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Abstract
Predefined demographic groups often overlook the subpopulations most impacted by model errors,
leading to a growing emphasis on data-driven methods that pinpoint where models underperform.
The emerging field of multi-group fairness addresses this by ensuring models perform well across a
wide range of group-defining functions, rather than relying on fixed demographic categories. We
demonstrate that recently introduced notions of multi-group fairness can be equivalently formulated
as integral probability metrics (IPM). IPMs are the common information-theoretic tool that underlie
definitions such as multiaccuracy, multicalibration, and outcome indistinguishably. For multiaccuracy,
this connection leads to a simple, yet powerful procedure for achieving multiaccuracy with respect
to an infinite-dimensional class of functions defined by a reproducing kernel Hilbert space (RKHS):
first perform a kernel regression of a model’s errors, then subtract the resulting function from a
model’s predictions. We combine these results to develop a post-processing method that improves
multiaccuracy with respect to bounded-norm functions in an RKHS, enjoys provable performance
guarantees, and, in binary classification benchmarks, achieves favorable multiaccuracy relative to
competing methods.
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1 Introduction

Machine learning (ML) models can be inaccurate or miscalibrated on underrepresented
population groups defined by categorical features such as race, religion, and sex [3]. Equitable
treatment of groups defined by categorical features is a central aspect of the White House’s
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“Blueprint for an AI Bill of Rights” [23]. Over the past decade, hundreds of fairness metrics
and interventions have been introduced to quantify and control an ML model’s performance
disparities across pre-defined population groups [12, 24]. Examples of group-fairness-ensuring
interventions include post-processing [21, 25, 2] or retraining [1] a model.

Although common, using pre-determined categorical features for measuring “fairness” in
ML poses several limitations. Crucially, we design group attributes based on our preconception
of where discrimination commonly occurs and whether group-denoting information can be
readily measured and obtained. A more complex structure of unfairness can easily elude
group-fairness interventions. For instance, [26] demonstrates that algorithms designed to
ensure fairness on binary group attributes can be maximally unfair across more complex,
intersectional groups – a phenomenon termed “fairness gerrymandering.” Recently, [31]
shows that group fairness interventions do not control for – and may exacerbate – arbitrary
treatment at the individual and subgroup level.

The paradigm of fairness over categorical groups is an instance of embedded human bias
in ML: tools are developed to fit a pre-defined metric on predefined groups, and once a
contrived audit is passed, we call the algorithm “fair.” Defining groups by indicator functions
over categorical groups is not expressive enough, and the most discriminated groups may not
be known a priori. This fact has fueled recent calls for new data-driven methods that uncover
groups where a model errs the most. In particular, the burgeoning field of multi-group
fairness, and definitions such as multicalibration and multiaccuracy [22, 28, 9], are important
steps towards a more holistic view of fairness in ML, requiring a model to be calibrated on a
large, potentially uncountable number of group-denoting functions instead of pre-defined
categorical groups [22].

Multi-group fairness notions trade the choice of pre-determined categorical features for
selecting a function class over features. Here, the group most correlated with a classifier’s
errors (multiaccuracy) or against which a classifier is most miscalibrated (multicalibration) is
indexed by a function in this class. [22] describes the class as being computable by a circuit
of a fixed size. More concretely, [28] and [15] take this class to be linear regression, ridge
regression, or shallow decision trees.

We build on this line of work by considering a more general class of functions given by a
Reproducing Kernel Hilbert Space (RKHS), defined on an infinite-dimensional feature space
[38]. In fact, an RKHS with a universal kernel is a dense subset of the space of continuous
functions [39]. Surprisingly, by leveraging results from information and statistical learning
theory [33, 37], we show that the multi-group fairness problem in an RKHS is tractable:
the most biased group has a closed form up to a proportionality constant. This leads to an
exceedingly simple algorithm (KMAcc, Algorithm 1), which first identifies the function in
the RKHS that correlates the most with error y − f(x) (called the witness function), and
then improves multiaccuracy by subtracting this function from the original predictions. As
an example, Figure 1 illustrates that the error of a logistic regression model on the Two
Moons synthetic dataset shows a strong correlation with the witness function values.

The main contributions of this work include:
1. We show that multiaccuracy, multicalibration, and outcome indistinguishability are

integral probability metrics (IPMs), a well-studied family of statistical distance measures.
When the groups or distinguishers lie in an RKHS, these IPMs have closed-form estimators,
characterized by a witness function that achieves the supremum.

2. We introduce a consistent estimator for multiaccuracy, which flags the most discriminated
group in terms of a function in Hilbert space, effectively revealing the previously unknown
group that suffers the most from inaccurate predictions.
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Figure 1 Witness function values are highly correlated with errors of the model. Left: Visu-
alization of the moon dataset, with the logistic regression classifier decision boundaries displayed.
Middle: Witness function values (Definition 10 with rbf kernel) c⋆

k,D0,f is plotted as a contour
under the error of the classifiers on test samples y − f(x). The colored dots denote the error for
each test sample y − f(x). For samples where the model is most erroneous (dark green and dark
purple dots), the predicted witness values are high (dark contour underneath). Right: The error
y − f(x) is plotted against the witness values c⋆

k,D0,f , with a Pearson correlation coefficient of 0.828.

3. We propose an algorithm, KMAcc (Algorithm 1), which provably corrects the given
predictor’s scores against its witness function. Empirically, our algorithm improves
multiaccuracy and multicalibration after applying a standard score quantization technique,
without the need for the iterative updates required by competing boosting-based models.

4. We conduct extensive experiments on both synthetic and real-world tabular datasets
commonly used in fairness research. We show competitive or improved performance
compared to competing models, both in terms of multi-group fairness metrics and AUC.

1.1 Related Literature

Multiaccuracy and Multicalibration. Multiaccuracy and multicalibration, which emerged
from theoretical computer science, ensure fairness over the set of computationally identifiable
subgroups [22]. Multiaccuracy aims to make classification errors uncorrelated with subgroups,
while multicalibration additionally requires predictions to be calibrated. [22] and [28] ensure
multiaccuracy and multicalibration via a two-step process: identify subgroups with accuracy
disparities, then apply a transformation to the classification function to boost accuracy over
those groups – a method akin to weak agnostic learning [11]. Subsequent works [18, 17, 15]
connect multicalibration to the general framework of loss minimization, introducing new
techniques including reducing squared multicalibration error and projection-based error
corrections [15, 8]. Recent developments include online multicalibration algorithms across
Lipschitz convex loss functions [13] and via a game-theoretic approach [20]. In addition, [41]
adopts multicalibration for multi-dimensional outputs for fair risk control.

A common thread across work on multigroup fairness is to define subgroups in terms of
function classes instead of pre-determined discrete combinations of group-denoting features [28,
9, 18, 29]. Examples of such function classes include “learnable” classes (in the usual statistical
learning sense) [28] and the set of indicator functions [10]. Practical implementations of
multigroup-fairness ensuring algorithms include MCBoost [28], which uses ridge regression
and decision tree regression, and LSBoost [15], which uses linear regression and decision
trees. Here, we use both methods as benchmarks. Unlike prior work, we consider the class
of functions to be an RKHS and show that this class yields closed-form expressions for the
function that correlates the most with error, allowing an efficient multiaccuracy intervention.

