This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

SHyPar: A Spectral Coarsening Approach to
Hypergraph Partitioning

Hamed Sajadinia*, Ali Aghdaei*, Zhuo Feng, Senior Member, IEEE,

Abstract—State-of-the-art hypergraph partitioners utilize a
multilevel paradigm to construct progressively coarser hyper-
graphs across multiple layers, guiding cut refinements at each
level of the hierarchy. Traditionally, these partitioners employ
heuristic methods for coarsening and do not consider the struc-
tural features of hypergraphs. In this work, we introduce a mul-
tilevel spectral framework, SHyPar, for partitioning large-scale
hypergraphs by leveraging hyperedge effective resistances and
flow-based community detection techniques. Inspired by the latest
theoretical spectral clustering frameworks, such as HyperEF
and HyperSF, SHyPar aims to decompose large hypergraphs
into multiple subgraphs with few inter-partition hyperedges
(cut size). A key component of SHyPar is a flow-based local
clustering scheme for hypergraph coarsening, which incorporates
a max-flow-based algorithm to produce clusters with substantially
improved conductance. Additionally, SHyPar utilizes an effective
resistance-based rating function for merging nodes that are
strongly connected (coupled). Compared with existing state-of-
the-art hypergraph partitioning methods, our extensive exper-
imental results on real-world VLSI designs demonstrate that
SHyPar can more effectively partition hypergraphs, achieving
state-of-the-art solution quality.

Index Terms—Hypergraph Partitioning, Effective Resistance,
Flow-Based Clustering, Spectral Coarsening.

I. INTRODUCTION

YPERGRAPHS are more general than simple graphs

since they allow modeling higher-order relationships
among the entities. Hypergraph partitioning is an increas-
ingly important problem with applications in various areas,
including parallel sparse matrix computations [1], computer-
aided design (CAD) of integrated circuit systems [2], physical
mapping of chromosomes [3], protein-to-protein interactions
[4], as well as data mining and machine learning [5].

The problem of hypergraph partitioning involves grouping
the nodes of a hypergraph into multiple clusters. This is
done by minimizing a given cost function, defined over the
hypergraph, under specific constraints. For instance, the cost
function can be the hypergraph cut, which is the number (or
total weight) of hyperedges that span more than one partition.
The constraints may include balance constraints, where the
difference in total node (or hyperedge) weight of each cluster
should not exceed a given threshold. Due to these balance
constraints, the problem of optimally partitioning a hypergraph
is classified as NP-hard [6].

* These authors contributed equally to this work.
The authors are with the Electrical and Computer Engineering Depart-
ment, Stevens Institute of Technology, 1 Castle Point Terrace, Hobo-
ken, NJ 07030, USA (e-mail: hsajadin@stevens.edu; aaghdaei@ucsd.edu;
zfeng12@stevens.edu)

State-of-the-art multilevel hypergraph partitioning tech-
niques predominantly rely on relatively simple heuristics for
edge coarsening, such as vertex similarity or hyperedge sim-
ilarity [2], [7]-[10]. For example, hyperedge similarity-based
coarsening techniques contract similar large-size hyperedges
into smaller ones. While this approach is straightforward to
implement, it may adversely affect the original structural prop-
erties of the hypergraph. On the other hand, vertex-similarity-
based algorithms determine strongly coupled (correlated) node
clusters by measuring distances between vertices. This can
be facilitated by hypergraph embedding, which maps each
vertex to a low-dimensional vector, allowing for the Euclidean
distance (coupling) between vertices to be easily computed
in constant time. However, these simple metrics often fail to
capture the higher-order global (structural) relationships within
hypergraphs, potentially leading to suboptimal partitioning
solutions.

Spectral methods are increasingly important in various
graph and numerical applications [11]. These applications
include scientific computing and numerical optimization [12]-
[14], graph partitioning and data clustering [15]-[17], data
mining and machine learning [18], [19], graph visualization
and data analytics [20]-[22], graph signal processing and
image segmentation [23]-[25], and integrated circuit (IC)
modeling and verification [26]-[31]. Recent theoretical break-
throughs in spectral graph theory have led to the development
of nearly-linear time spectral graph sparsification (edge re-
duction) [31]-[37] and coarsening (node reduction) algorithms
[38], [39].

On the other hand, spectral theory for hypergraphs has
been less developed due to the more complicated structure
of hypergraphs. For example, a mathematically rigorous ap-
proach has introduced a nonlinear diffusion process to define
the hypergraph Laplacian operator, which measures the flow
distribution within each hyperedge [40], [41]; Additionally,
the Cheeger’s inequality has been validated for hypergraphs
under this diffusion-based nonlinear Laplacian operator [40].
However, these theoretical results do not readily translate
into practical implementations. Even recent breakthroughs,
such as the SpecPart and K-SpecPart algorithms for spectral
hypergraph partitioning [42], [43], still depend heavily on the
initial solutions provided by existing multilevel hypergraph
partitioning methods, which themselves are based entirely on
simplistic edge coarsening heuristics [44], [45].

This paper introduces a brand-new multilevel hypergraph
partitioning framework that leverages the latest highly scalable
spectral hypergraph coarsening algorithms [46], [47]. Unlike
traditional methods that depend solely on simple hyperedge

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This

article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOl 10.1109/TCAD. 20253586885

Prior Coarsening Methods

Simple Local Heuristics

Edge Matching
&
Vertex Similarity

Coarsened
Hypergraph

Original
Hypergraph

Our Coarsening Methods

Spectral Graph Theory

Effective Resist.
Coarsened
& - =p
Hypergraph

Original -]
Hypergraph

Max Flow

C PN)

Buluasieo)
Refining

Initial
~—_Solution -

Fig. 1: The proposed multilevel hypergraph partitioning via spectral coarsening.

(node) contraction heuristics and focus on local hypergraph
structures, our framework, for the first time, incorporates
spectral (global) properties into the multilevel coarsening and
partitioning tasks as depicted in Figure 1. To achieve these
goals, the paper is organized in a structured sequence of steps:

a) Scalable Spectral Hypergraph Coarsening Algo-
rithms: This paper presents a two-phase scalable algorithmic
framework for the spectral coarsening of large-scale hyper-
graphs, which exploits hyperedge effective resistances and
strongly local flow-based methods [46], [47]. The proposed
methods facilitate the decomposition of hypergraphs into
multiple strongly-connected node clusters with minimal inter-
cluster hyperedges, by incorporating the latest diffusion-based
nonlinear quadratic operators defined on hypergraphs.

b) Multilevel Hypergraph Partitioning via Spectral
Coarsening: This paper develops a brand-new multilevel
hypergraph partitioning tool by seamlessly integrating the
proposed spectral coarsening methods into the hypergraph
partitioning platform. By replacing the traditional simple
coarsening heuristics with our theoretically rigorous spectral
methods, the multilevel hypergraph partitioning tools devel-
oped through this research will potentially offer significantly
improved partitioning solutions without compromising runtime
efficiency.

c) Validations of Muiltilevel Hypergraph Partitioning
Tools: This paper comprehensively validates the developed
hypergraph partitioning tools, focusing on an increasingly
important application: integrated circuit (IC) computer-aided
design. Both the solution quality and runtime efficiency will
be carefully assessed by testing the tools on a wide range
of public-domain data sets. Additionally, the developed open-
source software packages will be made available for public
assessment.

The structure of this paper is organized as follows: Section
I provides a foundational overview of the essential concepts
and preliminaries in spectral hypergraph theory. Section III
introduces the proposed method for hypergraph partitioning
via spectral clustering, including resistance-based hypergraph
clustering, flow-based clustering, and multilevel hypergraph
partitioning. Section IV applies our framework to an es-

tablished hypergraph partitioning tool, showcasing extensive
experimental results on various real-world VLSI design bench-
marks. The paper concludes with Section V, which summarizes
the findings and implications of this work.

II. PRELIMINARIES AND BACKGROUND

A. Spectral (Hyper)graph Theory

1) Graph Laplacian matrix: In an undirected graph G =
(V,&,z), the symbol V represents a set of nodes (vertices),
& represents a set of undirected edges, and z indicates the
weights associated with these edges. We denote D as a diag-
onal matrix where each diagonal element D(z,7) corresponds
to the weighted degree of node 7. Additionally, A is defined as
the adjacency matrix for the undirected graph G, as described
below:

(D

Ali,§) = {g(fs,j) if (5,5) € €
otherwise .

Subsequently, the Laplacian matrix of the graph G is deter-
mined by the formula L = D — A. This matrix adheres to
several key properties: (1) the sum of the elements in each row
or column is zero; (2) all elements outside the main diagonal
are non-positive; (3) the graph Laplacian is symmetric and
diagonally dominant (SDD), characterized by non-negative
eigenvalues.

