
A Variational Approach to Sampling in Diffusion Processes

Maxim Raginsky⇤

Abstract— We revisit the work of Mitter and Newton on an
information-theoretic interpretation of Bayes’ formula through
the Gibbs variational principle. This formulation allowed them
to pose nonlinear estimation for diffusion processes as a prob-
lem in stochastic optimal control, so that the posterior density
of the signal given the observation path could be sampled by
adding a drift to the signal process. We show that this control-
theoretic approach to sampling provides a common mechanism
underlying several distinct problems involving diffusion pro-
cesses, specifically importance sampling using Feynman–Kac
averages, time reversal, and Schrödinger bridges.

Dedicated to the memory of Sanjoy K. Mitter (1933-2023)

I. INTRODUCTION

In a remarkable paper [1], Mitter and Newton showed
that the Kallianpur–Striebel formula, a core ingredient in the
theory of nonlinear filtering for diffusion processes, can be
derived from the Gibbs variational principle pertaining to the
minimization of a certain free energy functional on the space
of probability measures over paths. Among other things, this
variational formulation provided an information-theoretic
explanation of the fact that the PDE for the logarithm of
the filtering density has the form of the Hamilton–Jacobi–
Bellman equation for the value function of a particular
stochastic control problem, a coincidence that had been
noted earlier in several works [2]–[4]. Moreover, Mitter and
Newton have shown that one can obtain exact samples from
the filtering density by the addition of a drift term to the
signal process, where the drift is of the state feedback form
and is equal to the negative gradient of the value function.

In this paper, we show that a variational formulation based
on free energy minimization underlies a broad circle of
questions pertaining to diffusion processes which include, in
addition to path estimation, such problems as time reversal
[5]–[7], the Schrödinger bridge problem [7], [8], and impor-
tance sampling via Feynman–Kac averages [9]. In fact, this
variational interpretation was implicit in some of the existing
treatments of these problems; our aim here is to provide a
unifying perspective and to draw attention to the fact that the
particular constructions that emerge in the solutions of these
problems can all be viewed as instances of stochastic optimal
control of diffusion processes, in the spirit of the original
work of Mitter and Newton. Due to space limitations, most
technical details have been omitted; see [10].
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II. THE GIBBS VARIATIONAL PRINCIPLE

Let (X,X) be a standard Borel space. Let P(X) and H(X)
be the space of all probability measures on (X,X) and the
space of all measurable functions H : X ! (�1,+1],
respectively. Let P, P̃ 2 P(X) and H 2 H(X) be given.
Then we define the following quantities:

D(P̃kP ) :=

Z

X
log

 
dP̃

dP

!
dP̃ if P̃ ⌧ P,

+1 otherwise,

(1)

i(H) := � log

✓Z

X
exp(�H) dP

◆

if 0 <

Z

X

exp(�H) dP < 1,

�1 otherwise,

(2)

hH, P̃ i :=
Z

X
H dP̃ if the integral is finite,

+1 otherwise.
(3)

The quantity in eq. (1) is the relative entropy of P with
respect to P̃ . In the context of statistical physics, X acquires
the interpretation of the state (or configuration) space of
some physical system, P is some base (or reference) prob-
ability measure on the state space, and H is the energy (or
Hamiltonian) function. Under this interpretation, the quantity
i(H) defined in eq. (2) is the equilibrium free energy (at
unit temperature), while the quantity hH, P̃ i is the average
energy under an alternative probability measure P̃ . The
Gibbs variational principle [1], [11] states that i(H) is the
minimum value of the free energy

F (P̃ ) := hH, P̃ i+D(P̃kP ) (4)

among all P̃ , and characterizes the unique minimizer of F (·):

Proposition 1. Let P 2 P(X) and H 2 H(X) be such that

�
Z

X
H exp(�H) dP < 1,

with the convention +1·exp(�1) = 0. Then the probability
measure P

⇤ 2 P(X) defined by

dP ⇤

dP
=

exp(�H)R
X exp(�H) dP

is the unique minimizer of eq. (4), and i(H) = F (P ⇤) =
min

P̃2P(X) F (P̃ ).