FORC 2025
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Kernel-Based Calibration Metrics. Calibration ensures that probabilistic predictions are
neither over- nor under-confident [40]. Prior works have formulated calibration errors for
tasks such as classification [7, 34], regression [36], and beyond [40]. Calibration constraints
may be directly incorporated into the training objective of a model [30]. [30, 39, 32, 6] have
adopted RKHS as the class of functions to ensure calibration. We build on this prior work
and develop kernel-based metrics and consistent estimators focused on multi-group fairness.

Integral Probability Measures (IPMs). [9] introduces outcome indistinguishability to unify
multiaccuracy, multicalibration through a pseudo-randomness perspective – whether one
can(not) tell apart “Nature’s” and the predictor’s predictions. We provide an alternative
unifying perspective through distances between Nature’s and the predictor’s distributions.
As discussed in [9], outcome indistinguishability is closely connected to statistical distance
(total variation distance), which, in turn, is one instantiation of an IPM [33], an extensively
studied concept in statistical theory that measures the distance between two distributions
with respect to a class of functions. [37] provides estimators for IPM defined on various
classes of functions, which we apply to develop a consistent estimator for multiaccuracy.

1.2 Notation
We consider a pair of random variables X and Y , taking values in X and Y respectively, where
X denotes the input features space to a prediction task and Y ⊂ R the output space. Often,
we will take Y = {0, 1}, i.e., binary prediction. The pair (X, Y ) is distributed according to a
fixed unknown joint distribution (Nature’s distribution) PX,Y with marginals PX and PY .
In binary prediction, we refer to a measurable function f : X → [0, 1] as a predictor. The
predictor f gives rise to a conditional distribution QY |X=x(1) := f(x). We think of QY |X
as an estimate of Nature’s distribution, i.e., QY |X=x(1) ≈ PY |X=x(1). The induced joint
distribution for QY |X=x is denoted by QX,Y := PXQY |X ; this joint distribution QX,Y will
be referred to as the predictor ’s distribution. The marginal distribution PX is the same for
both QX,Y and PX,Y ; only the conditional distribution QY |X changes due to using f .

Given a measurable function c and a random variable Z ∼ P , we interchangeably denote
expectation by EP [c] = E[c(Z)] = EZ∼P [c(Z)] :=

∫
Z c(z)dP (z) depending on what is clearer

from context. If D is a finite set of i.i.d. samples, then we denote the empirical average by
ED[c] = EZ∼D[c(Z)] := |D|−1 ∑

z∈D c(z).

2 Multi-Group Fairness as Integral Probability Metrics

We show the connection between IPMs [33, 37] – a concept rooted in statistical learning theory
– and multi-group fairness notions such as multiaccuracy, multicalibration [22], and outcome
indistinguishability [10]. The key property allowing for these connections is that the multi-
group fairness notions and IPMs are both variational forms of measures of deviation between
probability distributions. IPMs give perhaps the most general form of such variational
representations, and we recall the definition next.

▶ Definition 1 (Integral Probability Metric [33, 37]). Given two probability measures P and
Q supported on Z and a collection of functions C ⊂ {c : Z → R}. We define the integral
probability metric (IPM) between P and Q with respect to C by

γC(P, Q) := sup
c∈C

|EZ∼P [c(Z)] − EZ∼Q [c(Z)]| . (1)
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▶ Example 2. IPMs recover other familiar metrics on probability measures, such as the total
variation (statistical distance) metric. Indeed, when C is the unit L∞ ball of real-valued
functions, i.e., C = {c : Z → R : supz∈Z |c(z)| ≤ 1}, then γC(P, Q) = TV(P, Q).

As the example above shows, the complete freedom in choosing the set C allows IPMs the
ability to subsume existing metrics on probability measures. We show that the expressiveness
of IPMs carries through to multi-group fairness notions. Later, in Section 3, we instantiate
our IPM framework for multiaccuracy to the particular case when C is the unit ball in an
infinite-dimensional Hilbert space, which then recovers another familiar metric on probability
measures called the maximum mean discrepancy (MMD) or kernel distance.

2.1 Multi-group Fairness Notions
We recall the definitions of multiaccuracy and multicalibration from [28, 29], where the
guarantees are parametrized by a class of real-valued functions C ⊂ {c : X → R}. We call C
herein the set of calibrating functions. Intuitively, multi-group notions ensure that c(X) for
every group-denoting function c ∈ C is uncorrelated with a model’s errors Y − f(X).

▶ Definition 3 (Multiaccuracy [28, 29]). Fix a collection of functions2 C ⊂ {c : X → R} and
a distribution PX,Y supported on X × Y. A predictor f : X → [0, 1] is (C, α)-multiaccurate
over PX,Y if for all c ∈ C the following inequality holds:

µ(c, f, PX,Y ) := |E [c(X)(f(X) − Y )]| ≤ α (2)

Multicalibration proposed by [22] requires the predictor to be unbiased and calibrated
against groups denoted by functions in C.

▶ Definition 4 (Multicalibration [22, 29, 8]). Fix a collection of functions C ⊂ {c : X × [0, 1] →
R} and a distribution PX,Y supported on X × Y. Fix a predictor f : X → [0, 1] such that
f(X) is a discrete random variable.3 We say that f is (C, α)-multicalibrated over PX,Y if
for all c ∈ C and v ∈ supp(f(X)):

|E [c(X, f(X))(f(X) − Y ) | f(X) = v]| ≤ α (3)

As discussed in [9], multi-group fairness constraints are equivalent to a broader framework
of learning called outcome indistinguishability (OI). The object of interest is the distance
between the two distributions – the ones induced by the predictor and by Nature.

▶ Definition 5 (Outcome Indistinguishability [9, 10]). Fix a collection of functions C ⊆ {c :
X × [0, 1] × Y → R} and a distribution PX,Y supported on X × Y. We say that a predictor
f : X → [0, 1] is (C, α)-outcome-indistinguishable if for all c ∈ C,∣∣E(X,Y )∼PX,Y

[c(X, f(X), Y )] − E(X,Y )∼QX,Y
[c(X, f(X), Y )]

∣∣ ≤ α,

where we define the induced distribution by the predictor QX,Y := PXQY |X for QY |X(1) :=
f(1).

Total Variation (statistical) distance, one instantiation of an IPM [33], provides sufficient
conditions for OI ([9]). We establish this broader connection next.

2 The range is [−1, 1] in [28] and R+ in [29]. We extend the range to R.
3 Alternatively, one can consider a quantization of f(X) such as done in [14].

FORC 2025
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2.2 Equivalence Between Multi-group Fairness Notions and IPMs
Since multiaccuracy, multicalibration, and outcome indistinguishability all pertain to finding
the largest distance between distributions with respect to a collection of functions, we can
unify them in terms of IPMs. First, we show that ensuring a predictor’s multiaccuracy with
respect to a set of calibrating functions C is equivalent to ensuring an upper bound on the
IPM between Nature’s and the predictor’s distribution with respect to a modified set of
function C̃, given explicitly in the following result.