2) Courant-Fischer Minimax Theorem: The k-th largest
eigenvalue of the Laplacian matrix L € RIVI*IVI over the
subspace U of RV, can be computed as follows:

(L 'Lz
. _

= min max T
dim(U)=k z€U x'x
zF#0

; 2

This can be leveraged for compute the spectrum of the
Laplacian matrix L.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from IEEE Xplore. Restrictions apply.
‘© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index. html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

3) Graph conductance: Tn a graph G = (V, &, z) where
vertices are partitioned into subsets (5,.5), the conductance
of partition S is defined as:

w(S, S)

— E(isj}EEIiES,j{;ES z(3, j)
min (voI(S), UOI(S'))

min (UOE(S),UOE(S)) ,
3)
where the volume of the partition, vol(S), is the sum of

the weighted degrees of vertices in S, defined as wvol(S) :=
> icsd(i). The graph’s conductance [48] is defined as:

‘:I’G(S) =

®s := min B(5). 4

G = min (S) 4)

4) Cheegers’ inequality: Research has demonstrated that

the conductance ®¢ of the graph G closely correlates with

its spectral properties, as articulated by Cheeger’s inequality
[48]:

w2 /2 < &g < V2ws, (5)

where ws is the second smallest eigenvalue of the normalized
Laplacian matrix L, defined as L = D~'/2LD~1/2,

5) Effective resistance distance: Let G = (V, &, z) repre-
sent a connected, undirected graph with weights z € RS .
let b, € RY denote the standard basis vector characterized
by zero entries except for a one in the p-th position, and let
bpg = bp — by, The effective resistance between nodes p and
g, (p,q) € V can be computed by:

VI Ty 32 Ty 32
_ T gt _ (us bpg)™ _ (z " bpq)
Reff (p': Q) = bpqLGqu = ;)\i = ;ﬂe-an?‘g fL'TLGfL' 3
(6)
where LTG represents the Moore-Penrose pseudo-inverse of the
graph Laplacian matrix L, and u; € RY for i = 1,...,|V|
represents the unit-length, mutually-orthogonal eigenvectors
corresponding to Laplacian eigenvalues A; for i = 1,...,[V|.

Graph conductance is a metric used to evaluate the quality of
connectivity within a subset of nodes in a graph. Specifically,
a lower conductance value indicates that the subset exhibits a
higher number of internal edges relative to the number of edges
connecting it to the remainder of the graph. This suggests
that the subset forms a strongly-connected cluster with limited
external interaction. Alternatively, when a graph is modeled as
a resistive electrical network, where nodes represent junctions
and edge weights correspond to resistances, the concept of
effective resistance between two nodes serves as a measure
of their pairwise connectivity. A smaller effective resistance
implies the presence of multiple alternative paths between the
nodes, indicating stronger connectivity in the network.

6) Spectral methods for hypergraphs: Classical spectral
graph theory shows that the structure of a simple graph is
closely related to the graph’s spectral properties. Specifically,
Cheeger’s inequality demonstrates the close connection be-
tween expansion (or conductance) and the first few eigenvalues
of graph Laplacians [16]. Moreover, the Laplacian quadratic
form computed with the Fiedler vector (the eigenvector corre-
sponding to the smallest nonzero Laplacian eigenvalue) has
been exploited to find the minimum boundary size or cut

for graph partitioning tasks [15]. However, there has been
very limited progress in developing spectral algorithms for
hypergraphs. For instance, a classical spectral method has
been proposed for hypergraphs by converting each hyper-
edge into undirected edges using star or clique expansions
[49]. This naive hyperedge conversion scheme may result
in lower performance due to ignoring the multi-way high-
order relationships between the entities. A more rigorous
approach by Tasuku and Yuichi [50] generalized spectral graph
sparsification for the hypergraph setting by sampling each
hyperedge according to a probability determined based on
the ratio of the hyperedge weight to the minimum degree of
two vertices inside the hyperedge. Another family of spectral
methods for hypergraphs explicitly builds the Laplacian matrix
to analyze the spectral properties of hypergraphs. A method
has been proposed to create the Laplacian matrix of a hyper-
graph and generalize graph learning algorithms for hypergraph
applications [51]. A more mathematically rigorous approach
by Chan et al. introduced a nonlinear diffusion process for
defining the hypergraph Laplacian operator by measuring the
flow distribution within each hyperedge [40], [41]. Moreover,
Cheeger’s inequality has been proven for hypergraphs under
the diffusion-based nonlinear Laplacian operator [40].

7) Hypergraph conductance: A hypergraph H = (V, E, w)
consists of a vertex set V and a set of hyperedges E
with weights w. The degree of a vertex d, is defined as:
dy = Yecpweew(e), where w(e) represents the weight of
each hyperedge. The volume of a node set S C V in the
hypergraph is defined as: vol(S) := ¥y ¢csd,. The conductance
of a subset S within the hypergraph is then calculated as:

cut(S, S)

P(S) := — —,
min{vol(S), vol(5)}

)

where cut(S,5) quantifies the number of hyperedges that
cross between S and S. This computation uses an “all or noth-
ing” splitting function that uniformly penalizes the splitting of
hyperedges. The hypergraph’s overall conductance is defined
as:

min ®(S5), (8)

B. Hypergraph Partitioning Methods

The previous hypergraph partitioners leverage a multilevel
paradigm to construct a hierarchy of coarser hypergraphs
using local clustering methods. Computing a sequence of
coarser hypergraphs that preserve the structural properties of
the original hypergraph is a key step in every partitioning
method. The coarsening algorithm in existing partitioning
methods either computes matching or clustering at each level
by utilizing a rating function to cluster strongly correlated ver-
tices. Hyperedge matching and vertex similarity methods are
used in the coarsening phase to cluster the nodes and contract
the hyperedges. Existing well-known hypergraph partitioners,
such as hMETIS [2], KaHyPar [45], PaToH [9], and Zoltan [7],
all use heuristic clustering methods to compute the sequence
of coarser hypergraphs.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

1) Hypergraph coarsening: Multi-level coarsening tech-
niques typically employ either matchings or clusterings on
each level of the coarsening hierarchy. These algorithms utilize
various rating functions to decide whether vertices should be
matched or grouped together, using the contracted vertices to
form the vertex set of the coarser hypergraph at the subsequent
level. In contrast, n-level partitioning algorithms, such as
the graph partitioner KaSPar [52], establish a hierarchy of
(nearly) n levels by contracting just one vertex pair between
two levels. This approach eliminates the need for matching
or clustering algorithms during the graph reduction process.
KaSPar utilizes a priority queue to determine the next vertex
pair to be contracted. After each contraction, it updates the
priority of every neighboring vertex of the contracted vertex
to maintain consistency in priorities. However, in hypergraphs,
this method faces significant speed limitations because the
size of the neighborhood can greatly expand due to a single
large hyperedge. To address this limitation, KaHyPar [45]
adopts the heavy-edge rating function. This strategy involves
initially selecting a random vertex p and contracting it with
the best neighboring node that has the highest rating. The
rating function specifically selects a vertex pair (p, g) that is
involved in a large number of hyperedges with relatively small
sizes, optimizing the coarsening process based on the most
significant connections between vertices:

Z w(e)

e=(p,q)€E el =1

r(p. q) = 9)

where 7(p, q) is the rating of the vertex pair, w(e) is the weight
of hyperedge e, and |e| is the hyperedge cardinality.

2) Community Detection: The coarsening phase aims to
generate progressively smaller yet structurally consistent ap-
proximations of the input hypergraph. However, certain sce-
narios may arise where the inherent structure becomes ob-
scured. For example, tie-breaking decisions may be necessary
when multiple neighbors of a vertex share the same rating.
Consequently, to improve coarsening schemes, existing par-
titioners like KaHyPar utilize a preprocessing step involving
community detection to guide the coarsening phase. In this
approach, the hypergraph is divided into several communities
and then the coarsening phase is applied to each community
separately. Existing community detection algorithms, such
as the Louvain algorithm, partition hypergraph vertices into
communities characterized by dense internal connections and
sparse external ones. This method reformulates the problem
into a task of modularity maximization in graphs.

3) Partitioning objectives: Hypergraph partitioning extends
the concept of graph partitioning. Its objective is to dis-
tribute the vertex set into multiple disjoint subsets while
minimizing a specified cut metric and adhering to certain
imbalance constraints. The process of dividing into two subsets
is known as bipartitioning, whereas dividing into multiple
subsets, typically referred to as k-way partitioning, involves
partitioning into k parts. More formally, consider a hypergraph
H = (V, E,w), where k is a positive integer (with & > 2) and
€ is a positive real number (where € < %). The objective of

k-way balanced hypergraph partitioning is to divide V into k
disjoint subsets S = {Vp, V1,...,Vix_1} such that:

c (WY v v < (FHOW, for0<i<k—1
o cutsizeq (S) = (cjeqv; for any 1} We 1S Minimized

Here, k represents the number of partitions, W is the hyper-
graph total weight (W =) ., w,), € denotes the allowable
imbalance among the partitions, and each V; is a block of the
partition. We denote S as an e-balanced partitioning solution.

