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ABSTRACT. The principal ideal principal (PIP) is the problem of deciding
whether a given ideal of a number field is principal and, if it is, of finding
a generator. Solving the PIP applies to solving major computational tasks in
number theory. It is also connected to the search of approximate short vectors
in the so-called ideal lattices which is a crucial problem in cryptography. In this
paper, we present a novel application of norm relations to utilize information
from subfields to solve the PIP in fields of degree larger than 1800.

1. Introduction.

Background. Given an ideal of a number field, the principal ideal problem (PIP)
is the problem of deciding whether it is principal and if so, of finding one of its
generators. This is a computational problem of high importance in computational
number theory. It is a subroutine (and often the bottleneck) of algorithms for com-
puting invariants of number fields such as relative class groups, S-units and S-class
groups or ray class groups (see for example the work of Simon [38]). Additionally,
the PIP has recently received considerable attention from the cryptography com-
munity for its connections to the security of cryptosystems based on the so-called
ideal lattices. Indeed, a series of schemes based their security on the hardness of
finding a short generator of a principal ideal in a number field (usually a cyclotomic
field). This was the case in particular for the homomorphic encryption scheme of
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Vercauteren and Smart [39], the multilinear maps of Garg, Gentry and Halevi [26],
and a proposition for post-quantum secure encryption by the British GCHQ [17].
Finding a (not necessarily small) generator of a principal ideal is the computational
bottleneck of these attacks. In cyclotomic fields, once a generator is found, a smaller
one can be derived by using lattice techniques due to Cramer, Ducas, Peikert and
Regev [19], thus providing a solution to the Short-Principal Ideal Problem (SPIP).
It was established later that solving the PIP was also connected to the search for
approximate short vectors in arbitrary ideal lattices (i.e. not necessarily those aris-
ing from principal ideals) in cyclotomic fields. In particular, Cramer, Ducas and
Wesolowski [20] described a reduction from the search of solutions to the v-Shortest
Vector Problem (y-SVP) where v € ¢?(V™ for n the degree of the field to the reso-
lution of the PIP. The v-SVP is an approximation of the Shortest Vector Problem
(SVP) consisting in searching for vectors in an input lattice £ with length within a
factor -y of the shortest non-zero vector of £. Such approximate short vectors cannot
be found with asymptotically efficient lattice reduction methods such as LLL [30],
which means that the resolution of the PIP is connected to the search for non-trivial
approximations of short vectors in lattices, a long standing fundamental problem
in algorithmic theory with essential applications to cryptography. In particular, a
solution to SPIP in a principal ideal a is a solution to 7-SVP where v € €9V,
In general lattices, the most efficient method for solving this problem is the BKZ
algorithm [37] whose time complexity is in (V") Cryptosystems based on ideal
lattices rely on the assumption that v-SVP in ideals of cyclotomic fields is not sig-
nificantly easier than in general lattices (in particular for polynomial ). The results
in this paper illustrate that even without quantum computers, there are families of
cyclotomic fields in which certain instances of v-SVP (for subexponential 7) can be
solved asymptotically faster than BKZ. This shows that certain instances of v-SVP
in ideals of cyclotomic fields are not as difficult as in general lattices.

Prior Work. The known subexponential methods for solving the PIP in ideals of a
number field K rely on the computation of the class group of K. The subexponential
strategy for the computation of the class group of an imaginary quadratic field was
described in 1989 by Hafner and McCurley [28]. The expected running time of this
method is

La(1/2,v2 + o(1)) = e(VZroM)VIAxlogloel ],

where A is the discriminant of the field. Buchmann [16] generalized this result to
the case of infinite classes of number fields with fixed degree. Practical improvements
to Buchmann’s algorithm were presented in [18] by Cohen, Diaz Y Diaz and Olivier.
In [5, 10], Biasse and Fieker showed that there was a heuristic subexponential
algorithm for the computation of the ideal class group in all classes of number
fields, and that it could be used to solve the PIP. The methods of [10] can be
specialized to the case of cyclotomic fields for a better asymptotic complexity [7]

(heuristically in OV loglAx1)) This complexity can be brought even further down

(as low as O 1Ogm‘Kl)) assuming a one-time subexponential precomputation on
the field [6]).

A turning point in the development of algorithms for solving the PIP was achieved
when Bauch, Bernstein, de Valence, Lange and van Vredendaal [3] showed how to
recursively solve the PIP in fields of the form K = Q(v/dy,...,v/d,) (the mul-
tiquadratic fields). Depending on the family of d; chosen, this method can have
asymptotic complexity as low as polynomial in the logarithm of the discriminant
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of the field. This method was successfully adapted to calculation of S-unit groups
and ideal class groups by Biasse and van Vredendaal [15] who proved that it had

asymptotic run time in Poly(log(|Ax|))e®V!°8ld) with d = d; ---d,, under the
generalized Riemann hypothesis (GRH) and an assumption on the distribution of
certain families of characters. The main idea allowing a recursive computation in
the subfields of relative degree 2 was to find a norm relation implying that the
square of any element in K was the product of elements coming from 3 subfields.
In another direction, the method of [3] was adjusted by Lesavourey, Plantard and
Susilo [32] to the case of multicubic fields. Recent work from Biasse, Fieker, Hof-
mann and Page [13] generalized this concept of norm relation involving subfields to
a large variety of number fields (essentially consisting of fields whose Galois group
is “far from” being cyclic). Among other computational tasks, they showed how to
leverage these relations to compute S-unit groups and ideal class groups recursively
using subfields.

Our contribution. We use the norm relations construction technique introduced
by Biasse, Fieker, Hofmann and Page [13] to efficiently solve the PIP recursively in
non-cyclic number fields. This framework includes the prior work of [3] on multi-
quadratics and extends it to a significantly larger variety of fields. The prior work
of [13] allows the recursive computation of S-unit groups from subfields, which in
turn can be used to solve the PIP. In this paper, we use norm relations to solve
the PIP without having to compute S-unit groups. This results in a significant
practical speed-up over the direct application of [13]. In addition, we are able to
solve the PIP in fields of degree significantly larger than the previous state of the
art. More specifically, the main technical contributions of this paper are:

e An algorithm using the norm relations given in [13] to solve directly the PIP
using subfields (Section 4). It avoids calculating S-units, and it uses an ef-
ficient algorithm for computing the roots modulo unit groups of high degree
fields arising from norm relations (Section 5).

e An implementation of our method that uses the computer algebra package
HECKE [23] based on the programming language JULIA which successfully
solved the PIP in cyclotomic fields of degree 400, 864, and 1800 respectively
(Sections 7). We also report the computation of short generators of ideals
(SPIP) in cyclotomic fields of degree 400 and 864.

e A complexity analysis of the proposed method, together with the description
of an infinite family of cyclotomic fields in which methods based on norm
relations solve the PIP with strong subexponential complexity SUBEXP =
Neso DTIME(2™"). (Section 6).