▶ Proposition 6 (Multiaccuracy as an IPM). Fix a collection of functions C ⊂ L1(X ), and
let Y = {0, 1}. Fix a predictor f : X → [0, 1] inducing the distribution QX,Y . Denote the
modified set of functions

C̃ =
{

c̃ : X × Y → R
∣∣ c̃(x, y) = (−1)1−y · c(x)/2 for c ∈ C

}
. (4)

Then, for any α ≥ 0, the predictor f is (C, α)-multiaccurate if and only if the IPM between
Nature’s distribution and the predictor’s distribution is upper bounded by α:

γ
C̃
(PX,Y , QX,Y ) ≤ α. (5)

Proof. Let (ξ, Y ) be an identical copy of (X, Y ). Using the notation in (2) in the definition
of multiaccuracy (Definition 3), we have that for every c ∈ C

µ(c, f, PX,Y ) = |E [c(ξ)(f(ξ) − Y )]| (6)
= |E [E [c(ξ)(Y − f(ξ)) | ξ]]| (7)
=

∣∣E [
c(ξ)

(
PY |X=ξ(1) − QY |X=ξ(1)

)]∣∣ (8)

=
∣∣∣∣E [

c(ξ)
2 PY |X=ξ(1) − c(ξ)

2 PY |X=ξ(0)
]

(9)

−E
[

c(ξ)
2 QY |X=ξ(1) − c(ξ)

2 QY |X=ξ(0)
]∣∣∣∣ (10)

=
∣∣EPX,Y

[c̃] − EQX,Y
[c̃]

∣∣ , (11)

where c̃(x, y) := (−1)1−y · c(x)/2. By definition of multiaccuracy, we have that f is (C, α)-
multiaccurate if and only if supc∈C µ(c, f, PX,Y ) ≤ α. This is equivalent, by the above,
to having the IPM bound γ

C̃
(PX,Y , QX,Y ) ≤ α, where C̃ is as defined in the proposition

statement, i.e., it is the collection of modified functions c̃ as c ranges over C. ◀

Expressing multiaccuracy as an IPM bound will allow us to rigorously accomplish two
goals: 1) quantifying multiaccuracy from finitely many samples of PX,Y , and 2) correcting a
given predictor f to be multiaccurate. These two goals are the subject of Section 3. Similarly,
multicalibration and OI can be expressed as IPMs.

▶ Proposition 7 (Multicalibration as an IPM). Fix a collection of functions C ⊆ {c : X → R},
and let Y = {0, 1}. Fix a predictor f : X → [0, 1] inducing the distribution QX,Y . Moreover,
let ηy := (−1)1−y. Let d : [0, 1] → V ⊂ [0, 1], |V| < ∞ be a discrete, finite quantization of
[0, 1], where PX(d(f(X)) = v) > 0 for all v ∈ V. Define the set of functions

C̃v :=
{

c̃ : X × Y × V → R
∣∣∣∣ c̃(x, y, v) =

c(x)1f(X)=vηy

2PX(f(X) = v) for some c ∈ C

}
.

Then f is (C, α)-multicalibrated if and only if γ
C̃v

(PX,Y , QX,Y ) ≤ α for every v ∈ V.
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Proof. Let (ξ, Y ) be an identical copy of (X, Y ). Using the notation in the definition of
multicalibration (Definition 4), we have that for every c ∈ C, v ∈ V

E [c(ξ)(Y − f(ξ))|f(ξ) = v] (12)

=E
[

c(ξ)1f(ξ)=v

PX(f(ξ) = v) (PY |X=ξ(1) − QY |X=ξ(1))
]

(13)

=E
[

c(ξ)1f(ξ)=v

2PX(f(ξ) = v) (PY |X=ξ(1) − PY |X=ξ(0))
]

(14)

− E
[

c(ξ)1f(ξ)=v

2PX(f(ξ) = v) (QY |X=ξ(1) − QY |X=ξ(0))
]

(15)

=EPX,Y
[c̃] − EQX,Y

[c̃] (16)

where c̃(x, y, v) :=
c(x)1f(X)=vηy

2PX(f(X) = v) . ◀

▶ Proposition 8 (OI as an IPM). Let C ⊂ {c : X × [0, 1] × {0, 1} → R} be a collection of
functions, and fix a predictor f : X → [0, 1] inducing the distribution QX,Y on X × {0, 1}
via composing with PX . Define the set of function

C̃ = {c̃ : X × {0, 1} → R | c̃(x, y) = c(x, f(x), y) for some c ∈ C} . (17)

Then, for any α ≥ 0, f is (C, α)-OI if and only if γ
C̃
(PX,Y , QX,Y ) ≤ α.

Proof. From Definition 1, if γ
C̃
(PX,Y , QX,Y ) ≤ α,

γ
C̃
(PX,Y , QX,Y ) := sup

c̃∈C̃

∣∣E(X,Y )∼PX,Y
[c̃(X, Y )] − E(X,Y )∼QX,Y

[c̃(X, Y )]
∣∣ (18)

= sup
c∈C

∣∣E(X,Y )∼PX,Y
[c(X, f(X), Y )] (19)

−E(X,Y )∼QX,Y
[c(X, f(X), Y )]

∣∣ (20)
≤ α (21)

By Definition 5, f is (C, α)-OI. The other direction is analogous. ◀

3 Multiaccuracy in Hilbert Space

We develop a theoretical framework and an algorithm for quantifying and ensuring (C, α)-
multiaccuracy. We consider the group-denoting functions Ck to be the unit ball in an infinite-
dimensional Hilbert space, namely, an RKHS Hk defined by a given kernel k (Definition 9).
The proposed set of calibration functions Ck can easily exhibit and exceed the expressivity of
group-denoting indicator functions. Surprisingly, despite the expressiveness of Ck, we show
that the calibration function that maximizes multiaccuracy error, i.e. the witness function c⋆

k

(Definition 10), has a closed form – in contrast to when C is, for example, a set of decision
trees [15, 28]. This enables us to derive a procedure for ensuring multiaccuracy (KMAcc,
Algorithm 1).

FORC 2025
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3.1 Calibration Functions in RKHS and its Witness Function for
Multiaccuracy

Our choice of calibrating functions C is the set of functions with bounded norm in an RKHS.
First, recall that an RKHS can be defined via kernal functions, as follows4.

▶ Definition 9 (Reproducing kernel Hilbert space (RKHS)). Let H ⊂ {c : X → R} be a real
Hilbert space with inner product ⟨ · , · ⟩H, and fix a function k : X 2 → R. We say that H is a
reproducing kernel Hilbert space with kernel k if it holds that k( · , x) ∈ H for all x ∈ X and
⟨c, k( · , x)⟩H = c(x) for all c ∈ H and x ∈ X . We denote H by Hk if k is given.