In many cases, (X,X) has the product structure (X0 ⇥
X̄,X0 ⌦ X̄), and we are interested in minimizing the free
energy F (·) subject to constraints on the marginal probability
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law of X0, where X splits into (X0, X̄). That is, we disinte-
grate the reference measure P as P (·) =

R
X0

µ(dx0)P x0(·),
where µ is the marginal law of X0 under P and P

x0 is the
regular conditional probability law of X given X0 = x0, and
then minimize the free energy F (P̃ ) over all P̃ 2 P(X0⇥X̄),
possibly subject to a constraint of the form µ̃ 2 C, where µ̃

is the marginal law of X0 under P̃ and C is some subset
of P(X0). We can use the chain rule for the relative entropy
and Fubini’s theorem to decompose the free energy as

F (P̃ ) = hH, P̃ i+D(P̃kP )

= D(µ̃kµ) +
Z

X0

µ̃(dx0)F (x0, P̃
x0), (5)

where we have denoted by F (x0, P̃
x0) the free energy

of P̃
x0 with respect to the energy function H(x0, ·) and

the reference measure P
x0 . Then, applying Proposition 1

conditionally on x0, we have F (P̃ ) � hv, µ̃i + D(µ̃kµ),
where v(x0) := � log

R
X̄ e

�H(x0,·) dP x0 is the mini-
mum value of F (x0, ·) achieved uniquely by dP ⇤,x0 /
exp�H(x0, ·) dP x0 . We conclude that

min
P̃2P(X): µ̃2C

F (P̃ ) = min
µ̃2C

�
hv, µ̃i+D(µ̃kµ)

�
.

In particular, if C = {µ}, then the minimum is
attained uniquely by the Gibbs mixture P

⇤,µ(·) :=R
X0

µ(dx0)P ⇤,x0(·). If, on the other hand, C = P(X0) (i.e.,
the marginal µ̃ is completely unconstrained), then we apply
the Gibbs variational principle again to get

min
P̃2P(X)

F (P̃ ) = � log

Z

X
e
�H(x)

P (dx),

where the minimum is achieved uniquely by the mixture
P

⇤,µ⇤ with
dµ⇤
dµ

=
exp(�v)R

X0
exp(�v) dµ

.

The problem of interest is how to generate samples from
P

⇤ (or from P
⇤,µ⇤ ) when we have the means to generate

samples from the reference measure P . In general, this runs
into issues of computational tractability. However, in some
specific instances it may be possible to exploit additional
structure of the problem to deduce the existence of a mea-
surable mapping � : X ! X, such that P ⇤ = P � ��1—in
other words, we first obtain a sample X from P and then
transform it into a sample �(X) from P

⇤. As we shall see
next, this is indeed possible when P is a sufficiently regular
probability law of a diffusion process.

III. THE PROBLEM SET-UP

We now particularize the setting of Section II to the case
when (X,X) is the space (C([0, T ];Rn),BT ) of continuous
paths x : [0, T ] ! Rn, where BT is the Borel �-algebra in-
duced by the uniform norm topology. The reference measure
P is the probability law of the diffusion process governed
by the Itô integral equation

Xt = X0 +

Z
t

0
b(Xs, s) ds+

Z
t

0
�(Xs, s) dWs,

X0 ⇠ µ, 0  t  T

(6)

where Xt takes values in Rn and Wt takes values in Rm.
Here, the Borel probability law µ and the mappings b(·, ·) and
�(·, ·) are assumed to satisfy enough regularity conditions for
eq. (6) to have a unique strong solution. In the latter case, we
will have a filtered probability space (⌦,F, (Ft),P) that car-
ries an Rn-valued random variable X0 and an m-dimensional
standard Brownian motion process W independent of X0,
as well as a measurable map � : Rn ⇥ C([0, T ];Rm) ! X,
such that (Xt = �t(X0,W ); 0  t  T ) is an (Ft)-adapted
semimartingale satisfying eq. (6). The following conditions,
imposed in [1], suffice for our purposes as well:

(R1) there exists a constant c > 0, such that
Z

Rn

exp(c|z|2)µ(dz) < 1;

(R2) there exists a constant K > 0, such that b and � satisfy

|b(x, t)� b(x̄, t)|+ |�(x, t)� �(x̄, t)|  K|x� x̄|,
|b(x, t)|  K(1 + |x|),
|�(x, t)|  K

for all x, x̄ 2 Rn and all 0  t  T , where we use
| · | to denote the Euclidean norm for vectors and the
Hilbert–Schmidt norm for matrices;

