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EXISTENCE AND HIGHER REGULARITY OF STATISTICALLY STEADY STATES

FOR THE STOCHASTIC COLEMAN-GURTIN EQUATION

NATHAN E. GLATT-HOLTZ1, VINCENT R. MARTINEZ2 AND HUNG D. NGUYEN3

Abstract. We study a class of semi-linear differential Volterra equations with polynomial-type potentials

that incorporates the effects of memory while being subjected to random perturbations via an additive

Gaussian noise. We show that for a broad class of non-linear potentials, the system always admits invariant

probability measures. However, the presence of memory effects precludes access to compactness in a typical

fashion. In this paper, this obstacle is overcome by introducing functional spaces adapted to the memory

kernels, thereby allowing one to recover compactness. Under the assumption of sufficiently smooth noise,

it is then shown that the statistically stationary states possess higher-order regularity properties dictated

by the structure of the nonlinearity. This is established through a control argument that asymptotically

transfers regularity onto the solution by exploiting the underlying Lyapunov structure of the system in a

novel way.

1. Introduction

Let O ¢ R
d be a bounded open domain with smooth boundary, where d g 1. We are interested in the

following semilinear stochastic Volterra equation, which is written in non-dimensional variables:

du(t) = »∆u(t)dt+ (12 »)

∫ >

0
K(s)∆u(t2 s)dsdt+ ×(u(t))dt+Qdw(t),

u(t)
∣∣
"O

= 0, u|(2>,0] = u0.

(1.1)

This equation was introduced to describe the evolution of a scalar field u(t) = u(t, x) : [0,>) × O ³
R, such as heat, in a viscoelastic medium. On the right–hand side of (1.1), × : R ³ R represents
the potential, typically given as a polynomial nonlinearity that satisfies certain dissipative conditions,
Qdw(t) is a Gaussian process which is delta correlated (white) in time and whose spatial correlation
is characterized by the operator Q, » * (0, 1) defines the relative contribution of memory terms, and
K : R+ ³ R

+, where R
+ = [0,>), denotes a memory kernel, which regulates the extent to which the

past can affect the present; it is assumed to be a smooth function of exponential-type that satisfies

K 2 + ·K f 0, (1.2)

for some constant · > 0.
In the absence of stochastic forcing, that is, when Q c 0, there are many works investigating the

large-time behavior of (1.1) by means of deterministic global attractors [16, 17, 24, 25]. On the other
hand, when noise is present, the theory of random attractors was investigated in the works [10, 11].
Notably, the results in [16, 17] establish that the Hausdorff dimension of the global attractor is dictated
by the smoothness of the nonlinearity. In contrast, the investigation of the statistically steady states
of the stochastic system (1.1), as represented by the invariant probability measures corresponding to
the Markovian dynamics of its history-augmented system (see (2.14)), seemed to receive less attention.
Recently, in [32], under the assumption that the system is directly excited by random forcing on a
sufficiently large subspace of the component of phase space corresponding only to the temperature of
the history-augmented system, stationary solutions of (1.1) are shown to be good approximations of the
stationary solutions of the corresponding stochastic nonlinear heat equation, that is, without memory.
However, in the absence of a condition on the number of directions which are directly forced, the issue
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of the existence of statistically steady states nevertheless remains a challenge, owing to the hyperbolic
nature of system’s capacity to retain past information.

The main goal of the work is thus two-fold. First, within a broad class of nonlinear potentials, we
demonstrate that the system always admits invariant probability measures. Secondly, we seek to establish
a relation between the support of the invariant measures and the regularities of the noise and nonlinear
potentials. In what follows, we provide a detailed overview of the main mathematical results of the article.

1.1. Overview of the main results. We note that the process u(t) governed by (1.1) is not Markovian
owing to the presence of memory effects. It is therefore not clear what is meant by an invariant probability
measure for the system (1.1) at this stage. In order to make sense of statistically steady states, we augment
the original process by an auxiliary variable such that Markovianity is recovered. This framework was
originally introduced in [19] in the study of long-time behavior of a viscoelastic system and later exploited
in [17] for studying singular limits of systems with memory. The main idea is to introduce a “history
variable”, ·(t, s) that is subsequently appended to the original process, u(t), to form a joint process
(u(t), ·(t, s)) that is Markovian in an extended phase space. More precisely, we introduce the integrated
past history of u(t) defined by

·(t, s) :=

∫ s

0
u(t2 r)dr, s, t g 0. (1.3)

Observe that · satisfies the following inhomogeneous transport equation

"t·(t, s) = 2"s·(t, s) + u(t).

To see the role of · in (1.1), set

µ(s) := 2K 2(s). (1.4)

Upon integrating by parts with respect to s in the memory term appearing in (1.1), then invoking (1.3),
one obtains ∫ >

0
K(s)∆u(t2 s)ds =

∫ >

0
µ(s)∆·(t, s)ds. (1.5)

This allows one to rewrite (1.1) as the following extended system, whose dynamics are now Markovian:

du(t) = »∆u(t)dt+ (12 »)

∫ >

0
µ(s)∆·(t, s)dsdt+ ×(u(t))dt+Qdw(t),

"t·(t, s) = 2"s·(t, s) + u(t),

u(t)
∣∣
"O

= 0, ·(t, s)|"O = 0,

u(0) = u0 in O, ·(0; s) = ·0(s).

(1.6)

The precise details of the phase space for the extended variable (u, ·) are provided in Section 2.1.
The main result of the paper is the existence of invariant probability measures associated to the

extended system (1.6) and the property that their supports belong to spaces of regularity stronger than
that of the natural phase space of the system.

Theorem 1.1. Suppose that K satisfies (1.2), that the noise has a sufficiently smooth spatial correlation
structure, and that × grows at most algebraically, that is, × satisfies

|×(x)| f c|x|p + C, for all x * R,

for some positive constants c, C, p. Then under certain dissipativity conditions on ×, the extended system
(1.6) possesses at least one invariant probability measure ¿. Furthermore, when d f 3 and p < 5, the
support of any invariant probability measure ¿ consists of functions as smooth as × and Q allow.

We emphasize that invariance refers to the invariance of ¿ with respect to the Markov semigroup
associated to extended system (1.6). We refer the reader to Theorem 2.4 and Theorem 2.5 for the more
precise version of Theorem 1.1. We note that the conditions imposed on the potential, ×, in Theorem

2



1.1 apply to a broad class of polynomial nonlinearities, one of which is the well-known Allen-Cahn cubic
potential, ×(x) = x2 x3.

1.2. Previous related literature and methodology of proofs. Stochastic differential equations with
memory were studied as early as the seminal work [36]. Since then, there have been many works concerning
the theory of well-posedness for infinite-dimensional systems with memory such as [4, 5, 6, 8, 9, 13, 14].
The existence of statistically steady states in this context was addressed for several systems, such as the
stochastic Volterra equations [15], the Navier-Stokes equation [22], and the Ginzburg–Landau equation
[21], while the issue of uniqueness was studied in [3, 7, 21, 22, 31, 35]. Particularly, in the work of [7] and
[45], ergodicity of a reaction-diffusion equation with memory effects similar to (1.1) was investigated. The
notable difference between the system considered there (see [7, Equation (1.1)]) from the one considered
in the current article is the presence, in [7, Equation (1.1)], of a negative convolution integral and a
smallness assumption that imposes that the maximum amplitude of K be dominated by the viscous drag
coefficient; in our notation, this corresponds to replacing +(12»)K(s) with 2(12»)K(s) and assuming
K(t) < »

12» , respectively. By employing an approach from [23, 43], the system considered in [7, 45] could

then be rewritten as an abstract Cauchy system similar to (1.6) on product spaces. It was further shown
that the system possessed unique ergodicity and that it was strongly mixing. In a companion paper [32]
to the present article, the large-time behavior and singular limit of the system (1.6) was investigated. It
was shown there that under the assumption that the noise excited sufficiently many directions in phase
space [32, Condition Q3], (1.6) admitted exactly one invariant probability measure and that the system
was exponentially mixing. It is important to point out that such a hypothesis is not assumed here for
the purpose of establishing existence of invariant probability measures. Hence, the results of this article
are complementary to those obtained in [32]. In fact, for a very general set of conditions on the noise,
we will demonstrate that (1.6) always admits invariant probability measures whose supports consist of
functions with smoothness intimately related to that of the stochastic forcing and the potential present
in the system.

Turning to (1.1), the extended phase space approach for studying (1.1) as manifested in the system (1.6)
was introduced in the work [19] and later popularized for many partial differential equations (PDEs)
[16, 17, 25, 24] as well as stochastic PDEs (SPDEs) [10, 11, 40, 41, 42, 50, 51]. Such a Markovian
approach can also be found in SDEs, e.g., in Langevin dynamics with memory [31, 46, 48]. As mentioned
in [32], the advantage of this method is that one may rewrite the noiseless counterpart of (1.6) as an
autonomous system of evolution equations on product spaces (see (2.14) below). In turn, this provides
one access to the classical Markovian framework to study statistically invariant structures of (1.6). On
the other hand, the analytic trade-off in introducing the history variable, ·, can be found in the hyperbolic
structure of its governing evolution equation, which subsequently precludes access to compactness in the
traditional way. We show that we can nevertheless overcome this difficulty by establishing sufficient
regularity of the solution in the proper functional setting.

A crucial property that is leveraged in this article, as well as in many others [7, 14, 32, 46, 48], is
the assumption that the memory kernel decays exponentially into the past (see (1.2) and (M1)). For
stochastic equations with memory decaying non-exponentially, e.g., sub–exponential or power-law, we
refer the reader to [2, 20, 31, 44]. We emphasize that in the regime of exponential-type memory kernels
that are considered in this article, the results we establish are able to accommodate a wider class of
nonlinear potentials × with minimal growth conditions, and are compatible with results regarding their
deterministic counterpart.

Recall that the main result of the paper is to establish the existence and regularity of invariant prob-
ability measures of (1.6) (see Theorem 1.1). In particular, we show that the system (1.6) admits at least
one invariant probability measure ¿. Furthermore, in spatial dimensions physical dimensions d f 3, we
show these invariant probabilities are in fact supported in spaces of higher regularity relative to that of
the phase space. The strategy that we employ for establishing existence is the classical Krylov-Bogoliubov
procedure, which invokes tightness for a sequence of time-average measures. However, as mentioned in
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the preceding paragraph, due to the lack of compactness from the memory variables, we resort to the
techniques developed [16, 17] to effectively recover it.

On the other hand, the regularity of the invariant probabilities is established through a series of
bootstrap arguments that carefully exploits the smoothing property of solutions inherent to the system,
coupled with a control strategy, originally introduced in [27] and developed further in [45], which asymp-
totically guides solutions towards a region of phase space whose spatial regularity is regulated by the
spatial regularity possessed by the external driving forces. The bootstrap argument furnishes higher-
order moment bounds by leveraging control over lower-order moment bounds. This manifests explicitly
in our analysis by establishing a recursive relation on Lyapunov-type functionals corresponding to higher
Sobolev-type norms in terms of those corresponding to lower-order Sobolev-type norms. The rough idea
behind the control argument, on the other hand, is as follows: denote an invariant probability measure of
(1.6) by ¿µ and the “controlled process” by (û, ·̂). Let |· | denote the norm of the extended phase space
and ‖· ‖ denote a stronger norm of a subspace of the extended phase space. Suppose that the controlled
process (û, ·̂), with smooth initial value (û0, ·̂0), possesses time-uniform bounds in expectation with re-
spect to the stronger norm ‖· ‖, and moreover, has the property that (û, ·̂) asymptotically converges to
(u, ·) with respect to the weaker norm |· |, in expectation, for any initial data. Lastly, let PN denote the
N -dimensional Galerkin projection. Then, proceeding heuristically, by invariance of ¿µ one may argue

∫
‖(PNu0, PN·0)‖d¿µ =

∫
E‖(PNu(t;u0), PN·(t; ·0)‖d¿µ

f CN

∫
E|(u(t;u0)2 û(t; û0), ·(t, ·0)2 ·̂(t; ·̂0)|d¿µ

+

∫
E‖(û(t; û0), ·̂(t; ·̂0))‖d¿µ.

The first integral converges to 0 as t³ >, while the second integral is bounded uniformly in time. Since
one may always choose t accordingly to N , one obtains

sup
N

∫
‖(PNu0, PN·0)‖d¿µ <>,

from which one may then deduce that ¿µ is supported in the smoother subspace. We explicitly construct
a control with the above properties in Section 5 below. The key idea is introduce a control which enforces
convergence in the phase space, but also retains the Lyapunov structure of the original system. Ultimately,
the control we introduce is an affine perturbation of the original system that enforces convergence only on
a sufficiently large finite-dimensional subspace. Thus, our control strategy is designed in such a way that
it effectively transfers the regularity of the controlled process to the solution in the time-asymptotic limit.
From this perspective, the regularity result of the current article can also be considered as a stochastic
analogue of results in deterministic settings regarding the regularity of the global attractor [9]. These
results are stated precisely in Theorem 2.4 and Theorem 2.5 below. Their proofs are provided in Section
4 and Section 5, respectively.

1.3. Organization of the paper. The rest of the paper is organized as follows: in Section 2, we review
the precise functional setting that we work in. Particularly, we will formulate (1.6) as an abstract Cauchy
problem (2.14) on an appropriate product space. We also identify the main assumptions that we make
on the memory, the nonlinear potentials and the noise structure. Then, we state our main results in this
section, including Theorem 2.4 on the existence and Theorem 2.5 on the regularity of invariant probability
measures. In Section 3, we perform a priori moment bounds on the solutions that ultimately ensures the
existence and regularity of the invariant probability measures. In Section 4 and Section 5, respectively,
we prove the main results of the paper, regarding the existence and regularity of an invariant probability.
The paper concludes with two appendices, Section A and Section B. In Section A, we supply the details
for the construction of unique pathwise solutions via the standard Galerkin approximation to (1.6) while
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in Section B, we collect several technical auxiliary results that are invoked in proving the regularity of
invariant probability measures.

2. Assumptions and statements of main results

In this section, we state our main results and detail the various structural assumptions we impose on
(2.14) for them. In Section 2.1, we review the functional settings and the phase spaces for (1.6) [16, 17, 32].
In Section 2.2, we state the well-posedness of the system (2.14) through Theorem 2.3. In Section 2.3,
we state the existence of invariant probabilitym measures through Theorem 2.4 and the regularity of the
support of these invariant probability measures through Theorem 2.5.

2.1. Functional setting. Given a bounded open set O in R
d with smooth boundary, we let Lp(O), for

1 f p f > denote the usual Lebesgue spaces. In the particular case p = 2, we let H = L2(O). We denote
the corresponding inner product and norm in H by 〈 · , · 〉H and ‖ · ‖H , respectively.

Let A denote the (negative) Dirichlet Laplacian operator, 2∆D. It is well-known that there exists
a complete orthonormal basis {ek}kg1 in H that diagonalizes A, i.e., there exists a positive sequence
0 < ³1 < ³2 < . . . diverging to infinity such that

Aek = ³kek, k g 1. (2.1)

More generally, for each r * R, we denote by Hr, the domain of Ar/2 endowed with the inner product,
i.e., Hr := D(Ar/2), (see [12, 17]). Then the corresponding inner product is defined by

〈u, v〉Hr =
∑

kg1

³r
k〈u, ek〉H〈v, ek〉H ,

so that the corresponding induced norm is given by

‖u‖2Hr =
∑

kg1

³r
k〈u, ek〉2H .