The numerical results presented in this paper are significantly better than the pre-
vious state of the art. Indeed, as the degree grows, class group and PIP techniques
previously available become rapidly impractical. Even the previous ad-hoc imple-
mentations for setting prior records are limited to degrees significantly less to what
we achieved in this paper. For comparison, the subexponential method described
in [7] only contained implementations of certain subroutines of the resolution of
the PIP in Q({s12) (of degree 256): namely the computation of the class group
of Q(¢s12)" (of degree 128), and the Gentry—Szydlo subroutine [27]. The highest
degree achieved by the recursive PIP implementation in [3] in multiquadratic fields
was 256, and this implementation was restricted to only multiquadratic fields. Our
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implementation applies to a much wider class of number fields, and has been tested
and applied in significantly higher degrees.

In [13], norm relations were used to compute the class group of Q((gs52) of degree
1728 using a PARI/GP implementation in just over 4 hours on a single core.
While this does illustrate the potential of norm relations, it does unfortunately
not apply to S-unit computation or PIP resolution. Indeed, the successful class
group computation in Q(g552) was achieved without having to return outputs that
are field elements. When computing S-units, or solving the PIP, expensive root
calculations have to occur in the number field, which is the bottleneck of the overall
calculation. The JuLIiA-based implementation of the methods presented in this
paper (which is separate from the PARI/GP code from [13]) contains efficient
methods for root computation that make the resolution of the PIP possible in large
dimension.

2. High level overview. Let K be a number field with ring of integers Ok, and
a be an input principal ideal. Suppose that there are subfields (K;);<; of K such
that

l
Vo e K, 2% = [ [ Ng/x, (") (1)
=1

for some integers d, a;, b;, 1 < i < [. The methods proposed in this paper efficiently
reduce the resolution of the PIP with input a to instances of the PIP in the subfields
(Ki)1<i<i- Identities of the form (1) are called norm relations. Criteria to decide
whether non-trivial norm relations exist were presented in [13], as well as efficient
methods to compute optimal norm relations (with respect to the degree of the
subfields Kj;).

In [13], algorithms for using norm relations to compute the ideal class group
Cl(Ok), as well as S-unit groups [13, Alg. 4.16] were presented. A PARI/GP
implementation of the class group method was provided. It only works on a subset
of instances where computations in K can be totally avoided. In particular, this
rules out the computation of S-unit groups which are subgroups of K*. From a
theoretical standpoint though, the computation of S-unit groups does allow the
resolution of the PIP as follows: Given the input ideal a, we begin by enumerating
« € a that are small combinations of an LLL-reduced basis of a until (a)/a =p a
prime ideal. Then let S = {p? | 0 € Gal(K/Q)} be the set of all conjugates of p
under the action of the Galois group Gal(K/Q) of K. Using [13, Alg. 4.16], we then
compute a generating set ag,...a,4s of the S-unit group where r is the rank of
the unit group O and s = |S|, together with vectors 01,..., 0,15 € Z* describing
the valuations of the a; a the primes in S. Finally, we solve a linear system to find
T € Z""* such that ), 2;7; is the vector with zeros everywhere except for a 1 in
the entry corresponding to p. Then [], ;" is a generator of p, and g = o - [, a; ™
is a generator of a, which solves the PIP.

The methods from [13, Alg. 4.16] to compute S-unit groups require the compu-
tation of a significant number of d-th roots in K, where d is defined in (1). While
this only incurs extra polynomial factors to the asymptotic complexity, it effects the
performance of the practical implementations, and prevents them from reaching the
record-breaking input sizes presented in this paper.

We present a new method to leverage norm relations to solve the PIP without
having to use the reduction from S-unit group computations mentioned above. In
essence, our methods generalize the multiquadratic approach of [3] which relied on
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the fact that the square of each element in a multiquadratic field could be expressed
as the product of elements from 3 subfields. We briefly recall the main results on
norm relations in Section 3. A relation of the form (1) implies that

l
Cld = HNK/Ki(abi)aiOK.
i=1

If the ideal a is principal, then so are the subfield ideals N/, (ab). Solving the cor-
responding PIP in the subfields K; gives us generators «; of the ideals N, &, (ab).
Then 8 =[], o' € K generates the ideal a?. Unfortunately, this does not readily
give us a generator of a. In Sections 4 and 5, we show how to use a saturation-like
method to find a suitable unit v € K* such that 8- u is a d-th power. Then,
we compute the d-th root of - u which yields a generator of a. This latter step
can be computationally expensive, but only needs to be performed once. We show
how to solve it by writing subfield elements efficiently in compact representation
(Section 5.3). We describe another crucial practical improvement in Section 5: We
show that it is not necessary to compute the full unit group of K, therefore avoiding
many costly saturation steps.

We analyze the complexity of our algorithms, and we describe an infinite family
of cyclotomic fields in which we solve PIP in time gn” assuming only GRH (Sec-
tion 6). We provide numerical results in Section 7, which include the resolution of
the SPIP in degree 864 and of the PIP in degree 1800. Finally, in Section 8 we
compare our methods with the direct use of the S-unit algorithms of [13] to solve
the PIP sketched above. The supplementary material presents background infor-
mation on prior art. The source code of our implementation is also supplied with
this submission.

3. Norm relations. In this section, we recall some facts about norm relations and
their existence and refer the reader to [13] for details. Let K be a Galois algebraic
number field with Galois group G = Gal(K/Q). For a subgroup H < G we denote
by Ng =3 ,cnh € Q[G] the norm of H as an element of the group algebra Q[G].
A norm relation of G is an equality of the form

l
1= ZaiNH,ibi (2)
=1

in Q[G] with a;,b; € Q[G] and 1 # H; < G subgroups. By clearing denominators,
a norm relation can always be written as

l
d= ZaiNHibi (3)
i=1

with d € Ny minimal such that a;,b; € Z[G]. We call d the denominator of the
norm relation.