Next, we assume that the Hamiltonian function H : X ! R
is of the form

H(X) =

Z
T

0
f(Xt, t) dt+ g(XT ), (7)

and the functions f(·, ·) and g(·) satisfy the following:
(H1) f and g are bounded from below, continuously differ-

entiable, and there exists a constant C > 0, such that

|f(0, t)|  C,

nX

i=1

���
@

@xi

f(0, t)
���  C

for all 0  t  T ;
(H2) the derivatives of f and g are Lipschitz continuous:

there exists a constant M > 0, such that
nX

i=1

���
@

@xi

f(x, t)� @

@xi

f(x̄, t)
���  M |x� x̄|,

nX

i=1

���
@

@xi

g(x)� @

@xi

g(x̄)
���  M |x� x̄|

for all x, x̄ 2 Rn and all 0  t  T .
The above assumptions ensure that E[exp(�H(X))] < 1
and �E[H(X) exp(�H(X))]  E[exp(�2H(X))] < 1,
where E[·] denotes expectation with respect to P [1]. It is
also straightforward to verify that, under (H1) and (H2),
f and g are of at most quadratic growth in x and their
derivatives are of at most linear growth in x, uniformly in t.

We will need to consider the case when the initial condi-
tion X0 is nonrandom, i.e., µ in eq. (6) is a Dirac measure
centered at some z 2 Rn. It is convenient, just as in [1],
to define for each z 2 Rn and each 0  s  T the process
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(Xz,s

t
: s  t  T ) as the solution of (6) on the time interval

s  t  T with initial condition X
z,s

s
= z. Then we will

denote by P
z the probability law of the process X

z,0. We
also define the measurable maps

H : [0, T ]⇥ Rn ⇥ X ! R,

H(s, z,Xz,s) :=

Z
T

s

f(Xz,s

t
, t) dt+ g(Xz,s

T
)

(8)

[so that, in particular, H(Xz,0) = H(0, z,Xz,0)] and

v : Rn ⇥ [0, T ] ! R,
v(z, s) := � logE exp(�H(s, z,Xz,s)),

(9)

which is the equilibrium free energy of P
z,s corresponding

to the Hamiltonian function H(s, z, ·).

IV. THE OPTIMAL CONTROL PROBLEM

We now consider the controlled equation

X̃t = z +

Z
t

0

⇣
b(X̃s, s) + a(X̃s, s)u(X̃s, s)

⌘
ds

+

Z
t

0
�(X̃s, s) dW̃s,

(10)

where a(x, s) := �(x, s)�(x, s)T, and where the measurable
function u : Rn ⇥ [0, T ] ! Rn is the control. Let U denote
the set of all u with the following properties:

(U1) u is continuous;
(U2) EZ

u = 1, where

Z
u := exp

 Z
T

0
u

T
�(Xz,0

t
, t) dWt

� 1

2

Z
T

0
|�T

u(Xz,0
t

, t)|2 dt
!
,

(11)

where the objects (⌦,F, (Ft),P), W , and X
z,0 are as above.

Following Beneš [12], we will refer to u 2 U as admissible
controls, the maps (x, s) 7! b(x, s) + a(x, s)u(x, s) as ad-
missible drifts, and to Z

u in eq. (11) as attainable densities.
The problem, then, is to show that the Gibbs density

dP ⇤,z

dP z
=

exp(�H)R
X exp(�H) dP z

=
exp(�H(0, z, ·))R

X exp(�H(0, z, ·)) dP z
.

(12)

is an attainable density and to identify the admissible control
u⇤ 2 U, such that dP⇤,z

dP z = Z
u⇤ . Let (⌦̃, F̃, (F̃t), P̃, X̃, W̃ )

be a weak solution of eq. (10) corresponding to an admissible
control u 2 U. Let P̃ denote the probability law of X̃ . We
then define the control cost of u by

J(u, z) := hH, P̃ i+D(P̃kP z)

= Ẽ

"Z
T

0

⇣
f(X̃t, t) +

1

2
|�T

u(X̃t, t)|2
⌘
dt+ g(X̃T )

#
.

(13)