ITI1. SHYPAR: HYPERGRAPH PARTITIONING VIA
SPECTRAL COARSENING

To address the limitations of existing hypergraph coarsening
methods that rely on simple heuristics, we propose a theoreti-
cally sound and practically efficient framework for hypergraph
coarsening. Specifically, we propose a two-phase spectral
hypergraph coarsening scheme based on the recent research
on spectral hypergraph clustering [46], [47]. Phase A utilizes
spectral hypergraph coarsening (HyperEF) to decompose a
given hypergraph into smaller node partitions with bounded
effective-resistance diameters [47]. This is followed by Phase
B, which guides the coarsening stage using a flow-based
community detection method (HyperSF) aimed at minimizing
the ratio cut [46]. Next, we exploit the proposed two-phase
spectral hypergraph coarsening method for multilevel hyper-
graph partitioning: the prior heuristic hypergraph coarsening
schemes will be replaced by the proposed spectral coarsening
methods to create a hierarchy of coarser hypergraphs that
can preserve the key structural properties of the original

hypergraph.

A. Resistance-Based Hypergraph Coarsening (Phase A)

We leverage the effective resistance parameter to coarsen
the hyperedges successively by contracting the hyperedges
with small effective resistance. Effective resistance in simple
graphs has been used to detect the critical edges for the global
structure and it shows how different graph components are
connected with each other.

a) Limitations of Existing Coarsening Methods: The
existing coarsening algorithms contract vertices at each level
of the hierarchy. The primary method involves contracting
each vertex with the best neighboring node. This is commonly
done by using rating functions to identify and contract highly
connected vertices. However, these determinations often rely
solely on the weights and sizes of the hyperedges. Rating
functions, such as those described in Eq. (9), based on hy-
peredge size are limited to the local structural properties of
the hypergraph and do not account for its global structure.
In contrast, the effective-resistance diameter provides a more
comprehensive criterion, which considers the global structure.
To illustrate this limitation, consider a scenario where the
hypergraph contains a bridge with few nodes (small size hyper-
edge), as illustrated in Figure 2. Algorithms that use hyperedge
size tend to inappropriately contract bridge nodes (node 4 and
node 7). This contraction can lead to the collapse of the overall
structure of the hypergraph. Since the effective resistance of

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

a bridge is high, algorithms based on effective resistance do
not contract these nodes and preserve the integrity of the
hypergraph structure.

Fig. 2: The example of contraction in a simple hypergraph.

In [35], the authors introduced a spectral algorithm based
on effective resistance to sparsify hypergraphs. This method
achieves nearly-linear-sized sparsifiers by sampling hyper-
edges according to their effective resistances [35]. Despite
its theoretical appeal, the technique involves a non-trivial
procedure for the estimation of hyperedge effective resistances,
which could hinder practical efficiency. The need to convert
hypergraphs into graphs through clique expansion and the
iterative updating of edge weights significantly adds to the
complexity of the algorithm [35].

1) HyperEF: Hypergraph Coarsening via effective resis-
tance Clustering: A spectral hypergraph coarsening technique,
HyperEF, clusters nodes within each hyperedge when those
nodes have a low effective-resistance diameter, as illustrated
in Figure 3. This approach significantly reduces the hypergraph
size while preserving the original structural characteristics. A
crucial part of HyperEF is an efficient procedure for estimating
hyperedge effective resistances, which adapts the optimization-
based method from Eq. (6) to hypergraphs. Specifically, the
effective resistance of a hyperedge is determined by finding
an optimal vector x* via the following optimization:

) = max (Xprg}Q

Re(x* T On()

p,gE€e (10)

approximate hyperedge
effective resistance
& sort

R, > R“_,I > Re3 >R,

H.f

€
°'°
o ©
e

°3

Fig. 3: Overview of the HyperEF method.

.----.

where the original quadratic form z 'Lz in Eq. (6) is
replaced by the nonlinear quadratic form Qg(x) [40]:

w
Z e’que

ecE

—xw)* (an
As shown in Figure 3, HyperEF generates a significantly
smaller hypergraph H' = (V’',E’,w') from the original
hypergraph H = (V, E,w) utilizing effective resistances of
the hyperedge, achieving reductions in the number of vertices,
edges and weights (|[V'| < |V, |E’| < |E| and |w'| < |w]).

2) Low-Resistance-Diameter Decomposition: Consider a
weighted undirected graph G = (V,€&,z) with weights
z € R¥>0 and sufficiently large v > 1. The effective-
resistance diameter is defined as maéa{,Reff(u,v}. Recent

u,v

studies demonstrate that it is possible to partition a graph G
into multiple node clusters G[V;] with low effective-resistance
diameters by removing only a small fraction of edges [53]:

3 VI

z(€)
Additionally, let & represent the conductance of G.
Cheeger’s inequality provides a way to establish a relationship

between the effective-resistance diameter of the graph and its
conductance [53]:

max Reffc[v‘.] (w,v) S (12)

u,veV;

max Resp(u,v) S (13)

1

URI=4% ~ ‘1’2@ |
Leveraging recent spectral hypergraph theory [40], [41], Hy-
perEF extends the above theorems to hypergraphs. Inequality
(12) implies that it is possible to decompose a hypergraph
into multiple (hyperedge) clusters that have small effective-
resistance diameters by removing only a few inter-cluster
hyperedges, while (13) implies that contracting the hyperedges
(node clusters) with small effective-resistance diameters will
not significantly impact the original hypergraph conductance.
Based on these theoretical foundations, HyperEF consists of
the following three main steps:

» Constructing the Krylov subspace to approximate the
eigensubspace related to the original hypergraph;

« Estimating the effective resistance of each hyperedge by
applying the proposed optimization-based method;

« Constructing the coarsened hypergraph by aggregating
node clusters with low effective-resistance diameters.

3) Fast Estimation of Hyperedge Effective Resistances:
To achieve high efficiency, the search for x* in Eq. (10) is
restricted to an eigensubspace represented by a few select
Laplacian eigenvectors from the simplified graph derived from
the original hypergraph. Consider Gy, = (W, &, 2) as the
bipartite graph equivalent to the hypergraph H = (V, E, w),
where [Vy| = [V| + |E|, |€| = Zeckle|, and 2z, denotes the
scaled edge weights: z(e,p) = w((e))

According to Eq.(6), hyperedge effective resistances can be
approximated by identifying a set of orthogonal eigenvectors
that maximize Eq. (10). To avoid the computational complex-
ity of determining eigenvalues and eigenvectors, a scalable

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww_ieee_org/publications/rightsfindex.him| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

0.205

0.200 é

0.195

0.190

Approximated Effective Resistance

[]
@y, e ®
8o, 3%
0.185 .,
.. - .
o L
0.180
020 022 024

Actual Effective Resistance

Fig. 4: The approximated effective resistances for a simple
graph.

algorithm is used in HyperEF to approximate the eigenvectors
by leveraging the Krylov subspace, defined as follows:

For a non-singular matrix A, «, and a non-zero vector y #
0 € R", the order-(p + 1) Krylov subspace generated by A
from z is:

Kkp(A, x) == span(z, Az, A%r, ..., APx), (14)

where z is a random vector and A is the normalized adjacency
matrix of the simple graph obtained from the hypergraph via
star expansion.

Let (1), z(2) . z(r) € RV be the p mutually-orthogonal
vectors based on the order-(p+ 1) Krylov subspace x,(A,).
The effective resistance estimation in Eq. (6) is extended in
HyperEF by incorporating the non-linear quadratic operator of
hypergraphs from Eq. (11) to include the spectral properties
of the hypergraph. By excluding the node embedding values
associated with the star nodes in z(*), we generate a new set
of vectors y() that are all mutually orthogonal. Each node
in the hypergraph can then be embedded into a p-dimensional
space. The resistance ratio (r.) associated with a vector x® e
Y, ..., x®) for each hyperedge e is computed as:

(X“)prq)z
Qu(x®)
where p and ¢ are the two maximally-separated nodes in
the p-dimensional embedding space. Multiple resistance ra-
tios rgl),...,rép) are returned by Eq. (10), corresponding to
x, ..., x(P). After sorting resistance ratios in descending
order, we have:

re(xV) = pgee (15)

re >T2> . > 1P (16)

In HyperEF, the top m resistance ratios are selected to estimate
the effective resistance of each hyperedge. The hyperedge
effective resistance (R.) is specifically approximated by:

R.=)ri, eckE. (17)
i=1

Note that for each hypergraph, the Krylov subspace vectors
in Eq. (14) only need to be computed once, which can be

achieved in nearly linear time using only sparse matrix-vector
operations. The effective resistance of each hyperedge can be
estimated in constant time by identifying a few (m) Krylov
subspace vectors that maximize the resistance ratio in Eq. (15).
As shown in Figure 4, the approximate effective resistances of
simple graphs obtained using a few Krylov vectors correlate
well with the ground-truth values, with a correlation coefficient
of about 0.76. Algorithm 1 provides the detailed flow of the
proposed hyperedge effective resistance estimation method.

Algorithm 1 The effective resistance estimation algorithm
flow

Input: Hypergraph H = (V, E, w), p.

Output: A vector of effective resistance R with the size |E|.

: Construct the bipartite graph G5 corresponding to H.

: Construct the order-(p + 1) Krylov subspace.

Use Gram—Schmidt method to obtain the orthogonal vectors.

: For each hyperedge compute its p resistance ratios using (15).
: Obtain all hyperedge effective resistances R based on (17).

: Return R.

