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Abstract—Healthcare industries face challenges when experi-
encing rare diseases due to limited samples. Artificial Intelligence
(AI) communities overcome this situation to create synthetic data
which is an ethical and privacy issue in the medical domain.
This research introduces the CAT-U-Net framework as a new
approach to overcome these limitations, which enhances feature
extraction from medical images without the need for large
datasets. The proposed framework adds an extra concatenation
layer with downsampling parts, thereby improving its ability to
learn from limited data while maintaining patient privacy. To
validate, the proposed framework’s robustness, different medical
conditioning datasets were utilized including COVID-19, brain
tumors, and wrist fractures. The framework achieved nearly 98%
reconstruction accuracy, with a Dice coefficient close to 0.946. The
proposed CAT-U-Net has the potential to make a big difference
in medical image diagnostics in settings with limited data.

Index Terms—CAT-U-Net, Limited Dataset, Medical Image
Analysis, Rare Diseases.

I. INTRODUCTION

The ability to extract features from medical images strongly
suits Deep Learning (DL) architectures [1]-[4]. However, DL
required large samples to reduce false positive and false
negative rates [5]-[9]. Facing the challenge of data scarcity,
especially in rare disease diagnostics, researchers and industry
experts are increasingly turning to synthetic data generation
and data augmentation techniques to bridge the gap [10]-[12].
In real-world clinical settings, Al models can be fooled by
low-quality synthetic data when it comes to identifying the
location and kind of diseases [13], [14]. Moreover, synthetic
data generation in healthcare must navigate complex ethical and
legal landscapes [15], [16], ensuring that privacy is preserved
and inherent biases are not perpetuated [17]. To overcome this
limitation, the proposed framework reduces false positive and
negative rates in limited dataset scenarios also improving the
dice coefficient by over 94%. Figure 1 represents the proposed
CAT-Unet framework pipeline as an exemplary embodiment
of innovation in medical imaging analysis, tailored to operate
with high precision even when constrained to a minimal dataset
of 100 positive samples. At the heart of its architecture lies

a refined encoder-decoder framework: the encoder employs
convolutional layers coupled with max pooling to distill critical
features from images of brain tumors, COVID-19, and wrist
fractures. After that, the decoder uses a new concatenation
technique to improve and broaden these features; this merges
the data’s detailed and abstract properties, making the feature
space much more robust. This method categorizes the decision
according to a predetermined threshold value; scores of 50
or lower are regarded as positive, while scores exceeding 50
indicate negative outcomes.
In summary, the main contributions of this work are:

« The work presents the CAT-U-Net, a new variant of
the U-Net architecture with supplementary concatenation
layers. This advancement enhances the network’s ability to
discern intricate features in medical imaging, significantly
increasing the accuracy of detecting rare pathological
manifestations.

« This research achieved a validation accuracy of 95% and
dice coefficient values of 0.946 by using several kinds of
real-world medical imaging, such as MRI brain tumors,
wrist fracture x-rays, and COVID-19 chest CT scans.

The remainder of this paper is structured as follows: Section
IT describes related works, and how different researchers solve
data-constraints issues. Section III the proposed framework in
detail. Section IV discusses dataset description, experimental
setup, and result analysis Section V highlights the summaries
of this research and future research directions.

II. RELATED WORK

Boosting the efficiency of DL methods in the face of limited
data remains a crucial area of investigation. Conventional
data augmentation practices are applicable in medical imaging
[18]-[20]. However, the generation of poor-quality synthetic
data poses significant risks to medical research, and synthetic
medical data can also raise privacy concerns [21], [22]. To
address these challenges, Chen et al. proposed the Anatomy-
Regularized Representation Learning-based Generative Adver-
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Fig. 1: The pipeline of proposed CAT-U-Net frameworks

