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—— Abstract

Given a differentially private unbiased estimate § = q(D) + v of a statistic g(D), we wish to obtain
unbiased estimates of functions of q(D), such as 1/q(D), solely through post-processing of ¢, with no
further access to the confidential dataset D. To this end, we adapt the deconvolution method used
for unbiased estimation in the statistical literature, deriving unbiased estimators for a broad family of
twice-differentiable functions — those that are tempered distributions — when the privacy-preserving
noise v is drawn from the Laplace distribution (Dwork et al., 2006). We further extend this technique
to functions other than tempered distributions, deriving approximately optimal estimators that are
unbiased for values in a user-specified interval (possibly extending to -00).

We use these results to derive an unbiased estimator for private means when the size n of the
dataset is not publicly known. In a numerical application, we find that a mechanism that uses our
estimator to return an unbiased sample size and mean outperforms a mechanism that instead uses
the previously known unbiased privacy mechanism for such means (Kamath et al., 2023). We also
apply our estimators to develop unbiased transformation mechanisms for per-record differential
privacy, a privacy concept in which the privacy guarantee is a public function of a record’s value
(Seeman et al., 2024). Our mechanisms provide stronger privacy guarantees than those in prior work
(Finley et al., 2024) by using Laplace, rather than Gaussian, noise.

Finally, using a different approach, we go beyond Laplace noise by deriving unbiased estimators
for polynomials under the weak condition that the noise distribution has sufficiently many moments.

2012 ACM Subject Classification Security and privacy — Data anonymization and sanitization;
Mathematics of computing — Probability and statistics; Theory of computation — Theory of
database privacy and security

Keywords and phrases Differential privacy, deconvolution, unbiasedness
Digital Object Identifier 10.4230/LIPIcs.FORC.2025.17
Related Version Full Version: https://arxiv.org/pdf/2502.13314

Supplementary Material Software: https://github.com/franguridi/debiased-dp
archived at swh:1:dir:247451£8691deada77287580£8c5b1c328957ale

Funding Flavio Calmon: This work was supported in part by Simons Foundation Grant 733782 and
Cooperative Agreement CB20ADR0160001 with the United States Census Bureau. This material is
also based upon work supported by the National Science Foundation under Grant No. CIF-2312667
and CIF-2231707.

© Flavio Calmon, Elbert Du, Cynthia Dwork, Brian Finley, and Grigory Franguridi;
oY licensed under Creative Commons License CC-BY 4.0

6th Symposium on Foundations of Responsible Computing (FORC 2025).

Editor: Mark Bun; Article No. 17; pp. 17:1-17:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:flavio@seas.harvard.edu
https://people.seas.harvard.edu/~flavio/
mailto:edu1@g.harvard.edu
https://sites.google.com/view/elbert-du/
https://orcid.org/0009-0004-3520-7316
mailto:dwork@seas.harvard.edu
https://dwork.seas.harvard.edu
mailto:brian.finley@census.gov
https://orcid.org/0009-0007-0459-8117
mailto:franguri@usc.edu
https://franguridi.com
https://orcid.org/0009-0008-1847-6003
https://doi.org/10.4230/LIPIcs.FORC.2025.17
https://arxiv.org/pdf/2502.13314
https://github.com/franguridi/debiased-dp
https://archive.softwareheritage.org/swh:1:dir:247451f8691deada77287580f8c5b1c328957a1e;origin=https://github.com/franguridi/debiased-dp;visit=swh:1:snp:f80d9da53a98a9630ed16b25df62635fa79812be;anchor=swh:1:rev:f14102c7c892345b92cf9edd63f92fdff148b421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

17:2

Debiasing Functions of Private Statistics in Postprocessing

Brian Finley: Works (articles, reports, speeches, software, etc.) created by U.S. Government
employees are not subject to copyright in the United States, pursuant to 17 U.S.C. §105. International
copyright, 2024, U.S. Department of Commerce, U.S. Government. Any opinions and conclusions

expressed herein are those of the authors and do not reflect the views of the U.S. Census Bureau.

1 Introduction

Differential privacy (DP) has become widely accepted as a “gold standard” of privacy
protection in statistical analysis. In particular, it has been adopted by many companies
such as Google, Meta, and Apple to protect customer data and by the U.S. Census Bureau
to protect respondent data in the 2020 Census [1]. DP mechanisms work by introducing
randomness into the computation of all statistics published from a protected database.
This added noise guarantees that no attacker can confidently determine from the published
statistics whether a particular record is included in the dataset, thereby preserving its privacy.

Among DP mechanisms, additive mechanisms are canonical and widely used. These simply
add data-independent, zero-mean random noise to the statistics. For example, the Laplace
mechanism adds Laplace-distributed noise and is one of the first and most fundamental DP
mechanisms [6]. The scale of the added noise needs to be proportional to the statistics’ global
sensitivity — the greatest amount by which the statistic could change upon the addition or
deletion of a single record. Intuitively, this ensures that there is enough noise to mask the
presence or absence of any particular record.

Often, however, the statistics to which noise is added differ from the final statistics of
interest. In these cases, the statistics of interest must be estimated using the available noisy
statistics. Suppose that the noisy statistic ¢ is formed by applying an additive mechanism to
the univariate statistic ¢, but that we want to learn f(g), not q. Even though ¢ is unbiased
for ¢, the plug-in estimator f(q) is not generally unbiased for f(g). When unbiasedness is
desired, other estimators must be used.