4) Hierarchical Effective Resistance Propagation : We
preserve the hypergraph structure by employing a technique
that iteratively computes a vector of effective resistance R
and contracts hyperedges exhibiting low effective resistances
(R. < &), where & is the effective resistance threshold.
Throughout this process, node clusters are contracted by merg-
ing the nodes within each cluster and replacing that cluster
with a new supernode in the next level. By assigning a weight
to each supernode—equal to the hyperedge’s effective resis-
tance evaluated at the previous level—we propagate essential
structural information through all levels of coarsening. As an
example, in Figure 3, when hyperedge e4 in H is contracted,
the node 8 in H' takes on a weight that is equal to the effective
resistance of e,. This ensures that the structural information
from the original hyperedge remains available in subsequent
coarsening steps.

Let HO = (VO EW) represent the hypergraph at
the [-th level. The vector of effective resistance R is updated
in each coarsening level according to the following equation:

RY « > " n(v) + RY, (18)
vee

where n(v) represents the weight of the nodes v € e
corresponding to a contracted hyperedge from the previous
level, initially set to all zeros for the original hypergraph.
Consequently, the effective resistance of a hyperedge at a
coarser level depends not only on RY (computed at the current
level), but also on the effective-resistance data transferred
from all previous levels. This allows the algorithm to preserve
global structural information through the multilevel coarsening
process.

The experimental results indicate that using Eq. (18) for ef-
fective resistances estimation yields more balanced hypergraph
clustering outcomes compared to approaches that ignore the
previous clustering information. The complete workflow for
the effective resistance clustering algorithm, HyperEF, used
for coarsening a hypergraph H across L levels, is detailed in
Algorithm 2.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

,---____----------------‘

ST E E E EEE BB EEEE B EEEEEE N

1
[
°

I ° \ a\ H HJ]
I i L
(=1 ° | '

i — V4 has the smallest

1 O o ° ° ER diameter | T7
] ° | l

] y]

N 0 - Phase A ’

Phase B

--EEE EEEEEE S SEE®S®S &S === om

Fig. 5: Overview of the HyperSF method.

Algorithm 2 The HyperEF algorithm for hypergraph cluster-
ing flow

Input: Hypergraph H = (V, E,w), 6, L, n.
Output: A coarsened hypergraph H' =
[V < |V].

(V/,E',w') that

1: Initialize H' + H

2:forl+1toL do

3: Call Algorithm 1 to compute a vector of effective resistance
R with the size |E’| for given hypergraph H'.

4: Update the effective resistance vector R by including the
supernode weights using Eq. (18)

5: Sort the hyperedges with ascending R values.

6: Starting with the hyperedges that have the lowest effective
resistances, contract (cluster) the hyperedge (nodes) if R < 4.

7: Construct a coarsened hypergraph H’ accordingly.
8: end for
9: Return H'.

B. Flow-Based Community Detection (Phase B)

To improve coarsening schemes for hypergraph partition-
ing, we utilize a community structure that integrates global
hypergraph information into the coarsening process. This com-
munity structure directs the coarsening phase by permitting
contractions solely within clusters.

In the flow-based community detection, we employ multi-
level clustering through HyperEF, which enhances the spec-
tral hypergraph clustering method by integrating a multilevel
coarsening approach. Let H = (V, E, w), the hypergraph local
conductance (HLC) with respective to a node-set S is defined
as follows [54]:

cut(S,)
vol(SNC) — Bvol(SNC)’

where C C V is reference node set, and 3 is a locality
parameter that modulates the penalty for incorporating nearby
nodes outside set C.

A spectral hypergraph coarsening algorithm (HyperSF)
is proposed by minimizing the HLC, which has achieved
promising results in hypergraph coarsening and partitioning
in realistic VLSI designs.

HLCc(S) =

(19)

1) Overview of Coarsening Refinement (HyperSF): Figure
5 shows an overview of the HyperSF method. In this work,
HyperSF is leveraged for only refining the most imbalanced
node clusters (initially identified by HyperEF) with signif-
icantly smaller resistance diameters compared to the rest.
Utilizing the flow-based clustering method that is proposed
in [54], HyperSF aggregates strongly-coupled node clusters

via minimizing Eq. (19): for each selected node set with large
imbalance, HyperSF repeatedly solves a max s-¢£ flow, min
s-t cut problem to detect a set of neighboring node clusters
that minimizes the local conductance HLC in Eq. (19). To
this end, the following key steps are applied (as shown in
Figure 6): (Step 1) an auxiliary hypergraph is constructed by
introducing a source vertex s and sink vertex ¢; (Step 2) each
hyperedge is replaced with a directed graph; (Step 3) each
seed node-set is iteratively updated by including new nodes
into the set to minimize the HLC by repeatedly solving the
max s-t flow, min s-¢ cut problem:

cut*™"(S) = cut(S) +volu (SN C) + Bvolu (SNC). (20)

(Step 4) The node sets obtained from flow-based methods
that minimize the local conductance are exploited to produce
a smaller hypergraph with fewer nodes while preserving the
key structural properties of the original hypergraph.

—

Fig.
tot

verted
Previous Spectral Hypergraph Coarsening method

= HyperSF leverages a flow-based clustering technique [1]
= F solve st flow p locally

2) Local clustering algorithms: The proposed flow-based
clustering algorithm in [54] is strongly local by expanding
the network around the seed nodes C, which benefits the

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww_ieee_org/publications/rightsfindex.him| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

coarsening framework in two ways: (1) applying the max s-t
flow, min s-t cut problem on the local neighborhood of the
seed nodes restricts node-aggregation locally and keeps the
global hypergraph structure intact; (2) such a local clustering
scheme significantly improves the algorithm efficiency due to
the small-scale input dataset.

3) Flow-based Local Clustering in HyperSF: First, we ap-
ply HyperEF (Algorithm 2) to the hypergraph H = (V, E, w)
to compute a coarsened hypergraph H' = (V' E’', w') and
identify isolated (unclustered) nodes, denoted by C. These
isolated nodes are simply those that remain unclustered after
HyperEF’'s multilevel coarsening step. Leveraging the intro-
duced flow-based clustering in [54], HyperSF constructs a
sub-hypergraph H; by iteratively expanding the hypergraph
around the seed node set C and then repeatedly solve the
hypergraph cut problem to minimize HLC until no sig-
nificant changes in local conductance are observed. Define
E'(S) = Uyevr vefer}. p B'(v) for any set S C V' and let
H! = (V'U{s,t}, E"UE""), where E’** denotes the terminal
edge set. HyperSF aims to construct a sub-hypergraph H} to
replace H/ that minimizes HL.C by repeatedly solving a local
version of (20). To this end, HyperSF sets up an oracle to
discover a set of best neighborhood vertices for a given vertex
v’

n(v'] = {I,F,Jr = V’}(u’,v’)Ee’,.e"eE"- (21)

HyperSF lets the oracle accept a set of seed nodes C and
return £(C) = Uy cer(v’). By utilizing the best neighborhood
of the seed nodes x(C), HyperSF builds a local hypergraph
H; = (V} u{s,t},E;, UE'), where V; = C Uk(C) and
E; ={¢ € E' | V] € €'}. As shown in Figure 7, HyperSF
creates the local auxiliary hypergraph of H} by introducing
the source node s and the sink node ¢, so that E’$" C E’*'
and repeatedly solves the max s-¢ flow, min s-¢ cut problem to
minimize HLC. The algorithm continuously expands H; and
includes more vertices and hyperedges from H/ by solving
(20) for the local hypergraph H;.

Algorithm 3 Flow-based Hypergraph Clustering

Input: Hypergraph H = (V, E, w), and £ (Convergence parameter)
Output: A set of vertices S that minimizes HLC(S);

1: Apply HyperEF to H to compute coarsened hypergraph H' =
(V',E',w'), and isolated nodes C C V;

: Assign isolated nodes as seed nodes S + C;

Agrc - 00;

: while AgrLc > € do

Identify the best neighborhood of seed nodes x(S);

Update S according to «(S) to construct Hf;

Add a source node s and sink node £ to HJ;

Repeatedly solve the max s-t flow, min s-¢ cut problem by

minimizing (20) for Hy;

9: Aprc + HLC(S) — HLC(SY™';

10: end while

11: Return S.

A ol

The algorithm 3 presents the details of the flow-based local
clustering technique. It accepts the original hypergraph H =
(V, E,w), and the convergence parameter £, which will output
a set of strongly connected vertices S that minimizes HL.C.

C. Algorithm Complexity for Spectral Coarsening

In HyperEF, the complexity for constructing the Krylov sub-
space for the bipartite graph Gy = (Vi, &b, 2) corresponding
to the original hypergraph H = (V,E,w) is O(|&]); the
complexity of the hyperedge effective resistance estimation
and hyperedge clustering is O(p|E]|); the complexity of com-
puting the node weights through the multilevel framework
is O(|E|) that leads to the overall nearly-linear algorithm
complexity of O(p|E| + |&|)- In HyperSF, the runtime com-
plexity of the proposed strongly local flow-based algorithm
is O (K*volg (C)3(1+ € 1)3), where k is the maximum hy-
peredge cardinality. Since each phase in the proposed spectral
hypergraph coarsening method has a nearly linear-time com-
plexity, the entire two-phase spectral coarsening procedure will
be highly scalable for handling large-scale hypergraphs.