The optimal control that attains the minimum of J(u, z) is
given by the following theorem, in the spirit of [1, Thm. 4.2]:

Theorem 1. Suppose that b, �, f , and g satisfy (R2), (H1),
(H2). Define the function u⇤ : Rn ⇥ [0, T ] ! Rn by

u⇤(x, t) := �
✓
@v

@x
(x, t)

◆T

, (14)

where v is defined in eq. (9). Then u⇤ is an admissible
control, and for all z 2 Rn and all P̃ 2 P(X) (not
necessarily arising from an admissible control),

J(u⇤, z)  D(P̃kP z) + hH(0, z, ·), P̃Xi. (15)

We now turn to the case when the initial condition is
random. To that end, consider the controlled process

X̃t = X̃0 +

Z
t

0

⇣
b(X̃s, s) + a(X̃s, s)u(X̃s, s)

⌘
ds

+

Z
t

0
�(X̃s, s) dW̃s,

(16)

for 0  t  T , with X̃0 ⇠ µ̃. We thus find ourselves in
the situation described at the end of Section II involving
minimization over both the admissible controls u and the
initial condition µ̃, possibly subject to additional constraints
on µ̃. Let P̃ denote the distribution of X̃ for a given
pair (µ̃, u). Then, specializing the decomposition (5) to the
present setting, we can write

F (P̃ ) = D(µ̃kµ) + hJ(u, ·), µ̃i,

which is minimized by the choice of u = u⇤ and of µ̃ as
any minimizer of the functional µ̃ 7! D(µ̃kµ)+hJ(u⇤, ·), µ̃i
subject to the given constraint µ̃ 2 C. We will primarily
consider the setting when (R1) holds for every element of C
for some constant c > 0.

V. CONSEQUENCES

We now examine several problems pertaining to diffusion
processes through the control-theoretic lens of Theorem 1.

A. Feynman–Kac averages
Due to the structure of the Hamiltonian function H in

(7), the Gibbs measures P
⇤,z in (12) are of the Feynman–

Kac type [13]. Thus, the problem of generating samples
from P

⇤,z is synonymous with the problem of computing
(or estimating) Feynman–Kac averages of the form

hF, P ⇤,zi = 1R
X exp(�H) dP z

Z

X
F exp(�H) dP z (17)

for bounded measurable functions F : X ! R on the path
space X = C([0, T ];Rn), provided we have a mechanism for
generating random paths under the reference measure P

z . In
some special cases, a sampling procedure can be built based
on the ‘killing’ interpretation of Feynman–Kac averages [14]:
If f is everywhere positive and g ⌘ 0, then we can think
of a particle following a path in the P

z-ensemble that gets
‘killed’ at a point (x, t) and in time interval [t, t+ dt] with
probability f(x, t) dt. Then the average of F over the paths
that have ‘survived’ at time T is exactly the Feynman–Kac
average (17). This procedure amounts to a reweighting of
sample paths generated according to the reference measure.
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To the best of the author’s knowledge, the first explicit
construction of an alternative sampling method relying, in-
stead of killing, on the addition of a drift to the reference
process was given by Ezawa, Klauder, and Shepp [9] in the
special case when the reference process is an n-dimensional
Brownian motion starting at z at t = 0 and when g ⌘ 0 in
(7). In fact, the drift constructed in [9] is exactly the optimal
control u⇤ defined in (14), where the function ⇢ = exp(�v)
is given as a solution of a certain (linear) PDE. Following
the ideas of Fleming [15], we can view this linear PDE
as related to Hamilton–Jacobi–Bellman PDE for the value
function v via the logarithmic (or Cole–Hopf) transformation
v = � log ⇢. No such control-theoretic interpretation was
given in the original paper [9], although it was pointed out
in later works by other authors [16], [17].

B. Reciprocal Markov processes and the Schrödinger bridge

Let two Borel probability measures µ, µ
0 on Rn be given.

Consider the controlled process (16) with X̃0 ⇠ µ. We wish
to find an admissible drift u 2 U such that the ‘energy’

1

2
Ẽ

Z
T

0

1

2
|�T

u(X̃t, t)|2 dt

is minimized subject to the constraint X̃T ⇠ µ
0. This prob-

lem, going back to the work of Schr̈odinger and Bernstein
on so-called reciprocal Markov processes, is now commonly
referred to as the Schrödinger bridge problem [7]. A control-
theoretic treatment was given by Dai Pra [8]. Here, we
revisit it from the free energy minimization perspective and,
in particular, explicitly identify the corresponding Gibbs
measure on the path space.