To address this problem, we first derive unbiased estimators for the Laplace mechanism, for
a general class of twice-differentiable functions f — those which are also tempered distributions
(Section 3). [11] develops recursive algorithms that are unbiased estimators for polynomials in
Laplace variables. Our paper provides estimators for a large class of non-polynomial functions
and gives a simple, closed-form estimator for polynomials. We also provide methods to adapt
functions that are not tempered distributions in a way that permits unbiased estimation
over a subset of ¢’s domain (Section 4). This extension lets us provide unbiased estimators
for the case when f(q) = 1/q, which, in turn, lets us provide unbiased estimators of ratio
statistics. Such cases arise frequently in practice, as discussed below. Finally, we derive
unbiased estimators for a very general class of additive mechanisms when f is a polynomial
(see Section 7).

There are several reasons why noise may not be added directly to the statistic of interest
and bias in the plug-in statistic must be considered. A leading case occurs when f(g) has a
much higher global sensitivity than ¢q. For example, when the domain of ¢ includes 0 or values
arbitrarily close to 0, the global sensitivity of f(g) = 1/q is typically infinite and no amount
of noise provides a finite DP guarantee. This same problem affects the many statistics which
can be expressed as ratios of low-sensitivity statistics. For example, the mean is the ratio of
a sum and a sample size. Likewise, in a simple linear regression of the regressand y on the
regressor x, the ordinary least squares (OLS) estimator of the slope coefficient is the ratio of
the empirical (co)variances Cov[z,y] and Var[z]. It is common, then, to add noise to the
low-sensitivity statistics that form these ratios and use the plug-in estimator for the ratio
statistic of interest. See, for example, [2] for such a treatment of the OLS estimator.
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Noise may also be added to statistics that are not of direct interest because data curators,
such as government agencies, may publish noisy microdata or a noisy predetermined set of
aggregates for general-purpose use. For example, a researcher trying to learn the proportion
of the population with doctoral degrees may only have access to published noisy totals of
the general population and the population of degree holders. The plug-in estimator of the
mean is, as above, the ratio of these noisy totals.

This situation may also arise because, under DP, there is a limited “privacy budget”
which is drawn upon every time we use the raw data to release another (noisy) statistic.
Splitting the budget among more statistics requires that more noise be added to each of them.
This makes it beneficial to “re-use” statistics whenever possible. For example, in Section 5,
we develop a DP mechanism that uses our results to provide private unbiased estimates
of a mean and sample size. This mechanism obtains a noisy sample size via the Laplace
mechanism and then re-uses it to estimate the denominator of the mean statistic. We find
that this approach outperforms an alternative mechanism that uses an existing method from
[12] to add noise directly to the mean query, without re-using the noisy sample size.

Again, these scenarios all have in common that the plug-in estimator f(§) will typically
be biased.! To see why unbiasedness is desirable, recall that the bias and variance of a sum
of n uncorrelated estimates are respectively the sums of the estimates’ biases and variances.
Accordingly, the sum’s bias increases at the rate O(n) while its standard deviation grows at
the rate O(y/n). The sum’s overall RMSE therefore grows at the O(y/n) rate if the estimates
are unbiased, but at the faster O(n) rate otherwise.

For example, consider the following simple example: suppose the true value of some
quantity of interest is 1, but each time we try to learn the value of this quantity, we get a
fresh draw from the distribution N(1,100). A mechanism that ignores the data and returns
0 has bias 1 and variance 0, resulting in an overall RMSE of 1. On the other hand, reporting
the value of any single draw would have bias 0 and variance 100. On average, this will be off
by around 10. Thus, on individual draws, the first mechanism is more accurate. However, if
we take the mean of 10,000 such draws, the mechanism that always returned 0 still gives
a mean of 0, which is still off by 1. On the other hand, the mean of the 10,000 draws
now has variance —%_ = _L_ resulting in an RMSE of .. That is, we would now expect

10,000 100 10"
this estimate to be off by around 0.1, which is a significant improvement over the biased

estimator.

This makes unbiasedness very important in meta-analyses, which aggregate multiple
estimates. It is also important when adding noise to a large number of quantities whose sums
are of independent interest. This situation commonly arises in the local model of DP, where
an extra layer of privacy is obtained by adding noise to every record even before entrusting it
to the data curator. Sums or means using these noisy records could then be subject to severe
error if the record-level estimates being summed are biased. For example, with network data,
the count of k-stars (i.e., sets of k edges sharing a node) is a sum of polynomials in each
node’s degree. In experiments with network data protected by local DP, [11] find that a
mechanism that simply sums unbiased estimates of these polynomials outperforms the L2
error of prior work by factors as high as 5 orders of magnitude.

L In fact, in the case with the Laplace mechanism and f(q) = 1/q, the expectation and all higher moments
of the plug-in estimator f(g) fail to even exist, implying that the estimator has extremely fat tails and
is very prone to returning extreme outliers. This affects the ratio statistics discussed above, as well.
The unbiased estimator we develop for this case in Section 4.1 possesses finite moments of all orders.
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Likewise, unbiasedness is key when noise is added to disaggregate sums with the expecta-
tion that they can be aggregated further to obtain sums for larger groups. For example, [13]
and [8] develop mechanisms for use with per-record DP — a variant of DP whose privacy
guarantees differ between records, and which is being considered by the Census Bureau for
use with its County Business Patterns (CBP) data product [3]. [8] develop transformation
mechanisms for this purpose, which improve privacy guarantees by adding noise to concave
functions of ¢ rather than to q itself. Estimates of ¢ must then be obtained from these noisy
transformed values. The CBP data includes sums of employment and payroll, grouped by
finely divided geographies and industry codes. If these transformation mechanisms were used
for the CBP and the estimator of ¢ for these sums were biased, further aggregates of these
estimates to obtain, say, state-level sums would be subject to severe biases.

In Section 6, we apply our estimators to create variants of these transformation mechanisms
that satisfy a stronger type of per-record DP guarantee than the ones originally proposed
in [8].

In this paper, we make the following contributions:

1. We derive closed-form unbiased estimators for a large class of functions — twice-
differentiable functions that are tempered distributions — when the Laplace mechanism is
used. We also develop estimators that are unbiased for subsets of the statistic’s domain
for functions that are not in this class.