We use the structure of the RKHS as our group-denoting functions. Thus, for a prescribed
multiaccuracy level α, we will need to restrict attention to elements of Hk whose norm satisfies
a given bound. To normalize, we choose the unit ball in Hk as our set of calibration functions,
i.e.

Ck := {c ∈ Hk : ∥c∥Hk
≤ 1} . (22)

We note that when the class of functions C is the unit ball in an RKHS, the induced IPM
γC(P, Q) is called the maximum mean discrepancy (MMD) [37].

Of particular importance are calibration functions c ∈ C that attain the maximal mul-
tiaccuracy error (the LHS of (2)). Such functions, called witness functions [27], encode the
multiaccuracy definition without the need to consider the full set C.

▶ Definition 10 (Witness function for multiaccuracy). For a fixed set of calibration functions
C ⊂ {c : X → R}, predictor f : X → [0, 1], and distribution PX,Y , we say that c⋆ ∈ C is a
witness function for multiaccuracy of f with respect to C if it attains the maximum on the
LHS in (2):

µ(c⋆, f, PX,Y ) = max
c∈C

µ(c, f, PX,Y ). (23)

While an RKHS can encompass a broader class of functions than shallow decision trees
or linear models, finding the function in the RKHS that errs the most (i.e., the witness
function as per Definition 10) is surprisingly simple. Firstly, it can be shown that for the
IPM γCk

(P, Q) (where Ck is the unit ball in Hk ⊂ {c : Z → R}), the function c ∈ Ck that
maximizes the RHS of (1) is in closed form, up to a multiplicative constant [19, 27]

c⋆(z) ∝ Eζ∼P [k(z, ζ)] − Eζ∼Q [k(z, ζ)] . (24)

By the connection between IPM and multiaccuracy, we can similarly find the closed form
of the witness function for multiaccuracy(Definition 10).

▶ Proposition 11 (Witness function for multiaccuracy). Given a the kernel function k : X 2 → R
and distribution PX,Y over X × {0, 1}. We assume that Hk ⊂ L1(X )5. Fix a predictor
f : X → [0, 1] satisfying E[k( · , X)f(X)] ∈ Hk. Then, there exists a unique (up to sign)
witness function for multiaccuracy of f with respect to Ck (as per Definition 10), and it is
given by

c⋆
k,f (x) := E [θ · (Y − f(X))k(x, X)] , (25)

where θ ∈ R is a normalizing constant so that ∥c⋆
k,f ∥Hk

= 1.

4 The characterizing property of a real RKHS is that it is a Hilbert space H of functions c : X → R for
which every evaluation map c 7→ c(x) is a continuous function from H to R for each fixed x ∈ X .

5 L1(X ) denotes the space of real-valued functions that are integrable against PX , i.e. L1(X ) :=
{c : X → R : E [|c(X)|] < ∞}.
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Proof. First, by continuity of the evaluation functionals on Hk, we obtain that hn(x) :=∑n
i=1 cik(xi, x) → c(x) pointwise for each x ∈ X as n → ∞ [4, Chapter 1, Corollary 1].

Let h(x) :=
∑∞

i=1 |cik(xi, x)|. Next, applying Proposition 6, (Ck, α)-multiaccuracy of f is
equivalent to the IPM bound γ

C̃
(PX,Y , QX,Y ) ≤ α, where C̃ and QX,Y are as constructed

in Proposition 6. Next, we use the definition of IPMs to deduce the formula for the witness
function.

We rewrite the function inside the maximization definition of γ
C̃

(PX,Y , QX,Y ) as an inner
product in H. Fix c as above. Then, with c̃(x, y) := (−1)1−yc(x)/2, we have that

2EPX,Y
[c̃] = EPX,Y

[
(−1)1−Y c(X)

]
(26)

= EPX,Y

[
(−1)1−Y ⟨c, k( · , X)⟩H

]
(27)

= EPX,Y

[
(−1)1−Y ⟨

∑
i∈N

cik(xi, · ), k( · , X)⟩H

]
(28)

= EPX,Y

[
(−1)1−Y

∑
i∈N

ci⟨k(xi, · ), k( · , X)⟩H

]
(29)

=
∑
i∈N

ci EPX,Y

[
(−1)1−Y k(xi, X)

]
, (30)

where (29) follows by continuity of the inner product and (30) by Fubini’s theorem since
Hk ⊂ L1(X ). The same steps follow for QX,Y in place of PX,Y , and subtracting the ensuing
two equations we obtain

EPX,Y
[c̃] − EQX,Y

[c̃] =
∑
i∈N

ciEPX,Y
[(Y − f(X))k(xi, X)] (31)

= ⟨c,EPX,Y
[(Y − f(X))k( · , X)]⟩H. (32)

Therefore, the maximizing function is given up to a normalizing constant by

c⋆
k,f (x) ∝ EPX,Y

[(Y − f(X))k(x, X)] . ◀

In the presence of finitely many samples, one must resort to numerical approximations of
the witness function.

▶ Definition 12 (Empirical Witness Function). Let D0 be a finite set of i.i.d. samples from
PX,Y . We define the empirical witness function as the plug-in estimator of (25):

c⋆
k,D0,f (x) = E(X,Y )∼D0

[
θ̂ · (Y − f(X))k(x, X)

]
, (33)

where θ̂ ∈ R is a normalizing constant so that ∥c⋆
k,D0,f ∥H = 1.

Observe that given a training dataset {xi}n
i=1, the witness function for a new sample x

is proportional to the sum of the error of xi weighted by k(x, xi) – the distance between
xi and the new sample x in the kernel space. The witness function is performing a kernel
regression of a model’s errors. From the definition of the witness function, it attains the
supremum in the IPM, which measures the distance between Nature and the Predictor’s
distribution. Hence, if a new sample x attains a high witness function value, f(x) is likely
erroneous.

We call the multiaccuracy error when C comes from an RKHS the kernel multiaccuracy
error, defined with the witness function c⋆

k,f (X) which attains the maximum error.
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▶ Definition 13 (Kernel Multiaccuracy Error (KME)). Let Ck be the set of calibration functions
in the RKHS Hk as defined in (22). Given a predictor f , the kernel multiaccuracy error
(KME) is defined as

γk(f, PX,Y ) :=
∣∣E [

c⋆
k,f (X)(Y − f(X))

]∣∣ . (34)

The empirical version has the plug-in estimator of the witness function c⋆
k,f .

▶ Definition 14 (Empirical KME). Given a test set of freshly sampled i.i.d. datapoints D, we
define the empirical KME by

γk(f, D) :=
∣∣E(X,Y )∼D

[
c⋆

k,D0,f (X)(Y − f(X))
]∣∣ . (35)

▶ Remark 15 (Overcoming the Curse of Dimensionality). One important observation is that the
MMD estimator depends on the dataset D only through the kernel k. Hence, once k(xi, xj)
is known, the complexity of the estimator is independent of the dimensionality of X – e.g.,
for X ∈ Rd, sample complexity does not scale exponentially with d (see the end of Section 2.1
in [37]. ⌟

We give the consistency and rate of convergence of KME – the finite-sample estimation of
KME converges to the true expectation, following a direct application of [37, Corollary 3.5].