The existence of such a norm relation for a number field implies relations between
arithmetic objects of the field K and its subfields (see [13]). In the present paper,
we will use the fact that Equation (3) implies that for all x € K* we have

l
J}d = HNK/KH1 (J,‘bi)ai'7 (4)
i=1
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where K = {x € K | o(x) = z for all 0 € H} is the fixed field of H, and

= H g(x)% for all zx € K* and a = Z agg € Z[G].
9€q@ geG
We will most often use an equality of the form (4) when referring to a norm relation.
Let now a be a fractional ideal of K. From [33, Chapter III, §1, Proposition 1.6] it
follows that for a subgroup H < G the following relation holds: Ny xu(a)Ox =
[I,cq o(a) = a7 In particular, from Equation (3), we also obtain
l
ud:HNK/KH(abi)aiOK. (5)
i=1

Example 1. Let G = Cy x C2 = (o,7). Then we have the norm relation 2 =
N(sy + N(7y = 0N(s7y. This is the norm relation used implicitly in both [3] and [15].

Due to Funakura [25] we have the following simple criterion for the existence of
norm relations.

Theorem 3.1 ([13, Theorem 2.27]). Let G be a finite abelian group, and write G =
C x Q where C is the largest cyclic factor of G.

1. The group G admits a norm relation with denominator 1 if and only if |Q)| is
divisible by at least two distinct primes. If the condition is satisfied, then G
admits a norm relation with a; € Z, denominator 1, and where all H; satisfy
that G/H; is a p;-group times a cyclic group, for some prime number p;.

2. Assume that Q is a p-group. Then G admits a norm relation if and only if Q #
1. If the condition is satisfied, then G admits a norm relation with a; € Z,
denominator a power of p and where all H; satisfy that G/H; is a cyclic group.

We will exploit Theorem 3.1 in Section 7 to construct large degree number fields
for which it is possible to solve the principal ideal problem efficiently.

4. Principal ideals and norm relations. We now explain our new strategy to
solve the PIP using norm relations without S-unit computations. Let K be a
Galois number field and G = Gal(K/Q). Throughout this section we assume that
G admits a norm relation involving the subgroups {Hj, ..., H;}. Thus there exist
a;,b; € Z|G), 1 <i <, and d € Z with d = Zli:l a; H;b; Recall that this implies
that for an element x € K* and a fractional ideal a of K the following also holds:
l
.T}d = H NK/Kl (l‘bq')ai and Cld = HNK/Kl(abl)“’(’)K (6)
=1t =1

where K; denotes the fixed field of H;.

Lemma 4.1. Let a be a fractional ideal of K. If a is principal, then NK/Ki(abi) is
principal for all 1 < i <. If d = 1, then the converse also holds and a generator
of a is given by Hi:l ait, where ;O = NK/Ki(abY‘), 1<e<l.

The previous lemma shows that if the denominator d is equal to 1, then solving
the principal ideal problem in K is equivalent to solving the principal ideal problems
in the subfields K;, 1 <7 < [. In case the denominator is not equal to 1, the situation
is more complicated. Indeed, we can only find « such that a? = aOg. If v is a d-th
power, say 3% = «, then 3 generates a. Otherwise, if « is not a d-th power, we need
to find another generator o of a? that is a d-th power. This is done by multiplying
« by a well-chosen unit.
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Definition 4.2. Let U C K* be a multiplicative group and 5 € K*. We say that
B is a d-th power modulo U or that 8 has a d-th root modulo U, if there exists u € U
such that uf3 is a d-th power, i.e., u3 € (K*)<.

From the preceding discussion it follows that if a¢ = B3O, then a is principal if
and only if 3 is a root modulo U = Oj. Moreover if uff = a? for some u € Ok,
then a = aOk. Working with the full unit group U = Oj can be expensive in
practice. In the following we improve upon this by showing that in our situation
we can often pick a smaller group U generated by subgroups of the unit groups
02’1' We begin by showing that one can restrict to full rank subgroups with index
coprime to d.

Lemma 4.3. Assume that U C K* is a multiplicative group, 5 € K* and d € Z.
Further let V C U be a subgroup of finite index with [U : V] coprime to d. Then
is a d-th power modulo U if and only if B is a d-th power modulo V .

Proof. Let k = [U : V] and a,b € Z such that ad + bk = 1. Assume that there
exists u € U such that uB € (K*)%. As uf = (u*)¥(u*)’8 and v = (uF)® € V, we
have v3 = uf/(u®)? € (K*)?, thus showing that 3 is a d-th power modulo V. The
other implication is clear. O

We can now show that in the presence of norm relations, it is sufficient to work
with a multiplicative group generated by units from the involved subfields. In fact,
not even the full unit groups of the subfields are necessary, but just subgroups with
index coprime to d.

Proposition 1. Let a be a fractional ideal satisfying (6). Assume that the ideal
Nk, (a%) = o; Ok, is principal for all 1 <i <1 and let § = Hi:l ajt. Consider
the multiplicative group W = (O )* -+ (O, )" C Of. Let V.C W be a subgroup
of finite index with [W : V] coprime to d and V; C (’)IXQ subgroups of finite index
with [OIX< : Vi] coprime to d. Then the following are equivalent:
(a) The ideal a is principal.
(b) The element j3 is a d-th power modulo OF.
(c) The element (3 is a d-th power modulo W .
(d) The element 5 is a d-th power modulo V.
(e) The element f3 is a d-th power modulo Vi** --- V.
If we have a; € Z for all 1 < i < I, then we can use W = (’)Ix(1 ---OIXQ in (d)
and Vi -V in (e).
Proof. (a) < (b): Clear.

(a) & (c): Assume a = aOf is principal. As Ng /g, (a")Ok, = Ng g, (a¥) =
o;Ok,, there exist units u; € OIXQ such that Ng /g, () = u;a;. Thus

1 l
utlu --~u2“ B= H(Uiai)ai _ HNK/Ki(abi)ai = o c (KX)d
T i=1 =1

and ( is a d-th power modulo W. Conversely if £ is a d-th power modulo W, it is
also a d-th power modulo O} and hence a is principal.

(¢) & (d): Lemma 4.3.

(d) © (e): Since the V; have index coprime to d, it follows that [W : V{** ... V"]
is coprime to d. Hence the result follows again by Lemma 4.3.
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Proposition 1 leads to Algorithm 1 to solve the PIP using norm relations. In
Section 5, we will show how to perform Steps 9 to 13 efficiently.

Input : A fractional ideal a of K satisfying (6)
Output: Whether a is a principal ideal and a generator in case it is
y< L
for i<+ 1 tol do

if Ny, r, (a%) is principal then

Find a generator a; € K; of Ny, (a);
else
‘ return: a is not principal.

end
end
B+ aft---ajft //B generates a?.;
Compute U = V{** --- V|*", where the V; are subgroups OIXQ with index

coprime to d. // Details in Section 5;

11 if 8 is a d-th power modulo U then
12 ‘ return: o € K* such that 8/a € U;
13 else
14 ‘ return: a is not principal;

© W N e U W N K

o
o

15 end

Algorithm 1: Strategy for solving the PIP from norm equations

Remark 1. The idea of reducing the principal ideal problems to subfields using
relative norms and the existence of d-th powers was already considered in [3] for
multiquadratic and in [32] for multicubic fields. While not formulated using the
notion of norm relations, in both works criterion 1 (b) is used to decide the principal
ideal problem in the field K. In particular, the full unit group had to be computed
via saturation.