2. We exposit the deconvolution method from the statistics literature (e.g., [15], page 185) for
deriving unbiased estimators. This could be used to derive estimators for further functions
and further mechanisms, and we believe its use in DP is novel and of independent interest.

3. We apply our unbiased estimators to create novel unbiased privacy mechanisms for
per-record DP, a new variant of DP being considered for use by the Census Bureau [3].

4. We derive closed-form unbiased estimators for polynomial functions of statistics privatized
using any of a large class of additive mechanisms.

2 Differential Privacy, Unbiasedness, and Deconvolution

The following is the definition of differential privacy, introduced in [6]:

» Definition 1. Datasets D and D’ are neighboring databases if they differ by the inclusion
of at most 1 element.

» Definition 2. A mechanism M is (e, d)-differentially private ((e,8)-DP) if, for any pair
of neighboring datasets D, D' and any measurable set of possible outcomes S, we have

Pr[M(D) € S] < € - Pr[M(D’) € 5]+ 4.

Most of our work uses Fourier transforms [9]. The following definitions and theorems are
adapted from the textbook treatment in [14].

» Definition 3. The Fourier transform of an absolutely integrable function f is

oo

Flf(2)](y) = / ¢=27 £ (1) d.

—00

We often denote the Fourier transform of f by f(y) The Fourier transform also has an
tnverse:

Pl = | " mive fly)dy.

— 00
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There are many important functions we wish to compute unbiased estimates of which are
not absolutely integrable. In particular, polynomials and the function f(¢) = 1/q are not
absolutely integrable, so we must define the Fourier transform over a more general family
of functions, tempered distributions.> Importantly, in this use, the term “distribution” does
not refer to a probability distribution. Rather, it refers to a class of objects also known as
“generalized functions.” For the purposes of this work, we can largely restrict ourselves to
working with tempered distributions which are also functions, though there exist tempered
distributions which are not functions, such as the Dirac delta “function”. Below, we specialize
the relevant theory to the case of tempered distributions that are also functions, but the
interested reader should see Appendix A of this paper’s full version (linked to on the title
page) for the more general case.

For our purposes, then, tempered distributions can be thought of as functions that may
not be absolutely integrable, but which grow no faster than a polynomial. Formally, this is
expressed by the condition that the product of a tempered distribution and any function in
the Schwartz space (defined below) is integrable.

» Definition 4. The Schwartz space S(R) is defined as follows:

SR)={s:R—=C|seC® sup|z™s™(z)| < oo Vm,neN},
z€R

where N denotes the set of non-negative integers and s denotes the n'™ derivative of s.

That is, functions in S(R) are infinitely differentiable everywhere and they — along with all
of their derivatives — go to 0 at a super-polynomial rate.

Note that all the functions s € S(R) are absolutely integrable, so their Fourier transforms
§ exist. With the Schwartz space so defined, we introduce tempered distributions below.

» Definition 5. A function f is a tempered distribution if and only if, for all s € S(R),

/_Z f(z)s(x)dx € C.

Definition 3 introduces the Fourier transform only for absolutely integrable functions.

The following definition extends it to all tempered distributions.?

» Definition 6. When it exists, [ is the function such that for all s € S(R),

/: Fl@)s(a)de = /: F(@)3(x)da.

Technically, the Fourier transform of a tempered distribution always exists and is a
tempered distribution, but may not also be a function, even when the distribution being
Fourier-transformed is a function. See Appendix A of this paper’s full version for details.

The deconvolution method we use to derive unbiased estimators in Section 3 is applicable
because, as explained below, the requirement that an estimator be unbiased can be expressed
in terms of a convolution.

Technically, 1/q is not a tempered distribution either, but only because it is poorly behaved at 0. This
will be addressed in Section 4.

To see that Definition 3 implies Definition 6 for absolutely integrable functions, note that the e
term does not depend on the function f, so swapping the order of integration by Fubini’s theorem
immediately gives us the equality in Definition 6.

—2mixzy
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» Definition 7. The convolution of functions f and g is

(f*g)(z) = /_Oo f(2)g(z — 2)dz.

Critically, the Fourier transform of a convolution is the product of the convolved functions’
Fourier transforms.

» Theorem 8 ([14] section 7.1 property c).

o — ~

(f*9)(y) = fly)-a(y).

We will also need the following theorem to derive unbiased estimators for the case of
Laplace noise.

» Theorem 9 ([14] section 7.8 Example 5). For any tempered distribution f, the Fourier
transform of its k'™ derivative f*®) is f0) = (2riy)* f.

With the query ¢ and its privacy-preserving noisy estimate ¢, we say that an estimator g
is unbiased for f(q) if

f(a) = E[g(q)lq]- (1)

By conditioning on the true query value, g, we treat the database as fixed. Our estimators,
then, are unbiased with respect to the randomness in the 0-centered noise being added for
privacy. Throughout the rest of this paper, all expectations are conditional on g unless
otherwise noted and we suppress the extra conditioning notation so that E[.] = E[.|¢].

Let the noise added for privacy be independent of the database and denote its PDF by r.
The deconvolution method, as seen, for example, on page 185 of [15], starts by noting that if
¢ is unbiased for f(g), then Equation 1 can be reexpressed in terms of a convolution:

o0
£ =Blg@) = [ 9@r(a-0di=(g+ (o). )

—o0
With the unbiasedness equation in this form, Theorem 8 lets us Fourier-transform both sides
to turn the convolution on the right-hand side into a simple multiplication. Finally, we
simply solve for the Fourier transform of ¢ in terms of the Fourier transforms of f and r and
inverse-Fourier-transform the result. Formally,

7(y)

assuming the existence of all the involved Fourier and inverse Fourier transforms.