Next, we introduce the notion of extended phase spaces that was developed in [16, 17, 19]. This will
establish the formal framework in which we construct solutions to (1.6). First, given a memory kernel
µ : [0,>) ³ [0,>), we define the following weighted Hilbert spaces

M³
µ = L2

µ([0,>);H³+1), ³ * R, (2.2)

endowed with the inner product

〈·1, ·2〉Mβ
µ
=

∫ >

0
µ(s)〈A(1+³)/2·1(s), A

(1+³)/2·2(s)〉Hds. (2.3)

It is important to note that while the usual embedding H³1 ¢ H³2 , ³1 > ³2, is compact, the embedding

M³1
µ ¢M³2

µ is only continuous [47]. In order to establish existence of invariant probability measures, this
defect will require us to introduce additional spaces, which we develop now.

Next, let Tµ be the operator on M0
µ defined by

Tµ· := 2"s·, Dom(Tµ) = {· *M0
µ : "s· *M0

µ , ·(0) = 0}, (2.4)

where "s is the derivative in the distribution sense. In other words, Tµ is the infinitesimal generator of
the right-translation semigroup acting on M0

µ [33, Theorem 3.1]. Furthermore, if u * L1
loc([0,>);H1)

then the following functional formulation of the Cauchy initial-value problem
ù
ú
û

d

dt
·(t) = Tµ·(t) + u(t),

·(0) = ·0 *M0
µ ,

(2.5)
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has a unique solution · * C([0,>);M0
µ) with the following representation: [17, 33]

·(t, s; ·0) =

{∫ s
0 u(t2 r)dr, 0 < s f t,

·0(s2 t) +
∫ t
0 u(t2 r)dr, s > t.

(2.6)

The above explicit formula will be helpful when we show the existence of invariant probability measures
in Theorem 2.4 below. Another significance of Tµ is the following useful estimate [33, Theorem 3.1] that
will be employed throughout our analysis below: for · * Dom(Tµ), observe that integrating by parts gives

〈Tµ·, ·〉M0
µ
= 21

2

∫ >

0
µ(s)"s‖A1/2·(s)‖2Hds

=
1

2

∫ >

0
µ2(s)‖A1/2·(s)‖2Hds

f 21

2
·‖·‖2M0

µ
. (2.7)

Similarly, we may derive the following bound in M³
µ for any ³ * R

〈Tµ·, ·〉Mβ
µ
f 21

2
·‖·‖2

Mβ
µ
. (2.8)

Furthermore, given · *M0
µ , we introduce the tail function

T
µ
· (r) =

∫

(0, 1
r
)*(r,>)

‖A1/2·(s)‖2Hµ(s)ds, r g 1. (2.9)

Then we define the Banach space for ³ * R

E³
µ = {· *M³

µ : · * Dom(Tµ), sup
rg1

rTµ
· (r) <>}, (2.10)

with the norm defined by

‖·‖2
Eβ

µ
= ‖·‖2

Mβ
µ
+ ‖Tµ·‖2M0

µ
+ sup

rg1
rTµ

· (r). (2.11)

Having introduced these “memory spaces”, we define for ³ * R the Banach spaces

H³
µ = H³ ×M³

µ , Z³
µ = H³ × E³

µ . (2.12)

It was shown in [17, 25, 37, 38, 47] that E³
µ is compactly embedded intoM0

µ for ³ > 0, (see [17, Lemma 3.1]

and [47, Lemma 5.5]) so that any bounded set in Z³
µ is totally bounded in H³

µ. Moreover, for (u, ·) * H³
µ

(or Z³
µ ), we denote by Ãi, i = 1, 2, the projection on marginal spaces, namely

Ã1(u, ·) = u, Ã2(u, ·) = ·.

Also, for n g 1, we denote by Pn the projection of (u, ·) onto the subspace spanned by the first n
eigenfunctions ek:

Pnu =

n∑

k=1

〈u, ek〉Hek, and Pn·(s) =

n∑

k=1

〈·(s), ek〉Hek. (2.13)

Finally, we may now recast (1.6) as follows:

du(t) = 2»Au(t)dt2 (12 »)

∫ >

0
µ(s)A·(t, s)dsdt+ ×(u(t))dt+Qdw(t),

d

dt
·(t) = Tµ·(t) + u(t),

(u(0), ·(0)) = (u0, ·0) * H0
µ. (2.14)
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2.2. Well-posedness. In this subsection, we discuss the well-posedness of (2.14). We first start with
the condition on the memory kernel µ.

(M1). Let µ * C1([0,>)) be a positive function such that

µ2 + ·µ f 0, (2.15)

for some · > 0.
Regarding the noise, we assume that w(t) is a cylindrical Wiener process on H, whose decomposition

is given by

w(t) =
∑

kg1

ekBk(t),

where {ek}kg1 is the orthonormal basis of H as in (2.1) and {Bk(t)}kg1 is a sequence of independent stan-
dard one-dimensional Brownian motions, each defined on the same stochastic basis S = (Ω,F , {Ft}tg0,P)
[39]. Concerning the linear operator Q, we impose the following assumption [7, 12, 18, 28]:

(Q1). Q : H ³ H is a symmetric, non-negative, bounded linear map such that

Tr(QAQ) <>, and sup
x*O

∑

kg1

|Qek(x)|2 <>.

In the above, we recall that Tr(QAQ) =
∑

kg1〈QAQek, ek〉H =
∑

kg1 ‖Qek‖2H1 .

Remark 2.1. We note that condition supx*O
∑

kg1 |Qek(x)|2 < > is required for the well–posedness

[7, 18]. We do not explicitly make use of this condition for the large–time asymptotic analysis of (2.14).

Finally, concerning the potential, × : R ³ R, we impose the following conditions:

(P0). × * C1 satisfies ×(0) = 0.

(P1). There exist positive constants a1 and p0 > 1 such that for all x * R,

|×(x)| f a1(1 + |x|p0).

(P2). There exist positive constants a2, a3 such that for all x * R,

x×(x) f 2a2|x|p0+1 + a3,

where p0 is the same constant from (P1).

(P3). The derivative ×2 satisfies

sup
x*R

×2(x) =: a× <>.

Fixing a stochastic basis S = (Ω,F , {Ft}tg0,P), let us now state what we mean by a “weak solution”
of (2.14) (see [29]).

Definition 2.2. Given initial condition (u0, ·0) * H0
µ, a process U(·) =

(
u(·), ·(·)

)
is called a weak

solution of (2.14) if u(· ) is Ft-adapted and there exists q g 1 such that P–a.s. one has

u * Cw([0,>);H) + L2
loc([0,>);H1), · * C([0,>);M0

µ),

and

×(u) * Lq
loc([0,>);Lq(O)),

7



where Cw([0,>);H) denotes the space of functions that are weakly continuous in H with respect to t.
Moreover, for P–a.s.

〈u(t), v〉H = 〈u0, v〉H 2 »

∫ t

0
〈u(r), v〉H1dr 2 (12 »)

∫ t

0
〈·(r), v〉M0

µ

+

∫ t

0
〈×(u(r)), v〉Hdr +

∫ t

0
〈v(r), Qdw(r)〉H ,

〈·(t), ·̃〉M0
µ
= 〈·0, ·̃〉M0

µ
+

∫ t

0
〈Tµ·(r), ·̃〉M0

µ
dr +

∫ t

0
〈u(r), ·̃〉M0

µ
dr,

holds for all v * H1 + Lq2(O), where q2 g 1 is the Hölder conjugate of q, and for all ·̃ *M0
µ.

The first result of this note is the following well-posedness result ensuring the existence and uniqueness
of weak solutions.

Theorem 2.3. Assume that (M1), (Q1) and (P0)–(P3) hold. Then for all U0 * H0
µ, (2.14) admits

a unique weak solution U( · ;U0) in the sense of Definition 2.2. Furthermore, the solution U(t;U0) is
continuous in H with respect to U0, for all fixed t g 0, i.e.,

E‖U(t;Un
0 )2 U(t;U0)‖2H0

µ
³ 0, as n³ >,

whenever ‖Un
0 2 U0‖H0

µ
³ 0 as n³ >.

The method that we employ to construct solutions is the well-known Faedo-Galerkin approximation
and can be found in many previous works for SPDE. We refer the reader to [1, 10, 11, 29], for instance.
For the sake of completeness, we supply the relevant details for the proof of Theorem 2.3 in Section A.

2.3. Existence of invariant probability measures. Under the assumptions of the well-posedness
result Theorem 2.3, we may define Markov transition probabilities corresponding to the process U(t;U0)
satisfying (2.14) given by

Pµ
t (U0, A) := P(U(t;U0) * A),

for each t g 0, U0 * H0
µ, and Borel sets A ¦ H0

µ. We let Bb(H0
µ) denote the set of bounded Borel

measurable functions defined on H0
µ. The Markov semigroup associated to (2.14) is the operator Pµ

t :

Bb(H0
µ) ³ Bb(H0

µ) defined by

Pµ
t f(U0) = E[f(U(t;U0))], f * Bb(H0

µ). (2.16)

Recall that a probability measure ¿ * Pr(H0
µ) is said to be invariant for the semigroup Pµ

t if for every

f * Bb(H0
µ)

∫

H0
µ

f(U0)(P
µ
t )

7¿(dU0) =

∫

H0
µ

f(U0)¿(dU0),

where (Pµ
t )

7¿ denotes the push-forward measure of ¿ by Pµ
t , i.e.,

∫

H0
µ

f(U0)(P
µ
t )

7¿(dU0) =

∫

H0
µ

Pµ
t f(U0)¿(dU0).

Next, we denote by, Lµ, the generator associated to system (2.14). One defines Lµ for any g * C2(H0
µ)

with g = g(U), U = (u, ·), satisfying

Tr(DuugQQ
7) <>,

8



by

Lµg(u, ·) := 2»〈Au,Dug〉H 2 (12 »)

∫ >

0
µ(s)〈A·(s),Dug〉Hds+ 〈×(u),Dug〉H

+ 〈Tµ·,D·g〉M0
µ
+ 〈u,D·g〉M0

µ
+

1

2
Tr(DuugQQ

7).

(2.17)

In light of (M1), we introduce the class, M·, of memory kernels defined by

M· = {µ : C1([0,>); (0,>)) : µ2 + ·µ f 0}. (2.18)

We now state our second main result of the paper concerning the existence and moment bounds in H0
µ

of an invariant probability measure.

Theorem 2.4. Under the same hypothesis of Theorem 2.3, the system (2.14) admits at least one invariant
probability measure ¿µ. Furthermore, for all ³ > 0 sufficiently small independent of µ * M· as in (2.18),
any invariant probability ¿µ of (2.14) satisfies

sup
µ*Mδ

∫

H0
µ

exp
(
³‖(u, ·)‖2H0

µ

)
¿µ(du,d·) <>. (2.19)

The existence of ¿µ will follow the classical Krylov-Bogoliubov argument where it is sufficient to
establish the tightness for a sequence of time-averaged probability measures. In order to do that, as
mentioned above in Section 2.1, we will establish suitable moment bounds in Z1

µ, (see (2.12)), which is

compactly embedded into H0
µ. The proof of Theorem 2.4 will be presented in Section 4.

2.4. Regularity of invariant probability measures. Finally, we turn to the main topic of regularity
of invariant probability measures. For this purpose, we state the following conditions, which will be
employed to study the support of ¿µ

(P4). Let × satisfy (P0)–(P3). There exists m g 2 such that × * Cm21(R) and that the following hold:

a. For i = 2, . . . , 2[m2 ]2 2, ×(i)(0) = 0.

b. For i = 1, . . . ,m2 1, there exists pi > 0 such that |×(i)(x)| f c(1 + |x|pi). Furthermore, p1 < 4.

(Q2). Let Q be as in (Q1) and m be as in (P4). We assume that

Tr(QAmQ) <>,

where Tr(QAQ) =
∑

kg1〈QAmQek, ek〉H =
∑

kg1 ‖Qek‖2Hm .

Having introduced assumptions (P4) and (Q2) about the regularity of the non-linear potentials and
noise structures, respectively, we now state the next main result asserting that any invariant probability
¿µ in the setting of dimension d f 3 must concentrate in spaces of higher regularity.

Theorem 2.5. Let d f 3 and assume the same conditions from Theorem 2.3. Additionally assume that
(Q2), (P4) hold for m g 2. Then, any invariant probability ¿µ of (2.14) satisfies

sup
µ*Mδ

∫

Hm
µ

exp
{
³m‖(u, ·)‖qmHm

µ

}
¿µ(du,d·) <>, (2.20)

for some positive constants ³m, qm * (0, 1). Here, M· is as in (2.18). Furthermore, for all p g 1,

sup
µ*Mδ

∫

Hm
µ

‖u‖pHm‖u‖2Hm+1¿
µ(du,d·) <>, (2.21)

In particular, ¿µ(Hm+1 ×Mm
µ ) = 1.
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We note that Theorem 2.5 may be considered as a stochastic analogue to [17, Theorem 8.1] for global
attractors in deterministic settings. In order to prove Theorem 2.5, we will make use of a series of
bootstrap arguments where we will inductively establish moment bounds in higher-order spaces Hk for
k = 2, . . . ,m. The restriction d f 3 arises from the need to control L>–norms, while the restriction
p1 < 4 from (P4) arises from the need to control |×2(x)| by |x|p1 . Our approach draws upon the one
taken in [17], which dealt with analogous regularity issues. The proof of Theorem 2.5 will be carried out
in Section 5.

3. A priori moment estimates

Throughout the rest of the paper, c and C denote generic positive constants that may change from
line to line. The main parameters that they depend on will appear between parenthesis, e.g., c(T, q) is a
function of T and q. First we state an exponential moment bound in H0

µ for U(t).
We introduce the function Ψ0 defined as

Ψ0(u, ·) =
1

2
‖u‖2H +

1

2
(12 »)‖·‖2M0

µ
. (3.1)

In Lemma 3.1 below, we assert an energy estimate in H0
µ through function Ψ0 defined in (3.1).

Lemma 3.1. Assume the hypotheses of Theorem 2.3 and let U0 = (u0, ·0) * H0
µ. Then

1. For all ³ sufficiently small independent of µ * M·,

E exp (³Ψ0(U(t))) f e2c0t exp (³Ψ0(U0)) + C0, t g 0, (3.2)

where Ψ0 is as in (3.1) and c0 = c0(³) > 0, C0 = C0(³) > 0 do not depend on U0 * H0
µ, t g 0 and

µ * M·.
2. For all n g 1, there exist positive constants c0,n, c̃0,n and C0,n independent of U0 * H0

µ, t g 0 and
µ * M· such that

dΨ0(U(t))n f 2c0,nΨ0(U(t))ndt+ c̃0,ndt+ dM0,n(t), (3.3)

where M0,n(t) is the semi-martingale given by

M0,n(t) =

∫ t

0
nΨ0(U(r))n21〈u(t), Qdw(r)〉H . (3.4)

Furthermore,

EΨ0(U(t))n f e2c0,ntΨ0(U0)
n + C0,n, t g 0. (3.5)

Proof. We first start with (3.2) and compute partial derivatives of Ψ0

DuΨ0 = u, D·Ψ0 = (12 »)·, and DuuΨ0 = Id.