In contrast to the aforementioned papers, the use of Proposition 1 (c) allows us to
avoid the computation of the full unit group O of K (in most cases, see Section 5).
Actually Proposition 1 (e) allows us to avoid the computation of the full unit groups
in the subfields themselves. All that is required are subgroups whose index is finite
and coprime to d. This results in a significant practical speed-up.

5. Determining roots modulo units. In this section, we describe efficient algo-
rithms to perform Steps 9 to 13 of Algorithm 1. Let K be an algebraic number field
and U C K* a finitely generated multiplicative group and 8 € K*. Throughout
this section we assume that UN{B) = {1} and that U is specified by a finite number
of generators. In our application this is true, since U C O and 3 is a generator of
a non-trivial ideal. We want to decide whether 3 is a d-th power modulo U, that
is, decide whether there exists u € U such that u - 8 € (K*)9. In the following, for
a non-zero prime ideal p of O we will denote by K, the p-adic completion of K,
by vy the p-adic valuation and by k, = Ok /p = Ok, /pOk, the residue field at p.
We use a bar notation to denote cosets of various multiplicative groups, and (X) to
denote the subgroup generated by X.
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Lemma 5.1. Assume that U C K* is a multiplicative group and d = a - b with
ged(a,b) = 1. Then B is a d-th power modulo U if and only if 8 is an a-th and a
b-th power modulo U.

Proof. Since one of the implications is trivial, let us assume that § is an a-th and
a b-th power modulo U, say 8 = uy® = ug7. Since a and b are coprime there exist
r,s € Z with 1 = ra + sb. Thus

B = BB = (wol) (wr)! = wpu (o) € U - ().
O

Thus from now on we will assume that d is a prime power. The method we
want to describe will employ local computations to detect global powers. This a
well known technique in computational algebraic number theory, used for example
in the class and unit group computation of number fields ([36, Section 5.7]) or the
number field sieve ([1]). Note that, in contrast to previous applications of this
technique, in our case the number d is in general not a prime. As a consequence, we
will rely on the Grunwald-Wang theorem (see [2, Chapter X] or [34, Chapter IX,
§1]) and therefore have to consider the following dichotomy. For k € Z>; denote
by (& a primitive k-th root of unity and set nx = (i + C;l. Let s > 2 be an integer
such that n; € K but n541 € K. Moreover let S be a finite set of prime ideals of
Ok. Recall that d is a prime power. We say that we are in the bad case when the
following conditions are simultaneously satisfied

1. The number d = 2¢ is even and t > s.
2. The elements —1,2 + 7, and —(2 + ;) are non-squares in K.
3. We have

{p|2€pand —1,2+4 7, and —(2 + 7,) are non-squares in K,} C S.

If we are not in the bad case, we say that we are in the good case. The terminology is
explained by the theorem of Grunwald—Wang, which gives the following connection
between global and local d-th powers.

Theorem 5.2 (Grunwald-Wang). Consider the canonical map
KX J(K)T — T K /()%
pes

If we are in the good case, this map is injective. If we are in the bad case, the kernel
of the map is (7js) = Z/2Z.

Remark 2.

1. Given d, it is straightforward to test conditions (1) and (2). To test condition
(3), it is sufficient to determine all prime ideals p lying over 2 such that
—1,2 +ns and —(2 + 7,) are non-squares in K,. Being locally a square can
be checked using the so-called quadratic defect [35, §63.A], which can be
computed using an efficient algorithm due to Kirschmer [29, Algorithm 3.1.3].
Thus given K, d and S, we can always check whether we are in the good case
or not.

2. Although the conditions for being in the bad case look rather complicated,
this situation is not as rare as it might appear. More precisely, if K is linear
disjoint from the cyclotomic field Q({s), then we are always in the bad case
for d = 2%, t > 3. Thus for almost all fields we are in the bad case at the
prime 2.
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We now explain how to decide whether 3 is a d-th power modulo U depending
on whether or not we are in the good case.

5.1. The good case. In this section we will present a method to test if an element
is a d-th power modulo a multiplicative group in the good case of Grunwald—Wang.
To detect local powers, we will make use of the following statements. Recall that
for a set S of prime ideals of Ok we denote by Ok g the ring of S-integers, that is,
the elements € K with v,(x) > 0 for all p € S, and (’)IXQS the group of S-units,
i.e., the elements z € K* such that vy(z) =0 forall p & S.

Proposition 2 ([13, Proposition 4.5]). Assume that p is a non-zero prime ideal
with d € p and let w € K be a local uniformizer at p, that is, an element with
vp(w) = 1. Then the map

KPX/(KPX)d — Z/dZ x kpx/(kg)d, T — (U, 2w ") where v = vy (x),
is an isomorphism.

Proposition 3. Assume that we are in the good case of Grunwald—Wang. For a
multiplicative finitely generated subgroup V- C K* we have

(VA (B V= (N ker(V/V = Z/dZ x k) [/ (k))%).

dgp
There exists ¢ € Rsqo (depending on K,V and d) such that
VAE)N/VE= () ker(V/V4 = Z/dZ x k[ (k7)%).

dgZp,N(p)<co

Proof. The first part is [13, Proposition 4.6]. As V is finitely generated, V/V9 is a
finitely generated (Z/dZ)-module. Thus V/V? is Artinian and the existence of cg
follows from the first part. O

Putting everything together, we arrive at the following criterion for detecting
whether an element S is a d-power modulo U, and if so, for computing v € U
such that § - w is a d-th power. Note that Proposition 4 has similarities with [13,
Proposition 4.8] which was used to decide if a subgroup of K * is p-saturated, and if
not, to find an element of its p-saturation. However, the two statements are distinct,
and neither implies the other.

Proposition 4. Let V = (U, 8) be finitely generated and assume U N (B) = {1}
and that we are in the good case of Grunwald—Wang. Furthermore let ¢ € Rsq be
arbitrary. Assume that the intersection

(| kex(V/V* = Z/dZ x K} /(k})") € V/V*
d#p,N(p)<c
is generated by the classes of a1 8™, ..., qB™ € V with a; € U, n; € Z.