F@) = (9+7)(@) = F) = dw)i) = o) = 1Y s g@)= [f (”} (@, )

3 Unbiased Estimation with Laplace Noise

A standard mechanism for differential privacy perturbs the query with Laplace noise scaled
to the global sensitivity of a query, which is the maximum difference between the query
values on neighboring databases. That is, to achieve (¢,0)-DP when releasing the value of a
query ¢ with global sensitivity A, we can simply release ¢ + Lap(0, %) [6].

Our primary contribution is deriving unbiased estimators for functions of ¢ when we only
have access to the value of ¢ + Lap(0,b), for some noise scale parameter b. These estimators
are unique (up to their values on a set of measure zero).
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» Theorem 10.

Let ¢ ~ g + Lap(0,b).
For any twice-differentiable function f : R — R that is a tempered distribution, f(q) —
b2f"(§) is an unbiased estimator for f(q).
For any function f : R = R, if two estimators g1(q) and g2(G) are unbiased for f(q), then
g1 and go are equal almost everywhere.

Proof. See Appendix B of this paper’s full version, linked to on the title page. <
Some examples of unbiased estimators are given below.

» Example 11.

1. Any power function f(q) = ¢* has unbiased estimator % — b?k(k — 1)G*~2. In particular,
for f(q) = cq for any constant ¢, the unbiased estimator is also ¢g. Section 3.1 of [11]
derives this estimator in the form of a recursive algorithm. We contribute the closed form
here to simplify computation and facilitate intuitive understanding.

2. Within the set of twice differentiable functions f that are tempered distributions, The-

orem 10 allows us to determine which functions are unbiased estimators of themselves.
When f(q) is unbiased for f(g), we have E[f(9)] = E[f(q) - 1" (a)] — E[f"(@)] = 0.
By the second part of Theorem 10 and the unbiasedness of the zero function for zero,
this implies f”(x) = 0 almost everywhere, so f(x) must be linear. The naive plug-in
estimator, then, is biased for any nonlinear function in this class. This highlights the
usefulness of Theorem 10.
We can similarly characterize the f whose unbiased estimators are simply linear trans-
formations of the plug-in estimator — that is, f for which E[af(g) + 5] = f(g) for some
a, 3 € R. By Theorem 10, these functions satisfy E[af(§) + 8] = E[£(§) — b*f"(§)], and
so satisfy af(z) + 8 = f(z) — b2 f"(x) almost everywhere. When « # 1, solutions to this
differential equation take the form*

\/ﬁ l—a /6

f@)=cre 7 “4ce " v T4 ——.

Using Euler’s formula, we can see that tempered distributions in this class include
functions of the form f(z) = ccos(uz) and f(x) = csin(ux). Nonetheless, this is still a
rather restricted class of functions.

» Remark 12. When the function f is not twice differentiable but is a tempered distribution,
an analog of Theorem 10 holds. This relies on the use of an alternative notion of the derivative
that applies to all tempered distributions — the distributional derivative. For background on
this derivative concept, see Appendix A of this paper’s full version.

In this case, we still have E[f(§)] — E[b?f"(§)] = f(q), but the distributional derivative
f" is a tempered distribution which is not a function. This does not give us an unbiased
estimator, but instead we can rearrange to obtain the bias, as a function of ¢, of the naive
plug-in estimator f(§):

B @]~ f0) =B S"@] = 5 [ 70+ 0 n

4 The case where & = 1 and B = 0 is dealt with above.
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For example, let f(z) = |z|, f'(z) = —1 for x <0 and 1 for z > 0 (the discontinuity at
0 is irrelevant since {0} is a set of measure 0). Then f”(x) = 26(z), where ¢ is the Dirac
delta function (defined in Example 29 in Appendix A of this paper’s full version). The bias
is simply g e~ lal/b = pe—lal/b,

Whether or not f is twice differentiable, Equation 4 suggests the intuition that the plug-in
estimator will have greater bias when f has greater curvature near the true query value q.

4  Extension to Functions that are not Tempered Distributions

If the function g — f(q) is not a tempered distribution, we can often bound the domain such
that it is continuous and twice-differentiable in that domain. That is, suppose we know a
priori that ¢ > L for some lower bound L € R. This is often the case in differential privacy,
as DP-protected queries are commonly sums of nonnegative variables. Likewise, counts can
often be lower bounded by 1. Then, suppose we replace the function f with some function

7 fla) ¢=1L
= 3 5

/) {Mw q<L ©)
where h(L) = f(L) and h is twice differentiable with hA'(L) = f/(L) and (L) = f"(L). The
function f is thus twice differentiable. Assuming that h(q) and f(q) and their derivatives
grow no faster than a polynomial as, respectively, ¢ =+ —oo and ¢ — oo, [ is a tempered
distribution, as well. We can then apply Theorem 10 to get an unbiased estimator of f, i.e.

E [f(@) - v*f"(@)] = f(a). (6)

With the assumption that ¢ > L, we have f(¢q) = f(q), making this estimator unbiased for
f(q), as well.

» Example 13. For f(q) = % and L = 1, we need to find some function h such that
h(1) =1,K (1) = —1,h"(1) = 2. An example of such a function is h(q) = 1—(¢—1)+(¢—1)>.
We can generically use polynomials for h whenever f grows at most polynomially as ¢ — oo
and is twice differentiable for ¢ > L.

We now focus on optimizing this method over polynomial extensions for a particular
function of interest: f(q) =1/q.

4.1 Unbiased Estimation for f(q) = 1/q

We have shown that it is possible to construct a function that permits unbiased estimation
as long as it is twice differentiable on some domain that the true query value is known to be
in, and, if this domain is unbounded, as long as the function does not grow too quickly. In
this section, we show how to optimally choose the function h in the above construction.
We restrict ourselves to polynomial functions h for two reasons. First, the solution among
polynomials of fixed degree is efficiently computable. Second, when the optimal function h is
a twice continuously differentiable tempered distribution, polynomials can approximate this
function arbitrarily well, in the sense that the expected squared error of the polynomial-based
estimator can be made arbitrarily close to optimal. This follows from Theorem 14.