sarial Network (ARL-GAN) to address the challenges of lim-
ited labeled data and diverse imaging modalities in medical im-
age segmentation. While effective in tasks like skull and cardiac
substructure segmentation, ARL-GAN faces overfitting and
difficulty generalizing across varied modalities [23]. Similarly,
Shetty et al. introduced RAD-DCGAN to improve radiology
image classification with synthetic data, achieving a 4-5%
accuracy boost over standard augmentation methods. However,
RAD-DCGAN also struggles with ensuring data diversity and
proper annotation, with risks to diagnostic reliability in real-
world applications [24]. Similarly, Mahmood et al. tackled the
issue of data scarcity by proposing an innovative approach
using unsupervised reverse domain adaptation and adversarial
training. This method enables models trained on synthetic data
to interpret real-world medical images accurately, significantly
improving depth estimation accuracy in monocular endoscopy
images. Despite its promise, this approach struggles to simulate
the complex anatomical diversity of human tissues, leading to
difficulties in generalizing models trained on synthetic data
to real-world medical imaging, which may adversely impact
accuracy [25]. Rodriguez-Almeida et al. further explored syn-
thetic data generation to address challenges associated with
small and imbalanced medical datasets in disease prediction.
Their framework showed that synthetic data can enhance
classification performance, particularly in small datasets, but
the results were mixed, with Gaussian Copula methods outper-
forming CTGANSs in many cases. These findings highlight the
limitations of relying solely on synthetic data, underscoring
the need for approaches to improve diagnostic accuracy and
maintain model reliability without over-reliance on synthetic
data [26]. To tackle previous limitations, The suggested CAT-
U-Net framework solves these problems by improving feature
extraction and performing well across various datasets.

ITI1. METHODOLOGY

A. Proposed CAT-U-Net framework approach

The proposed framework, depicted in Figure 2, employs a
symmetrical encoder-decoder structure enhanced with concate-
nation layers for improved feature extraction and diagnostic

precision. The model architecture can be mathematically con-
ceptualized in the following steps:

1) Encoder: The encoder is responsible for capturing the
hierarchical features of the input medical images. For an input
image [ € RS12X512XC " the encoder applies a series of
convolutional layers followed by max-pooling:

Ex(I) = P(o(C(Ek-1(1)))) (1)

where Ey(I) is the output of the k-th encoder block, C' de-
notes a convolutional operation followed by a ReLU activation
o, and P denotes a max-pooling operation.

2) Concatenation Layers for Feature Extraction: At each
level of the decoder, features from the encoder are concatenated
with upsampled features to preserve high-resolution details:

F, = CDHCﬂT(U(Dk_l),En_k) (2)

Where Fj. represents the concatenated features, U denotes
the upsampling operation, Dy_1 is the output of the previous
decoder block, and E,_j is the feature map from the encoder
at the corresponding level.

3) Decoder: The decoder reconstructs the segmentation map
from the compressed feature representation:

Di(F) = o(U(C(F))) (3)

Where Dy (F) is the output of the k-th decoder block, and
the operations are defined as before.

B. Robust Feature Learning with Concatenation Layers

The introduction of concatenation layers in the CAT-U-Net
framework fosters a more expressive feature representation,
enhancing the learning capacity of the network even with lim-
ited data. The concatenation operation can be mathematically
formalized as a union of feature sets from different levels of
the network, enabling the preservation and utilization of multi-
scale information:

]: (E(!J)nca t (I}

encoder

SUF D oer) @)
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where .Fc(i}mat represents the concatenated feature map at layer
L, .Fé;)wder is the feature map from the encoder, fdi}mdw is
the feature map from the decoder, U denotes the upsampling

operation, and @ represents the concatenation operation.

C. Segmentation Map Generation

The final convolutional layer maps the concatenated features
to the segmentation map:

S = Convyx1(Dn(F)) (5)

Where S represents the final segmentation map and Convyxy
denotes a 1x1 convolution operation that consolidates the
feature maps into the final output.

D. Binary Segmentation via Thresholding

The model employs a thresholding technique to binarize
the segmentation map, distinguishing between positive and
negative diagnoses:

1 if S(z,y) <T
0 otherwise

B(z,y) = (©)

Where B is the binarized segmentation map, (z,y) are the
pixel coordinates, and T is the threshold value, empirically set
to 50 in this study.