▶ Theorem 16 (Consistency of the KME Estimator, [37, Corollary 3.5]). Suppose the kernel k

is measurable and satisfies supx∈X k(x, x) ≤ C < ∞. Then, with probability at least 1 − 2e−τ

over the choice of i.i.d. samples D from PX,Y and for every predictor f : X → [0, 1], there is
a constant A = A(f, PX,Y ) such that the inequality

|γk(f, D) − γk(f, PX,Y )| ≤ A(1 +
√

τ√
|D|

+ τ

|D|
), (36)

In addition, we have the almost-sure convergence γk(f, D) → γk(f, PX,Y ) as |D| → ∞.

Next, we proceed to show an algorithm, KMAcc, that corrects a given predictor f of its
multiaccuracy error using the empirical witness function.

3.2 KMAcc: Proposed Algorithm for Multiaccuracy
We propose a simple algorithm KMAcc (Algorithm 1) that corrects the original predictor from
multiaccuracy error. Notably, KMAcc does not require iterative updates, unlike all competing
boosting or projection-based models [28, 15, 8]. In a nutshell, KMAcc first identifies the
function in the RKHS that correlates the most with the predictor’s error y − f(x) (called the
witness function) and subtracts this function from the original prediction to get a multi-group
fair model. The first step is surprisingly simple – as we have shown above, the witness
function of an RKHS has a closed form up to a proportionality constant. The second step is
an additive update followed by clipping.

As outlined in Algorithm 1, the algorithm takes in a pre-trained base predictor f , a
proportionality constant λ, and a (testing) dataset D on which the model is evaluated.
Additionally, to define the witness function and the RKHS, the algorithm is given a dataset
reserved for learning the witness function D0 and a kernel function k. With these, for each
sample, the algorithm first computes the witness function value, and subtracts away the
witness function value multiplied by λ, the proportionality constant which we learn from
data (described in the next paragraph). Finally, we clip the output to fall within [0, 1].
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Learning the Proportionality Constant. There are multiple approaches to obtaining the
proportionality constant that scales the witness function appropriately. As an example, we
adopt a data-driven approach to find λ. We use a validation set to perform a grid search on
[0, 1] to get the λ that produces a predictor g′(x) = f(x) + λc⋆

k,D0,f (x) that is closest to f

in terms of L − 2 distance, while also satisfying a α−multiaccuracy with a specified α6.

Algorithm 1 KMAcc.

Input: base predictor f : X → [0, 1], constant λ ≥ 0, finite datasets D0, D ⊂ X × Y,
kernel function k : X 2 → R, and empirical witness function (Definition 12) c⋆

k,D0,f (x) =∑
(x′,y)∈D0

θ · (y − f(x′))k(x′, x).
for (x, y) ∈ D do

g′(x) = f(x) + λc⋆
k,D0,f (x)

g(x) = max(0, min(g′(x), 1))
end for
Output g

▶ Remark 17 (One-Step Update). For the linear kernel k(x, x′) = xT x′, we show that KMAcc
yields a 0-multiaccurate predictor in a single step. While this property does not extend to
nonlinear kernels, we observe empirically that the one-step update in KMAcc significantly
reduces the empirical KME for RBF kernels. See Appendix C. for a detailed discussion.

We discuss in the following section a theoretical framework that gives rise to KMAcc and
the grid-search approach.

3.3 Theoretical Framework for KMAcc
We formulate an optimization that, given a prediction f : X → [0, 1] that is not necessarily
multiaccurate, finds the “closest” predictor g : X → [0, 1] that is corrected for multiaccuracy
with respect to the empirical witness function c⋆

k,D0,f of f . Specifically, we consider the
mean-squared loss to obtain the problem:

minimize
g:X →[0,1]

1
2E(X,Y )∼D

[
(f(X) − g(X))2]

(37)

subject to
∣∣E(X,Y )∼D

[
c⋆

k,D0,f (X)(g(X) − Y )
]∣∣ ≤ α.

where D0 and D are sets of i.i.d. samples that are sampled independently of each other.
A closer look at (37) shows that it is a quadratic program (QP)7. Thus, we can solve

this QP through its dual problem to obtain a closed-form formula for the solution g⋆. The
following formula follows by applying standard results on QP [5, Chapter 4.4].

▶ Theorem 18. Fix two independently sampled sets of i.i.d. samples D0 and D from
PX,Y with |D| = n, and let f = fD, y = yD, c = cD0,D, A = AD0,D and b = bD0,D
be the fixed vectors and matrix as defined in (41)–(44). Denote an optimization variable
L = (λ+, λ−, ξT

+, ξT
−)T ∈ R2n+2 and let B = 1

2 AAT ∈ R(2n+2)×(2n+2) and d = b − Af . Let

6 When the multiaccuracy constraint cannot be met, we output the λ that achieves the lowest multiaccuracy
error using the witness values of f .

7 Please find details of QP formulation in Appendix A
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Figure 2 Multiaccuracy error (KME, Definition 14) vs. calibration error (MSCE, Definition 19)
for KMAcc(our method), competing methods (LSBoost and MCBoost), and KMAcc with isotonic
calibration, a standard score quantization technique. Predictor performances are measured as AUC
and labeled next to each method. KMAcc achieves improved or comparable KME and AUC to the
baselines and MCBoost (with the exception of Naive Bayes baseline classifier). Notably, KMAcc +
isotonic calibration significantly improves MSCE while maintaining KME and AUC, with more
favorable results than both LSBoostand MCBoost. Results are shown for the FolkTables Income of
WA dataset (first row) and the Health Coverage of WI dataset (second row), with error bars on
both axes9.

L⋆ = (λ⋆
+, λ⋆

−, (ξ⋆
+)T , (ξ⋆

−)T )T be the unique solution to the QP

minimize
L≥0

LT BL + dT L. (38)

Then, the predictors solving the optimization (37) are determined by their restriction to D as

g(xi) = f(xi) + λ⋆c⋆
k,D0,f (xi) + ξ⋆

i (39)

where λ⋆ := 1
n (λ⋆

− − λ⋆
+) and ξ⋆ := ξ⋆

− − ξ⋆
+. Furthermore, the value of ξ⋆ may be chosen8

so that g is projected onto [0, 1]. In particular, applying KMAcc (Algorithm 1) with the value
λ = λ⋆ attains a solution to (37).

4 Experiments

We benchmark our proposed algorithm, KMAcc (Algorithm 1), on four synthetic datasets
and eight real-world tabular datasets10. We demonstrate KMAcc’s competitive or improved
performance among competing interventions, both in multi-group fairness metrics and in
AUC. Full experimental results are provided in Appendix B.