» Theorem 14 (Polynomial approximation). Let L € R and let f : [L,00) — R be twice
differentiable and a tempered distribution. Let u be a probability measure such that the integrals
I fl@)eL=D7bdp(q) and [;° eL=D/*du(q) exist and are finite. With w : (—oo, L] — R, let
flw] denote the function

; {ﬂ@ q>L

flle) = o 027 (7
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Let h : (—oo, L] — R be an arbitrary twice continuously differentiable tempered distribution
that satisfies h(L) = f(L), h'(L) = f'(L) and h"(L) = f"(L). Denote the estimator
g = f[h] — b2f[h])" and denote its expected squared error by

o= [ ) - r@)? e auto. ®)

There exists a sequence of polynomials (pr)$8_, over (0o, L] that satisfy px (L) = f(L),
P (L) = f/(L) and p% (L) = f"(L) such that the sequence of associated estimators gx =
Flpic] - B Flpx]” satisfies

(oo} (oo}
i [ [ (o) - £@) g o dula)ds = . 9)

K—oo J_ o JL 2b

See Appendix C of this paper’s full version for a proof.

Now, letting h be a polynomial, suppose our estimator is g(z) = f(x) — b*f"(x) for f
defined in Equation 5. For our error metric, we consider the estimator’s expected squared
error, with the expectation taken over both the privacy noise and prior beliefs about ¢,
reflected in the probability measure u. We define our estimator as the solution to the
following constrained optimization problem:

win [ [ () - 027 @) - £@)° e dulapia (10)
/ / — b f"(x )—f(q))22%e"w‘q'/"du(Q)dir

1
+m1n/ / (9))° %e(z_q)/bd,u(q)da:

subject to h(L) = f(L),h'(L) = f'(L), and " (L) = f"(L).

Since the first double integral is constant with respect to h, optimizing this error metric
is equivalent to optimizing

L s}
min [ [ (al) = 1)) g5 bdutayi. (11)

subject to the same constraints.

For simplicity, we shall now treat g as a function with domain (—oo, L], as that is
the only region on which we are optimizing, so g(z) = Zfzoa x*. There is a one-to-
one correspondence between polynomials g(z) and polynomials h(z ) Z o biz® where
a; = by — b2(i + 2)(i 4+ 1)b; 2. Thus, we are considering extensions of f(q) where the part to
the left of the lower bound L is a polynomial.

» Theorem 15. For any positive integer k, any real number L € R, and any function f
which is twice differentiable on [L,0), there is an algorithm that runs in time poly(k) which
computes the polynomial g that minimizes

L 9] 9 1
|| 6@ = r@)? et antayaa

over polynomials of degree k, satisfying the constraints g(z) = h(x) — b*h"(z), h(L) =
f(L), (L) = f'(L), and k" (L) = f"(L).
Proof. See Appendix C.1 of this paper’s full version, linked to on the title page. <
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» Corollary 16. Provided that the optimal choice of h is a twice continuously differentiable
tempered distribution, there exists an efficient algorithm to approximate the optimal unbiased
estimator of f(q) given ¢+ Z for Z ~ Lap(0,b) and the prior knowledge that ¢ > L.

This follows immediately from the fact that optimizing g also optimizes f(q).

Note that this result can be easily extended to the cases where we have only an upper
bound or both an upper and lower bound. If we only have an upper bound, everything works
out exactly the same as if we only have a lower bound. If we have both, suppose we know
that ¢ € [L, U] and define

B hO (Q) q > U7
fla)=q fla) Uzq=1L, (12)
hi(q) qg<L.
Then the expected error (with the expectation over both the privacy noise and the prior
on q) is
£ 2 1 2
Eq,m~q+Lap(O,b) |:<f<$) —b f (‘T) - f(Q)) ] (13)

0 U
= [ @ =2Fw - ) g gy

Just like before, the error incurred by f (x) on L <z < U is not affected by our choice of
functions. Thus, we wish to compute

L U
min [ [ (@) =0 () = £(0)* gV )i (14)

oo U
+/U /L (ho(z) — b°h{(z) — f(q))2 %be"w’q”bdu(q)dx.

Since there is no interaction between hg and hi, we can minimize these integrals inde-
pendently in the same way as above.

5 Numerical Results: Application to Mean Queries

In this section, we illustrate the utility of our results by numerically comparing two mechanisms
designed to return unbiased estimates of the sample size n and the mean m of an attribute
¢ € [0,1] in the database D. Sample sizes are published alongside any reported means in
most research applications, making this a realistic use case. One mechanism, My, returns an
unbiased estimate of the mean using the results from Section 4.1. The other, Mgsg, uses the
unbiased mean mechanism from [12] (see their Theorem D.6 and proof). To the best of our
knowledge, this is the only published unbiased mechanism for means when the sample size is
not treated as known. Both mechanisms use the Laplace mechanism with privacy budget ¢;
to obtain the noisy sample size n. Each mechanism then allocates a separate privacy budget
€2 to obtain a noisy mean. Both mechanisms have a total privacy budget of € = €1 + €.