E. Leveraging CAT-U-Net for Precise Medical Diagnosis: A
Threshold-Based Approach

This Algorithm 1 encapsulates the methodology employed
by the CAT-U-Net model for diagnosing medical conditions
from imaging data. The model exclusively trains on posi-
tive samples for a given condition, such as bone fractures.
The initialization of the CAT-U-Net involves setting up an
encoder-decoder architecture that includes concatenation layers
to enhance feature extraction capabilities. Once initialized, the
model undergoes training with preprocessed positive samples,
employing mean squared error (MSE) as the loss function to
optimize its parameters. This training process leverages the
model’s ability to reconstruct the training images accurately,
honing its capacity to identify intricate features indicative of the
medical condition. The evaluation phase introduces a mixed test
dataset comprising positive and negative samples. The CAT-U-
Net predicts these samples, and the reconstruction performance
is quantified using MSE losses. A thresholding method is then
applied to these MSE losses: samples resulting in a loss equal to
or less than 50 are classified as positive (indicating the presence
of the condition), while those with losses greater than 50 are
classified as negative.

E Optimization Framework for Limited Data

The CAT-U-Net model is optimized to extract the maxi-
mum amount of diagnostic information from a limited dataset,
employing a robust loss function combined with a regulariza-
tion strategy to ensure a comprehensive learning of features.
The optimization objective balances the need for accurate

Algorithm 1: Proposed CAT-U-Net Based Medical
Image Diagnosis Procedure

Data: positive_samples, mixed_test_samples
Result: final_disease_diagnosis
1 Function Main (positive_samples, mixed_test_samples) :
2 Step 1: Initialize CAT-U-Net Model
3 cat_u_net +— initialize_CAT U_Net()
4 Step 2: Preprocess Positive Training Samples
5 preprocessed_samples <+— preprocess_images(positive_samples)
6 Step 3: Training the CAT-U-Net Model
7 X_train, X_test, y_train, y_test +— train_test_split(preprocessed_samples)
8 history +— cat_u_net.fit(X_train, y_train, validation_data=(X_test, y_test))

9 Step 4: Model Evaluation with Mixed Test Samples

10 preprocessed_test_samples +— preprocess_images(mixed_test_samples)

1 predicted_samples +— cat_u_net.predict(preprocessed_test_samples)

12 Step 5: Calculate Mean Squared Error (MSE) Loss

13 mse_losses +— calculate_mse(preprocessed_test_samples,
predicted_samples)

14 Step 6: Thresholding for Final Diagnosis

15 threshold +— 50

16 final_predictions <+ []

17 foreach mse in mse_losses do

18 if mse < threshold then

19 | final_predictions.append(’ Positive")

20 else

21 l_ final_predictions.append("Negative')

22 return final_predictions

23 print("Final Disease Diagnosis:"”, final_predictions)

reconstruction against the complexity of the model, facilitating
generalization from only 100 samples:

0 = arg mﬂiﬂ (LMSE(G) + )\R(fconcat; 9)) (7)

Where Lysg(#) is the mean squared error loss that measures
the fidelity of image reconstruction, R represents the regular-
ization term that promotes the learning of a diverse feature
set Feoneat, and A serves as a hyperparameter that ensures a
balance between loss minimization and feature richness.

To achieve this objective, Stochastic Gradient Descent (SGD)
is used to iteratively update the model parameters 8, reducing
the loss on the training data:

9t+1 =6; — Mt - vﬂLMSE(Gt) (8)

Here, 7, is the learning rate at epoch ¢, dynamically adjusted
according to a decay schedule contingent on the validation loss
plateau, ensuring steady progress toward the optimal parameter
set. This optimization framework is tailored for environments
where data scarcity is a significant constraint, enabling the
CAT-U-Net to perform with high diagnostic precision.

G. Model Robustness and Healthcare Implications

A theoretical framework supports the CAT-U-Net model’s
robustness, ensuring its performance with limited healthcare
datasets governed by a specific boundedness condition on the
feature space.

"fco'ncat” S K (9)

Where K is a predefined constant that bounds the complexity
of the concatenated feature space, ensuring the model captures
a comprehensive set of features from medical images without
succumbing to overfitting. This is crucial in healthcare settings
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Fig. 2: The proposed CAT-U-Net framework architecture with concatenation layers

where the variance in medical imagery is high, but the volume
of data is often low. Coupled with a compact training set, this
constraint ensures that CAT-U-Net maintains a high general-
ization capability, as demonstrated by its predictive accuracy
on unseen data.