We assume that, in addition to (R1) and (R2), zT
a(z̃, t)z �

c|z|2 holds with some constant c > 0 for all z, z̃ 2 Rn and all
t 2 [0, T ], so that the reference process (6) is nondegenerate,
as in [8]. This ensures the existence of everywhere positive
transition densities p(z, y; s, t) for 0  s  t  T and
z, y 2 Rn, so that

Eh(Xz,s

t
) =

Z

Rn

h(y)p(z, y; s, t) dy

for all bounded, measurable h : Rn ! R. We will denote
by µ̃

0 the probability law of XT under the reference process
(6) when X0 ⇠ µ, i.e.,

µ̃
0(A) =

Z

A

✓Z

Rn

p(z, y; 0, T )µ(dz)

◆
dy

for any Borel set A ✓ Rn; in particular, µ̃0 has a density with
respect to the Lebesgue measure. We assume henceforth that
µ
0 is absolutely continuous w.r.t. µ̃0.
Following [8], we will make essential use of the following

key structural result of Beurling [18] and Jamison [19]: Given
µ, µ0, and p, there exist two unique �-finite Borel measures
⌫ and ⌫

0 on Rn, such that the measure

⇡(E) :=

Z

E

p(z, y; 0, T )⌫(dz)⌫0(dy) (18)

on Rn ⇥ Rn has marginals µ and µ
0, i.e.,

⇡(·⇥ Rn) = µ(·), ⇡(Rn ⇥ ·) = µ
0(·); (19)

moreover, µ ⇠ ⌫ and µ
0 ⇠ ⌫

0, where ⇠ indicates equivalence
(mutual absolute continuity) of measures. Since µ̃

0 has a
density w.r.t. the Lebesgue measure, so does ⌫

0. Denoting
the latter density by q, let us define

⇢(z, t) := E[q(Xz,t

T
)] =

Z

Rn

p(z, y; t, T )q(y) dy.

Then ⇢(z, T ) = q(z), and it follows from (18) and (19) that

⇢(z, 0) =

Z

Rn

p(z, y; 0, T )q(y) dy =
dµ

d⌫
(z).

For a nonrandom initial condition X̃0 = z, consider the
Gibbs measure P

⇤,z with
dP ⇤,z

dP z
=

q(Xz

T
)

⇢(z, 0)
=

exp(�H(Xz))

EP z exp(�H(Xz))

corresponding to H(Xz) = � log q(Xz

T
), i.e., we take f ⌘ 0

and g = � log q in (7). Assuming g is such that (H1) and
(H2) are satisfied, Theorem 1 tells us that we can obtain
samples from P

⇤,z using the admissible control

u⇤(x, t) = �
✓
@v

@x
(x, t)

◆T

with v(x, t) = � log ⇢(x, t); the same control also yields
the optimal solution for the random initial condition µ, and
in that case the law of the corresponding controlled process
(X̃⇤

t
; 0  t  T ) is given by the Gibbs mixture

P
⇤,µ =

Z

Rn

µ(dz)P ⇤,z (20)

(cf. the discussion following the proof of Theorem 1). It is
readily verified that X̃⇤

T
has the prescribed law µ

0: For any
bounded and measurable h : Rn ! R, we have

Eh(X̃⇤
T
) =

Z

Rn⇥Rn

h(y)p(z, y; 0, T )
q(y)

⇢(z, 0)
µ(dz) dy

=

Z

Rn⇥Rn

h(y)p(z, y; 0, T )⌫(dz)⌫0(dy)

=

Z

Rn

h(y)µ0(dy).