1. If ged(d,ny,...,ng) # 1, then B8 is not a d-th power modulo U.

2. Assume B is not a d-th power modulo U. Then for c sufficiently large we have
ged(d,ny,...,ny) # 1.

3. Assume B is a d-th power modulo U. Then for c sufficiently large we have
ged(d,n,...,n;) =1 and that the element alfl .- ~a§“5 s a d-th power, where

k; € Z are integers with 1 = kod + 2221 kin;.
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Proof. Let us denote by W/V? the intersection of the kernels.
(1): Assume that j is a d-th power modulo U, that is, a € V N (K*)? for some
acU. As (VN (KX)4)/VeECW/V? there exist integers 0 < k; < d such that

aB = (@B (@BmF
in W/VeCV/Ve AsV is generated by U and 3, the group V¢ is generated by U¢
and $?. Hence there exists oy € U and ko € Z such that
aff = (@) - (" e (57).

From U N (B) = {1} we get 1 = kod + 22:1 king, i.e., ged(d, ny,...,ny) = 1.

(2): Let ¢ be the constant from Proposition 3 and assume ¢ > ¢g. In particular
it holds (VN (K*)?)/Ve=W/V4. Assume ged(d, ny,...,n;) = 1. Then there exist
k; € Z,0 < i <, such that 1 = kqd + 2221 k;n;. Then the element o = a]fl --~o¢f’
satisfies

a/B — Ozﬂnlkl .. '/Bnlklﬁdko — (alﬂnl)kl .. (alﬂnl)klﬁdko,
that is af € W/V4 = (V N (K*)?)/V? and B is a d-th power modulo U.

(3): Let ¢o be as in Proposition 3 and assume ¢ > ¢g. Note that as 8 is a d-th
power modulo U, it follows from (1) that ged(d, ny,...,n;) = 1. The result follows,
since

Oékl . akZB _ (alﬁnl)kl . (alﬁnl)kl(ﬂko)d

and for all 1 <4 <1 we have ;8™ € (K*)? (as ¢ > ¢). O

Remark 3. If p is a prime ideal with gcd(d, N(p) — 1) = 1, then k; = (k;)%. Thus
we can always restrict to prime ideal p with ged(d, N(p) —1) # 1. Additionally note
that Theorem 5.2 already holds for a set T" of prime ideals of Dirichlet density 1 with
TNS =0 (see [34, Theorem 9.1.11]). As the set of prime ideals of O of degree 1
has Dirichlet density 1, Proposition 3 and Algorithm 2 remain correct if we consider
almost all prime ideals of degree 1. This has two important consequences in practice:

1. By considering only prime ideals p of degree 1, we always have k, = F,, greatly
simplifying the discrete logarithms that we have to compute.

2. We can skip finitely many prime ideals. For example, we can ignore those
prime ideals, for which the reduction V' — k, is expensive to compute. If we
represent K as Q(«) with « integral, this means skipping prime ideals lying
over rational primes which divide [Ok : Z[a]].

Algorithm 2 decides whether an element ( is a a d-th power modulo U, and if
S0, it finds an element of u such that uS is a d-th power. Proposition 4 directly
shows its correctness. Algorithm 2 is an analogue of [13, Algorithm 4.9], (as well
as the techniques from [8, Section 5.3], and more generally, the works derived from
the number field sieve) in the sense that it uses saturation techniques to detect a
d-th power. Kernels of a set of maps using information modulo various primes are
used to produce candidates that are then tested in Step 7.

5.2. The generic case. We now assume that we are in the generic case and d = p”
is a prime power. Since this includes the bad case of Grunwald—Wang, in general we
cannot detect global d-th powers just using local information. The algorithms are
therefore more complicated; the reader can skip this section without significantly
affecting their understanding. We state results for an arbitrary p, but for us the
only relevant case is p = 2. In general, we detect d-th powers for d = 2"d’ with 21 d’
by detecting d’-th powers using Section 5.1, detecting 2"-th powers using results of
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Input :U C K* finitely generated, 5 € K* such that U N () = {1},
d = p" a prime power, such that we are in the good case of
Grunwald-Wang

Output: Whether $ is a d-th power modulo U and an element v € K*
with 3/7% € U in case it exists

1 Let ¢ € Ry (chosen arbitrarily);

2 Determine a (Z/dZ)-generating set a; 571, ..., ™ of
M ker((U, B)/(U, B)* = Z/dZ x k' [ (k' )");

pgp,N(p)<c
if ged(d,ny,...,n;) # 1 then
‘ return: 3 is not a d-th power modulo U;
else if ged(d,nq1,...,n;) =1 then
Determine k, k; € Z, 1 <i <1, with 1 = kd + Y'_, kiny;

Test whether the element § = o - .. afz is a d-th power;
if there exists v with v = § then

‘ return: ;

o N o ok~ oW

9 end
10 Replace ¢ by 2¢ and go to step 2;

Algorithm 2: d-th power modulo units in the good case

this section, and recombining the results using Lemma 5.1. To still be able to use
the technique of Section 5.1, we investigate the situation where U is p-saturated.

Definition 5.3. The p-saturation V of U is the smallest subgroup V C K* with
U CV and K*/V p-torsion-free. The group U is called p-saturated or saturated
at p if U equals its p-saturation, that is, K* /U is p-torsion-free. The group U is
saturated if it is p-saturated for all primes p.

Under the GRH, when ¢ > ¢y = 72d*(log| A k| +3n log(p))?, Algorithm 4.9 of [13]
correctly returns the p-saturation of the input subgroup U of the unit group in
polynomial time [13, Th. 4.11]. We now assume that U is p-saturated, and we show
that testing whether [ is a p"-th power modulo U can be reduced to r instances of
the problem where the exponent is p (instead of p"), hence to a situation where we
are in the good case of Grunwald—Wang.

Proposition 5. Assume that U C K* is a multiplicative group and 8 € K* a
p"-th power modulo U. Then the following hold:

1. The element B is a p'-th power modulo U for all 1 <i < r.
2. Assume that U is p-saturated and that there exist u € U, v € K* with

uf = %1,’1 for some 1 <1i <r—1. Then ~y; is a p"~*-th power modulo U.

Proof. (1): Trivial. For (2), first note that by assumption there exist & € U, v € K*
such that @8 = ~+*". Then

Hence

YN
|
R
/
)
2R
~
i
m
d
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As U is p-saturated this implies v;/v*" € U. Thus (v*" /v;)v = 4% shows
that 7; is a p"~*-th power modulo U. O

Corollary 1. Assume that U C K* is a p-saturated multiplicative group. An
element 8 € K* is a p"-th power modulo U if and only if there exist uy,...,u,_1 €
U, V1,7 € K*, v = 8 such that'yf+1 =y foralll <i<r-—1.