D. Hypergraph Partitioning with Spectral Coarsening and
Flow-Based Clustering

Building on previous hypergraph partitioning methods, we
replace the coarsening algorithm with our proposed resistance-
based approach and incorporate flow-based community detec-
tion to further enhance partitioning quality.

1) Multilevel Spectral Coarsening with HyperEF: While
multilevel hypergraph partitioning frameworks like KaHyPar
use hyperedge size metrics in their coarsening phase to deter-
mine which vertex pairs should be contracted, we introduce
a resistance-based rating function that preserves structural
properties when generating a hierarchy of smaller hypergraphs.
For a given vertex pair (p,q), we define the rating function

as:
w(e)
rpa) = Y R 1

eclE

{p.q}Ce

(22)

where w(e) represents the weight of hyperedge e, and R,
denotes its effective resistance. The effective resistance of
each hyperedge, R, for e € E, is computed using Eq. (17)
in nearly-linear time. The effective resistance information
is further propagated throughout the multilevel coarsening
scheme by using a node weight propagation technique, as
described in Eq. (18). This approach enables us to obtain a
bound on the maximum distance between any pair of nodes
within a hyperedge, thereby reducing the hypergraph size
while maintaining the key spectral properties of the original

hypergraph.

2) Flow-Based clustering with HyperSF: To further im-
prove the quality of partitioning, we incorporate flow-based
community detection using HyperSF as described in Algo-
rithm 3, as a preprocessing step. HyperSF creates high-quality
clusters by analyzing the hypergraph flow structure.

The key insight of our approach is to first identify commu-
nities using HyperSF and then apply the multilevel spectral
coarsening algorithm to each community separately. This
community-aware coarsening strategy produces more balanced
partitions that better preserve the hypergraph’s structural prop-
erties.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

HyperSF sorts clusters by their resistance diameter and
prioritizes those with the lowest values. It then applies flow-
based techniques to merge nearby clusters with low resis-
tance diameters within the same neighborhood. The resulting
clusters exhibit low hypergraph local conductance (HLC),
which helps preserve the spectral properties of the original
hypergraph during the coarsening process.

3) SHyPar Algorithm Flow: In Algorithm 4, we present
the detailed procedure of SHyPar, which leverages resistance-
based spectral coarsening and flow-based clustering techniques
for hypergraph partitioning.

The input is a weighted hypergraph H = (V, E, w), and the
output is a partitioned hypergraph where each node is assigned
a partition index. Line 1 represents the one-time computation
of effective resistance using the HyperEF algorithm, which is
employed during the coarsening phase. Line 2 performs a one-
time computation of flow-based clusters via the HyperSF al-
gorithm, aiding in community detection. Lines 3-5 outline the
multilevel hypergraph partitioning pipeline, including coarsen-
ing, initial cut computation, and iterative refinement. Line 6
produces the final partitioning solution of the hypergraph.

Algorithm 4 SHyPar Algorithm

Input: Hypergraph H = (V, E, w)
Output: Partitioned Hypergraph;

1: Setup: Hyperedge Effective resistance computation using Hy-
perEF algorithm 1

2: Setup: Flow-based community detection using HyperSF algo-
rithm 3

: Multilevel spectral coarsening using Eq.22

: Initial partitioning based on KaHyPar algorithm

: Solution refinement based on KaHyPar algorithm

: Return the partitioned hypergraph

O Lh e L

IV. EXPERIMENTAL VALIDATION

There are many applications related to hypergraph par-
titioning. This paper focuses on comprehensively evaluat-
ing the performance of the proposed hypergraph partitioning
framework for increasingly important applications related to
integrated circuits computer-aided design. Both the solution
quality and runtime efficiency will be carefully assessed by
testing them on a wide range of public-domain data sets. The
implementation of the proposed algorithm, along with the code
for reproducing the experimental results, is publicly available
at https://github.com/Feng-Research/SHyPar.

To assess the performance of the proposed multilevel
hypergraph partitioning tools in applications related to VLSI
designs, We apply the multilevel hypergraph partitioning
tool developed to partition public-domain VLSI design
benchmarks. For example, the ISPD98 benchmarks that
include “IBMO1”, “IBMO02”, .., “IBMI8” hypergraph
models with 13,000 to 210,000 nodes be adopted [55]. The
performance metrics for multilevel hypergraph partitioning,
including the total hyperedge cut, imbalance factors, and
runtime efficiency, will be considered for comparisons with
state-of-the-art hypergraph partitioning tools, such as hMETIS
[2], and KaHyPar [45].

A. Spectral coarsening with HyperEF and HyperSF

In this section, we compare the preliminary implementations
of resistance-based hypergraph clustering (HyperEF) and flow-
based clustering (HyperSF) with the well-known hypergraph
partitioning tool, hMETIS [2]. Real-world VLSI design (hy-
pergraph) benchmarks have been tested [55]. All experiments
have been evaluated on a computing platform with 8 GB of
RAM and a 2.2 GHz Quad-Core Intel Core i7 processor.

HyperEF

—_ e -
:' o‘:} - -eZB'I

hMetis

r -
-~ z=- - -
] § Nmw=m LY Pl §~ »
|°JP '-b ’ I° - = o S A
A “'-54“] -. 84"
) c \ !
:. J ‘s ’
e - (4
¥ 3,! [3¢

0.
~m =’ ho i

Average conductance = 0.48 Average conductance = 0.77

Fig. 8: Resistance-based vs hMETIS Clustering Results.

1) HyperEF vs hMETIS for Hypergraph Coarsening:
HyperEF is compared to hMETIS for hypergraph coarsening
considering both solution quality and runtime efficiency. The
following average conductance of the node clusters is used to
analyze the performance of each method.

(23)

Where ®(S;) denotes the conductance of node cluster
S;. Figure 8 demonstrates the node clustering results for a
small hypergraph obtained using HyperEF and hMETIS. Both
methods partition the hypergraph into four clusters, and the
average conductance of node clusters has been computed to
evaluate the performance of each method. The results show
that HyperEF outperforms hMETIS by creating node clusters
with a significantly lower average conductance. In addition,
Table I shows the average conductance of node clusters ®g,
computed with both HyperEF and hMETIS by decomposing
the hypergraph with the same node reduction ratios (NRs).
With an NR = 75% (3x node reduction) HyperEF outperforms
hMETIS in average conductance while achieving 24 — 38x
speedups over hMETIS.

2) HyperSF vs hMETIS for Hypergraph Coarsening: In this
section, we evaluate the performance of HyperSF against the
hMETIS hypergraph partitioning tool. We measure the average
local conductance HLC,,, of the node clusters generated by
each method, calculated as follows:

15|

1 i

i S HLC(SY).
i=1

Table 1T presents the average local conductance HLC,,, for
various methods under the same hypergraph reduction ratio
(RR), where we reduce the number of nodes in each original
hypergraph by 75%. The experimental data illustrate that
HyperSF significantly enhances the average local conductance
compared to the hMETIS method in all test scenarios.

HLC,,, = (24)

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww_ieee_org/publications/rightsfindex.him| for more information.

https://github.com/Feng-Research/SHyPar

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

TABLE I: HyperEF vs hMETIS coductance (NR=75%)

) @, T (seconds T (seconds

Benchmark |y CEE | hMETIS H(yperEF) WMETIS
TBMO1 0.62 065 123 79 (24%)
TBM02 0.62 0.67 T4l 9 (35%)
TBMO03 0.63 0,66 20 3%
TBM04 0.64 0.66 237 80 (25x)
TBMO05 0.59 063 734 62 (26x)
TBM06 0.64 0.66 263 78 (30x)
TBMO7 0.63 067 354 | 115 (32%)
TBMOS 0.61 0.67 5 [15 G600
TBM09 0.64 0,66 138 | 31 30X
BMI0 0.63 0.67 579 | 181 (31x)
TBMI1 0.64 067 573 [176 B31x)
BM12 0.65 07 594 | 191 (32x)
BM13 0.65 0,68 687 | 229 (33%)
BM14 0.62 0.66 151 | 393 34x)
BMT5 0.66 0,60 444 | 4% (34x)
BMI6 0.63 0.67 1462 | 533 36x)
BMI7 0.66 07 1522 | 568 37
BMTS 0.6 0,67 1570 | 602 38%)

TABLE II: HyperSF vs hMETIS local coductance (NR=75%)

HLC,, HLC,,, T (seconds) | T (seconds)

Benchmark | py oo 'Sk | AMETIS | HyperSF | hMETIS
TBMO1 044 065 07 9 (3%)
TBMO02 0.52 0.60 726 9(2x)
TBMO03 0.48 067 41 53 @x)
TBM04 0.47 0.68 15 60 (@)
TBMO03 0.55 065 92 62 2%)
TBMO06 0.51 0.68 30.1 78 3x)
TBMO7 0.48 0,68 764 15 @)
TBMOS 0.48 0.68 33 125 3)
TBM09 0.47 060 745 31 5x)
TBMI0 0.48 0.68 52 18T (@)
TBMI1 0.46 060 30.1 176 (6
IBM12 0.50 071 o 19T (5)
TBM13 0.48 0,60 504 | 29 55%)
IBM14 0.48 0,67 857 | 3935
TBMT5 0.47 071 % %6 (5%)
TBMI6 0.50 0.70 168 | 533 Gx)
TBMT7 0.51 073 4T3 | 3568 @x)
TBMTS 0.46 0.68 129 602 (5)

B. Hypergraph Partitioning with Spectral Coarsening

We compared SHyPar with leading hypergraph partitioners
hMETIS [2], SpecPart [43], KaHyPar [45], and MedPart [56]
using two sets of publicly available benchmarks: the ISPD98
VLSI Circuit Benchmark Suite [55] and the Titan23 Suite
[57]. The details of these benchmarks are outlined in Table III
and Table IV. All tests were conducted on a server equipped
with Intel(R) Xeon(R) Gold 6244 processors with 1546GB of
memory.