8 To see this, note that, thinking of λ− and λ+ as constants, the optimization over a single pair (ξ−,i, ξ+,i)
takes the form of minimizing (ξi + λci)2/2 + fiξi + ξ+,i over ξ+,i ≥ 0 and ξi ≥ −ξ+,i. The optimal
value for this can be easily seen to be ξi = −λci − fi if λci + fi < 0, or ξi = 0 if λci + fi ∈ [0, 1], or
1 − λci − fi if λci + fi > 1. This translates to clipping g to be within [0, 1].

9 The MSCE standard deviation is often imperceptible
10 Implementation of KMAcccan be found at https://github.com/Carol-Long/KMAcc

https://github.com/Carol-Long/KMAcc


C. X. Long, W. Alghamdi, A. Glynn, Y. Wu, and F. P. Calmon 7:13

4.1 Datasets

We provide experimental results from the US Census dataset FolkTables. We conduct 4
binary classification tasks, including ACSIncome, ACSPublicCoverage, ACSMobility, AC-
SEmployment, using two different states for each of these tasks. In addition, we generate four
synthetic datasets using the sklearn.datasets class in Scikit-Learn [35] – moons, concentric
circles, blobs with varied variance, and anisotropically distributed data.

4.2 Competing Methods

We benchmark our method against LSBoost11 by [15] and MCBoost12 by [29], which are (to
the best of our knowledge) the two existing algorithms of multi-group fairness with usable
Python implementations.

The mechanism of LSBoost is the following: over a number of level set partitions, each
called v, LSBoost finds a function ct+1

v ∈ C through a squared error regression oracle before
updating a function ft+1 as a rounding of the values to each level set using a successive
updating of indicator values as to which set they lie in under the previous ft combined
with the learned ct+1

v : f̂ =
∑

v∈[1/m] 1[ft(x) = v] · ct+1
v (x), and f = Round(f̂t+1, m). This

updating continues so long as an error term measured by the expectation of the squared
error continues to decrease at a rate above a parameterized value. C is taken to be linear
regression or decision trees.

The MCBoost algorithm performs an iterative multiplicative weights update applied to
successively learned functions. Starting with an initial predictor p0, it learns a series of
grouping functions c(x) ∈ C, that maximize multiaccuracy error. The algorithm now stores a
set of both calibration points S and validation points V , at each step generating the set St

by, ∀(x, y) ∈ S, having (x, y − pt(x)) ∈ St. Then, using the weak agnostic learner on St, it
produces a function c which has its multiaccuracy checked on the validation set V with the
empirical estimate of the multiaccuracy error before enacting a multiplicative weights update
ft+1(x) = e−ηht,S(x) · ft(x) if the multiaccuracy error is large. There are three different
classes C it might draw c from – either taking sub-populations parameterized by some number
of intersections of features, using ridge regression, or using shallow decision trees.

4.3 Performance Metrics

We evaluate the performance of baseline and multi-group fair models across three metrics:
Kernel Multiaccuracy Error (KME, Definition 13), Area Under the ROC Curve (AUC), and
Mean-Squared Calibration Error (MSCE), where MSCE is defined as follows.

▶ Definition 19 (Mean-Squared Calibration Error (MSCE), [15]). The Mean-Squared Calibration
Error (MSCE) over a dataset D of a predictor f : X → [0, 1] with a countable range R(f) is
defined by

MSCE(f, D) :=
∑

v∈R(f)

Pr
(X,Y )∼D

[f(X) = v] ·
(
E(X,Y )∼D [(Y − v) | f(X) = v]

)2
,

11We use the official implementation of LSBoost available at https://github.com/Declancharrison/
Level-Set-Boosting.

12We use the official implementation of MCBoost available at https://osf.io/kfpr4/?view_only=
adf843b070f54bde9f529f910944cd99.
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Our algorithm optimizes for KME and utility, while LSBoost [15] optimizes for MSCE. Hence,
both of these metrics are reported. MCBoost [28] optimizes for multiaccuracy error (without
considering calibration functions in the kernel space) and classification accuracy. We report
AUC since it captures the models’ performance across all classification thresholds.

4.4 Methodology
To implement and benchmark KMAcc, we proceed through the following steps.

Data splits. We assume access to a set of i.i.d. samples D′ drawn from PX,Y , where PX,Y

is a distribution over X × Y = Rm × {0, 1}. We randomly partition D′ into four disjoint
subsets: Dtrain (for training the baseline predictor f), D0 for computing the witness function
c⋆

k,D0,f , Dval for finding the proportionality constant λ⋆), and finally Dtest for benchmarking
the performance of KMAcc in a test set against the state-of-the-art methods.

Baseline predictor f . Using the training data Dtrain, we learn a baseline classifier f . Our
algorithm treats this function f as a black box. For our experiments, we use four distinct
supervised learning classification models as a baseline: Logistic Regression, 2-layer Neural
Network, Random Forests, and Gaussian Naive Bayes, all implemented by Scikit-learn [35].
We train these on Dtrain, values that are not used in learning our witness or in KMAcc.

Learning the witness function. We take as our class of calibration functions the unit ball
Ck in the RKHS Hk (Equation 22) with the kernel k being the RBF kernel, given explicitly
for a parameter γ > 0 by

kγ(x, x′) = exp
(
−γ∥x − x′∥2

2
)

(40)

The value of γ is a hyperparameter that we finetune using D0. We conduct a grid search
over the parameter γ to find a γ⋆ such that c⋆

k,D0,f has maximal correlation with the errors
y − f(x), thus obtaining c⋆

k,D0,f ∈ Ck in terms of f , γ, and D0 (see Proposition 11). To
carry out this step, we run grid search on γ using K-fold validation on the data D0. The
value of the normalizing constant θ in Proposition 11 (for attaining ∥c⋆

k,D0,f ∥Hk
= 1) can be

skipped in this step for the sake of finding the optimal multiaccurate predictor g⋆ solving (37),
because θ can be subsumed in the value of the optimal parameter λ⋆.

Performing KMAcc. Using Dval, we perform a simple grid search to find the smallest λ

such that the multiaccuracy condition (Definition 13) is met (alternatively, one could solve
the QP detailed in Theorem 18). Running KMAcc (Algorithm 1), we update f using λ and
c⋆

k,D0,f to obtain the multi-group fair classifier g⋆ = f + λc⋆
k,D0,f .

4.5 Results
With the process described in Section 4.4, we test KMAccacross various baseline classifiers
using implementations in Scikit-Learn [35]. In each US Census dataset, we execute five runs
of each model on which we report, showing the mean value of each metric alongside error
bars.

Firstly, on synthetic datasets, we demonstrate that the witness function is a good predictor
of classifier error. In Figure 1, we train a logistic regression classifier on the moon and
circle datasets to perform binary classification. The classifier has an accuracy of 0.85 and
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Figure 3 Test errors over witness value contours using the RBF kernel. First Column:
Visualization of the moon, concentric-circle, blob, and needle datasets. Red and blue represent the
true labels. Second Column: Classification via a logistic regression classifier. Witness function
values (Definition 10) c⋆

k,D0,f is plotted as a contour under the error of the classifiers on test samples
y − f(x). The witness function values are highly correlated with the errors of the predictor. Dark
green and dark green dots mark where the classifier is most erroneous for the blue class and the
red class, respectively. The linear regression model is not capable of classifying concentric circles,
resulting in almost the entire blue class being misclassified. Similarly, we show a similar pattern
between classifier error and the witness function values for a random forest classifier (Third Column)
and a multi-layer perceptron classifier Fourth Column.