Therefore, under the assumption that U is p-saturated, we can check whether
is a p"-th power modulo U by iteratively checking whether certain elements are p-th
powers modulo U. As p is a prime, we are always in the good case of the Grunwald—
Wang theorem and we can use the technique of Section 5.1. We summarize this in
Algorithm 3, which is correct according to Corollary 1.

Input : A p-saturated multiplicative group U C K*, r > 1, and § € K*
with U N (B) = {1}
Output: Whether 3 is a p"-th power modulo U and an element v € K *
with 8/4?" € U in case it exists
1 7% < 5
2 for i < 1 to r do
3 if ;1 is a p-th power modulo U using Algorithm 2 then
4 | Compute v; € K* such that ~;_1/~7 € U;
5 else
6 ‘ return: that 3 is not a p"-th power modulo U;
7 end
8 end
9 return: -,;

Algorithm 3: d-th power in the bad case

5.3. Computing roots. An important subproblem of the previous section is the
computation of roots. More precisely, given § € K and d € Z~q, we need to decide
whether there exists an element v € K such that v = § (and if so, then compute
7). Since 6 will in general be quite large, we first compute a compact representation
with respect to d, which amounts to finding small elements dg, ..., d; € K such that

§=080-00 .. 5d"

This presentation was introduced by Thiel [40] for units. An algorithm for finding
such a presentation for S-units goes back to lecture notes of Fieker and has subse-
quently been used in [9, 10, 14, 24]. Given such a presentation, it is clear that J is a
d-th power if and only if Jy is a d-th power. For the latter task, we use Hensel lifting
of the linear factors of X¢ — 3y € K[X] modulo a non-zero prime ideal p of Ok, as
described in [22]. Note that for both the computation of the compact representation
and the root computation, the main computational task is the computation of LLL
bases of ideals of Ok, that is, lattice reduction of lattices of dimension [K : Q]. To
evaluate the performance of the compact representation, we need a notion of size
of an element in K.

Definition 5.4. Let K be a number field whose complex embeddings are denoted
by 01,y 0r, Opt1,0rt1y -y Opts, Orts. We define the To-norm of « to be ||af =

(Z1§i§r+2s|ai(a)|2)l/2'
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The value ||a| is a good measure of the size of an element of «. Indeed, as
recalled in [12, Sec. 3|, the maximum absolute value of a coefficient of o € Ok
when represented on an LLL-reduced integral basis is less than 2°"/2||a|, and,
when a = ag/d for d € Zso and oy € Ok, the bit size S(a) of « is less than
n (22 log [|a|| + log(d)).

Proposition 6. Let o = [[,, o' € Ok such that we have max; (S(o;)) < Ba,
and max; (log|z;|) < By. There exists an algorithm for computing a compact rep-
resentation of « in time

Poly(log|Ak/|, By, Ba) + Fact(N(a)),

where Fact(N(«)) denotes the cost of factoring the norm of a. When this factoriza-
tion is known, this cost is 0.

Subfield unit calculations, and subfield resolutions of the PIP are assumed to be
followed by a compact representation routine. In both cases, the prime factoriza-
tion of the input is known in advance, therefore Fact(N(«)) = 0. Moreover, the
product of a polynomial number of terms in compact representation can be kept
in a compact representation by direct multiplication of the terms. Therefore, the
compact representation algorithm is only executed in subfields. Then, operations
on compact representations in field extensions have polynomial run time.

We conclude this section with the resulting complexity of Algorithm 1.

Theorem 5.5 (under GRH). Algorithm 1 is correct and has complexity
Poly([K : Q],log|Ak|,log(N(a)), !, maxlog(a;)) + | - PIP(Subfields),

where PIP(Subfields) denotes the cost of Step (3) (PIP in a subfield).

Proof. From Lemma 5.1 it follows that it is sufficient to show that Algorithms 2
and 3 have the claimed complexity. We first consider Algorithm 2. From [13, The-
orem 4.11] it follows that the algorithm terminates as soon as ¢ > 72d?(log|Ak| +
3nlog(d))?, hence after a number of steps which is polynomial in the size of the
input. As the final root computation has runtime polynomial in the size of the
input, this proves the claim for Algorithm 2.

For Algorithm 3, first note that a 2-saturated subgroup U C O can be com-
puted in polynomial time ([13, Corollary 4.13]). As the successive applications of
Algorithm 2 for p = 2 have the same complexity, the claim follows. O

6. Fast asymptotic performance in certain fields. Using the heuristics meth-
ods of Biasse and Fieker [5, 11], the heuristic asymptotic run time of solving the PIP
on input a in a number field K of discriminant A is in Poly(log(N(a))) .20((og|AN*?)
In this section, we briefly illustrate the potential asymptotic gains of solving the PIP

with subfields by exhibiting an infinite family of cyclotomic fields (Kj = Q((m,,))k>1

where our algorithm has heuristic-free cost Poly(log(N(a))) - 2(10glAN""

We consider a number field K with abelian Galois group G. Recall from The-
orem 3.1 that when G ~ C x @, where C is the largest cyclic factor, and |Q] is
divisible by 2 distinct primes, we have a norm relation where the subfields have de-
gree bounded by |C|. The run time is therefore minimized in families of fields where
the largest cyclic factor C' of G is as small as possible. In the case of a cyclotomic
field Q(¢,,) we have G = (Z/mZ)*, |C| = A(m), where X is the the Carmichael
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function, while [Q((pn,) @ Q] = ¢(m). We can construct an infinite family of con-
ductors with small Carmichael numbers by using the following theorem of Erdos,
Pomerance and Schmutz.

Theorem 6.1 (Erdés—Pomerance-Schmutz [21, Theorem 1 part 2]). There exists
an infinite sequence mi1 < mo < ... of positive integers such that

A(my) = (1Og(mk))o(loglog log(my))_

Remark 4. Integers as in Theorem 6.1 can easily be constructed in practice as
follows. Let L be a highly divisible number (for instance, take L to be a product of
a few small primes). Then let @ be the set of all primes p such that p— 1 divides L,
and let m =[] o p. This integer satisfies A\(m) | L, and the proof of Theorem 6.1
shows that for suitable choices of L, the integer m is much larger than L.

Example 2. We illustrate the construction by taking L to be the product of the

first prime numbers.

a) L=2-3=6,m=2-3-7=42, p(m) =12, \(m) = 6.

by L=2-3-5=30,m=2-3-7-11-31 = 14322, po(m) = 3600, \(m) = 30.

¢) L =2-3-5-7=210,m =2-3-7-11-31-43-71-211 = 9225988926,
p(m) = 2222640000, A(m) = 210.