Denote attribute ¢ of record r by r.c and let g(g;k, L) be the unbiased estimator of
1/q from Section 4.1 with the generic query ¢ and polynomial extension of order k for
q < L. Algorithm 1 lays out M. This algorithm applies the Laplace mechanism to the sum
5 =),cpr-cand forms an unbiased estimate my of the mean m = s/n by multiplying the
noisy sum § by g(n; k, L). This is unbiased for m as long as n > L.
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For n > L, the variance of Algorithm 1 is

Vimy] = (B[] + VIs) Elg(h; k, L) + Vig(a: k, L)) — E[5] E[g(; K, L)) (15)
= (s + 2/ &) (E[L/n] + Vig(isk, L)]) - 5*/n’. (16)

For this section’s numerical results, we calculate V[g(7; k, L)] numerically. Finally, we note
that it is straightforward to show that all moments of /iy exist and are finite.

Algorithm 1 My

1: procedure MEANPOSTPROCESS(Database D, sample size privacy budget €;, mean
privacy budget €3, polynomial order k, sample size lower bound L)

2 nepl

3 7+ Lap(n,1/e;)

4 54 ,ephcC

5: 5« Lap(s,1/e2)

6: 0« g(n; k, L) (Unbiased estimator of 1/n for n > L)

7 my < §0

8: output (7, my)

9: end procedure

Let T3 denote a random variable distributed according to a standard ¢ distribution with
3 degrees of freedom. Mgy is laid out in Algorithm 2. This algorithm first forms a version
mgg of the mean query that simply equals 1 if n = 0. It then scales the noise variable T3 in
proportion to an upper bound on the query’s smooth sensitivity [12]. The final noisy mean
mgg is obtained by simply adding the scaled noise variable to mgg.

The scaling factor for the noise is 7 max(e=#»~1) 1/ max(n, 1)), where 7 and 3 satisfy
€3 = 48 +2/(v/37). The standard ¢ distribution with d degrees of freedom has variance
d/(d — 2) giving mgg a variance of

V[mss] = 372 max(e_ﬁ("_l), 1/ max(n, 1)) (17)

Because the ¢ distribution is symmetric, this mechanism is unbiased for s/n as long as n > 1.

Unlike g, however, the third and higher moments of mgg are infinite or do not exist. This
is due to the t distribution’s very fat tails and implies that mgg is more liable than my to
produce extreme outliers.

Algorithm 2 Mgs.

1: procedure MEANSMOOTHSENS(Database D, sample size privacy budget €;, mean
privacy budget ez, noise parameters 3, 7 satisfying e; = 48 + 2/(1/37))

2: n . epl

3 7+ Lap(n,1/e;)

4 54 ,epthC

5: mgs + ifn >1: s/n else: 1

6 msgg + mo + T3 - Tmax(e_ﬁ(”_l), 1/ max(n, 1))

7 output (7, mgss)

8: end procedure

In our numerical evaluation of these mechanisms, we fix ¢, = e = m = .5 for both
mechanisms. For Mgg, we follow [12] in setting 8 = e3/12 and 7 = v/3/e5. For My, we set
L =1 so that both mechanisms are unbiased for n > 1 and set k = 10.
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9

With these settings, we compare the standard deviations (SDs) of the two mechanisms
mean estimates for a range of sample sizes. Because the mechanisms are unbiased, this is
equivalent to their root mean squared error. The sample size estimates of both mechanisms
are the same, so we do not report their properties.

Figures 1 and 2 plot the mechanisms’ SDs as functions of n, with Figure 2 zooming in
on larger values of n for clarity. It is immediately clear that the My has a larger SD than
Mgs for n < 13, and that this pattern reverses for larger n. For n < 19, however, both
mechanisms have SDs greater than 1, making both unfit for most purposes at these sample
sizes, given that the mean m has the domain [0,1].

Figure 3 shows the relative SD - that is, the ratio SD(Mgg)/SD(My) - as a function of
n. For n > 13, the relative SD rises to a peak near 15 before settling down to an apparent
constant of about 1.9 for n > 115.

Ultimately, My appears to be the better mechanism for this setting; for any sample size
where either mechanism returns useful results, My has a substantially lower SD. The thinner
tails of My also recommend it as the better choice.

Standard Deviation by Mechanism as Function of n

— Mss

5 My
20
15

10

Standard deviation

0 0 100 150 200 30 300
n

Figure 1 Standard deviations of the mechanisms Mgs and My for a mean of n records in [0,1].
The mean is fixed at .5 and the mechanisms have a privacy budget of e; = .5.

Standard Deviation by Mechanism as Function of n

—_— Mss
0z0 My

=
=
n

Standard deviation
(=]
=
=]

=
1=}
o

0.00

100 150 200 250 300
n
Figure 2 Same as Figure 1, zoomed in to larger values of n (see the horizontal axis endpoints).
Standard deviations of the mechanisms Mgs and My for a mean of n records in [0,1]. The mean is
fixed at .5 and the mechanisms have a privacy budget of e = .5.
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Relative Standard Deviation (SD{Mss)/SD(My))

14

10

SDiMss)/SDIMy)

0 0 100 150 200 50 300
n

Figure 3 Standard deviation of Mgs divided by the standard deviation of My for a mean of n
records in [0,1]. The mean is fixed at .5 and the mechanisms have a privacy budget of ez = .5.

6 Application to Slowly Scaling PRDP

In this section, we use our estimators to develop versions of unbiased privacy mechanisms
from [8] that enjoy stronger privacy guarantees. Our estimators allow us to do so while
maintaining the mechanisms’ unbiasedness.

(e,0)-DP guarantees the upper bound € on the privacy loss between any pair of neighboring

databases. [8] develops mechanisms for a related privacy concept, per-record DP (PRDP) [13].

PRDP generalizes (€,0)-DP by letting the privacy loss bound be a function of the record on
which a given pair of neighbors differs. Semantically, this allows different records to have
different levels of protection.

Denote a record in the database D by r and denote r’s attribute ¢ by r.c € [0, 00).

PRDP was originally motivated by the need to protect data used to compute the sum
query (D) =, .cpr-c. Because the domain of ¢ is unbounded, this sum can change by
an arbitrarily large amount when a record is added or deleted. That is, the sum’s global
sensitivity is infinite. This prevents commonly used privacy mechanisms, such as the Laplace
mechanism, from providing a differential privacy guarantee with finite e.