AUC of 0.94, and most errors occur in the middle where the red and blue classes are not
linearly separable. Indeed, samples with high errors in scores y − f(x) also receive high
predicted errors in terms of witness function values. Indeed, the scatter plot (Right Column)
illustrates the linear correlation between test error and witness value, with a high Pearson
correlation coefficients of 0.828. Complete results using additional baseline models (Random
Forest and Multi-layer Perceptron) are shown in Figure 3.

On US Census datasets and as demonstrated in Figure 2, KMAcc achieves the lowest
KME relative to competing models without sacrificing AUC, and KMAcc paired with isotonic
calibration achieves the lowest multi-group metrics (KME and MSCE) while maintaining
competitive AUC. In Figure 2, baseline models (blue circle) have high MSCE, and most have
non-negligible KME, with the exception of neural networks. Post-processing the baseline
models using KMAcc (yellow rectangle), we see a significant reduction in KME from the
baseline (shifting to the left of the plot), and in a majority of experiments, the post-processed
models achieve, on the test set, the pre-specified KME constraint with γk(g, PX,Y ) < .01. To
target low calibration error (measured by MSCE on the y-axis), we apply off-the-shelf isotonic
calibration on top of KMAcc. We observe that applying KMAcc+Isotonic Calibration (red
diamond) to baseline results in low errors on both axes (KME and MSCE). Across all
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baselines and experiments, applying either KMAccor KMAcc+Isotonic Calibration does not
degrade the predictive power of the models – the AUCs (labeled next to each model) of
models corrected by the proposed methods either stay relatively unchanged or improved.

Competing method MCBoost achieves effective reduction in KME with minimal improve-
ment on MSCE, without sacrificing AUC. We note that KMAcc+Isotonic Calibration enjoys
comparable or better performance with regards to MCBoost on KME and better performance
on MSCE, while eliminating the need for iterative updates to minimize miscalibration that is
required in MCBoost. LSBoost(orange polygon) achieves low MSCE while worsening both
KME and AUC.

5 Discussion and Conclusion

We connect the multi-group notions to Integral Probability Measures (IPM), providing a
unifying statistical perspective on Multiaccuracy, Multicalibration, and OI. This perspective
leads us to a simple yet powerful algorithm (KMAcc) for achieving multiaccuracy with respect
to a class of functions defined by an RKHS. KMAcc boils down to first predicting the error of
the classifier using the witness function, and then subtracting the error away. This algorithm
enjoys provable performance guarantees and empirically achieves favorable accuracy and
multi-group metrics relative to competing methods.

A limitation of our empirical analysis in comparison to other methods is that we op-
timize over the calibration function class being the unit-ball RKHS with the RBF kernel,
which may not be the set of calibration functions for which other benchmarks achieve the
lowest multiaccuracy or multicalibration error on. Furthermore, while the proposed method
achieves favorable multicalibration results, this algorithm does not have provable guarantees
for multicalibration. Developing a multicalibration-ensuring algorithm through the IPM
perspective is an exciting future direction.

To conclude, this work contributes to the greater effort of reducing embedded human bias
in ML fairness. To this end, we adopt RKHS as the expressive group-denoting function class
to ensure multi-group notions on, rather than using predefined groups. It remains an open
question to explore the structure of the witness function – the most biased group-denoting
function in the RKHS – and its relationship to the predefined group attributes, which may
inform us of the intersectionality and the structure of errors in ML models.
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Appendix

A Details of Theoretical Framework

From Equation (37), we show that it is a quadratic program (QP). To begin, writing
D = {(xj , yj)}n

j=1 and denoting

fD = (f(x1), · · · , f(xn))T , g = (g(x1), · · · , g(xn))T , (41)

the objective function becomes the quadratic function 1
2 ∥fD − g∥2

2. Similarly, the constraint
is a linear inequality in g, which we write as AD0,D g ≤ bD0,D, where AD0,D ∈ R(2n+2)×n

and bD0,D ∈ R2n+2 are fixed and determined by D0 and D in view of equation (33) for the
empirical witness function c⋆

k,D0,f . Explicitly, denoting D0 = {(x̃i, ỹi)}m
i=1, let us use the

shorthands

yD = (y1, · · · , yn)T , cD0,D = (c⋆
k,D0,f (x1), · · · , c⋆

k,D0,f (xn))T . (42)

Then, the multiaccuracy constraint in (37) can be written as |cT
D0,Dg/n − cT

D0,DyD/n| ≤ α.
Taking the search space into consideration (i.e., g evaluates to [0, 1]), we see that (37) may
be rewritten as the the following QP:

minimize
g∈Rn

1
2 ∥fD − g∥2

2 (43)

subject to AD0,D g ≤ bD0,D,

where we define the constraint’s matrix and vector by

AD0,D :=


cT

D0,D/n

−cT
D0,D/n

In

−In

 , bD0,D :=


α + cT

D0,Dy/n

α − cT
D0,Dy/n

1n

0n

 . (44)

Note that the witness function for a kernel k : X 2 → R, dataset D0 = {(x̃j , ỹj)}j∈[m],
and predictor g : X → [0, 1] is given by

c⋆
k,D0,g(x) = θk,D0,g

m
(g̃ − ỹ)T k̃(x), (45)

c⋆
k,D0,g(x) = (g̃ − ỹ)T k̃(x)√

(g̃ − ỹ)T K̃(g̃ − ỹ)
(46)

where k̃ : X → Rm is the vector-valued function defined by k̃(x) := (k(x, x̃j))j∈[m], g̃ :=
(g(x̃j))j∈[m] and ỹ := (ỹj)j∈[m] are fixed vectors, and θk,D0,g is a normalizing constant that
is unique up to sign. We may compute θk,D0,g by setting ∥c⋆

k,D0,g∥Hk
= 1, namely, we have

θ2
k,D0,g = m2

(g̃ − ỹ)T K̃(g̃ − ỹ)
, (47)

where K̃ := (k(x̃i, x̃j))i,j∈[m] is a fixed matrix. Thus, the multiaccuracy constraint becomes∣∣∣hT
Kh̃

∣∣∣ ≤ nατ
h̃

(48)
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where τ
h̃

:=
√

h̃
T

K̃h̃ and h = (hT
, h̃

T
)T . With h = g − y and r = f − y, the objective

becomes 1
2n ∥r − h∥2

2. At each iteration of τ , check if τ ≤ τ
h̃

.
We may compute the KME of a predictor g with respect to class Ck and dataset

D1 = {(xi, yi)}i∈[n] via the equation

KME(k, D1, D0, g) = 1
n

·
∣∣(g − y)T K(g̃ − ỹ)

∣∣√
(g̃ − ỹ)T K̃(g̃ − ỹ)

, (49)

where g̃, ỹ, K̃ are computed on D0 as above, g := (g(xi))i∈[n] and y := (yi)i∈[n] are fixed
vectors, and K := (k(xi, x̃j))(i,j)∈[|D1|]×[|D0|] is a fixed matrix. Note that if D0 is used for
computing c⋆

k,D0,f for a given predictor f and then g is obtained using c⋆
k,D0,f (so D0 was

used for deriving g), then one should report KME(k, D1, D′
0, g) for a freshly sampled D′

0 at
the testing phase.