The corresponding free energies (or minimum expected
costs) can be computed as follows. First, for the nonrandom
initial condition X̃0 = z, we have

F (z, P ⇤,z) =
1

2
E

Z
T

0

���T
u⇤(X̃

⇤,z
t

, t)
��2 dt�E[log q(X̃⇤,z

T
)]

= � log ⇢(z, 0) = � log
dµ

d⌫
(z);

then, under (20),

F (P ⇤,µ) =

Z

Rn

F (z, P ⇤,z)µ(dz) = �D(µk⌫),

where we have extended the definition (1) of the relative
entropy D(·k·) to any pair of �-finite Borel measures (recall
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that µ ⇠ ⌫). Using these, we can recover the following
expression for the ‘minimum control effort’ from [8]:

1

2
E

Z
T

0

���T
u⇤(X̃

⇤
t
)
��2 dt = D(µ0k⌫̃0)�D(µk⌫),

where ⌫̃
0(A) :=

R
A

⇣R
Rn p(z, y; 0, T )⌫(dz)

⌘
dy.

In general, the determination of the Beurling–Jamison
measures ⌫ and ⌫

0 in (18) and (19) is not straightforward, and
can be done using a forward-backward successive approxi-
mation scheme going back to the seminal work of Fortet,
cf. [20] and references therein. However, an explicit solution
can be given when µ = �0 (the Dirac measure at z = 0)
and when the reference process is a standard n-dimensional
Brownian motion (Wt; 0  t  T ) [7]. In that case, µ̃0 is
the Gaussian measure �T with mean 0 and covariance matrix
TIn, ⌫ = µ = �0, and q = dµ0

d�T
. The value function is then

given by v(x, t) = � logE[q(x+WT�Wt)], and the optimal
control u⇤(x, t) = �

�
@v

@x
(x, t)

�T (the so-called Föllmer drift)
attains the minimum energy

1

2
E

Z
T

0
|u⇤(X̃

⇤
t
)|2 dt = D(µ0k�T ).

C. Time reversal of diffusions

A closely related problem is the following [5], [6]: Con-
sider an n-dimensional diffusion process

Xt = X0 +

Z
t

0
b(Xs, s) ds+

Z
t

0
�(Xs, s) dWs, 0  t  T

(21)

(where, as before, Wt is an m-dimensional standard Brow-
nian motion) and define its time reversal X̄t := XT�t for
0  t  T . The question is to determine whether X̄t is itself
a diffusion process, so that it can be expressed as

X̄t = X̄0 +

Z
t

0
b̄(X̄s, s) ds+

Z
t

0
�̄(X̄s, s) dW̄s (22)

for some b̄, �̄ and for some m-dimensional Brownian motion
W̄ . Haussmann and Pardoux [6] showed that, under certain
regularity conditions, there exists an m-dimensional Brown-
ian motion process W̄ , such that (22) holds with

b̄i(x, t) = �bi(x, T � t)

+ p(x, T � t)�1
nX

j=1

@

@xj

�
aij(x, T � t)p(x, T � t)

�
,

�̄ik(x, t) = �ik(x, T � t), āij(x, t) = aij(x, T � t)
(23)

for i, j = 1, . . . , n and k = 1, . . . ,m. As in [6], we adopt
the convention that the term involving p(x, T � t)�1 is set
to zero if p(x, T � t) = 0. We now derive the result of [6]
as a consequence of Theorem 1.

To that end, we first rewrite the drift b̄ in (23) as

b̄(x, t) = b̂(x, t) + ā(x, t)

✓
@

@x
log p̄(x, t)

◆T

, (24)

where

b̂i(x, t) := �bi(x, T � t) +
nX

j=1

@

@xj

āij(x, t), i = 1, . . . , n

(25)

and p̄(x, t) := p(x, T � t). Let P denote the probability law
of the process

X̂t = X̂0 +

Z
t

0
b̂(X̂s, s) ds+

Z
t

0
�̄(X̂s, s) dW̄s (26)

with X̂0 having density p̄(·, 0) ⌘ p(·, T ). This will be our
reference process. The processes {X̂z,s

t
: s  t  T} for

z 2 Rn and 0  s  T are defined in the same way as
before, and P

z will denote the probability law of X̂z,0. We
will next show that the second term on the right-hand side of
(24) arises as an optimal control for an appropriately defined
Hamiltonian, the controlled process now taking the form

X̃t = X̃0 +

Z
t

0

⇣
b̂(X̃s, s) + ā(X̃s, s)u(X̃s, s)