1) Experimental Setup: To implement SHyPar, we have
developed new hypergraph partitioning tools based on the
existing open-source multilevel hypergraph partitioner, KaHy-
Par. We are utilizing the proposed two-phase spectral hyper-
graph coarsening method. Specifically, the heuristic coarsening
scheme has been replaced by our novel spectral coarsening
algorithm to create a hierarchy of coarser hypergraphs that pre-
serve the key structural properties of the original hypergraph.
Accordingly, we have substituted the existing coarsening
method in KaHyPar with our proposed method, incorporating
a new rating function. Additionally, the existing algorithm for
community detection, Louvain, has been replaced with our

proposed flow-based community detection method (Phase 2).

2) SHyPar Performance on ISPD98 Benchmarks: Table II1
presents a comparison of the cut sizes achieved by SHyPar on
the ISPD98 VLSI circuit benchmark against those obtained
from hMETIS, SpecPart, KaHyPar, and MedPart. The results
for SHyPar show an average improvement of approximately
0.54% for € = 2% and 0.4% for ¢ = 10%, affirming its
superiority over the best-published results. In several instances,
SHyPar outperforms the best-published results by up to 5%;
these instances are specifically underlined for emphasis. Figure
9 depicts the cut sizes obtained by SHyPar, KaHyPar, and
hMETIS, normalized against the KaHyPar results. It is evident
that SHyPar significantly enhances performance over both
KaHyPar and hMETIS across many tests. Moreover, when
SHyPar was applied to four partitions with € = 1%, the
improvements were consistent, as demonstrated in Figure 10,
which compares the cut sizes with those from KaHyPar and
hMETIS, also normalized by KaHyPar results.

T T T T T T T T 77 I I
10 . E
} ’
105 * ,'_\ ; ‘1 P et
S ¥ !
g l00F Mg‘\aiﬁtjrm ‘,+ .
Pl | \
Z o5t -
1
S o0l ‘ “". .
g ‘\f
=P b
S 80| |-+ KaHyPar Lo
75 | —e— SHyPar |
---- hMETIS
70 I I T A A A e A Iy |
3 g zge-Na¥nec
SSgcEgo88SscSsE3E¢8
[== o = o = = = = s = < = = o = o = = = = = = = = = = = o = = = = = =

== === = == == i == [== = == = = = == < R = =

B I ” T T T T T T T 17 T T]
110 S 3 *
B RIS S & S '. i |
o 105 Peg nr 7 w TN
I
o 100 !--L—; '+"_W$‘d(\t)§+t"' _
3l /;! Vi \‘w |
z 90 /
= —]
Fa
g 85 .
= 80 ||-+- KaHyPar 8
75 | —6— SHyPar |
--#-- hMETIS
70 I I I Sy Ay
= P rge-oonrunen®
SSSZcgcgEsc2S28223
= = = = = - - = === -~ = R
Fig. 10: ISPD98 benchmarks with unit weights e = 1% k = 4.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

TABLE III: Statistics of ISPD98 VLSI circuit benchmark suite and cut sizes obtained by different approaches. The best results

among all methods are highlighted in red.

Benchmark Statistics €=2% €=10%
V] | E| SpecPart | hMETIS | KaHyPar | MedPart | SHyPar || SpecPart | hMETIS | KaHyPar | MedPart | SHyPar

IBMO1 12,752 14,111 202 213 202 202 201 171 190 173 166 166
IBMO02 19,601 19,584 336 339 328 352 327 262 262 262 264 262
IBMO3 23,136 27,401 959 972 058 955 952 952 960 950 955 950
IBM04 27,507 31,970 593 617 579 583 579 388 388 388 389 388
IBMO5 20,347 28,446 1720 1744 1712 1748 1707 1688 1733 1645 1675 1645
IBMO6 32,498 34,826 963 1037 963 1000 969 733 760 735 788 733
IBMO7 45,926 48,117 935 975 804 913 882 760 796 760 773 760
IBMO8 51,309 50,513 1146 1146 1157 1158 1140 1140 1145 1120 1131 1120
IBM09 53,395 60,902 620 637 620 625 620 519 535 519 520 519
IBMI10 69,429 75,196 1318 1313 1318 1327 1254 1261 1284 1250 1259 1244
IBMI1 70,558 81,454 1062 1114 1062 1069 1051 T6d 782 769 714 763
IBMI12 71,076 77,240 1920 1982 2163 1955 1986 1842 1940 1841 1914 1841
IBMI3 84,199 99,666 848 871 848 850 831 693 721 693 697 655
IBM14 147,605 152,772 1859 1967 1849 1876 1842 1768 1665 1534 1639 1534
IBMI5 161,570 186,608 2741 2886 2737 2896 2728 2235 2262 2135 2169 2135
IBMI6 183,484 190,048 1915 2095 1952 1972 1887 1619 1708 1619 1645 1619
IBM17 185,495 189,581 2354 2520 2284 2336 2285 1989 2300 1989 2024 1989
IBMI8 210,613 201,920 1535 1587 1915 1955 1521 1537 1550 1915 1829 1520

Average Improvement over h(METIS (%) 3.64 0 2.19 1.11 4.92 291 0 2.1 1.65 477

TABLE IV: Statistics of the Titan23 benchmark suite and cut sizes obtained by different approaches. The best results among

all methods are highlighted in red.

Benchmark Statistics e=2% €= 20%
V] | & SpecPart | hMETIS | KaHyPar | MedPart | SHyPar || SpecPart | hMETIS | KaHyPar | MedPart | SHyPar
sparcT1_core 91,976 02,827 1012 1066 974 1067 974 903 1290 873 24 631
neuron 02,200 125,305 252 260 244 262 243 206 270 244 270 244
stereo_vision 94,050 127,085 180 180 169 176 169 01 143 91 03 01
des90 111,221 139,557 402 402 380 372 379 358 441 380 349 345
SLAM_spheric | 113,115 142,408 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061
cholesky_mc 113,250 144,948 285 285 283 283 283 345 667 591 281 479
segmemtation 138,295 179,051 126 136 107 114 107 T8 141 T8 78 7
bitonic_mesh 192,064 235,328 585 614 503 594 586 483 590 592 493 506
dart 202,354 223,301 807 844 024 805 T84 540 603 594 549 539
openCV 217,453 284,108 510 511 560 635 499 518 554 501 554 473
stap_qrd 240,240 290,123 399 399 371 386 371 295 295 275 287 275
minres 261,359 320,540 215 215 207 215 207 189 189 199 181 191
cholesky_bdti 266,422 342,688 11536 1157 11536 1161 11536 947 1024 1120 1024 848
denoise 275,638 356,848 416 722 416 516 416 224 478 244 224 220
sparcT2_core 300,109 302,663 1244 1273 1186 1319 1183 1245 1972 1186 1081 918
gsm_switch 493,260 507,821 1827 5974 1759 1714 1621 1407 5352 1719 1503 1407
mes_noc 547 544 577,664 634 699 649 699 651 617 633 755 633 617
LU230 574,372 669,477 3273 4070 4012 3452 3602 2677 3276 3751 2720 2923
LU_Network 635,456 726,999 525 550 524 550 524 524 528 524 528 524
sparcT1_chip2 | 820,886 821,274 899 1524 874 1129 873 783 1029 856 877 757
directrf 931,275 | 1,374,742 574 6d6 646 646 632 205 379 205 317 205
bitcoin_miner | 1,089,284 | 1,448,151 1297 1570 1576 1562 1514 1225 1255 1287 1255 1282
Average Improvement over h(METIS (%) 10.99 0 9.95 6.82 12.16 21.73 0 14.14 20.94 22.53

3) SHyPar Performance on Titan23 Benchmarks: Building
on the findings from the ISPD98 benchmarks, our research
extended to the Titan23 benchmarks, notable for their high-
degree hyperedges. Table IV details the results on the Ti-
tan23 benchmarks, where SHyPar dramatically outperforms
hMETIS, achieving a 12% improvement for e = 2% and an
impressive 22.5% for e = 20%. Also SHyPar outperforms
SpecPart, achieving a 3% improvement for € = 2% and 1%
for e = 20%. In cases such as sparcT2_core, SHyPar even
exceeds the best published results by up to 15%; these notable
achievements are highlighted by underlining.