In order to obtain a heuristic-free complexity result, we use the following weak
bound on the complexity of the computation of class and unit groups in number
fields due to Lenstra.

Theorem 6.2 (Lenstra [31, Th. 5.5]). One can determine the class and unit group
of a number field K in deterministic time 9(log|Ax N

We obtain the following heuristic-free complexity result.

Theorem 6.3 (under GRH). There exists an infinite sequence of integers my <
me < ... such that Algorithm 1 applied to the family of fields K = Q((pm,,) with
input a C Ok, has complexity

Poly ([Ky : Q], log(N(a))) - 218(m)

O(logloglog(my))

Proof. Take (my)ken to be the sequence from Theorem 6.1. Let m = my be a
term in this sequence, and Kj = Q((, ) be the corresponding field. Let D be the
maximum absolute value of the discriminant of a subfield used by the subexponential
PIP algorithm of [5, 11] applied to Kj. Then we have D < m*™) so that

log(D) < A(m) log(m) = (log(ym))Oos1e5 ox(m)

by Theorem 6.1. In particular, using the algorithm of Theorem 6.2 for the base
case, the cost for the subfields is 2008(P) 7" — g(log(m))@ s tostostm) O

Remark 5. Let Ay, be the discriminant of K. Then we have log(my) = O(loglog|Ag|),
so that the second term of the complexity is

2(10glog‘AkI)O(loglogloglog\Ak\)
This complexity is not quite quasi-polynomial (which would correspond to O(1)
instead of O(loglogloglog|Ag|) in the second exponent), but it is strongly subex-
ponential, as can be seen by rewriting it as

(log log log log| Ay | logloglog|Ay | )
o(log|A) Tog Togl AT — ollog|Ag)°™
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This complexity would not be significantly improved by using the best known heuris-
tic algorithms [10] for the PIP and ideal decomposition instead of Theorem 6.2, as
it would only improve the implicit constant in the big O.

7. Numerical results. We implemented our algorithm using the algebra package
HECKE [23] (written in JULIA [4]). We used 55 nodes of 20 cores 2x Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20GHz processors with 192GB memory. We focused
our attention on examples outside of the reach of the previous techniques by a
substantial margin: The field K = Q((g25) of degree 400 and discriminant ~
10999, the field K® = Q((3276) of degree 864 and discriminant ~ 102369, and the
field K = Q((a3s7) of degree 1800 and discriminant ~ 1053, For each field,
we report on the resolution of one instance of (S)PIP chosen at random. The
class groups of the fields K (") and K2 have been determined using norm relations
in [13]. That computation took less than two hours using a single core, but note
that the method employed for the class group computations avoids taking the roots
of elements and is therefore computationally much easier than solving the PIP. In
particular, it cannot be used to compute S-unit groups or to solve the PIP.

Norm relations. We used a two step approach which is rigorously analyzed in [13,
Th. 2.27] in the abelian case. First, we try to choose a norm relation of denominator
1 of the form z = H§:1 Nk, (2")% such that the quantity max;<;<;[K; : Q] is
minimal. In other words, we try to find a norm relation of denominator 1 where the
degrees of the subfields are as small as possible. As a second step, for each subfield
K;, we try to find a norm relation 2% = Hél:l Nk, k., (xb43)%5 with d; as small
as possible, such that maxi;<j<;, [K; ; : Q] is bounded by some heuristically chosen
constant B. To test whether some fractional ideal a of K is principal, Algorithm 1
is now applied first using the norm relation of K of denominator 1 and then again
using the norm relations of the K; when testing whether Ny, Ki(u?i) is principal.
In particular this means that:

1. The largest degree of a field where we have to compute roots modulo units is
maxlgigl[Ki : Q]

2. The largest degree of a field where we have to classically solve the princi-
pal ideal problem and compute (a saturated subgroup of) the unit group is
bounded by B.

Since the norm relations are too large to display, we present several values quanti-
fying the difficulty of solving the PIP in Table 1.

TABLE 1. Quantification of hardness of instances

K H [K : Q] ‘ = #{Kl} ‘ n = maxi[Ki : Q] ‘ #{K’L,j} ‘ m = maxiyj[Ki,j : Q]

KD 400 19 100 86 20
K® 864 38 108 341 12
K® | 1800 131 150 297 30

Recall that n is the maximal degree of the subfields where saturation and root
computation needs to take place. Likewise, m is the maximal degree of a subfield
where the PIP must be solved with a subexponential method and the column la-
beled “#{K; ;}” denotes the number of these subfields. In particular, we observe
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that the saturation and root computation to solve the PIP in the field K®) of de-
gree 1800 only occurs in fields of degree bounded by 150 while the subexponential
computations occur in subfields of degree no more than 30.

Results. We ran the computation of subexponential PIP instances in the subfields
on independent cores. A second layer of parallelization was employed by computing
individual roots on independent cores. After picking a principal ideal a = («) of Ok,
the main steps of our computations are the following: (1) Finding the initial norm
relation to determine the subfields K, (2) Finding the norm relation in each of the
subfields K, (3) computing the subfields K; ;, (4) Computing the unit groups of
the K; ;, (5) Computing the relative norms Ng gk, . (a), (6) Computing generators
of the ideals Nk, ;(a), (7) Identifying d-powers (without root computation), (8)
Compact representation, and (9) Root computation.

TABLE 2. PIP Runtime in CPU hours of Steps 1 to 9.

(1) (2) (3) (4) (5) (6) (M | (6 9) Total
KO 046 | 270 [ 033 ] 025 | 055 | 0.13 | 0.05 | 0.37 | 1.71 6.55
7.0% | 41.2% | 5.0% | 3.8% | 8.4% | 2.0% |0.8% | 5.6% | 26.1%
K® || 412 | 15.23 | 2.90 | 1.00 | 11.21 | 1.54 | 0.12 | 2.61 | 60.19 | 98.92
42% | 154% | 3.0% | 1.0% | 11.3% | 1.6% | 0.1% | 2.6% | 60.8%
K® || 66.61 | 140.00 | 58.34 | 102.15 | 641.92 | 203.62 | 3.25 | 55.19 | 1634.01 | 2905.09
2.3% | 4.8% | 2.0% | 3.5% | 221% | 7.0% | 01% | 1.9% | 56.2%

We also implemented the reduction from the SPIP to the PIP of [19, 20] and
we were able to retrieve a short generator of our challenge ideals in K M and K@
(which is a solution to y-SVP for a v € €?(V™ in the input principal ideals). This
incurred an additional 6.9min of CPU time for KM, and 3.3h for K.