B Complete Experimental Results

Ablation. As we have presented evidence that isotonic calibration plus KMAcc can be
an effective post-processing method, for the purpose of ablation we now analyze isotonic
calibration being applied directly to the baseline classifier. We note that isotonic calibration
tends to maintain an equivalent or higher AUC because the monotonic function preserves
ranking of the samples up to tie breaking (which rarely has an influence) [34]. Our ablation
method frequently achieves a similar or better MSCE than LSBoost (as discussed, the baseline
plus isotonic calibration achieves a MSCE less than .02 in all benchmarks, while LSBoost only
achieves this in 23 of 40 benchmarks), and a better average MSCE than KMAcc alone in
all benchmarks. However, isotonic calibration alone has a significantly lower KME than
KMAcc in 20 of 40 benchmarchs, confirming the utility of an algorithm targeting optimizing
for multiaccuracy error as well.

Figure 4 The Folktables Employment Task with data from the state of Alabama.

Figure 5 The Folktables Health Task with data from the state of Ohio.
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Figure 6 The Folktables Health Task with data from the state of Wisconsin.

Figure 7 The Folktables Income Task with data from the state of Illinois.

Figure 8 The Folktables Income Task with data from the state of Washington.

Figure 9 The Folktables Mobility Task with data from the state of New Jersey.

Figure 10 The Folktables Mobility Task with data from the state of New York.
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Figure 11 To understand the influence of LSBoost on our predictions, we viewed it through
the lens of histograms of LSBoost’s estimates of the labels (Blue), and constructed K-means bins
for the scores of functions (Orange) for each model type and the Health in Wisconsin and Wealth
in Washington tasks (as examples of the empirical result guiding us to test the effect of these
interventions).

C KMAcc: Conditions for One-Step Sufficiency

A one-step update using the witness function in KMAccleads to a 0-multiaccurate predictor
all functions in the RKHS c ∈ Hk for the linear kernel and very specific constructions
of nonlinear kernel. Running KMAcc as an iterative procedure is redundant under these
restricted settings. This is a property of RKHSs that follows from the Riesz Representation
Theorem [16].
▶ Remark 20. To gain an intuition on why multiaccuracy may be zero upon a one-step update,
we can observe an analogous result in the Euclidean space Rd. Given a linear subspace H, a
prediction vector f and true labels y, multiaccuracy can be similarly defined as

max
c∈H,∥c∥≤1

cT (y − f)

The error of a classifier e = (y − f) can be decomposed into two components: the projection
of e onto the subspace H and the residual. Hence, we have e = eH + eR. Then, once we
subtract away eH, multiaccuracy error boils down to the dot product cT eR, which equals
0. ◀

Next, we proceed with an RKHS Hk ⊂ L1. Given a base predictor f : X → [0, 1],
the kernel function k w.r.t an RKHS Hk. Again, L1(X ) denotes the space of real-valued
functions that are integrable against PX , i.e. L1(X ) := {c : X → R : E [|c(X)|] < ∞}. Let
the multiaccuracy error of one function c ∈ Hk be L(c, f) = E [c(X)(Y − f(X))]. By the
reproducing property of Hk, we have c(x) = ⟨c, k(·, x)⟩k for all c ∈ Hk, x ∈ X . We can thus
rewrite the multiaccuracy error as the following:

L(c, f) = E [⟨c, k(·, X)⟩k(Y − f(X))]
= ⟨c,E [(Y − f(X))k(·, X)]⟩k

= ⟨c, h⟩k

where h(x) = E [(Y − f(X))k(x, X)]. For the second step, since Hk ⊂ L1, we can invoke the
Fubini’s Theorem to interchange expectation and inner product. Under the assumption of
integrability, h ∈ Hk. By the Riesz Representation Theorem, the linear functional L(·, f)
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has a unique representer h ∈ Hk, which is the function h(x) defined above. Specifically, by
the Riesz Representation Theorem, there exists a unique c⋆

k,f ∈ Hk such that for all c ∈ Hk,

L(c, f) = ⟨c, h⟩k,

where the function c∗
k,f is defined as the normalized direction of h, i.e. c⋆

k,f = θh, and
θ = 1

∥h∥k
This is identical to c⋆

k,f (x) as defined in (25). From Proposition 11, c⋆
k,f (x) achieves

the supremum over Hk: c⋆
k,f = arg supc∈Hk,||c||≤1 L(c, f). This simplifies L(c⋆

k,f , f) =
⟨θh, h⟩k = θ∥h∥2

k = ∥h∥, where we substitute θ = 1
∥h∥k

. Let the updated predictor be:
g(x) = f(x) + λc⋆

k,f (x).
The multiaccuracy error after the one-step update is given by:

E [c(X)(Y − g(X))] = E
[
c(X)(Y − (f(x) + λc⋆

k,f (x)))
]

= E [c(X)(Y − f(x))] − λE
[
c(X)c⋆

k,f (x)
]

= E [c(X)(Y − f(x))] − λE [c(X)θh(X)]
= L(c, f) − (λ × θ)E [c(X)h(X)]

For the linear kernel (as we have observed in the remark), we operate in the Euclidean
space, and L(c, f) = E [c(X)h(X)]. Hence, By taking λ = 1

θ , we have

E [c(X)(Y − g(X))] = L(c) − (λ × θ)L(c) = 0.

For non-linear kernels, L(c, f) ̸= E [c(X)h(X)] in general, and equality holds only when

EX [k(·, X)k(X, X ′)] = κk(·, X ′)

where κ = EX [k(X, X)] is a scalar constant.
To see this, we need to simplify E [c(X)h(X)] in the kernel space:

E [c(X)h(X)] = EX [c(X)EX′ [(Y ′ − f(X ′))k(X, X ′)]]
= EX,X′ [c(X)(Y ′ − f(X ′))k(X, X ′)]
= EX,X′ [⟨c, k(·, X)⟩k(Y ′ − f(X ′))k(X, X ′)]
= ⟨c,EX,X′ [(Y ′ − f(X ′))k(·, X)k(X, X ′)]⟩k

= ⟨c,EX′ [(Y ′ − f(X ′))EX [k(·, X)k(X, X ′)]]⟩k

In the first equality, we substitute in the definition of h(x). In the second equality, we
apply Fubini’s Theorem to swap the two expectations. In the third equality, we apply the
reproducing property where c(X) = ⟨c, k(·, X)⟩. In the fourth equality, we interchange the
expectation and inner product by Fubini’s theorem under integrability conditions. In the
last equality, we expand into iterative expectations.
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