The traditional fix for this is to clip attribute ¢ to lie in a bounded set before taking the
sum. (€, 0)-DP can then be guaranteed by perturbing the sum with noise scaled in proportion
to the width of the clipped data’s domain. Unfortunately, when the sum is dominated by a
small number of large outliers, the outliers typically need to be clipped to drastically smaller
values to preserve a reasonable balance of privacy loss and noise variance. This can induce
catastrophic bias, rendering the clipped sums essentially useless. One might expect to see
this type of behavior with income data, for example.

PRDP allows us to take a finer look at the privacy-utility tradeoff by recognizing that,
even though outliers may suffer extreme privacy loss, the rest of the dataset may still enjoy
strong privacy protections. Intuitively, a particular record’s privacy loss is proportional only
to the amount by which the addition or deletion of that record can change the query. Queries
may be highly sensitive to the presence of outliers while being relatively insensitive to typical
records, leading different records to have different levels of privacy loss. The reassurance that
the vast majority of the data may enjoy strong privacy guarantees whether or not the data
is clipped may allow a data curator to reasonably decide against clipping if the resulting bias
outweighs the enhanced privacy protection for a small number of records.

Below, we define PRDP.
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» Definition 17 (P-Per-Record Differential Privacy (P-PRDP) [13, 8]). Let © denote the
symmetric set difference. The mechanism M satisfies per-record differential privacy with the
policy function P (P-PRDP) if, for any record r; any pair of neighboring databases D, D’
such that D & D' = {r}; and any measurable set of possible outcomes S, we have

Pr[M(D) € 8] < ") . PrM(D') € ).

Ensuring strong privacy protection corresponds to ensuring that P is, in some sense,
small. (¢,0)-DP is recovered by making the constant privacy guarantee P(r) = e for all r,
and strong privacy protection follows from a small e. We cannot always make a guarantee
this strong. Take the example where we want to publish a sum query on an unbounded
attribute ¢ that we are unwilling to clip. In this case, the privacy loss of the mechanisms that
we will consider here is growing in r.c. Even though we cannot prevent P(r) from growing
without bound in r.c, we can use mechanisms for which the growth rate is slow. [8] call such
mechanisms “slowly scaling.” A slowly growing P narrows the gap in privacy losses between
records with large and small values of ¢, letting a data curator more easily provide a desired
level of protection for the bulk of the data without compromising too much on the privacy of
outliers.

[8] introduces slowly scaling mechanisms, called transformation mechanisms, that work by
adding Gaussian noise to a concave transformation f of the query (plus offset term) ¢(D)+a
and then feeding the noisy value of f(g(D) + a) to an estimator g of ¢(D). By adding
Gaussian noise, these mechanisms satisfy per-record zero-concentrated DP (PRzCDP), which
is a weaker privacy guarantee than PRDP. PRzCDP relates to zero-concentrated DP [4, 7] in
the same way that PRDP relates to e-DP. The use of Gaussian noise also allowed [8] to draw
on existing unbiased estimators from [16] to make their mechanism unbiased for a variety of
transformation functions f.

Using the unbiased estimators from Theorem 10, we strengthen the transformation
mechanisms to provide PRDP guarantees by adding Laplace, rather than Gaussian, noise,
and we do so without losing the mechanism’s unbiasedness. Algorithm 3 lays out our
transformation mechanism.

Algorithm 3 PRDP Transformation Mechanism.

1: procedure TRANSFORMATIONPRIVATIZELAP(Private query answer g(D), offset para-
meter a,
scale parameter b, transformation function f : [a,00) — F C R, estimator g : F — G C
R)

v f(g(D)+a)

? + Lap(v, b)

S g(9)

output S
end procedure

To obtain the PRDP guarantee of Algorithm 3, we first need to define the per-record
sensitivity [8], a record-specific analog of the global sensitivity.

» Definition 18 (Per-Record Sensitivity [8]). The per-record sensitivity of the univariate,
real-valued query q for record r is

Ar) = sup lg(D) — (J(Dl)|~
D,D’ such that DOD’'={r}
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Theorem 19 gives our most generic result on the PRDP guarantees of Algorithm 3.

Theorems 19 and 20, their proofs, as well as Algorithm 3 are minimally modified from
their analogs in [8], which use Gaussian, rather than Laplace noise. This is to facilitate the
interested reader’s comparison of our results with theirs.

» Theorem 19 (PRDP Guarantee for Transformation Mechanisms). Assume the query value
q(D) € [0,00); the offset parameter a € R; the noise scale parameter b € (0,00); the
transformation function f : [a,00) = F C R is concave and strictly increasing; and the
estimator g : F — G C R. Denote by Af(r) the per-record sensitivity of the query f(q(D)+a),
as defined in Definition 18. Algorithm 3(q(D),a,b, f,g) satisfies P-PRDP for P(r) = AfT(T).

See Appendix D of this paper’s full version (linked to on the title page) for the proof.

Probably the most common query encountered in applications of formal privacy, even
as a component of other, larger queries, is the sum query. We now use the above result to
derive the policy function for the transformation mechanism applied to a sum query.

» Theorem 20 (Privacy of Transformation Mechanisms for Sum Query). Let the assumptions
of Theorem 19 hold, and further assume a > 0 and r.c > 0 for all records r. For the sum
query q(D) = >, . r.c, the per-record sensitivity of f(q(D)+a) is Af(r) = f(r.c+a) — f(a)
and Algorithm 3(q(D),a,b, f,g) satisfies PRDP with the policy function P(r) = [f(r.c+a)—
f(a)]/b.

See Appendix D for the proof.