Recalling Lµ as in (2.17), we have

LµΨ0(u, v) =2 »‖A1/2u‖2H 2 (12 »)〈·, u〉M0
µ
+ 〈×(u), u〉H +

1

2
Tr(QQ7)

+ (12 »)〈Tµ·, ·〉M0
µ
+ (12 »)〈u, ·〉M0

µ

= 2»‖A1/2u‖2H + (12 »)〈Tµ·, ·〉M0
µ
+ 〈×(u), u〉H +

1

2
Tr(QQ7).

Recalling (Q1), we readily have Tr(QQ7) <>. In light of (2.7),

〈Tµ·, ·〉M0
µ
f 21

2
·‖·‖2M0

µ
.

Using (P2), it holds that

〈×(u), u〉H f a3|O|,

10



where |O| denotes the Lebesgue measure of O in R
d. Combining the above estimates, we arrive at

LµΨ0(u, v) f 2»‖A1/2u‖2H 2 1

2
(12 »)·‖·‖2M0

µ
+ a3|O|+ 1

2
Tr(QQ7). (3.6)

Turning to (3.2), we consider g(u, ·) = exp (³Ψ0(u, ·)). For ¿ * H0
µ, the Frechet derivatives of g along

the direction of ¿ are given by

〈Dug(u, ·), Ã1¿〉H = ³ exp (³Ψ0(u, ·)) 〈u, Ã1¿〉H ,
〈D·g(u, ·), Ã2¿〉M0

µ
= ³(12 ») exp (³Ψ0(u, ·)) 〈·, Ã2¿〉M0

µ
,

and Duug(u, ·)(¿) = ³ exp (³Ψ0(u, ·)) Ã1¿ + ³2 exp (³Ψ0(u, ·)) 〈u, Ã1¿〉Hu.
Applying Lµ to g gives

Lµg(u, ·) = ³e³Ψ0(u,·)
(
2 »‖A1/2u‖2H + (12 »)〈Tµ·, ·〉M0

µ
+ 〈×(u), u〉H

+
1

2
Tr(QQ7) +

1

2
³
∑

kg1

〈u,QQ7ek〉H〈u, ek〉H
)

= ³e³Ψ0(u,·)
(
LµΨ0(u, ·) +

1

2
³
∑

kg1

〈u,QQ7ek〉H〈u, ek〉H
)
.

In view of (3.6), we readily have

Lµg(u, ·) f ³e³Ψ0(u,·)
(
2 »‖A1/2u‖2H 2 1

2
(12 »)·‖·‖2M0

µ
+ a3|O|

+
1

2
Tr(QQ7) +

1

2
³
∑

kg1

〈u,QQ7ek〉H〈u, ek〉H
)
. (3.7)

To estimate the last term on the above right hand side, we recall (Q1)

1

2
³
∑

kg1

〈u,QQ7ek〉H〈u, ek〉H =
1

2
³‖Qu‖2H

=
1

2
³
∑

kg1

|〈u,Qek〉H |2

f 1

2
³Tr(QQ7)‖u‖2H ,

which can be subsumed into 2»‖A1/2u‖2H by taking ³ sufficiently small, namely,

³ <
»³1

Tr(QQ7)
.

So, recalling Ψ0 defined in (3.1), we get from (3.7)

Lµg(u, ·) f ³e³Ψ0(u,·)
(
2 1

2
»³1‖u‖2H 2 (12 »)

·

2
‖·‖2M0

µ
+ a3|O|+ 1

2
Tr(QQ7)

)

f ³e³Ψ0(u,·)
(
2 cΨ0(u, ·) + a3|O|+ 1

2
Tr(QQ7)

)
.

We thus combine the above estimate with the identity

d

dt
Eg(U(t)) = ELµg(U(t)),

to infer the existence of positive constants c = c(³, »,Q,×) and C = C(³, »,Q,×) such that the following
holds uniformly in t and µ * M· defined in (2.18)

d

dt
Eg(U(t)) =

d

dt
E exp (³Ψ0(U(t))) f 2cE exp (³Ψ0(U(t)))

(
Ψ0(U(t)) 2C

)
.
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To further bound the above right hand side, we employ the elementary fact that there exists a constant
C̃ = C̃(³,C) > 0 such that for all r g 0,

e³r(r 2 C) > e³r 2 C̃. (3.8)

So, there exist c and C independent of t, µ * M· and initial condition U0 such that

d

dt
E exp (³Ψ0(U(t))) f 2cE exp (³Ψ0(U(t))) + C. (3.9)

This establishes (3.2) by virtue of Gronwall’s inequality.
With regard to (3.3)–(3.5), we shall proceed by induction on n. The case n = 1 is actually a consequence

of the above estimates. Indeed, by Itô’s formula and (3.6), we readily have

dΨ0(U(t)) = LµΨ0(U(t))dt+ 〈u(t), Qdw(t)〉H

f 2»‖A1/2u‖2Hdt2 1

2
(12 »)·‖·‖2M0

µ
dt+

(
a3|O|+ 1

2
Tr(QQ7)

)
dt

+ 〈u(t), Qdw(t)〉H , (3.10)

which establishes (3.3) for n = 1. Also,

d

dt
EΨ0(U(t)) = 2»³1E‖u(t)‖2H 2 1

2
(12 »)·E‖·(t)‖2M0

µ
+ a3|O|+ 1

2
Tr(QQ7),

whence

EΨ0(U(t)) f e2c0,1tΨ0(U0) + C0,1,

where

c0,1 = min{2»³1, (1 2 »)·}, and C0,1 =
a3|O|+ 1

2Tr(QQ
7)

c0,1
, (3.11)

implying (3.5) for n = 1.
Now consider n g 2, for ¿ * H0

µ, the Frechet derivatives of Ψ0(u, ·)
n along the direction of ¿ are given

by

〈DuΨ0(u, ·)
n, Ã1¿〉H = nΨ0(u, ·)

n21〈u, Ã1¿〉H ,
〈D·Ψ0(u, ·)

n, Ã2¿〉M0
µ
= nΨ0(u, ·)

n21〈·, Ã2¿〉M0
µ
,

DuuΨ0(u, ·)
n(¿) = nΨ0(u, ·)

n21Ã1¿ + n(n2 1)Ψ0(u, ·)
n22〈u, Ã1¿〉Hu.

Applying Lµ, (see (2.17)), to Ψ0(u, ·)
n gives

LµΨ0(u, ·)
n

= nΨ0(u, ·)
n21

(
2 »‖A1/2u‖2H + (12 »)〈Tµ·, ·〉M0

µ
+ 〈×(u), u〉H +

1

2
Tr(QQ7)

)

+
1

2
n(n2 1)Ψ0(u, ·)

n22‖Qu‖2H .

Similarly to the base case n = 1,

〈Tµ·, ·〉M0
µ
+ 〈×(u), u〉H f 21

2
·‖·‖2M0

µ
+ a3|O|.

Also,

1

2
‖Qu‖2H f 1

2
Tr(QQ7)‖u‖2H f Tr(QQ7)Ψ0(u, ·).

It follows that

LµΨ0(u, ·)
n f 2cΨ0(u, ·)

n + CΨ0(u, ·)
n21.
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By Young’s inequality, it is clear that Ψ0(u, ·)
n21 can be absorbed into 2cΨ0(u, ·)

n. We therefore may
infer the existence of positive constants c0,n and c̃0,n such that

LµΨ0(u, ·)
n f 2c0,nΨ0(u, ·)

n + c̃0,n. (3.12)

As a consequence, by Itô’s formula, we arrive at

dΨ0(U(t))n = LµΨ0(U(t))dt+ nΨ0(U(t))n21〈u(t), Qdw(t)〉H
f 2c0,nΨ0(U(t))ndt+ c̃0,ndt+ nΨ0(U(t))n21〈u(t), Qdw(t)〉H ,

which proves (3.3). Furthermore,

d

dt
EΨ0(U(t))n f 2c0,nEΨ0(U(t))n + c̃0,n.

This together with Gronwall’s inequality produces (3.5) for all n g 2. The proof is thus finished. �

We next introduce the function

Ψ1(u, ·) =
1

2
‖u‖2H1 +

1

2
(12 »)‖·‖2M1

µ
, (3.13)

and for general m * N

Ψm(u, ·) =
1

2
‖u‖2Hm +

1

2
(12 »)‖·‖2Mm

µ
. (3.14)

To prove the H1
µ–analog of Lemma 3.1, we will make use of the following elementary inequality.

Lemma 3.2. Given c, c2 > 0, the following holds

e2ct

∫ t

0
e2(c22c)rdr f Ce2c̃t, t g 0,

for some positive constants C = C(c, c2), c̃ = c̃(c, c2) independent of t.

Proof. There are three cases depending on the sign of c2 2 c. If c2 2 c > 0, then

e2ct

∫ t

0
e2(c22c)rdr f e2ct

c2 2 c
.

Otherwise, if c2 2 c < 0

e2ct

∫ t

0
e2(c22c)rdr = e2c2t

∫ t

0
e2(c2c2)(t2r)dr f e2c2t

c2 c2
.

Now if c2 2 c = 0,

e2ct

∫ t

0
e2(c22c)rdr = e2ctt f 2e2ct/2

c
.

Altogether, we observe that

e2ct

∫ t

0
e2(c22c)rdr f Ce2c̃t.

�

Lemma 3.3. Assume the hypotheses of Theorem 2.3 and let U0 = (u0, ·0) * H1
µ. Then

1. For all ³ sufficiently small independent of µ * M·,

E exp (³Ψ1(U(t))) f e2c1,0t exp (³C1,0Ψ1(U0)) + C1,0, t g 0, (3.15)

where Ψ1(u, ·) is as in (3.13) and c1,0 = c1,0(³) > 0, C1,0 = C1,0(³) > 0 do not depend on U0, µ * M·

and t g 0.
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2. For all n g 1, there exist positive constants c1,n, C1,n independent of U0, µ * M· and t g 0 such that

dΨ1(U(t))n f 2c1,nΨ1(U(t))ndt+ C1,ndt+ C1,nΨ0(U(t))ndt+ dM1,n(t), (3.16)

where M1,n(t) is the semi-martingale given by

M1,n(t) =

∫ t

0
nΨ1(U(r))n21〈A1/2u(t), A1/2Qdw(r)〉H . (3.17)

Furthermore,

EΨ1(U(t))n f C1,ne
2c1,ntΨ1(U0)

n + C1,n, t g 0. (3.18)

Proof. We first prove part 1. For this, we apply Lµ, (see (2.17)), to Ψ1(u, ·) to obtain

LµΨ1(u, ·) = 2»‖Au‖2H + (12 »)〈Tµ·, ·〉M1
µ
+ 〈×2(u)'u,'u〉H +

1

2
Tr(QAQ7).

In view of (Q1), we readily have

Tr(QAQ7) <>.

Recalling (2.8) (for ³ = 1), it holds that

〈Tµ·, ·〉M1
µ
f 21

2
·‖·‖2M1

µ
.

To deal with the nonlinear term, note that by (P3) and Cauchy-Schwarz inequality,

〈×2(u)'u,'u〉H f a×〈A1/2u,A1/2u〉H = a×〈u,Au〉H f
2a2×
»

‖u‖2H +
1

2
»‖Au‖2H .

It follows that

LµΨ1(u, ·) f 21

2
»‖Au‖2H 2 1

2
(12 »)·‖·‖2M1

µ
+

2a2×
»

‖u‖2H +
1

2
Tr(QAQ7)

f 2c1,1Ψ1(u, ·) + C1,1Ψ0(u, ·) + C1,1. (3.19)

Turning to (3.15), for ³1,0 to be chosen later, we consider

g1(u, ·) = Ψ1(u, ·) + ³1,0Ψ0(u, ·). (3.20)

In view of (3.6) and (3.19), observe that

Lµg1(u, ·) = LµΨ1(u, ·) + ³1,0LµΨ0(u, ·)

f 2c1,1Ψ1(u, ·) + C1,1Ψ0(u, ·) +C1,1

+ ³1,0
(
2 c0,1Ψ0(u, ·) + C0,1

)
.

By picking ³1,0 sufficiently large (independent of µ * M·), we obtain

Lµg1(u, ·) f 2cg1(u, ·) + C.

Similarly to the proof of (3.2), we compute

Lµe³g1(u,·) = ³e³g1(u,·)Lµg1(u, ·) +
1

2
³2e³g1(u,·)

∑

kg1

∣∣〈u,Qek〉H1 + ³1,0〈u,Qek〉H
∣∣2

f ³e³g1(u,·)
(
2 cg1(u, ·) + C +

1

2
³
∑

kg1

∣∣〈u,Qek〉H1 + ³1,0〈u,Qek〉H
∣∣2
)
.
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By (Q1), we have

1

2

∑

kg1

∣∣〈u,Qek〉H1 + ³1,0〈u,Qek〉H
∣∣2 f

∑

kg1

|〈u,Qek〉H1 |2 +
∑

kg1

³21,0|〈u,Qek〉H |2

f Tr(QAQ7)‖A1/2u‖2H + ³21,0Tr(QQ
7)‖u‖2H

f Tr(QAQ7)Ψ1(u, ·) + ³21,0Tr(QQ
7)Ψ0(u, ·)

f C̃ g1(u, ·),

for some constant C̃ > 0 independent of ³ and µ * M·. It follows that

Lµe³g1(u,·) f ³e³g1(u,·)
(
2 cg1(u, ·) + ³C̃g1(u, ·) + C

)
.

Since c and C̃ are both independent of ³, by choosing ³1 sufficiently small, observe that for all ³ * (0, ³1),
we obtain the bound

Lµe³g1(u,·) f ³e³g1(u,·)
(
2 cg1(u, ·) + C

)
.

We now invoke (3.8) to deduce further

Lµe³g1(u,·) f 2ce³g1(u,·) + C.

By Itô’s formula, this yields

d

dt
E e³g1(U(t)) f 2cE e³g1(U(t)) + C,

implying

E e³g1(U(t)) f e2ct
E e³g1(U0) + C.

Recalling the expression (3.20) of g1,

Ψ1 f g1 f
(
1 +

³1,0
³1

)
Ψ1,

we immediately obtain (3.15). Now we prove 2.
With regard to (3.16)–(3.18), we proceed by induction as in the proof of Lemma 3.1. For the base case

n = 1, from (3.19), we see that

dΨ1(U(t)) = LµΨ1(U(t))dt+ 〈A1/2u(t), A1/2Qdw(t)〉H

f 21

2
»‖Au(t)‖2Hdt2 1

2
(12 »)·‖·(t)‖2M1

µ
dt+

2a2×
»

‖u(t)‖2Hdt

+
1

2
Tr(QAQ7)dt+ 〈A1/2u(t), A1/2Qdw(t)〉H . (3.21)

This proves (3.18) for n = 1. Also, from (3.19), we obtain using Sobolev embedding

d

dt
EΨ1(U(t))

f 21

2
»E‖Au(t)‖2H 2 1

2
(12 »)·E‖·(t)‖2M1

µ
+

2a2×
»

E‖u(t)‖2H +
1

2
Tr(QAQ7)

f 21

2
»³1E‖A1/2u(t)‖2H 2 1

2
(12 »)·E‖·(t)‖2M1

µ
+

2a2×
»

E‖u(t)‖2H +
1

2
Tr(QAQ7).

By Gronwall’s inequality,

EΨ1(U(t)) f e2ctΨ1(U0) +
2a2×
»

∫ t

0
e2c(t2r)

E‖u(r)‖2Hdr + C.

15



In light of Lemma 3.1 together with Sobolev embedding again

E‖u(r)‖2H f 2EΨ0(U(r)) f 2e2c0,1rΨ0(U0) + 2C0,1 f 2³21
1 e2c0,1rΨ1(U0) + 2C0,1.