8. Comparison with the S-unit method. In this section, we provide heuristic
arguments, as well as numerical evidence, to illustrate the fact that Algorithm 1
performs better in practice than the PIP resolution based on the recursive com-
putation of S-units from norm relations sketched in Section 2, and described more
formally in Algorithm 4.

Algorithm 1 was designed with the practical performance in mind. This is why we
strive to avoid the compact representation and saturation steps as much as possible
through the contributions described in Section 4 and Section 5. In particular, the
units used are directly coming from subfields, and seldom need saturation. On
the other hand, computing S-units as in Algorithm 4 would require significantly
more compact representation and saturation steps, and the compact representation
algorithm would receive inputs divisible by conjugates of p, which is a large ideal.
Let us provide coarse estimates of this slow down.

At the beginning, we can assume that we have performed an LLL-reduction on
the input and replaced a by (b1)/a where b; is the first basis vector. This means
that we may assume

N(a) < X"/[A] € O (20<"2>\/W) ,

with n = deg(K), and A ~ 2°9(") the approximation factor of LLL. Let by, ..., b,
be an LLL-reduced basis of a, so that

||b1|| < )\|A|1/27LN(a)1/n e QO(H)lAll/QTLN(Cl)l/n.
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Input : a C Ok principal
Output: A generator g € Ok of a

B < LLL-reduced basis of a;

a Span(B).// « chosen uniformly at random;

[ary

while p = (a)/a is not prime do

‘ a & Span(B);
end
S« {p? for 0 € Gal(K/Q)};
Find generators (a;)s4r of the S-unit group using [13, Alg. 4.16];
Let M € Z("+)%s guch that row i is the valuations of o;
Solve - M = ¢ for ¢ = (1,0,...,0);
return: o - [[, ;"%

Algorithm 4: Solving the PIP using S-units

© W N o AN W N

o
o

This means that N(b;) € 20(”2)\/|A|N(a) and
N((br)/a) € 290 V/]A]

Due to the density of prime numbers, the number of times we expect to need to
draw an element of norm 20("2)\/m before finding one whose norm is prime is
about O(n?). The chosen strategy for enumeration of short elements in a is to draw
elements of the form
a:bil +b22 +...,+b7;c7

for a constant ¢ (typically ¢ = 3 to ensure that the search space is large enough
to find a prime norm) and a choice of ¢ random indices i1,--- ,i.. The vectors
ba, ..., b, are at least as long as by, but in the best case scenario, all vectors are of
the same length. If this were the case, then ||a| ~ /c||b1]|. In practice, we expect
||| to be in fact larger. In any case, the algebraic norm of « is expected to satisfy

N ((j)> > /2N <(b1)) ~ 2XM/|A] ~ 2N (a).

a

Hence the bit size of the norm of an S-unit where S = {p? | p = (@)/a,0 €
Gal(K/Q)} is expected to be O(n) times larger than the bit size of the norm of the
generator of a. In addition, the cardinality of S is equal |Gal(K/Q)| + r € O(n)
where r is the rank of the unit group of K. Here we assume that p is of degree 1,
which happens the majority of the time. In any case, r € Q(n) is a lower bound on
|S].

In the compact representation algorithm, the complexity of the calls to LLL is
proportional to the log(N(a’)) where o’ is an ideal whose norm is proportional to
Hp N(p) where p runs over the prime ideals dividing the input element. Hence, when
computing compact representations of S-units for S defined above, the execution
time of the compact representation algorithm is proportional to |S|log(N(p)) where
p = (a)/a. On the other hand, this term becomes log(N(a)) when the compact
representation is called on a generator of a. Therefore, each call to the compact
representation on input an S-unit is expected to be O(n?) times more expensive
than the call on input a generator of a. Moreover, to solve the PIP with Algorithm 4,
we need the entire S-unit group, which means that there needs to be |S| calls to
the compact representation instead of a single one on the generator of a, hence
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multiplying the compact representation effort by an O(n) factor. Altogether, we
estimate that the S-unit based resolution of the PIP should be O(n?) times slower
than the methods introduced in this paper.

Asymptotically, the slowdown induced by opting for Algorithm 4 does not impact
the overall complexity which is strongly subexponential. However, given that this
complexity is somewhat close to being polynomial, an n? slowdown does impact
concrete computations to the point that the large degree calculations presented in
this paper are infeasible with the S-unit method. To illustrate the sharp increase
of the slowdown, we compared the two methods for small instances of increasing
difficulty on a single core Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz with 192GB
memory. The source code for these tests is supplied with this submission. We see
in Table 3 that trivial examples are more easily solved by using S-units because in
small dimension, the random choice of a small element in a almost always directly
yields a generator. However, the method described in this paper is already showing
its impact on examples taking 30 min (by being twice as fast), and on examples
taking several hours on a single core, it is already faster by a significant margin. This
sharp increase backs our heuristic estimate of an n® speedup. We further document

TABLE 3. Comparison with the S-unit method

H This paper S—unlt method

5.5sec 0.3 sec

2.1 min 1.6 min
144 31.7 min 1.1h
216 3.6h 54h

our estimate by running the following experiment. In the degree 1800 field K ®) of
Section 7, the chosen PIP challenge has the prime decomposition a = pipo where
N(p1) = 133673 and N(p2) is a 733 bit prime. On the other hand, our experiments
showed that random short elements « € a had algebraic norms of about 1,000,000
bits. This is consistent with our estimate that the bit size of the norm of the primes
in S is O(n) times larger than the bit size of the norm of a.

9. Conclusion and future work. We have described a PIP algorithm that uses
the norm relations of [13] that offers better practical performances than prior works
(including those that explicitely or implicitely use norm relations). We were able
to solve the PIP in a field of degree 1800, and to find short generators of ideals in
a field of degree 864.

Short generators of principal ideals are of cryptographic interest because they
are solutions to the v-SVP for v € 20(v™)  Such solutions are sometimes referred to
as mildly short vectors. The search for mildly short vectors in non-principal ideals
was shown to reduce to the PIP in [20]. The heuristic efficient reduction of [20] is
quantum and relies on the decomposition of classes of ideals with respect to a set of
generators of the class group. The recursive S-unit algorithm of [13] can be used to
perform the reduction of v-SVP to PIP of [20]. The resulting algorithm enjoys the
same asymptotic complexity as the methods presented in this paper. In particular,
in special families of fields such as those described in Section 6, the norm relation
method has strong subexponential heuristic complexity, which is a superpolynomial
improvement over the complexity of BKZ. However, the practical implications of
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this norm-relation approach are not clear. Indeed, for most inputs, the full S-unit
group would need to be calculated for some large set S, thus suffering from the
same practical limitations as the S-unit based PIP method described in Section 8.
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