4) SHyPar Runtime Comparison with KaHypar: Table V
presents a runtime comparison between SHyPar and KaHyPar
on the Titan23 benchmark for € = 2%. The setup time corre-

sponds to the one-time computation of the effective resistance
(algorithm 1) and the flow-based clustering method (algorithm
3). The SHyPar/KaHyPar runtime ratio compares the runtime
of SHyPar with the KaHyPar method, excluding the one-
time setup time of effective resistance computation and flow-
based clustering in SHyPar. To ensure a fair comparison, the
runtime of Louvain clustering is also excluded from KaHyPar.
The results demonstrate that our method achieves up to 8%
improvement in runtime over KaHyPar.

5) Ablation Study: To evaluate the impact of spectral
coarsening and flow-based community detection, we consider
a new configuration that employs only spectral coarsening
within KaHyPar. Table VI presents the cut size results for some
benchmarks for € = 2%. While replacing KaHyPar’s default

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

TABLE V: SHyPar runtime comparison with KaHyPar

Benchmark | KaHyPar | Setup Time SHyPar

() (s) KaHyPar
sparcT1_core 52.99 10.19 0.94
neuron 41.06 10.71 0.93
stereo_vision 3.19 10.63 0.99
des90 49.90 13.29 0.94
SLAM_spheric 10.12 12.37 0.99
cholesky_mc T.18 12.15 0.99
segmemtation 8.79 13.92 0.99
bitonic_mesh 43.52 18.04 0.93
dart 47.19 16.80 0.94
openCV 47.23 18.07 0.94
stap_qrd 22.52 19.28 0.93
minres 23.65 20.25 0.93
cholesky_bdti 35.40 20.86 0.92
denoise 22.66 23.57 0.93
sparcT2_core 40.21 22.05 0.94
gsm_switch 139.76 32.38 0.98
mes_noc T4.12 36.82 0.96
LU230 1071.02 38.26 1.00
LU_Network 78.99 43.66 0.96
sparcT1_chip2 167.14 50.63 0.98
directrf 80.89 68.07 0.96
bitcoin_miner 471.46 T71.27 0.99

coarsening with spectral coarsening (SC) already outperforms
the baseline, adding flow-based community detection (Flow-
Based CD) on top yields even better solutions.

TABLE VI: Cut size improvement with Spectral Coarsening

Benchmark | KaHyPar | KaHyPar with SC | ¢ af;*gi:{;;‘;’d D
dart 924 803 784
OpenCV 560 549 499
sparcT2_core 1186 1184 1183
esm_switch | 1750 1732 1621
LU230 4012 3610 3602
TBMOS 1712 1709 707
IBMO7 894 892 882
TBMOS 1157 1146 1140
IBMI0 1318 1272 1254
IBMI8 1915 1551 1521

V. CONCLUSION

In this study, we introduced SHyPar, a multilevel hy-
pergraph partitioning framework that enhances partitioning
solutions and surpasses earlier studies in performance. We
developed an innovative algorithm that incorporates spec-
tral hypergraph coarsening techniques, leverages hyperedge
effective resistances and flow-based community detection.
Our comprehensive experimental analysis, conducted on real-
world VLSI test cases, demonstrates that SHyPar consistently
achieves a significant reduction in hypergraph partitioning cut
size, improving results up to 15 percent compared to state-of-
the-art methods.

VI. ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation under Grants CCF-2417619, CCF-2021309, CCF-
2011412, CCF-2212370, and CCF-2205572.

REFERENCES

[1] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on parallel and distributed systems, vol. 10, no. 7, pp. 673
693, 1999.

[2] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in vlsi domain,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69-79,
1999.

[3] D. Kucar, S. Areibi, and A. Vannelli, “Hypergraph partitioning tech-
niques,” DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE
SYSTEMS SERIES A, vol. 11, pp. 339-368, 2004.

[4] K. A. Murgas, E. Saucan, and R. Sandhu, “Hypergraph geometry
reflects higher-order dynamics in protein interaction networks,” Scientific
reports, vol. 12, no. 1, pp. 1-12, 2022.

[51 U. V. Catalyiirek, K. D. Devine, M. E. Faraj, L. Gottesbiiren, T. Heuer,
H. Meyerhenke, P. Sanders, S. Schlag, C. Schulz, D. Seemaier, et al.,
“More recent advances in (hyper) graph partitioning,” ACM Computing
Surveys, 2022.

[6] M. R. Garey and D. S. Johnson, “Computers and intractability,” A Guide
to the, 1979,

[7]1 K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, “Parallel hypergraph partitioning for scientific computing,”
in Proceedings 20th IEEE International Parallel & Distributed Process-
ing Symposium, pp. 10-pp, IEEE, 2006.

[8] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distri-
bution method for parallel sparse matrix-vector multiplication,” SIAM
review, vol. 47, no. 1, pp. 67-95, 2005.

[9] U. V. Catalyiirek and C. Aykanat, “Patoh (partitioning tool for hy-
pergraphs),” in Encyclopedia of Parallel Computing, pp. 1479-1487,
Springer, 2011.

[10] R. Shaydulin, J. Chen, and L Safro, “Relaxation-based coarsening for
multilevel hypergraph partitioning,” Multiscale Modeling and Simula-
tion, vol. 17, pp. 482-506, Jan 2019.

[11] S.-H. Teng, “Scalable algorithms for data and network analysis,” Foun-
dations and Trends® in Theoretical Computer Science, vol. 12, no. 1-2,
pp. 1-274, 2016.

[12] D. Spielman and S. Teng, “Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems,”
SIAM Journal on Matrix Analysis and Applications, vol. 35, no. 3,
pp. 835-885, 2014.

[13] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An almost-linear-
time algorithm for approximate max flow in undirected graphs, and
its multicommodity generalizations,” in Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pp. 217-226,
SIAM, 2014.

[14] P. Christiano, J. Kelner, A. Madry, D. Spielman, and S. Teng, “Electrical
flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs,” in Proc. ACM STOC, pp. 273-282, 2011.

[15] D. Spielman and S. Teng, “Spectral partitioning works: Planar graphs
and finite element meshes,” in Foundations of Computer Science
(FOCS), 1996. Proceedings., 37th Annual Symposium on, pp. 96-105,
IEEE, 1996.

[16] 1. R.Lee, S. O. Gharan, and L. Trevisan, “Multiway spectral partitioning
and higher-order cheeger inequalities,” Journal of the ACM (JACM),
vol. 61, no. 6, p. 37, 2014.

[17] R. Peng, H. Sun, and L. Zanetti, “Partitioning well-clustered graphs:
Spectral clustering works,” in Proceedings of The 28th Conference on
Learning Theory (COLT), pp. 1423-1455, 2015.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems, pp. 3844-3852, 2016.

[20] Y. Koren, “On spectral graph drawing,” in International Computing and
Combinatorics Conference, pp. 496-508, Springer, 2003.

[21] X. Hu, A. Lu, and X. Wu, “Spectrum-based network visualization for
topology analysis,” IEEE Computer Graphics and Applications, vol. 33,
no. 1, pp. 58-68, 2013.

[22] P. Eades, Q. Nguyen, and S.-H. Hong, “Drawing big graphs using
spectral sparsification,” in International Symposium on Graph Drawing
and Network Visualization, pp. 272-286, Springer, 2017.

[23] D. L. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww _ieee_org/publications/rightsfindex.html| for more information.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98,
2013.

F. Galasso, M. Keuper, T. Brox, and B. Schiele, “Spectral graph
reduction for efficient image and streaming video segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 49-56, 2014.

A. Ortega, P. Frossard, J. Kovacevic, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

X. Zhao, Z. Feng, and C. Zhuo, “An efficient spectral graph sparsification
approach to scalable reduction of large flip-chip power grids,” in Proc.
of IEEE/ACM ICCAD, pp. 218-223, 2014.

L. Han, X. Zhao, and Z. Feng, “An Adaptive Graph Sparsification
Approach to Scalable Harmonic Balance Analysis of Strongly Nonlinear
Post-Layout RF Circuits,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 34, no. 2, pp. 173-185, 2015.
Z. Feng, “Spectral graph sparsification in nearly-linear time leveraging
efficient spectral perturbation analysis,” in Design Automation Confer-
ence (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1-6, IEEE, 2016.

Z. Zhao and Z. Feng, “A spectral graph sparsification approach to
scalable vectorless power grid integrity verification,” in Proceedings
of the 54th Annual Design Automation Conference 2017, p. 68, ACM,
2017.

Z. Zhao, Y. Wang, and Z. Feng, “SAMG: Sparsified Graph Theoretic
Algebraic Multigrid for Solving Large Symmetric Diagonally Dominant
(SDD) Matrices,” in Proceedings of the 36th International Conference
on Computer-Aided Design (ICCAD), ACM, 2017.

Z. Feng, “Similarity-aware spectral sparsification by edge filtering,” in
Design Automation Conference (DAC), 2018 55nd ACM/EDAC/IEEE,
IEEE, 2018.

D. Spielman and S. Teng, “Spectral sparsification of graphs,” SIAM
Journal on Computing, vol. 40, no. 4, pp. 981-1025, 2011.

