity and specificity, both above 75%.
By contrast, LOF, iForest, and EE exhibit moderate-to-high
sensitivity but very poor specificity. As the attacker power
increases, sensitivity remains high across all algorithms, but
specificity improves significantly, especially for LOF and
iForest. Meanwhile, EE maintains high sensitivity, but its
specificity remains low, with only modest improvement as the
attacker power increases. Overall, OC-SVM appears robust
and stable; meanwhile, the other algorithms tend to over-detect
anomalies by misclassifying normal samples as malicious,
especially at lower attacker power levels.

B. Performance of Localizing the Attacker

The results in this subsection are obtained using the pro-
posed framework. Without it, estimating the positions of legit-
imate users under attack is not possible. Instead, localization
performance degrades, as shown in Figure 4. Based on the
successful detection of an attack, the position of the attacker
will be estimated. The estimation performance are presented
in Figures 14 and 15.

To be more specific, Figure 14 compares the actual and
estimated distances from each AP to the attacker, given that
the Rician factor is equal to 10, the user’s power and the
attacker’s power are equal to 1.5 mW and 1 mW, respectively.
It can be seen that from the perspective of each AP, the
difference between the true distance and estimated one is
insignificant. This figure confirms again that each AP can
relatively estimate the distance from it to the attacker, thus
confirming the efficiency of the proposed method in Section
IV. Moreover, this observation means that when all APs
coordinate to perform the trilateration based on the estimated
distances (as described in Section III-A2), the spatial position
of the attacker can be estimated with a high accuracy.

Figure 15 shows the mean absolute error between the true
position of the attacker and the estimated one, where different
environmental settings are considered via the Rician factor.
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Fig. 15: The absolute mean error between the true position
of the attacker and the estimated one is depicted against the
Rician factor.

Herein, the Rician factor is calculated as the ratio of the
LoS-path-following signal’s power to the total power of other
NLoS-path-following signals. When the Rician factor is equal
to zero (i.e., there is no LoS path), the error is at the peak
of around 1.25 meters. However, when the Rician factor
increases (i.e., the LoS component becomes stronger), the error
gradually reduces. It is noticeable that the error also depends
on the transmit power, meaning that the possibility of detecting
the attacker depends on the user’s power. While the attacker’s
power is assumed to be 1 mW, the user’s power varies among
{0.5,1,1.5} mW. If the user transmits at lower power, the
contribution of the user in the received signal is smaller; thus
making the contribution of the attacker becomes higher and
making the attacker to be more easily detected. Consequently,

13

(b) After rotation

(a) Before rotation

0 5 10 15 0 5 10 15
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Fig. 16: An illustration of the transmit antenna array before
and after rotation.

the performance in the case of Pyg = 0.5 mW is better than
that in the two other cases.

C. Position-Aware Payload Transmission in Phase (4)

Based on the basis that the positions of nodes have been
estimated, we demonstrate the benefits of the position-aware
payload transmission in the downlink through simulations. In-
deed, it is not necessary to consider all possible transmissions
from a certain AP to a certain user. For demonstration purposes
only, we consider the payload transmission from the 1-st AP to
the 3-rd user, as shown in Figures 16—17. Moreover, the results
in those figures can be viewed as an example of improving the
LBS for the user.

To be more specific, Figure 16 depicts the arrangement
of the transmit antenna array before and after rotation. The
original arrangement of the transmit antenna array is parallel
to the y-axis. After rotation, the transmit antenna array points
toward the position of the receive antenna array for better
performance. The difference in performance is illustrated in
the next figure.

In Figure 17, we evaluate the PER at the user in case of
not using a movable-antenna array and in the case of using it.
Since the use of the movable-antenna array allows for rotating
the direction of the beam in a desired direction, there is a
difference in the performance before and after rotation. When
not using the movable-antenna array (i.e., not rotating the
antenna array), the best beam has ID = 7, which corresponds
to the solid curve in Figure 17. By contrast, when using the
movable-antenna array (i.e., after rotating it), the best beam has
ID = 4, which corresponds to the dashed curve. Obviously,
the use of the movable-antenna array leads to a lower PER at
the user. This observation also promotes the idea of integrating
movable-antenna arrays with position-aware transmissions to
enhance LBSs.

In Figure 18, we show the packet error rate (PER) at the
user of interest (i.e., the 3-rd user) for all 7 possible beam
patterns (i.e., beam IDs), given that each beam ID corresponds
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Fig. 17: The PER w.r.t. the selected Tx-beam ID is depicted
for two cases: 1) before rotation; and ii) after rotation.

to a different choice of beam ID. Based on the knowledge
of the estimated positions of the user and the attacker, the
best beam ID is selected so that its main lobe does not point
toward the attacker but points toward the user. We can see
that the selected beam ID (i.e., ID 4) yields the best
PER for the user. Moreover, when the AP is equipped with
a movable-antenna array, the selected beam ID can be fine-
tuned so that the direction of its main lobe is the same as the
geometric direction of the AP-user link. Since the selection
of the best beam ID depends on the localization results in
the proposed framework, Figure 18 also demonstrates its
effectiveness in achieving optimal PER. In contrast, without
the proposed framework, performance degrades due to an
inaccurate localization process.

D. More Discussions

The proposed framework is inherently scalable and general-
izable. Although we adopt a minimal setting with three access
points in a two-dimensional plane for conceptual clarity, the
same trilateration method can be directly extended to support
three-dimensional localization when more access points are
available, such as four or more. In dense urban environ-
ments where many APs are typically present, the system
can select the most suitable subset based on criteria such as
signal strength or geometric configuration. Furthermore, the
framework accommodates multiple users by incorporating the
MUD module that is capable of distinguishing signals from
different users. Once separated, the trilateration method can
be applied to estimate the position of each user individually.
The framework has been evaluated with three users and can
be extended to more users as long as the MUD component
successfully associates the measurements with the correct user.
These features confirm that the proposed method is well
suited to realistic deployment scenarios, without requiring
fundamental modifications to the core framework.
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Fig. 18: The PER is depicted for the case that rotation is
performed. The selected beam ID is the 4-th ID.

VI. CONCLUSION

In this paper, we proposed a framework that reciprocally
combines both localization and detection to deal with PHY
attacks and restore the reliability of localization. On the one
hand, during the localization process, a novel TOA-based
distance estimation method was proposed, where the MUD and
MUSIC techniques are used for sequentially detecting users
and estimating related distances. Moreover, the data gleaned
from the localization process can also be used as the input data
for the anomaly detection algorithms. On the other hand, the
results of the attacker detection process are used for restoring
the reliability of the localization process by removing the
attacker’s impact. Finally, as for the downlink, we showed the
benefits of using corrected positions for improving the secure
transmission with the help of movable-antenna arrays.
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