So that
∫ t

0
e2c(t2r)

E‖u(r)‖2Hdr f 2³21
1 e2ct

∫ t

0
e2(c0,12c)rdrΨ1(U0) + C.

By Lemma 3.2 with c2 = c0,1, it follows that

e2ct

∫ t

0
e2(c0,12c)rdr f Ce2ct. (3.22)

Hence, we may infer the existence of c1,1 and C1,1 such that

EΨ1(Φ(t)) f C1,1e
2c1,1tΨ1(U0) + C1,1,

which proves (3.18) for n = 1.
Now assuming (3.16)–(3.18) hold up to n21, consider the case n g 2. Similarly to the proof of Lemma

3.1, we first compute partial derivatives of Ψ1(u, ·)
n along a direction ¿ * H1 as follows:

〈DuΨ1(u, ·)
n, Ã1¿〉H1 = nΨ1(u, ·)

n21〈u, Ã1¿〉H1 ,

〈D·Ψ1(u, ·)
n, Ã2¿〉M1

µ
= nΨ1(u, ·)

n21〈·, Ã2¿〉M1
µ

DuuΨ1(u, ·)
n(¿) = nΨ1(u, ·)

n21Ã1¿ + n(n2 1)Ψ1(u, ·)
n22〈u, Ã1¿〉H1u.

So that applying Lµ, (see (2.17)), to Ψ1(u, ·)
n yields the identity

LµΨ1(u, ·)
n = nΨ1(u, ·)

n21
(
2 »‖Au‖2H + (12 »)〈Tµ·, ·〉M1

µ

+ 〈×2(u)'u,'u〉H +
1

2
Tr(QAQ7)

)

+
1

2
n(n2 1)Ψ1(u, ·)

n22
∑

kg1

|〈u,Qek〉H1 |2.

As in the case n = 1, cf. (3.19), we readily have the bound

2 »‖Au‖2H + 〈Tµ·, ·〉M1
µ
+ 〈×2(u)'u,'u〉H

f 21

2
»‖Au‖2H 2 1

2
(12 »)·‖·‖2M1

µ
+

2a2×
»

‖u‖2H .

Also,

1

2

∑

kg1

|〈u,Qek〉H1 |2 f 1

2
Tr(QAQ7)‖A1/2u‖2H f Tr(QAQ7)Ψ1(u, ·).

It follows that

LΨ1(u, ·)
n

f nΨ1(u, ·)
n21

(
2 1

2
»‖Au‖2H 2 1

2
(12 »)·‖·‖2M1

µ
+

2a2×
»

‖u‖2H +
1

2
Tr(QAQ7)

)

+ n(n2 1)Tr(QAQ7)Ψ1(u, ·)
n21

f 2cΨ1(u, ·)
n +

2na2×
»

Ψ1(u, ·)
n21‖u‖2H + n(n2 1

2
)Tr(QAQ7)Ψ1(u, ·)

n21.
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By Young’s inequality, the last term on the above right–hand side can be subsumed into 2cΨ1(u, ·)
n.

Likewise

2na2×
»

Ψ1(u, ·)
n21‖u‖2H f c

100
Ψ1(u, ·)

n + C‖u‖2nH f c

100
Ψ1(u, ·)

n + CΨ0(u, ·)
n.

Together with Sobolev embedding, we may infer the existence of positive constants c and C such that

LµΨ1(u, ·)
n f 2cΨ1(u, ·)

n + CΨ0(u, ·)
n + C. (3.23)

We now employ Itô’s formula making use of (3.23) to see that

dΨ1(U(t)) = LµΨ1(U(t))ndt+ nΨ1(U(t))n21〈A1/2u(t), A1/2Qdw(t)〉H
f 2cΨ1(U(t))ndt+CΨ0(U(t))ndt+ Cdt

+ nΨ1(U(t))n21〈A1/2u(t), A1/2Qdw(t)〉H ,
which establishes (3.16). In addition, from (3.23), we have

d

dt
EΨ1(U(t))n f 2cEΨ1(U(t))n + CEΨ0(U(t))n + C,

whence

EΨ1(U(t))n f e2ctΨ1(U0) + C

∫ t

0
e2c(t2r)

EΨ0(U(r))ndr + C.

We now invoke Lemma 3.1 to see that∫ t

0
e2c(t2r)

EΨ0(U(r))ndr f
∫ t

0
e2c(t2r)e2c0,nrdrΨ0(U0)

n + C.

Since Ψ0(U0) is dominated by Ψ1(U0), reasoning as in the base case n = 1 above, we also obtain

EΨ1(U(t))n f C1,ne
2c1,ntΨ1(U0)

n + C1,n,

for suitable constants c1,n and C1,n that are independent of µ * M·, (U0) and t. This proves (3.18) for
all n g 2, as desired. �

We now restrict to dimension d f 3 and establish moment bounds in higher regularity of the solution
under the extra assumptions (P4) and (Q2). In particular, we will employ the result in Lemma 3.4 below
to prove Theorem 2.5 in Section 5.

Lemma 3.4. Let d f 3 and assume the hypotheses of Theorem 2.3. Suppose further that (P4), (Q2)
hold for m g 2. Then for all k = 2, . . . ,m and n g 1, there exist constants ck,n, Ck,n and integers qk,n,
independent of U0, t and µ * M·, such that

dΨk(U(t))n f 2ck,nΨk(U(t))ndt+ Ck,ndt+ Ck,nΨk21(U(t))qk,ndt+ dMk,n(t), (3.24)

and
EΨk(U(t))n f Ck,ne

2ck,ntΨk(U0)
qk,n + Ck,n, (3.25)

where Ψk is given as in (3.14) and Mk,n(t) is the semi-martingale given by

Mk,n(t) =

∫ t

0
nΨk(U(r))n21〈Ak/2u(t), Ak/2Qdw(r)〉H . (3.26)

Furthermore, it holds that

EΨm(U(t))n + cm,n

∫ t

0
EΨm(U(r))n21

(
‖Am+1

2 u(r)‖2H + ‖·(r)‖2Mm
µ

)
dr

f Cm,nΨm(U0)
qm,n + Cm,nt,

(3.27)

and that

E exp
{
³m,0Ψm(U(t))³m,0

}
f Cm,0 exp

{
Cm,0e

2cm,0t
(
1 + Ψm(U0)

qm,0
)}
, (3.28)
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for some positive constants ³m,0 * (0, 1), ³m,0, qm,0, cm,0, Cm,0 also independent of U0, t and µ * M·.

Ultimately, the proof of Lemma 3.4 will proceed by induction, though we treat the case m = 2 as a
special case. Let us state and prove this special case now.

Lemma 3.5. Let d f 3 and assume the hypothesis of Theorem 2.3. Additionally assume that (P4), (Q2)
hold for m g 2. Given U0 = (u0, ·0) * H2

µ, there exist positive constants c3,n, C3,n and positive integer
q3,n independent of U0, t and µ * M· such that

dΨ2(U(t))n f 2c2,nΨ2(U(t))ndt+C2,ndt+ C2,nΨ1(U(t))q2,ndt+ dM2,n(t), (3.29)

where Ψ3 is given as in (3.14) and M2,n(t) is the semi-martingale given by

M2,n(t) =

∫ t

0
nΨ2(U(r))n21〈Au(t), AQdw(r)〉H . (3.30)

Furthermore,
EΨ2(U(t))n f C2,ne

2c2,ntΨ2(U0)
q2,n + C2,n. (3.31)

Proof. Similarly to the proof of Lemma 3.3, we start with the case n = 1. Applying Lµ, cf. (2.17), to Ψ2

as in (3.14) gives

LµΨ2(u, v) = 2»‖A3/2u‖2H + (12 »)〈Tµ·, ·〉M2
µ

+ 〈×2(u)'u,'Au〉H +
1

2
Tr(QA2Q7).

We note that Tr(QA2Q7) <>, by virtue of (Q2). Also, by (2.7), we readily have the useful estimate

〈Tµ·, ·〉M2
µ
f 2·

2
‖·‖2M2

µ
.

It remains to bound 〈×2(u)'u,'Au〉H . To this end, we recall from (P4) that ×2(u) f c(1 + |u|p1) where
p1 < 4. We then estimate

〈×2(u)'u,'Au〉H f c(1 + ‖u‖p1>)‖A1/2u‖H‖A3/2u‖H .
Furthermore,

‖A1/2u‖H‖A3/2u‖H f c‖A1/2u‖2H +
1

100
»‖A3/2u‖2H .

Using Agmon’s inequality and Sobolev interpolation in d f 3, we have

‖u‖p1>‖A1/2u‖H‖A3/2u‖H f c‖A1/2u‖
p1
2

H ‖Au‖
p1
2

H ‖A1/2u‖H‖A3/2u‖H

= c‖A1/2u‖
p1+2

2

H ‖Au‖
p1
2

H ‖A3/2u‖H

f c‖A1/2u‖
p1+2

2

H ‖A1/2u‖
p1
4

H ‖A3/2u‖
p1
4

H ‖A3/2u‖H

= c‖A1/2u‖
3p1+4

4

H ‖A3/2u‖
p1+4

4

H

f c‖A1/2u‖
6p1+8

42p1

H +
1

100
»‖A3/2u‖2H ,

where in the last estimate above, we employed Young inequality with the fact that p1 < 4. We may thus
infer the existence of a positive integer q such that

〈'(×(u)),'Au〉H

f c‖A1/2u‖2qH +
1

2
‖A3/2u‖2H + c

f cΨ1(u, ·)
q +

1

2
»‖A3/2u‖2H + c.

18



We now combine everything to arrive at the estimate

LµΨ2(u, ·)

= 2»‖A3/2u‖2H + (12 »)〈Tµ·, ·〉M2
µ
+ 〈A1/2(×(u)), A3/2u〉H +

1

2
Tr(QA2Q7)

f 21

2
»‖A3/2u‖2H 2 1

2
(12 »)·‖·‖2M2

µ
+ cΨ1(u, ·)

q +
1

2
Tr(QA2Q7) + c, (3.32)

whence by Itô’s formula

dΨ2(U(t)) = LµΨ2(U(t))dt+ 〈Au(t), AQdw(t)〉H
f 2cΨ2(U(t))dt+ CΨ1(U(t))qdt+ Cdt+ 〈Au(t), AQdw(t)〉H .

This establishes (3.29) for n = 1. Also, by Gronwall’s inequality

EΨ2(U(t)) f e2ctΨ2(U0) + C

∫ t

0
e2c(t2r)

EΨ1(U(r))qdr + C.

In view of Lemma 3.3,

EΨ1(U(r))q f C1,qe
2c1,qrΨ1(U0)

q + C1,q f Ce2crΨ2(U0)
q + C.

Reasoning as in (3.22), we see that
∫ t

0
e2c(t2r)

EΨ1(U(r))qdr f Ce2ctΨ2(U0)
q + C.

It follows that we may infer the existence of c2,1 and C2,1 such that

EΨ2(U(r)) f C2,1e
2c2,1tΨ2(U0)

q2,1 + C2,1.

We now consider the general case n g 2. Similarly to the proof of Lemma 3.3, the partial derivatives
of Ψ2(u, ·)

n along a direction ¿ * H2
µ are given by:

〈DuΨ2(u, ·)
n, Ã1¿〉H2 = nΨ2(u, ·)

n21〈u, Ã1¿〉H2 ,

〈D·Ψ2(u, ·)
n, Ã2¿〉M2

µ
= nΨ2(u, ·)

n21〈·, Ã2¿〉M2
µ

DuuΨ2(u, ·)
n(¿) = nΨ2(u, ·)

n21Ã1¿ + n(n2 1)Ψ2(u, ·)
n22〈u, Ã1¿〉H2u.

So,

LµΨ2(u, ·)
n

= nΨ2(u, ·)
n21

(
2 »‖A3/2u‖2H + (12 »)〈Tµ·, ·〉M2

µ
+ 〈A1/2(×(u)), A3/2u〉H

+
1

2
Tr(QA2Q7)

)

+
1

2
n(n2 1)Ψ2(u, ·)

n22
∑

kg1

|〈u,Qek〉H2 |2

= I1 + I2.

In view of (3.32), we have

I1 f 2nΨ2(u, ·)
n21

(1
2
»‖A3/2u‖2H +

1

2
(12 »)·‖·‖2M2

µ

)

+ nΨ2(u, ·)
n21

(
cΨ1(u, ·)

q +
1

2
Tr(QA2Q7) + c

)
.
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To further estimate the second term on the above right-hand side, we employ Young inequality to see
that

nΨ2(u, ·)
n21

(
cΨ1(u, ·)

q +
1

2
Tr(QA2Q7) + c

)

f 1

100
nmin{»³1, (12 »)·}Ψ2(u, ·)

n + c
(
Ψ1(u, ·)

qn + 1
)
.

Likewise

I2 =
1

2
n(n2 1)Ψ2(u, ·)

n22
∑

kg1

|〈u,Qek〉H2 |2

f 1

2
n(n2 1)Tr(QA2Q7)Ψ2(u, ·)

n22‖u‖2H2

f n(n2 1)Tr(QA2Q7)Ψ2(u, ·)
n21

f 1

100
nmin{»³1, (12 »)·}Ψ2(u, ·)

n + c.

We now combine the estimates on I1 and I2 to infer the bound

LµΨ2(u, ·)
n f 2cΨ2(u, ·)

n + CΨ1(u, ·)
qn + C. (3.33)

By Itô’s formula, we immediately obtain (3.29). Also,

d

dt
EΨ2(U(t))n f 2cEΨ2(U(t))n + CEΨ1(U(t))qn + C,

whence

EΨ2(U(t))n f e2ctΨ2(U0)
n +

∫ t

0
e2c(t2r)

EΨ1(U(r))qndr + C. (3.34)

We invoke Lemma 3.3 again to see that

EΨ1(U(r))qn f C1,qne
2c1,qnrΨ1(U0)

qn + C1,qn f Ce2ctΨ2(U0)
qn + C.

Similarly to (3.22),

∫ t

0
e2c(t2r)

EΨ1(U(r))qndr f Ce2ctΨ2(U0)
qn + C,

which together with (3.34) proves (3.31), thereby finishing the proof. �

Now let us prove Lemma 3.4.

Proof of Lemma 3.4. We proceed by induction on m. We note that the case m = 2 was treated in Lemma
3.5. Due to the nonlinearity of ×, we will treat the case m = 3 next.

Recall from (3.14) that for (u, ·) * H3
µ, Ψ3(u, ·) =

1
2‖A3/2u‖2H + 1

2(1 2 »)‖·‖2M3 . A calculation then
yields

LµΨ3(u, ·) = 2»‖A2u‖2H + (12 »)〈Tµ·, ·〉M3 + 〈A(×(u)), A2u〉H +
1

2
Tr(QA3Q7). (3.35)

In the above, Tr(QA3Q7) <> thanks to (Q2). Also, recalling (2.7),

〈Tµ·, ·〉M3
µ
f 2·

2
‖·‖2M3

µ
.
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It remains to estimate the term involving ×(u). To see this, by Hölder’s and Agmon’s inequalities, we
have

〈A(×(u)), A2u〉H
= 〈×2(u)Au,A2u〉H 2 〈×22(u)|'u|2, A2u〉H
f c‖u‖p1L>‖Au‖H‖A2u‖H + c‖u‖p2L>‖'u‖L>‖A1/2u‖H‖A2u‖H

f c‖A1/2u‖
p1
2

H ‖Au‖
p1
2

H ‖Au‖H‖A2u‖H

+ c‖A1/2u‖
p2
2

H ‖Au‖
p2
2

H ‖Au‖
1

2

H‖A3/2u‖
1

2

H‖A1/2u‖H‖A2u‖H

f c‖A1/2u‖
p1
2

H ‖Au‖1+
p1
2

H ‖A2u‖H + c‖A1/2u‖1+
p2
2

H ‖Au‖
p2+1

2

H ‖A2u‖
3

2

H .