Z. Feng, “Grass: Graph spectral sparsification leveraging scalable spec-
tral perturbation analysis,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4944-4957,
2020.

Y. T. Lee and H. Sun, “An SDP-based Algorithm for Linear-sized Spec-
tral Sparsification,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, (New York, NY,
USA), pp. 678-687, ACM, 2017.

M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida, “Spectral
hypergraph sparsifiers of nearly linear size,” in 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pp. 1159—
1170, IEEE, 2022.

M. Kapralov, R. Krauthgamer, J. Tardos, and Y. Yoshida, “Towards tight
bounds for spectral sparsification of hypergraphs,” in Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 598-611, 2021.

Y. Zhang, Z. Zhao, and Z. Feng, “Sf-grass: Solver-free graph spectral
sparsification,” in 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), pp. 1-8, IEEE, 2020.

A. Loukas and P. Vandergheynst, “Spectrally approximating large graphs
with smaller graphs,” in International Conference on Machine Learning,
pp. 3243-3252, 2018.

Z. Zhao and Z. Feng, “Effective-resistance preserving spectral reduction
of graphs,” in Proceedings of the 56th Annual Design Automation
Conference 2019, DAC °19, (New York, NY, USA), pp. 109:1-109:6,
ACM, 2019.

T.-H. H. Chan, A. Louis, Z. G. Tang, and C. Zhang, “Spectral properties
of hypergraph laplacian and approximation algorithms,” Jowrnal of the
ACM (JACM), vol. 65, no. 3, pp. 1-48, 2018.

T-H. H. Chan and Z. Liang, “Generalizing the hypergraph laplacian
via a diffusion process with mediators,” Theoretical Computer Science,
vol. 806, pp. 416-428, 2020.

L Bustany, A. B. Kahng, I Koutis, B. Pramanik, and Z. Wang, “K-
specpart: Supervised embedding algorithms and cut overlay for im-
proved hypergraph partitioning,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2023.

L. Bustany, A. B. Kahng, I. Koutis, B. Pramanik, and Z. Wang, “Specpart:
A supervised spectral framework for hypergraph partitioning solution
improvement,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1-9, 2022.

G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
VLSI design, vol. 11, no. 3, pp. 285-300, 2000.

S. Schlag, T. Heuer, L. Gottesbiiren, Y. Akhremtsev, C. Schulz, and
P. Sanders, “High-quality hypergraph partitioning,” ACM Journal of
Experimental Algorithmics, vol. 27, pp. 1-39, 2023.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Aghdaei, Z. Zhao, and Z. Feng, “Hypersf: Spectral hypergraph coars-
ening via flow-based local clustering,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1-8, ACM, 2021.
A. Aghdaei and Z. Feng, “Hyperef: Spectral hypergraph coarsening
by effective-resistance clustering,” in 2022 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1-9, ACM, 2022.
F. R. Chung and E C. Graham, Spectral graph theory. No. 92, American
Mathematical Soc., 1997.

L. Hagen and A. Kahng, “New spectral methods for ratio cut partition-
ing and clustering,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 11, no. 9, pp. 1074-1085, 1992.
T. Soma and Y. Yoshida, “Spectral sparsification of hypergraphs,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2570-2581, SIAM, 2019.

D. Zhou, J. Huang, and B. Schélkopf, “Learning with hypergraphs: Clus-
tering, classification, and embedding,” Advances in neural information
processing systems, vol. 19, pp. 1601-1608, 2006.

V. Osipov and P. Sanders, “n-level graph partitioning,” in Algorithms—
ESA 2010: 18th Annual European Symposium, Liverpool, UK, Septem-
ber 6-8, 2010. Proceedings, Part I 18, pp. 278-289, Springer, 2010.
V. L. Alev, N. Anari, L. C. Lau, and S. Oveis Gharan, “Graph clustering
using effective resistance,” in 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

N. Veldt, A. R. Benson, and J. Kleinberg, “Minimizing localized ratio
cut objectives in hypergraphs,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 1708-1718, 2020.

C. 1. Alpert, “The ispd98 circuit benchmark suite,” in Proceedings of
the 1998 international symposium on Physical design, pp. 80-85, 1998,
R. Liang, A. Agnesina, and H. Ren, “Medpart: A multi-level evolution-
ary differentiable hypergraph partitioner,” in Proceedings of the 2024
International Symposium on Physical Design, pp. 3-11, 2024.

K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
large and complex benchmarks in academic cad,” in 2013 23rd Inter-
national Conference on Field programmable Logic and Applications,
pp. 1-8, IEEE, 2013.

Hamed Sajadinia received the M.Sc. degree in
telecommunication engineering from Iran University
of Science and Technology, Tehran, Iran, in 2016. He
is currently pursuing the Ph.D. degree in Electrical
and Computer Engineering with Stevens Institute of
Technology, Hoboken, USA.

His research interests include VLSI Design, Ma-
chine Learning, and Graph-related problems.

Ali Aghdaei received the M.Sc. degree in electrical
and computer engineering from Michigan Techno-
logical University, Houghton, ML, in 2016, and the
Ph.D. degree in electrical and computer engineering
from Stevens Institute of Technology, Hoboken, NJ,
in 2023. He is currently a postdoctoral scholar at
the University of California, San Diego, where he is
a member of the ABKGroup research team. His re-

| search interests include electronic design automation

) (EDA), very large-scale integration (VLSI) design,
and spectral (hyper)graph algorithms.

He received the Best Ph.D. Dissertation Award from the Department of
Computer Engineering at Stevens Institute of Technology in 2023. He has also
served as a Technical Program Committee (TPC) member for the ACM/IEEE
Great Lakes Symposium on VLSI (GLSVLSI) 2025 conference.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww_ieee_org/publications/rightsfindex.him| for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi
content may change prior to final publication. Citation information: DOI 10.1109/TCAD 2025 3586885

Zhuo Feng (5'03-M’10-SM’13) received the B.Eng.

degree in information engineering from Xi’an Jiao-

tong University, Xi’an, China, in 2003, the M.Eng.
s degree in electrical engineering from National Uni-
versity of Singapore, Singapore, in 2005, and the
Ph.D. degree in electrical and computer engineering
from Texas A&M University, College Station, TX,
in 2009. He is currently an associate professor at
Stevens Institute of Technology. His research in-
terests include high-performance spectral methods,
very large scale integration (VLSI) and computer-
aided design (CAD), scalable hardware and software systems, as well as
heterogeneous parallel computing.

He received a Faculty Early Career Development (CAREER) Award from
the National Science Foundation (NSF) in 2014, a Best Paper Award from
ACM/IEEE Design Automation Conference (DAC) in 2013, and two Best
Paper Award Nominations from IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) in 2006 and 2008. He was the principle
investigator of the CUDA Research Center named by Nvidia Corporation.
He has served on the technical program committees of major international
conferences related to electronic design automation (EDA), including DAC,
ASP-DAC, ISQED, and VLSI-DAT, and has been a technical referee for
many leading IEEE/ACM journals in VLSI and parallel computing. In 2016,
he became a co-founder of LeapLinear Solutions to provide highly scalable
software solutions for solving sparse matrices and analyzing graphs (networks)
with billions of elements, based on the latest breakthroughs in spectral graph
theory.

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on September 24,2025 at 20:57:43 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https:/fiwww_ieee_org/publications/rightsfindex.him| for more information.

	Introduction
	Preliminaries and Background
	Spectral (Hyper)graph Theory
	Graph Laplacian matrix
	Courant-Fischer Minimax Theorem
	Graph conductance
	Cheegers' inequality
	Effective resistance distance
	Spectral methods for hypergraphs
	Hypergraph conductance

	Hypergraph Partitioning Methods
	Hypergraph coarsening
	Community Detection
	Partitioning objectives

	SHyPar: Hypergraph Partitioning via Spectral Coarsening
	Resistance-Based Hypergraph Coarsening (Phase A)
	HyperEF: Hypergraph Coarsening via effective resistance Clustering
	Low-Resistance-Diameter Decomposition
	Fast Estimation of Hyperedge Effective Resistances
	Hierarchical Effective Resistance Propagation

	Flow-Based Community Detection (Phase B)
	Overview of Coarsening Refinement (HyperSF)
	Local clustering algorithms
	Flow-based Local Clustering in HyperSF

	Algorithm Complexity for Spectral Coarsening
	Hypergraph Partitioning with Spectral Coarsening and Flow-Based Clustering
	Multilevel Spectral Coarsening with HyperEF
	Flow-Based clustering with HyperSF
	SHyPar Algorithm Flow

	Experimental Validation
	Spectral coarsening with HyperEF and HyperSF
	HyperEF vs hMETIS for Hypergraph Coarsening
	HyperSF vs hMETIS for Hypergraph Coarsening

	Hypergraph Partitioning with Spectral Coarsening
	Experimental Setup
	SHyPar Performance on ISPD98 Benchmarks
	SHyPar Performance on Titan23 Benchmarks
	SHyPar Runtime Comparison with KaHypar
	Ablation Study

	Conclusion
	Acknowledgments
	References
	Biographies
	Hamed Sajadinia
	Ali Aghdaei
	Zhuo Feng