Critically, the policy function from Theorem 20 grows in r.c more slowly when the
transformation function f grows more slowly. In the case where a = 0 and f(z) = {/« for
some k > 1, the policy function is simply /r.c. Choosing larger values of k, then, forces the
privacy loss to grow more slowly in r.c, reducing the gap in privacy losses between records
with large and small values of c.

Applying our main results, we can obtain estimators such that the transformation
mechanism gives us an unbiased estimate of ¢(D). In particular, polynomials® are twice
differentiable functions which are tempered distributions, so the following holds for f(z) = &/x:

» Corollary 21. Given any function f such that f~' satisfies the conditions in Theorem 10,
a €R, b e (0,0), estimator g: F — G C R, and r.c > 0 for all records r, there exists an
unbiased estimator for q(D) satisfying P-PRDP for P(r) = [f(r.c+ a) — f(a)] /b.

Proof. The conditions for Theorem 20 hold, and Theorem 10 gives us a function g such that
E[g(?)] = q(D) + a is an unbiased estimator for f~!. Therefore, g(¥) — a is an unbiased
estimator for ¢(D). <

7 Polynomial Functions under General Noise Distributions

Additive mechanisms other than the Laplace mechanism, such as the discrete Gaussian or
the staircase mechanisms, may be preferable in practice due to achieving higher accuracy
while having similar privacy loss [5, 10]. In contrast to the Laplace case, these mechanisms
may not admit tractable Fourier transforms, and hence unbiased estimators are generally
not available in closed form. One exception is when the query of interest is a polynomial in
one or many queries.

5 In the case of polynomials, [11] derived unbiased estimators which could also be used here. The estimator
obtained from our Theorem 10 merely simplifies computation in this setting.
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Using the following results to obtain an unbiased estimator of a polynomial that approx-
imates a non-polynomial estimand may also allow users to obtain approximately unbiased
estimators with great generality.

» Theorem 22. Suppose a mechanism takes as input ¢ € R and outputs § = q+ Z for a
random variable Z with at least p finite, publicly known moments. If f(q) is a polynomial
in q of degree at most p, there exists an unbiased estimator g(q) of f(q), which is itself a
polynomial of degree at most p and is available in closed form.

Proof. Suppose f(q) = >.?_,b,q". Let us find an unbiased estimator of the form g(q) =
>y ang’. We have

"\ (n “k
g(q+2) :Zanz (k)qkz” k. (18)
n=0 k=0
Denote u, = E[2"] and take expectations to obtain
p "
Elglg+2)] =Y an (k) q" pn—k (19)
n=0 k=0
" /n " /n " /n
— 2

For this polynomial to be equal to f, we need a = (ao,...,a,) to solve Ma = b, where

b= (by,...,bp) and
Mo M1 M2 M3 e Hp
8 (})Olio (i)ﬂl (i)uz (g)ﬂpﬂ
u=lo o ST e o
o 0 0 0 () to
Clearly, M is nondegenerate, and so the desired coefficients a exist and are unique. |

We now extend this result to polynomials in multiple (univariate) queries, assuming
that the noise variables added to each query are independent. The latter assumption, while
seemingly restrictive, is typical for additive noise mechanisms in differential privacy.

» Theorem 23. Suppose a mechanism takes as input (q1,...,qm) and outputs (G1,...,Gm) =
(1 + Z1,q2 + Za, ... ,qm + Zy,) for independent random variables Z1,. .., Z,, with finite,
publicly known moments. If f(q1,...,qm) s a polynomial in (q1,...,qm), there exists an

unbiased estimator g(Gi, ..., 4m) of f(q), which is itself a polynomial available in closed form.

Proof. Clearly, it suffices to derive unbiased estimators for f(qi,...,qm) = [[1~, ¢.". Let
9i(G;) be the unbiased estimator of ¢¥* as in Theorem 22 and set g(G1, ..., Gm) = [[1; 9:(Gi)-

Since ¢1(¢1), - - -, gm(Gm) are independent random variables, we have

Elg(G,---Gm)] =E Hgi(qi)] =[[Elg:(@)] =& = flar,-- - am). (22)
=1 i=1 =1

<
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8 Conclusions and Future Work

In this work, we have shown how to compute unbiased estimators of twice-differentiable
tempered distributions evaluated on privatized statistics with added Laplace noise. In
addition, we have proposed a method to extend this result to twice-differentiable functions
which are not tempered distributions in a way that achieves approximately optimal expected
squared error.

As the Laplace mechanism is simple and commonly used, these results are widely applicable
to obtain unbiased statistics for free in postprocessing, which is particularly valuable due to
the fact that aggregating unbiased statistics accumulates error more slowly than aggregating
biased statistics. We have applied our results to derive a competitive unbiased algorithm for
means and to derive unbiased transformation mechanisms for per-record DP mechanisms
that enjoy stronger privacy protection than do analogs in previous work. Finally, we have
derived an unbiased estimator for polynomials under arbitrary noise distributions with known
moments, such as the discrete Gaussian mechanism or the staircase mechanism [5, 10].

We believe this paper opens several avenues for future research. These include the use
of the deconvolution method to obtain unbiased estimators for other estimands and noise
distributions. We believe a deconvolution method using multivariate Fourier transforms could
also be used to obtain unbiased estimators of functions of multivariate queries. Although we
did not attempt to optimize the numerical implementation in Section 5 of the integration
in Section 4, we believe that an improved implementation could enable the practical use of
higher-order polynomial extensions and further reduce error. In Section 7, we developed
estimators that are exactly unbiased for polynomials that could approximate other functions
of interest. Further work could elaborate on this process, developing concrete procedures for
picking the approximating polynomial and deriving bounds on the resulting bias. Finally,
future work could attempt to derive noise distributions that are optimal in the sense of
minimizing the variances (or other utility metrics) of their unbiased estimators.
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