Using Young inequality on the above right hand side, we infer the bound

〈A(×(u)), A2u〉H f c
(
‖A1/2u‖n1

H + ‖Au‖n2

H + 1
)
+

1

2
»‖A2u‖2H . (3.36)

As a consequence, we obtain the estimate

2 »‖A2u‖2H + (12 »)〈Tµ·, ·〉M3
µ
+ 〈A(×(u)), A2u〉H +

1

2
Tr(QA3Q7)

f 21

2
»‖A2u‖2H 2 1

2
(12 »)·‖·‖2M3

µ
+ c

(
‖A1/2u‖n1

H + ‖Au‖n2

H + 1
)

f 21

2
»‖A2u‖2H 2 1

2
(12 »)·‖·‖2M3

µ
+ c

(
Ψ1(u, ·)

n1 +Ψ2(u, ·)
n2 + 1

)

f 21

2
»‖A2u‖2H 2 1

2
(12 »)·‖·‖2M3

µ
+ c(Ψ2(u, ·)

q + 1),

which combines with (3.35) yields

dΨ3(U(t)) = LµΨ3(U(t))dt+ 〈A3/2u(t), A3/2Qdw(t)〉H
f 2cΨ3(U(t))dt+CΨ2(U(t))qdt+ Cdt++〈A3/2u(t), A3/2Qdw(t)〉H .

Also,

EΨ3(U(t)) f e2ctΨ3(U0) + C

∫ t

0
e2c(t2r)

EΨ2(U(r))qdr + C.

Recalling the estimates in Lemma 3.5, then applying Poincaré’s inequality yields

EΨ2(U(r))q f Ce2crΨ2(U0)
q2 + C f Ce2crΨ3(U0)

q2 + C.

Similarly to (3.22) making use of Lemma 3.2, we therefore arrive at the bound

EΨ3(U(t)) f C3,1e
2c3,1tΨ3(U0)

q3,1 + C3,1,

where c3,1, C3,1 and q3,1 do not depend on U0, t and µ * M·.
In order to establish higher moment bounds for Ψ3, we first observe that we have the following identity

for n g 2

LµΨ3(u, ·)
n = nΨ3(u, ·)

n21
(
2 »‖A2u‖2H + (12 »)〈Tµ·, ·〉M3

µ
+ 〈A(×(u)), A2u〉H

+
1

2
Tr(QA3Q7)

)

+
1

2
n(n2 1)Ψ3(u, ·)

n22
∑

kg1

|〈u,Qek〉H3 |2.
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By employing a similar argument as in the proof of Lemma 3.5 and recalling (3.36), we see that the above
right-hand side is dominated by

2cΨ3(u, ·)
n + C

(
Ψ2(u, ·)

q̂ + 1
)
,

where q̂ is a constant integer that only depends on n and ×. So that, for all U0 * H3
µ and t g 0,

dΨ3(U(t))n f 2cΨ3(U(t))ndt+ C(Ψ2(U(t))q̂ + 1)dt

+ nΨ3(U(t))n21〈A3/2u(t), A3/2Qdw(t)〉H . (3.37)

Furthermore, employing Lemma 3.5 and Lemma 3.2, the following holds

EΨ3(U(t))n f e2ctΨ3(U0)
n + C

∫ t

0
e2c(t2r)

EΨ2(U(r))q̂dr + C

f C3,1e
2c3,ntΨ3(U0)

q3,n + C3,n.

This finishes the proofs of (3.24)–(3.25) for m = 3.
For the induction hypothesis, we now suppose that (3.25) holds for k = 1, . . . ,m 2 1 g 3. Note that

m g 4. Letting Ψm(u, ·) be as in (3.14), we formally have the identity

LµΨm(u, ·) = 2»‖Am+1

2 u‖2H + (12 »)〈Tµ·, ·〉Mm
µ

+ 〈Am21

2 (×(u)), A
m+1

2 u〉H

+
1

2
Tr(QAmQ7). (3.38)

We note that by the previous arguments, it is established that u * Hm21 + L>(O) since H2 �³ L>(O)
in dimension d f 3. Also, recalling (Q2) and (2.7), we see that

Tr(QAmQ7) <>, and 〈Tµ·, ·〉Mm
µ

f 2·
2
‖·‖2Mm

µ
.

Due to the difficulty from the nonlinearity, to estimate the right-hand side of (3.38), we will consider two
cases depending on whether m is even or not. For what follows, we recall from (P4) that × * Hm21 (see
[17]).

Case 1. m is even. In this case, it holds that

〈Am21

2 (×(u)), A
m+1

2 u〉H = 〈'Am22

2 (×(u)),'Am
2 u〉H .

In view of identity (B.1), we apply ' to A
m22

2 (×(u)) to obtain

'Am22

2 (×(u)) = ×2(u)'Am22

2 u+ c×22(u)'u · '2A
m24

2 u+
m21∑

ig2

×(i)(u)Ii(u),

where for i = 2, . . . ,m2 1, Ii(u) satisfies

‖Ii(u)‖L> f c
(m23∑

j=1

‖A j
2u‖nj

L> + 1
)
.
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We then use Agmon’s, Hölder’s, and Young’s inequalities to estimate (recalling (P4))

〈×2(u)'Am22

2 u+ c×22(u)'u · '2A
m24

2 u,'Am
2 u〉H

f c
[
(‖u‖p1L> + 1)‖Am21

2 u‖H + (‖u‖p2L> + 1)‖A1/2u‖L>‖Am22

2 u‖H
]
‖Am+1

2 u‖H

f c
[
1 + ‖u‖4p1L> + ‖u‖6p2L> + ‖A1/2u‖6L> + ‖Am22

2 u‖6H + ‖Am21

2 u‖4H
]

+
1

100
‖Am+1

2 u‖2H

f c
[
1 + ‖A1/2u‖2p1H ‖Au‖2p1H + ‖A1/2u‖3p2H ‖Au‖3p2H + ‖Au‖3H‖A3/2u‖3H

+ ‖Am22

2 u‖6H + ‖Am21

2 u‖4H
]

+
1

100
»‖Am+1

2 u‖2H .

Likewise,

〈m21∑

ig2

×(i)(u)Ii(u),'A
m
2 u

〉
H

f c(‖u‖p2L> + 1)
(m23∑

j=1

‖Aju‖nj

L> + 1
)
‖Am+1

2 u‖H

f c
(
‖u‖4p2L> +

m23∑

j=1

‖A j
2u‖4nj

L> + 1
)
+

1

100
‖Am+1

2 u‖2H

f c
(
‖A1/2u‖2p2H ‖Au‖2p2H +

m23∑

j=1

‖A j+1

2 u‖2nj

H ‖A j+2

2 u‖2nj

H + 1
)
+

1

100
»‖Am+1

2 u‖2H .

We now combine the above estimates to infer the existence of a constant n7 sufficiently large such that

〈Am21

2 (×(u)), A
m+1

2 u〉H f c
(
1 +

m21∑

j=0

‖A j
2u‖n7

H

)
+

1

2
»‖Am+1

2 u‖2H . (3.39)

Case 2. m is odd. In this situation, since m21
2 is an integer, we may invoke (B.1) directly to see that

A
m21

2 (×(u)) = ×2(u)A
m21

2 u+ c×22(u)'u · 'Am23

2 u+
m21∑

ig2

×(i)(u)Îi(u),

where for i = 2, . . . ,m2 1, Îi(u) satisfies (for possibly different nj’s from those of case 1)

‖Îi(u)‖L> f c
(m23∑

j=1

‖A j
2u‖nj

L> + 1
)
.

Employing the same argument as in Case 1 above, we also establish the estimate (3.39) for a suitably
large n7.
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Combining the above estimates with (3.38), we observe that (using Sobolev embedding)

LµΨm(U0) f 21

2
»‖Am+1

2 u‖2H 2 1

2
(12 »)·‖·‖2Mm

µ
+ C

m21∑

j=0

‖A
j
2u‖n7

H + C

f 21

2
»‖Am+1

2 u‖2H 2 1

2
(12 »)·‖·‖2Mm

µ
+ C‖Am21

2 u‖n7
H + C

f 21

2
»‖Am+1

2 u‖2H 2 1

2
(12 »)·‖·‖2Mm

µ
+ CΨm21(u, ·)

n7 + C. (3.40)

By Itô’s formula, this implies

dΨm(U(t)) = LµΨm(U(t))dt+ 〈Am
2 u(t), A

m
2 Qdw(t)〉H

f 2cΨm(U(t))dt+ CΨm21(U(t))n7dt+ 〈Am
2 u(t), A

m
2 Qdw(t)〉H . (3.41)

Also, using Gronwall’s inequality, we arrive at the bound

EΨm(U(t)) f e2ctΨm(U0) + C

∫ t

0
e2c(t2r)

EΨm21(U(r))n7dr + C.

In view of the induction hypothesis, namely, (3.25) holds for up to m2 1, we readily have

EΨm21(U(r))n7 f Ce2cm21,n7rΨm21(U0)
qm21,n7 + C

f Ce2cm21,n7rΨm(U0)
qm21,n7 + C, (3.42)

where C does not depend on time r, U0 and µ * M·. As a consequence

EΨm(U(t)) f e2ctΨ(U0) + C

∫ t

0
e2c(t2r)e2cm21,n7rdrΨm(U0)

qm21,n7 +C.

In the same spirit of (3.22), we therefore may infer the existence of positive constants cm,1, Cm,1 and qm,1

independent of U0, µ * M· and t such that

EΨm(U(t)) f Cm,1e
2cm,1tΨm(U0)

qm,1 + Cm,1,

thereby proving (3.24)–(3.25) for k = m and n = 1. For general n g 2, a similar argument as in the case
k = 3, also produces the desired bounds (3.24)–(3.25).

Regarding (3.27), we integrate (3.40) with respect to time and take expectation to arrive at the following
bounds for all U0 * Hm and t g 0,

EΨm(U(t)) +

∫ t

0

1

2
»E‖Am+1

2 u(r)‖2H +
1

2
(12 »)·E‖·(r)‖2Mm

µ
dr

f Ψm(U0) + C

∫ t

0
EΨm21(U(r))n7dr + Ct.

Together with estimate (3.42), the above inequality implies

EΨm(U(t)) +

∫ t

0

1

2
»E‖Am+1

2 u(r)‖2H +
1

2
(12 »)·E‖·(r)‖2Mm

µ
dr

f Ψm(U0) + C
(
Ψm(U0)

qm21,n7 + t
)
.

This proves (3.27) for n = 1. For general n g 2, we may employ the same strategy of proving (3.25) for
k = m to establish (3.27).

Turning to (3.28), for positive constants bi, ni, i = 0, . . . ,m2 1, to be chosen later, let

G(u, ·) = Ψm(u, ·) +

m21∑

i=0

biΨi(u, ·)
ni . (3.43)
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By Itô’s formula, we have the following identity

dG(U(t)) = LµΨm(U(t))dt+ dMm,1(t) +

m21∑

i=0

biLµΨi(U(t))ni + bidMi,ni
(t)

where the semi-martingales Mi,ni
(t) are given by the formula (3.26). In light of (3.24), we obtain the

estimate

dG(U(t))

f 2cm,1Ψm(U(t))dt+ Cm,1(Ψm21(U(t))qm,1 + 1)dt+ dMm,1(t)

+
m21∑

i=1

2bici,ni
Ψi(U(t))ni + biCi,ni

(Ψi21(U(t))qi,ni + 1)dt+ bidMi,ni
(t)

2 b0c0,n0
Ψ0(U(t))n0dt+ b0C0,n0

dt+ b0dM0,n0
(t).

In order to subsume the positive dt2terms involving U(t) on the above right–hand side, we simply choose

bm21 = 2
Cm,1

cm21,nm21

, nm21 = qm,1,

and

bi = 2
bi+1Ci+1,ni+1

ci,ni

, ni = qi+1,ni+1
, i = 0, . . . ,m2 2.

As a consequence, we may infer the existence of positive constants c, C independent of U0, t and µ * M·

such that

dG(U(t)) f 2cG(U(t))dt+ C + dMG(t), (3.44)

where

MG(t) =Mm,1(t) +

m21∑

i=0

biMi,ni
(t).

Now, for ³ * (0, 1) to be chosen later, we apply Itô’s formula to the function (1 +G)³ and obtain

d(1 +G(U(t)))³ = ³(1 +G(U(t)))³21dG(U(t))

+
1

2
³(³ 2 1)(1 +G(U(t)))³22d〈MG〉(t), (3.45)

where 〈MG〉(t) is the quadratic variation process of MG and given by

〈MG〉(t) =
∫ t

0

∑

kg1

∣∣∣〈u(r), Qek〉Hm +

m21∑

i=0

biniΨi(U(r))ni21〈u(r), Qek〉Hi

∣∣∣
2
dr. (3.46)

From (3.44), we readily have

³(1 +G(U(t)))³21dG(U(t))

f 2c³(1 +G(U(t)))³21G(U(t))dt+ C³(1 +G(U(t)))³21dt

+ ³(1 +G(U(t)))³21dMG(t)

f 2c³(1 +G(U(t)))³dt+C³(1 +G(U(t)))³21dt

+ ³(1 +G(U(t)))³21dMG(t).

Since ³ * (0, 1) and G g 0, it is clear that

C³(1 +G(U(t)))³21 f C³.
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Also, the last term on the right–hand side of (3.45) is negative, thanks to ³ * (0, 1) again. We thus
deduce the estimate

d(1 +G(U(t)))³

f 2c³(1 +G(U(t)))³dt+C³dt+ ³(1 +G(U(t)))³21dMG(t), (3.47)

for some positive constants c, C independent of ³. Now, to establish (3.28), we aim to employ the well-
known exponential Martingale inequality applied to (3.47). The argument below is similarly to those
found in [27, Page 23–25] and [34, Lemma 5.1].

Fixing T > 0, applying Iô’s formula to e
1

2
c³(t2T )(1 +G(U(t)))³ making use of (3.47) gives

d
[
e

1

2
c³(t2T )(1 +G(U(t)))³

]

=
1

2
c³e

1

2
c³(t2T )(1 +G(U(t)))³dt+ e

1

2
c³(t2T )d(1 +G(U(t)))³

f 21

2
c³e

1

2
c³(t2T )(1 +G(U(t)))³ + e

1

2
c³(t2T )C³dt

+ ³e
1

2
c³(t2T )(1 +G(U(t)))³21dMG(t). (3.48)

We note that (3.46) together with (Q2) implies

d〈MG〉(t)

f m
∑

kg1

|〈u(t), Qek〉Hm |2dt+m

m21∑

i=0

b2in
2
iΨi(U(r))2ni22

∑

kg1

|〈u(t), Qek〉Hi |2dt

f mTr(QAmQ7)‖u(t)‖2Hmdt+m
m21∑

i=0

b2in
2
iΨi(U(r))2ni22Tr(QAiQ7)‖u(t)‖2Hidt

f C
(
Ψm(U(t)) +

m21∑

i=0

Ψi(U(t))2ni21
)
dt.