⌘
ds

+

Z
t

0
�̄(X̃s, s) dW̃s

(27)

with random initialization X̃0 having density p̄(·, 0).
Under appropriate regularity conditions [10], (R2) holds

for b̂ and �̄, and (H1)–(H2) hold for the Hamiltonian

H(X̂) =

Z
T

0
f(X̂t, t) dt+ g(X̂T )

with

f(x, t) :=
nX

i=1

@

@xi

b̂i(x, t), g(x) := � log p(x, 0). (28)

Moreover, the density p(x, t) of Xt in (21) is a classical
solution of the forward Kolmogorov equation

@

@t
p(x, t) = �

nX

i=1

@

@xi

�
bi(x, t)p(x, t)

�

+
1

2

nX

i,j=1

@
2

@xi@xj

�
aij(x, t)p(x, t)

�

for (x, t) 2 Rn ⇥ [0, T ] (see, e.g., [21]). It is then readily
verified that the time-reversed density p̄(x, t) is a solution of
the Cauchy problem

@

@t
p̄(x, t) + L̂p̄(x, t)� f(x, t)p̄(x, t) = 0 on Rn ⇥ [0, T ]

subject to p̄(x, T ) = p(x, 0), where

L̂ =
X

i

b̂i(·, t)
@

@xi

+
1

2

X

i,j

āij(·, t)
@
2

@xi@xj

is the generator of the reference process (26). The Feynman–
Kac formula gives the following expression:

v(x, t) := � log p̄(x, t) = � logE exp(�H(t, x, X̂x,t)),
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where, analogously to (8), we have defined

H(t, x, X̂x,t) :=

Z
T

t

f(X̂x,t

s
, s) ds+ g(X̂x,t

T
)

with f and g given in (28). Theorem 1 then says that

u⇤(x, t) = �
✓
@v

@x
(x, t)

◆T

=

✓
@

@x
log p̄(x, t)

◆T

minimizes the expected cost

J(u, z) = Ẽ

"Z
T

0

 
1

2
|�̄T

u(X̃t, t)|2 +
nX

i=1

@

@xi

b̂i(X̃t, t)

!
dt

� log p(X̃T , 0)

#

over all admissible controls for (27) with nonrandom initial
condition X̃0 = z, and also attains the Gibbs measure
dP ⇤,z / exp(�H(X̂z,0)) dP z . As a consequence, we obtain
the following variational representation of � log p(·, t):

� log p(z, t)

= min
u

Ẽ

"Z
T

T�t

 
1

2
|�̄T

u(X̃s, s)|2 +
nX

i=1

@

@xi

b̂i(X̃s, s)

!
ds

� log p(X̃T ; 0)

�����X̃T�t = z

#
,

where the minimization is over all admissible controls for
(27). The second term in the integrand is the divergence
of the drift vector field b̂, which depends on b and on the
derivatives of a w.r.t. x, cf. (25). The special case of �

depending only on t was worked out in [22] and, recently,
in [23] in the context of probabilistic generative models.

The same control u⇤ also works for the random initial con-
dition X̃0 with density p̄(·, 0) ⌘ p(·, T ), and the probability
law of the corresponding process {X̃⇤

t
: 0  t  T} with

X̃
⇤
0 sampled from p(·, T ) is the Gibbs mixture P

⇤,p(·,T ) =R
Rn p(z, T )P ⇤,z dz. This is also the probability law of the

process {X̄t : 0  t  T}, the time reversal of Xt in (21).
The minimum value of the free energy is given by

F (P ⇤,p(·,T )) = �
Z

Rn

p(z, T ) log p(z, T ) dz,

the differential entropy of the density p(·, T ) [24, Sec. 1.3],
which is finite because p(·, T ) has finite second moments.

VI. CONCLUSIONS

We have revisited the work of Mitter and Newton [1]
which used an information-theoretic interpretation of the
Bayes’ formula to develop an optimal control approach to
sampling from conditional densities of diffusion processes.
While variational formulations of the Bayes’ formula as
free energy minimization can be found in other works (see,
e.g., Zellner [25] and Walker [26]), the stochastic control
formulation in [1] leads to an alternative procedure for
conditional sampling not based on iterative methods like
Markov chain Monte Carlo. We have shown that free energy
minimization provides a natural framework for a number of

other problems arising in the context of diffusion processes,
and that the stochastic optimal control viewpoint can be used
to explain the structure of the solutions to these problems.
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