So, recalling G as in (3.43), for all ³ * (0, 1) sufficiently small, we have the bound

1:
³
(1 +G(U(t)))22³dt g C:

³

(
1 + Ψm(U(t))22³ +

m21∑

i=0

Ψi(U(t))2ni2³ni

)

g C
(
Ψm(U(t)) +

m21∑

i=0

Ψi(U(t))2ni21
)
dt

g d〈MG〉(t),
whence for all t * [0, T ]

1

2
c³e

1

2
c³(t2T )(1 +G(U(t)))³dt

=
c

2
:
³
³2e

1

2
c³(t2T ) · 1:

³
(1 +G(U(t)))³dt

g c

2
:
³
· ³2ec³(t2T )(1 +G(U(t)))2³22d〈MG〉(t). (3.49)

Combining (3.48)–(3.49), we obtain for t * [0, T ]

d
[
e

1

2
c³(t2T )(1 +G(U(t)))³

]
f C³e

1

2
c³(t2T )dt+ dM̃G(t)2

c

2
:
³
d〈M̃G〉(t), (3.50)
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where M̃G is the semi-martingale defined as

M̃G = ³e
1

2
c³(t2T )(1 +G(U(t)))³21dMG(t),

whose variation process 〈M̃G〉(t) is given by

d〈M̃G〉(t) = ³2ec³(t2T )(1 +G(U(t)))2³22d〈MG〉(t).

By the exponential Martingale inequality applying to M̃(t),

P

(
sup
tg0

[
M̃G(t)2

c

2
:
³
〈M̃G〉(t)

]
> r

)
f e

2 c:
γ
r
, r g 0, (3.51)

we integrate (3.50) on t * [0, T ] to see that

P

(
(1 +G(U(T )))³ 2 e2

1

2
c³T (1 +G(U0))

³ 2 C³

∫ T

0
e

1

2
c³(32T )d3 g r

)

f e
2 c:

γ
r
. (3.52)

In particular, by choosing ³ small enough such that c/
:
³ > 1, (3.52) implies

E exp
{
(1 +G(U(T )))³

}
f C exp

{
e2

1

2
c³T (1 +G(U0))

³
}
.

In the above, we emphasize that c, C may depend on ³ but do not depend on U0, t and µ * M·. Also,

cΨm(U0) f G(U0) f C(1 + Ψm(U0)
n),

for some positive integer n. As a consequence, the following holds for all T g 0,

E exp
{
cΨm(U(T ))³

}
f C exp

{
e2

1

2
c³T (1 + Ψm(U0)

n)³
}

f C exp
{
Ce2

1

2
c³T (1 + Ψm(U0)

n³)
}
.

We therefore establish (3.28) with ³m,0 := ³ * (0, 1) and qm,0 := n³. The proof is thus complete. �

4. Existence of invariant probability measures

In this section, we proceed to show that the Markov semigroup Pµ
t as in (2.16) possesses an invariant

probability ¿µ. To do so, we first observe that Theorem 2.3 implies that Pµ
t is Feller, that is, Pµ

t f * C(H0
µ)

for every f * C(H0
µ). We then follow the classical Krylov-Bogoliubov argument [18] to show that the

following family of measures {¿µT }T>0 given by

¿µT (·) =
1

T

∫ T

0
Pµ
t (0, ·)dt, (4.1)

is tight in Pr(H0
µ). Recall that Pµ

t (0, ·) denotes the Markov semigroup associated with the process

U0(t) = (u(t; 0), ·(t, · ; 0)) that satisfies (2.14) corresponding to the initial condition U0 = 0 * H0
µ. As

mentioned earlier in Section 2.1, the embedding H1
µ ¢ H0

µ is only continuous whereas the embedding

Z1
µ = H1 ×E1

µ ¢ H0
µ is compact [25, 37, 38]. It is thus important to obtain a moment bound in norm of

E1
µ that grows at most linearly in time t. Here we recall from (2.11) that

‖·‖2E1
µ
= ‖·‖2M1

µ
+ ‖Tµ·‖2M0

µ
+ sup

rg1
rTµ

· (r),

where Tµ and T
µ are as in (2.4) and (2.9), respectively.

In order to prove Theorem 2.4, we will establish two preliminary lemmas. In the first, we will obtain
estimates for u(t) in the H1–norm. More precisely, we have the following result.
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Lemma 4.1. Under the hypotheses of Theorem 2.3, let U(t) = (u(t), ·(t)) denote the solution of (2.14)
corresponding to initial condition U0 * H0

µ. Then for all 0 < q f ·, where · is the constant from (2.7),
there exists a positive constant c = c(U0, q) independent of t and µ * M· such that

E

∫ t

0
eqr‖A1/2u(r)‖2Hdr f ‖U0‖2H0

µ
+ c eqt. (4.2)

Proof. We apply Ito’s formula to eqtΨ0(U(t)) to see that

d
(
eqtΨ0(U(t))

)
= eqt

[
qΨ0(U(t))2 »‖A1/2u(t)‖2H + (12 »)〈Tµ·(t), ·(t)〉M0

µ

+ 〈×(u(t)), u(t)〉H +
1

2
Tr(QQ7)

]
dt+ eqt〈u(t), Qdw(t)〉H .

Thanks to (2.7) and the assumption q f ·, we have

1

2
(12 »)q‖·‖2M0

µ
+ (12 »)〈Tµ·, ·〉M0

µ
f 0.

Also, we invoke (P2) and Young’s inequality to see that

q

2
‖u‖2H + 〈×(u), u〉H f q

2
‖u‖2H 2 a2‖u‖p0+1

Lp0+1(O)
+ a3|O|

f a2
( q

2a2

) p0+1

p021 |O|+ a3|O|.

We then infer the existence of a positive constant c = c(q, ×,O, Q), independent of t and µ * M·, such
that

eqtEΨ0(U(t)) + E

∫ t

0
eqr‖A1/2u(r)‖2Hdr f ‖U0‖2H0

µ
+ c

∫ t

0
eqrdr f ‖U0‖2H0

µ
+ c eqt.

This implies (4.2), as claimed. �

In the second lemma, we assert that the solution of (2.14) indeed satisfies a stronger bound in Tµ and
T
µ uniform in time t. This will rely on Lemma 4.1. For this, we will make use of the following elementary

fact for locally integrable functions f : R ³ [0,>) which are non-negative: for all 0 < s f t and · > 0:

e2
δ
2
s

∫ s

0
f(t2 r)dr =

∫ s

0
e2

δ
2
rf(t2 r)dr 2 ·

2

∫ s

0
e2

δ
2
r

∫ r

0
f(t2 r2)dr2dr

f
∫ t

0
e2

δ
2
rf(t2 r)dr. (4.3)

Lemma 4.2. Under the same hypothesis of Theorem 2.3, let U0(t) = (u(t; 0),
·(t, · ; 0)) be the solution of (2.14) with zero initial condition in H0

µ. Then there exists a constant c
independent of t such that the following bounds hold for all t g 0:

E‖Tµ·(t)‖2M0
µ
f c and E sup

rg1
rTµ

·(t)(r) f c.

Proof of Lemma 4.2. Given the initial condition ·0 = 0, we recast (2.6) as

·(t, s) = Ç(0,t](s)

∫ s

0
u(t2 r)dr + Ç(t,>)(s)

∫ t

0
u(t2 r)dr =

∫ s't

0
u(t2 r)dr. (4.4)

This implies that Tµ·(t) can be written explicitly as

Tµ·(t, s) = 2u(t2 s)Ç(0,t](s).

It follows that

E‖Tµ·(t)‖2M0
µ
= E

∫ t

0
µ(s)‖A1/2u(t2 s)‖2Hds = E

∫ t

0
µ(t2 s)‖A1/2u(s)‖2Hds,
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where we have simply made a change of variable in the last equality. By (M1)

µ(s) f µ(0)e2·s.

Thus

E‖Tµ·(t)‖2M0
µ
f µ(0)e2·t

E

∫ t

0
e·s‖A1/2u(s)‖2Hds.

In light of Lemma 4.1 (with q = ·), the claimed uniform-in-time on E‖Tµ·(t)‖2M0
µ
follows.

With regards to suprg0 rT
µ
·(t)(r), we first note that (4.4) and the Cauchy-Schwarz inequality together

yield

‖A1/2·(t, s)‖2H =

∫ s't

0

∫ s't

0
〈A1/2u(t2 r1), A

1/2u(t2 r2)〉Hdr1dr2

f (s ' t)
∫ s't

0
‖A1/2u(t2 r2)‖2Hdr2

f s

∫ s't

0
‖A1/2u(t2 r2)‖2Hdr2.

Now for s * [0, t], let

I(s) := e2
δ
2
s

∫ s

0
‖A1/2u(t2 r2)‖Hdr2.

Recalling the expression of Tµ
·(t) in (2.9) and the fact that µ(s) f µ(0)e2·s, we may estimate for all r g 1

as follows:

rTµ
·(t)(r) = r

∫

(0, 1
r
)*(r,>)

µ(s)‖A1/2·(t, s)‖2Hds

f rµ(0)

∫

(0, 1
r
)*(r,>)

e2·ss

∫ s't

0
‖A1/2u(t2 r; )‖2Hdr2 ds

= rµ(0)

∫

(0, 1
r
)*(r,>)

s e2
δ
2
se2

δ
2
s

∫ s't

0
‖A1/2u(t2 r2)‖2Hdr2 ds

f rµ(0)

∫

(0, 1
r
)*(r,>)

s e2
δ
2
se2

δ
2
(s't)

∫ s't

0
‖A1/2u(t2 r2)‖2Hdr2 ds

= rµ(0)

∫

(0, 1
r
)*(r,>)

s e2
δ
2
sI(s ' t)ds.

By (4.3), we have

I(s ' t) f
∫ t

0
e2

δ
2
r2‖A1/2u(t2 r2)‖2Hdr2.

It follows that

rTµ
·(t)(r) f rµ(0)

∫

(0, 1
r
)*(r,>)

s e2
δ
2
sds

∫ t

0
e2

δ
2
r2‖A1/2u(t2 r2)‖2Hdr2.

For r g 1, we have

r

∫

(0, 1
r
)*(r,>)

s e2
δ
2
sds < c(·) <>.
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Note that c(·) is independent of r. Thus, taking supremum on r g 1 yields

sup
rg1

rTµ
·(t)(r) f sup

rg1
rµ(0)

∫

(0, 1
r
)*(r,>)

s e2
δ
2
sds

∫ t

0
e2

δ
2
r2‖A1/2u(t2 r2)‖2Hdr2

f c(µ)

∫ t

0
e2

δ
2
r2‖A1/2u(t2 r2)‖2Hdr2

= c(µ)e2
δ
2
t

∫ t

0
e

δ
2
r2‖A1/2u(r2)‖2Hdr2.

Taking expectation on both sides and employing Lemma 4.1 with q = ·/2, we obtain the estimate

E sup
rg1

rTµ
·(t)(r) f c(µ),

where c(µ) is independent of t, as desired. �

We are now ready to give the proof of Theorem 2.4, thus ensuring the existence of an invariant
probability measure ¿ for (2.14).

Proof of Theorem 2.4. Recalling the space Z1
µ = H1 × E1

µ as in (2.12), since E1
µ is compactly embedded

into M0
µ [25, 37, 38], it is clear that the following bounded set

BR = {(u, ·) * Z1
µ : ‖(u, ·)‖Z1

µ
f R},

is precompact in H0
µ = H ×M0

µ . Using Markov’s inequality, we estimate

¿µt (Bc
R) =

1

t

∫ t

0
Pµ
s (0;Bc

R)ds f
1

t

∫ t

0

E‖A1/2u(s)‖2H + E‖·(s)‖2E1

R2
ds. (4.5)

To bound the term E‖A1/2u(s)‖2H , we note that ‖A1/2u(s)‖2H f 2Ψ1(u(s), ·(s)) where Ψ1 is given
by (3.13). We then may invoke (3.18) with zero initial condition and n = 1 to deduce

∫ t

0
E‖A1/2u(r)‖2Hdr f C(1 + t). (4.6)

With regards to the second term, E‖·(s)‖2E1
µ
, appearing in (4.5), thanks to Lemma 3.3 and Lemma 4.2,

we infer the existence of a positive constant c, independent of t, R, and such that
∫ t

0
E‖·(s)‖2E1

µ
ds f ct.

It follows that there exists tR > 1, sufficiently large, such that

¿t(BR) f
c

R2
,

for all t g tR. This, in turn, implies that {¿µt }t>0 is tight in H0
µ. An application of Krylov-Bogoliubov’s

Theorem then implies the existence of ¿µ * Pr(H0
µ) which is invariant for (2.14).

Regarding (2.19), given N > 0 we consider ÇN (U) = exp
(
³‖U‖2H0

µ

)
'N . Since ÇN is bounded, we see

by invariance of ¿µ, that
∫

H0
µ

ÇN (U0)¿
µ(dU0) =

∫

H0
µ

Pµ
t ÇN (U0)¿

µ(dU0).

Now, given ë > 0, we choose R = R(ë) sufficiently large such that ¿µ(Dc
R) < ë, where

DR = {U * H0
µ : ‖U‖H0

µ
f R}.
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It follows that ∫

H0
µ

Pµ
t ÇN (U0)¿

µ(dU0) =

∫

DR

Pµ
t ÇN (U0)¿

µ(dU0) +

∫

Dc
R

Pµ
t ÇN (U0)¿

µ(dU0)

f
∫

DR

Pµ
t ÇN (U0)¿

µ(dU0) +Në.

We now fix the choice ë = 1/N . Next, we recall Ψ0(U) given in (3.1) and see that

1

2
(12 »)‖U‖2H0

µ
f Ψ0(U) f 1

2
‖U‖2H0

µ
.

Upon invoking (3.2) in Lemma 3.1, we have

Pµ
t ÇN (U0) = E

[
exp

(
³‖U(t)‖2H0

µ

)
'N

]

f E

[
exp

(
2³

12 »
Ψ0(U(t))

)]

f e2ct exp

(
2³

12 »
Ψ0(U0)

)
+ C,

for all t g 0, for all ³ sufficiently small by virtue of (3.2) in Lemma 3.1. Hence
∫

DR

Pµ
t ÇN (U0)¿

µ(dU0) f
∫

DR

(
e2ct exp

(
2³

12 »
Ψ0(U0)

)
+ C

)
¿µ(dU0)

f
∫

DR

(
e2ct exp

(
³

12 »
‖U0‖2H0

µ

)
+ C

)
¿µ(dU0)

f e2ct exp

(
³

12 »
R2

)
+ C.

In the last implication above, we emphasize that c, C and ³ are independent ofR and µ * M·. Altogether,
we arrive at the bound ∫

H0
µ

Pµ
t ÇN (U0)¿

µ(dU0) f e2ct exp

(
³

12 »
R2

)
+ 1 + C.

Consequently
∫

H0
µ

(
‖U0‖nH0

µ
'N

)
¿µ(dU0) =

∫

H0
µ

ÇN (U0)¿
µ(dU0) f e2ct exp

(
³

12 »
R2

)
+ 1 + C.

Thus, upon taking ct g ³(12 »)21R2, we obtain
∫

H0
µ

(
e
³‖U0‖2H0

µ 'N
)
¿µ(dU0) f 2 + C.

Observe that this bound in uniform in N . Thus, (2.19) follows by virtue of the Monotone Convergence
Theorem, as desired. �

5. Regularity of ¿µ in dimension d f 3

We recall that Theorem 2.3 guarantees that the Markovian dynamics, as represented by the family of
operators Pµ

t , can be viewed as a mapping from Pr(H0
µ) ³ Pr(H0

µ) via push-forward. In this section,
we show that when restricted to the subspace, I, of invariant probability measures, one in fact has
(Pµ

t )
7 : I ³ Pr(Hm

µ ), where m > 0, whenever the potential field and random heat sources are sufficiently
smooth. From this point of view, a type of “smoothing” occurs asymptotically since a gain in derivatives
from m = 0 to m > 0 is achieved. To establish this, it suffices to show that the support of every invariant
probability measure ¿µ is contained in Hm+1 ×Mm

µ . In proving the main result of this section, Theorem
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2.5, we will in fact prove more, and establish exponential moment bounds with respect to the topology
of Hm

µ . The proof of this fact will rely on the series of bootstrap arguments on moment bounds that
we established in Section 3. We note that since the evolution of · has a hyperbolic structure, it does
not naturally possess a mechanism for smoothing in the manner described above. Generally speaking,
hyperbolic equations are only expected to propagate the initial regularity, not gain regularity. This
suggests that the mechanism for the type of asymptotic smoothing described above is nuanced in our
context. Indeed, this apparent structural obstruction is overcome by the fact that the temperature field,
u, is coupled inhomogeneously to the history variable, ·. Therefore, as long as a smoothing mechanism
is present for the temperature field, the hyperbolic structure of the memory variable will propagate its
regularity. Lastly, the desired smoothing mechanism for the temperature field is provided by its diffusive
properties through the operator A. We show how to successfully exploit this insight by employing a control
argument that “asymptotically guides” solutions into a subspace of phase space of higher regularity.

First, let us introduce the following controlled system:

d û(t) = 2Aû(t)dt2
∫ >

0
µ(s)A·̂(t; s)dt+ ×(û(t))dt+Qdw(t)

2 »³n̂Pn̂

(
û(t)2 u(t)

)
dt,

d

dt
·̂(t) = Tµ·̂(t) + û(t),

(û(0), ·̂(0)) = 0 * H0
µ,

(5.1)

where Pn̂ is defined in (2.13) and n̂ is chosen sufficiently large such that ³n̂ satisfies

»³n̂ > a× = sup
x*R

×2(x). (5.2)

We note that this choice of ³n̂ is possible since the limn³> ³n = >. Observe that (5.1) only differs from
(2.14) by the appearance of the term 2»³n̂Pn̂

(
û(t) 2 u(t)

)
, which is a control that serves to drive the

signal û towards u on the subspace spanned by the first n eigenfunctions of A; this particular feature is
key so that it ensures the control is smooth in space.

Lemma 5.1. Let d f 3 and assume the conditions of Theorem 2.3. Additionally assume that (P4),
(Q2) hold for m g 2. Then
1. There exist c, C > 0 such that for all U0 * H0

µ and t g 0, it holds that

E
∥∥(u(t)2 û(t), ·(t) 2 ·̂(t)

)∥∥2
H0

µ
f Ce2ct‖U0‖2H0

µ
; (5.3)

2. There exist positive constants C and q * N independent of U0 and t such that

E‖(û(t), ·̂(t))‖2Hm
µ
f C(‖U0‖qH0

µ
+ 1). (5.4)

Let us first prove Theorem 2.5 assuming that Lemma 5.1 holds.

Proof of Theorem 2.5. For R,N g 1, set

ËR,N (U) := R '
(
‖PNu‖Hm + ‖PN·‖Mm

µ

)
,

where PN is as in (2.13). By invariance, it holds that

∫

H0
µ

ËR,N (U0)¿
µ(dU0) =

∫

H0
µ

Pµ
t ËR,N (U0)¿

µ(dU0). (5.5)
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Recalling the “shifted” system (5.1), for every U0 * H0
µ, observe that

Pµ
t ËR,N (U0) = E

[
R '

(
‖PNu(t)‖Hm + ‖PN·(t)‖Mm

µ

)]

f E‖PN (u(t)2 û(t))‖Hm + E‖PN (·(t)2 ·̂(t))‖Mm
µ

+ E‖PN û(t)‖Hm + E‖PN ·̂(t)‖Mm
µ

f ³
m/2
N E

∥∥(u(t)2 û(t), ·(t) 2 ·̂(t)
)∥∥

H0
µ
+ E

∥∥(û(t), ·̂(t)
)∥∥

Hm
µ
.

In light of Lemma 5.1, we infer the existence of positive constants c, C and q independent of U0, t, R and
N such that

Pµ
t ËR,N (U0) f C³

m/2
N e2ct‖U0‖H0

µ
+ C‖U0‖qH0

µ
+ C.

Hence ∫

H0
µ

Pµ
t ËR,N (U0)¿

µ(dU0) f C³
m/2
N e2ct

∫

H0
µ

‖U0‖H0
µ
¿µ(dU0)

+ C

∫

H0
µ

‖U0‖qH0
µ
¿µ(dU0) + C.

By Theorem 2.4 (see (2.19)), we readily deduce
∫

H0
µ

‖U0‖H0
µ
¿µ(dU0) +

∫

H0
µ

‖U0‖qH0
µ
¿µ(dU0) <>.

In particular, it follows that
∫

H0
µ

Pµ
t ËR,N (U0)¿

µ(dU0) f C³
m/2
N e2ct + C.

Given N,R, we may now choose t sufficiently large, so that
∫

H0
µ

Pµ
t ËR,N (U0)¿

µ(dU0) f C,

holds. Together with (5.5), this implies
∫

H0
µ

R '
(
‖PNu‖Hm + ‖PN·‖Mm

µ

)
¿µ(du,d·) < C,

An application of the Monotone Convergence Theorem then yields
∫

H0
µ

‖U0‖Hm
µ
¿µ(dU0) <>,

that is, the support of ¿µ is contained in Hm
µ .

With regard to the exponential moment bound (2.20), we employ an argument similar to the proof
of (2.19) by making use of (3.28) to establish (2.20); see the proof of Theorem 2.4 in Section 4.

Lastly, concerning the moment bound (2.21), we first note that (2.20) implies the following estimate
for all p > 0

sup
µ*Mδ

∫

Hm
µ

‖U0‖pHm
µ
¿µ(dU0) <>.

Now for R > 1, from estimate (3.27), observe that for all t g 0
∫ t

0

∫

Hm
µ

E
[
R ' ‖u(r)‖nHm‖u(r)‖2Hm+1

]
¿µ(dU0)dr f C

∫

Hm
µ

‖U0‖q¿µ(dU0) + Ct

f C + Ct.
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We invoke invariance again
∫

Hm
µ

E
[
R ' ‖u(r)‖nHm‖u(r)‖2Hm+1

]
¿µ(dU0) =

∫

Hm
µ

(
R ' ‖u‖nHm‖u‖2Hm+1

)
¿µ(du,d·).

Hence, for all t > 0, it holds that
∫

Hm
µ

[
R ' ‖u‖nHm‖u‖2Hm+1

]
¿µ(du,d·) f C

t
+ C.

Upon passing to the limit t³ >, we arrive at
∫

Hm
µ

[
R ' ‖u‖nHm‖u‖2Hm+1

]
¿µ(du,d·) f C.

Note that this bound is uniform in R g 1 and µ * M·. The Monotone Convergence Theorem then
implies

∫

Hm
µ

‖u‖nHm‖u‖2Hm+1¿
µ(du,d·) f C,

which produces the desired bound (2.21). �

Lastly, we now turn our attention to the process (û(t), ·̂(t)) defined in (5.1) and prove Lemma 5.1; this
will finally complete the proof of Theorem 2.5.

Proof of Lemma 5.1. We must establish (5.3) and (5.4). To establish (5.3), we first set z = û 2 u and
· = ·̂ 2 · and observe that

d

dt
z(t) = 2Az(t)2

∫ >

0
µ(s)A·(t; s)ds+ ×(û(t))2 ×(u(t)) 2 »³n̂Pn̂z(t),

d

dt
·(t) = Tµ·(t) + z(t),

(z(0), ·(0)) = 2U0 * H0
µ.

(5.6)

Recalling Ψ0(u, ·) =
1
2‖u‖2H + 1

2(12 »)‖·‖2M0
µ
as in (3.1), a routine calculation gives

d

dt
Ψ0(z(t), ·(t)) = 2»‖A1/2z(t)‖2H + (12 »)〈Tµ·(t), ·(t)〉M0

µ

+ 〈×(û(t))2 ×(u(t)), z(t)〉H 2 »³n̂‖Pn̂z(t)‖2H .
We invoke (2.7) to obtain

〈Tµ·(t), ·(t)〉M0
µ
f 21

2
·‖·(t)‖2M0

µ
.

To estimate the nonlinear term, in light of (P3)

〈×(û(t))2 ×(u(t)), z(t)〉H f a×‖z(t)‖2H .
Recalling the choice ³n̂ as in (5.2), we then may bound the nonlinear term as follows:

2 »‖A1/2z(t)‖2H + 〈×(û(t))2 ×(u(t)), z(t)〉H 2 »³n̂‖Pn̂z(t)‖2H
f 2»‖Pn̂A

1/2z(t)‖2H 2 »‖(I 2 Pn̂)A
1/2z(t)‖2H 2 (»³n̂ 2 a×)‖z(t)‖2H

+ »³n̂‖(I 2 Pn̂)z(t)‖2H
f 2»‖Pn̂A

1/2z(t)‖2H 2 (»³n̂ 2 a×)‖z(t)‖2H
f 2(»³n̂ 2 a×)‖z(t)‖2H ,
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where we invoked the Poincaré inequality (see (2.1)) in obtaining the penultimate inequality. It follows
that

d

dt
Ψ0(z(t), ·(t)) f 2(»³n̂ 2 a×)‖z(t)‖2H 2 1

2
(12 »)·‖·(t)‖2M0

µ

f 2min{2(»³n̂ 2 a×), ·}Ψ0(z(t), ·(t)),

whence

Ψ0(z(t), ·(t)) f e2min{2(»³n̂2aϕ),·}tΨ0(z(0), ·(0)).

As a consequence,

‖(z(t), ·(t))‖2H0
µ
f 1

12 »
e2min{2(³n̂2aϕ),·}t‖(z(0), ·(0))‖2H0

µ

=
1

12 »
e2min{2(³n̂2aϕ),·}t‖U0‖2H0

µ
.

This produces estimate (5.3).

Next, we prove (5.4). Let us denote by L̂ the generator associated with (5.1). Note that for any
k = 0, . . . ,m, we have

L̂Ψk(û, ·̂) = 2LΨk(û, ·̂)2 ³n̂〈Pn̂z, û〉Hk ,

which only differs from LΨk(û, ·̂), (see (2.17)), by the appearance of the term
2³n̂〈Pn̂z, û〉Hk . Furthermore, using Young’s inequality, it holds that

2³n̂〈Pn̂z, û〉Hk = 2³n̂‖Pn̂û‖2Hk + ³n̂〈Pn̂û, Pn̂u〉Hk

f 1

4
³n̂‖Pn̂u‖2Hk

f 1

4
³k+1
n̂ ‖u‖2H .

In particular

L̂Ψk(û, ·̂) f LΨk(û, ·̂) +
1

4
³k+1
n̂ ‖u‖2H .

Upon recalling that (û(0), ·̂(0)) = 0, we see that we may therefore employ the same strategy used in
establishing (3.25) in order to obtain a similar bound for (û(t), ·̂(t)), namely

E‖(û(t), ·̂(t))‖2Hm f C

∫ t

0
e2c(t2r)‖u(r)‖qHdr + C.

In the above, we emphasize that C, c and q are positive constants independent of t and U0, but dependent
on n̂. Invoking Lemma 3.1 with the fact that ‖u‖qH is dominated by Ψ0(u, ·)

q , we obtain

E‖(û(t), ·̂(t))‖2Hm f C(Ψ0(U0)
q + 1).

This implies (5.4), thus completing the proof. �
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Appendix A. Well-posedness

This Appendix is dedicated to addressing the well-posedness of (2.14) via the classical Galerkin ap-
proximation. The approach that we employ follows closely the method found in [26, Section 4], [30],
and [49, Chapter 7] tailored to our settings. Due to the stochastic forcing term, we however will not
truncate (2.14) directly. We consider instead the following “shifted” system

"tv = 2»Av 2 »A¿ 2 (12 »)

∫ >

0
µ(s)A·(t, s)ds+ ×(v + ¿),

"t· = Tµ· + v + ¿, (A.1)

d¿ = Qdw(t),

together with the initial condition v(0) = u0, ·(0) = ·0 and ¿(0) = 0. The solution to the original
system (2.14) is then recovered upon setting u = v + ¿.

A.1. A priori estimate. Recall the basis {ek}kg1 as in (2.1), we first look for a pair (Un, ·N ) given by

VN (t;x) =

N∑

k=1

vk(t)ek(x), ·N (t; s, x) =

N∑

k=1

·k(t; s)ek(x),

solving the following finite–dimensional system

"tVN (t) = 2»AVN (t)2 »APN ¿(t)2
∫ >

0
µ(s)A·N (t; s)ds+ PN×(VN (t) + ¿(t)),

"t·N (t) = Tµ·N (t) + VN (t) + PN ¿(t), VN (0) = PNu0, ·N (0) = PN·0.

(A.2)

In what follows, we assert that the above Galerkin system is well-posed and that the solutions are
uniformly bounded in N .

Lemma A.1. For all U0 = (u0, ·0) * H0
µ and t g 0, there exists a unique strong solution pair (VN , ·N ) *

C([0, t];H ×M0
µ). Furthermore, there exists a positive constant c(U0, t) independent of N such that the

following holds

E sup
0frft

‖(VN (r), ·N (r))‖2H0
µ

+

∫ t

0
E
(
‖VN (r)‖2H1 + ‖·N (r)‖2M0

µ
+ ‖VN (r)‖p+1

Lp+1 + ‖×(VN (r) + ¿(r))‖qLq

)
dr

f c(U0, t),

where q = (p0 + 1)/p0 and p0 is as in (P2).

Proof. From (A.2), a routine calculation gives

1

2
"t‖VN (t)‖2H = 2»‖A1/2VN (t)‖2H 2 »〈A1/2VN (t), A1/2¿(t)〉H

2 (12 »)

∫ >

0
µ(s)〈A1/2·N (t; s), A1/2VN (t)〉Hds

+ 〈PN×(VN (t) + ¿(t)), VN (t)〉H .
Concerning ·N , from (A.2), we see that

1

2
"t‖·N (t)‖2M0

µ
= 〈Tµ·N (t), ·N (t)〉M0

µ
+

∫ >

0
µ(s)〈A1/2·N (t; s), A1/2VN (t)〉Hds

+

∫ >

0
µ(s)〈A1/2·N (t; s), A1/2¿(t)〉Hds.

36



So, recalling Ψ0(u, ·) = 1
2‖u‖2H + 1

2(1 2 »)‖·‖2M0
µ
as in (3.1), we combine the above two identities and

cancel the integrals to obtain

"tΨ0(VN (t), ·N (t))

= 2»‖A1/2VN (t)‖2H + (12 »)〈T ·N (t), ·N (t)〉M0
µ
2 »〈A1/2VN (t), A1/2¿(t)〉H

+ 〈PN×(VN (t) + ¿(t)), VN (t)〉H + (12 »)〈·N (t), ¿(t)〉M0
µ
.

(A.3)

We invoke inequality (2.7) to further bound

〈Tµ·N (t), ·N (t)〉M0
µ
f 2·

2
‖·N (t)‖2M0

µ
.

Next, we employ Cauchy-Schwarz inequality to estimate

〈A1/2VN (t), A1/2¿(t)〉H f 1

2
‖A1/2VN (t)‖2H +

1

2
‖A1/2¿(t)‖2H .

Likewise,

〈·N (t), ¿(t)〉M0
µ
f ·

4
‖·N (t)‖2M0

µ
+

1

·
‖¿(t)‖2M0

µ

=
·

4
‖·N (t)‖2M0

µ
+

‖µ‖L1(R+)

·
‖A1/2¿(t)‖2H .

So that,

2 »‖A1/2VN (t)‖2H + (12 »)〈Tµ·N (t), ·N (t)〉M0
µ
2 »〈A1/2VN (t), A1/2¿(t)〉H

+ (12 »)〈·N (t), ¿(t)〉M0
µ

f 21

2
»‖A1/2VN (t)‖2H 2 ·

4
(12 »)‖·N (t)‖2M0

µ

+
(1
2
»+

‖µ‖L1(R+)

·
(12 »)

)
‖A1/2¿(t)‖2H .

(A.4)

To estimate the non-linear term involving × in (A.3), we employ (P1)–(P2) to see that

〈PN×(VN (t) + ¿(t)), VN (t)〉H
= 〈×(VN (t) + ¿(t)), VN (t) + ¿(t)〉H 2 〈×(VN (t) + ¿(t)), ¿(t)〉H
f 2a2‖VN (t) + ¿(t)‖p0+1

Lp0+1 + a3|O|+ a1〈|VN (t) + ¿(t)|p0 , |¿(t)|〉H + a1‖¿(t)‖L1(O).

We thus deduce the estimate

〈PN×(VN (t) + ¿(t)), VN (t)〉H
f 2c‖VN (t)‖p0+1

Lp0+1 + C‖¿(t)‖p0+1
Lp0+1 + C‖¿(t)‖2H + C. (A.5)

Combining (A.3), (A.4), (A.5), integrating with respect to time and taking expectations, we arrive at the
bound

E sup
0frft

Ψ0(VN (r), ·N (r))

+

∫ t

0

1

2
»E‖A1/2VN (r)‖2H +

·

4
(12 »)E‖·N (r)‖2M0

µ
+ cE‖VN (r)‖p0+1

Lp0+1dr

f Ψ0(PNu0, PN·0) + Ct+ C

∫ t

0
E‖¿(r)‖p0+1

Lp0+1 + E‖¿(r)‖2H1dr,
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for some positive constants c, C independent of time t. We note that by condition (Q1), Law(¿(t)) is a
Gaussian measure in H1, since

E‖¿(t)‖2H1 = E

∥∥∥
∑

kg1

QekBk(t)
∥∥∥
2

H1
= Tr(QAQ7)t <>.

Observe that (Q1) also implies

sup
x*O

E|¿(t, x)|2 = sup
x*O

E

∣∣∣
∑

kg1

Qek(x)Bk(t)
∣∣∣
2
= sup

x*O

∑

kg1

|Qek(x)|2t <>.

Since ¿(x, t) is Gaussian, we infer the bound

E‖¿(t)‖p0+1
Lp0+1 =

∫

O
E|¿(t, x)|p0+1dx f |O| sup

x*O
E|¿(t, x)|p0+1 f ct

p0+1

2 ,

where c > 0 is independent of t. Combining the above estimate, we obtain
∫ t

0
E‖¿(r)‖p0+1

Lp0+1 + E‖¿(r)‖2H1dr f C(t, p0),

whence
E sup

0frft
Ψ0(VN (r), ·N (r))

+

∫ t

0

1

2
»E‖A1/2VN (r)‖2H +

·

4
(12 »)E‖·N (r)‖2M0

µ
+ cE‖VN (r)‖p0+1

Lp0+1dr

f Ψ0(PNu0, PN·0) + C(t, p0).

(A.6)

By employing a standard argument for systems of stochastic differential equations (see [1, 30], for in-
stance), the truncated system (A.2) admits a unique global pathwise solution (VN , ·N ) in C([0, T ];H ×
M0

µ), for all T > 0.
Furthermore, to produce a uniform bound on ×(VN (t) + ¿(t)), we recall (P1) and q = (p0 + 1)/p0. So

that,
∫ t

0
E‖×(VN (r) + ¿(t))‖qLqdr f

∫ t

0
E

∫

O

(
a1(1 + |VN (r)|p0 + |¿(r)|p0

)q
dxdr

f ct+ c

∫ t

0
E‖VN (r)‖p0+1

Lp0+1 + ‖¿(r)‖p0+1
Lp0+1dr. (A.7)

The proof is thus complete. �

A.2. Passage to the limit. As a consequence of Lemma A.1, we deduce the following limits (up to a
subsequence)

VN á7 v in L2(Ω;L>(0, T ;H)),

VN á v in L2(Ω;L2(0, T ;H1)),

VN á v in Lp0+1(Ω;Lp0+1(0, T ;Lp0+1)),

×(VN + ¿)á Ç in Lq(Ω;Lq(0, T ;Lq)),

·N á7 · in L2(Ω;L>(0, T ;M0
µ)),

·N á · in L2(Ω;L2(0, T ;M0
µ)).

Furthermore (see [49, pg. 224]), we have

PN×(VN + ¿)á Ç in Lq(Ω;Lq(0, T ;Lq)).
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In particular, for all Ë * H1 + Lp+1, it holds a.s. that

〈v(t), Ë〉H = 〈u0, Ë〉H +

∫ t

0
〈A1/2v(r) +A1/2¿(r), A1/2Ë〉Hdr +

∫ t

0
〈·(r), Ë〉M0

µ
dr

+

∫ t

0
〈Ç(r), v〉Hdr.

Also, by expression (2.6), observe that for all ·̃ *M0
µ

〈·N (t), ·̃〉M0
µ
=

∫ t

0

∫ s

0
〈VN (t2 r) + PN ¿(r)dr, ·̃(s)〉H1µ(s)ds

+

∫ >

t
〈PN·0(s2 t), ·̃(s)〉H1µ(s)ds

+

∫ >

t

∫ t

0
〈VN (t2 r) + PN¿(r), ·̃(s)〉H1dr µ(s)ds,

which implies by taking limit as n³ >

〈·(t), ·̃〉M0
µ
=

∫ t

0

∫ s

0
〈v(t 2 r) + ¿(r)dr, ·̃(s)〉H1µ(s)ds

+

∫ >

t
〈·0(s2 t), ·̃(s)〉H1µ(s)ds

+

∫ >

t

∫ t

0
〈v(t2 r) + ¿(r), ·̃(s)〉H1dr µ(s)ds,

by using for example Vitali convergence theorem. Since the above identity holds for all ·̃, ·(t) indeed
satisfies expression (2.6), which is equivalent to equation (2.5), i.e.,

"t·(t) = Tµ·(t) + v(t) + ¿(t).

It remains to prove that a.s., Ç(t) = ×(v(t) + ¿(t)), a.e. t * [0, T ]. To this end, fix m7 large such that
Hm7 ¢ Lp0+1. For Ë * Hm7 , we observe that

〈"tVN (t), Ë〉H = 〈PNu0, Ë〉H +

∫ t

0
〈A1/2VN (r) +A1/2¿(r), A1/2Ë〉Hdr

+

∫ t

0
〈·(r), Ë〉M0

µ
dr +

∫ t

0
〈PN×(VN (r) + ¿(r)), Ë〉Hdr.

In view of (A.6)–(A.7), we see that "tVN is uniformly bounded in Lq(0, T ;H2m7) where q = (p0 +1)/p0.
By [49, Theorem 8.1], we obtain the strong convergence (up to a subsequence)

VN ³ v in L2(0, T ;H).

It follows that, up to a subsequence, ×(VN + ¿) converges to ×(v + ¿) a.e. (x, t) * O × [0, T ] since × is
continuous. Together with [49, Lemma 8.3], we deduce

×(VN + ¿)á ×(v + ¿) in Lq(0, T ;Lq),

whence a.s., Ç = ×(u) a.e. (x, t) * O× [0, T ]. This finishes the construction of a solution (v, ·) for (A.1),
thereby proving the existence of solutions (u, ·) for (2.14).

The uniqueness of such (u, ·) as well as their continuity with respect to initial conditions can be derived
using an argument similarly to the above energy estimates (A.6)–(A.7), and thus are omitted.
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Appendix B. Auxiliary results

Lemma B.1. Suppose for n g 1, × * C2n(R) and u * H2n. Then,

∆n×(u) = ×2(u)∆nu+ cn×
22(u)'u · '∆n21u+ ×(2n)(u)|'u|2n

+
2n21∑

i=2

×(i)(u)

mi∑

j=1

Iij(u), (B.1)

where cn > 0, Iij(u) = cij
∏mij

k=1(D
³ijku)nijk with cij > 0, |³ijk| f 2n2 2, and ³ijk * Z

+.

Proof. We proceed with induction on n and start with the base cases n = 1 and n = 2. A straightforward
calculation yields

A×(u) = ×2(u)Au+ ×22(u)|'u|2,
and

A2×(u) = ×2(u)∆2u+ 4×22(u)'u · '∆u+ ×(4)(u)|'u|4

+ ×22(u)
[
(∆u)2 + 2

d∑

i,j=1

("iju)
2
]
+ ×(3)(u)

[
2|'u|2∆u+ 4'u · '2u · 'u

]
,

which confirms (B.1) for the base cases.
Suppose (B.1) holds for up to n g 2 and consider the case n+ 1. A computation yields

∆
(
×2(u)∆nu

)
= ×2(u)∆n+1u+ 2×22(u)'u · '∆nu+ ×(3)(u)|'u|2∆nu,

∆
(
×22(u)'u · '∆n21u

)

= ×22(u)'u · '∆nu+ ×22(u)
[
'∆ · '∆n21u+ 2

d∑

i,j=1

"iju"ij∆
n21u

]

×(3)(u)
[
2'u · '2u · '∆n22u+ 2'u · '2∆n21u · 'u+∆u'u · '∆n21u

]
,

and

∆
(
×(2n)(u)|'u|2n

)

= ×(2n+2)(u)|'u|2n+2 + ×2n+1(u)
[
|'u|2n∆u+ |'u|2n'u · '2u · 'u

+ 2n'u · '2u · 'u
]

+ 2n×(2n)(u)
[
|'u|2n22

d∑

i,j=1

("iju)
2 + |'u|2n22'u · '∆u

+ (n2 1)|'u|2n24|'u · '2u|2
]
.

Similarly, concerning the term ×(i)(u)Iij(u) on the right-hand side of (B.1), we note that applying ∆ to

×(i)(u)Iij(u) will yield a sum of terms having the form

×(i2)(u)

mi2j2∏

k=1

(D³2
ijku)n

2
ijk ,

where 2 f i2 f 2n + 1, |³i2j2k| f 2n, since we are only taking at most two derivatives. We now combine
with preceding identities to establish (B.1) for n+ 1. �

Lemma B.2. Under (P0)–(P3), there exists a constant C× > 0 such that

|×(x)| f C×(|x|+ |x|p),
for all x * R.
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Proof. We first pick c× = max21fxf1 |×(x)×22(x) + (×2(x))2| and consider the function

f(x) = 2c×x
2 2 ×(x)2.

Since ×(0) = 0, it is straightforward to verify that 0 is a critical point of f defined above. Furthermore,
the the choice of c× yields

f 22(x) = 4c× 2 2×(x)×22(x)2 2(×2(x))2 > 0,

all |x| f 1. As a consequence, f(x) g f(0) = 0, for all |x| f 1. It follows that

|×(x)| f
√

2c×|x|.
On the other hand, by (P1), we infer that

|×(x)| f a1(|x|p + 1) f 2a1|x|p,
for all |x| g 1. Altogether, setting C× = max{2c×, 2a1} produces the desired bound. �
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[36] K. Itô and M. Nisio. On stationary solutions of a stochastic differential equation. J. Math. Kyoto Univ., 4(3):1–75, 1964.
[37] D. D. Joseph and L. Preziosi. Heat waves. Rev. Mod. Phys., 61(1):41, 1989.
[38] D. D. Joseph and L. Preziosi. Addendum to the paper: “Heat waves” [Rev. Modern Phys. 61 (1989), no. 1, 41-73]. Rev.

Mod. Phys., 62:375–391, 1990.
[39] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus, volume 113. Springer Science & Business Media,

2012.
[40] L. Li, J. Shu, Q. Bai, and H. Li. Asymptotic behavior of fractional stochastic heat equations in materials with memory.

Appl. Anal., pages 1–22, 2019.
[41] L. Liu and T. Caraballo. Well-posedness and dynamics of a fractional stochastic integro-differential equation. Physica

D, 355:45–57, 2017.
[42] Y. Liu, W. Liu, X.-G. Yang, and Y. Zheng. Asymptotic behavior for 2D stochastic Navier-Stokes equations with memory

in unbounded domains. arXiv preprint arXiv:1903.07251, 2019.
[43] R. Miller. Linear Volterra integrodifferential equations as semigroups. Funkcial. Ekvac, 17:39–55, 1974.
[44] H. D. Nguyen. The small-mass limit and white-noise limit of an infinite dimensional generalized Langevin equation. J.

Stat. Phys., 173(2):411–437, 2018.
[45] H. D. Nguyen. Ergodicity of a nonlinear stochastic reaction–diffusion equation with memory. Stoch. Process. Their

Appl., 155:147–179, 2023.
[46] M. Ottobre and G. A. Pavliotis. Asymptotic analysis for the generalized Langevin equation. Nonlinearity, 24(5):1629,

2011.
[47] V. Pata and A. Zucchi. Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl.,

11:505–529, 2001.
[48] G. A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations,

volume 60. Springer, 2014.
[49] J. C. Robinson. Infinite-dimensional Dynamical Systems: an Introduction to Dissipative Parabolic PDEs and the Theory

of Global Attractors, volume 28. Cambridge University Press, 2001.
[50] D. Shangguan, Q. Zhang, J. Hu, and X. Li. Geometric ergodicity of a stochastic reaction–diffusion tuberculosis model

with varying immunity period. J. Nonlinear Sci., 34(6):114, 2024.
[51] J. Shu, H. Li, X. Huang, and J. Zhang. Asymptotic behaviour of stochastic heat equations in materials with memory

on thin domains. Dyn. Syst., pages 1–25, 2020.

1 Department of Statistics, Indiana University, Bloomington, IN, USA

2 Department of Mathematics & Statistics, CUNY Hunter College, Department of Mathematics, CUNY

Graduate Center, New York, NY, USA

42



3 Department of Mathematics, University of Tennessee, Knoxville, TN, USA

43


	1. Introduction
	1.1. Overview of the main results
	1.2. Previous related literature and methodology of proofs
	1.3. Organization of the paper

	2. Assumptions and statements of main results
	2.1. Functional setting
	2.2. Well-posedness
	(M1)
	(Q1)
	(P0)
	(P1)
	(P2)
	(P3)
	2.3. Existence of invariant probability measures
	2.4. Regularity of invariant probability measures
	(P4)
	(Q2)

	3. A priori moment estimates
	4. Existence of invariant probability measures
	5. Regularity of  in dimension d3
	Acknowledgments
	Appendix A. Well-posedness
	A.1. A priori estimate
	A.2. Passage to the limit

	Appendix B. Auxiliary results
	References