The optimization goal of the model encapsulates the bal-
ance between minimizing reconstruction error and maintaining
feature diversity, thus effectively utilizing limited data:

(10)
an

Where A is a hyperparameter that harmonizes the loss
minimization and feature representation complexity. This equa-
tion articulates how CAT-U-Net is specifically designed to
perform in environments where exhaustive data collection is
challenging, a common scenario in medical diagnostics.

6* = argmin (Lysg(6) + AR (Feoneats )

subject to | Dypin| < 100

To finalize the diagnostic process, a threshold T' on the
MSE loss is used to discern positive from negative cases,
encapsulating the diagnostic capability of CAT-U-Net within
a decision boundary:

“Positive”  if Lwse([(z,y),I(z,y)) <
Diagnosis(z,y) = T
‘Negative’ otherwise.

(12)

This threshold-based diagnostic criterion aligns with the
clinical need for accurate and reliable decision-making based
on quantifiable image analysis.

The mathematical rigor presented herein demonstrates the
robustness of the CAT-U-Net framework and its practical
applicability in future healthcare industries, where data-driven
decision-making is paramount. The ability to provide accurate
diagnoses with fewer samples translates to quicker, more
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efficient medical care, potential reductions in healthcare costs,
and broader accessibility of high-quality medical diagnostics.

IV. PROPOSED FRAMEWORK TRAINING AND
OPTIMIZATION

The CAT-U-Net framework was implemented using the
TensorFlow framework due to its comprehensive support for
DL operations and GPU acceleration. The following subsection
explains this study’s implementation, training procedure, and
evaluation protocol.

A. Training Procedure

Training the CAT-U-Net involved steps, starting with pre-
processing the input images. Each image was resized to a
uniform dimension of 256 x 256 x 4 and normalized to have
pixel values in the range [0, 1]. The network was then trained
using the preprocessed images, with the Mean Squared Error
(MSE) as the loss function. Stochastic Gradient Descent (SGD)
with a learning rate of 0.01 was employed as the optimizer.
To prevent overfitting, a dropout rate of 0.5 was applied after
each convolutional layer in the decoder part of the network.
The model was trained for 50 epochs with a batch size of 8,
and the best-performing model on the validation set was saved
for subsequent evaluation.

B. Hyperparameter Optimization

The model’s hyperparameters were meticulously optimized
to enhance performance, with a focus on the learning rate
(n7) adaptation strategy. To calibrate 7, an exponential decay
function was applied, governed by the following relation:

Mes1 =1 x 717 (13)

Where 1, is the learning rate for the subsequent epoch,
ne is the learning rate for the current epoch, « is the decay
rate, ¢ is the current epoch number, and 7 is the patience
parameter, denoting the number of epochs after which the
plateau condition is evaluated. The decay rate ~ was set to
0.1, and the learning rate was reduced if no improvement in
validation loss was observed throughout ten epochs (7 = 10).

V. RESULTS AND DISCUSSION

A. Experimental Setup

Experiments were conducted on a High-Performance Com-
puting (HPC) system featuring 31 GB of DDR4 RAM and
an NVIDIA GeForce GTX 3070 GPU with 8 GB of GDDR6
memory, operating on a Linux Ubuntu environment. This
setup was chosen to effectively manage the computational
requirements of the CAT-U-Net framework, particularly for
processing medical imaging data and training the model under
data-constrained conditions. The framework’s robustness was
validated across MRI brain tumor images, COVID-19 chest
CT scans, and wrist bone fracture X-ray images.

B. Dataset Description

The CAT-U-Net framework underwent validation using three
distinct medical imaging datasets from Kaggle, each addressing
different diagnostic challenges: the Br35H dataset for MRI
brain tumor detection [27], a chest CT scan dataset for COVID-
19 identification [28], and an X-ray dataset for Wrist Bone
Fracture [29]. Training utilized 100 images from each dataset,
while testing employed 50 images, demonstrating the frame-
work’s robustness in detecting various pathological features,
particularly in scenarios with limited data, a common challenge
in medical diagnostics.

C. Performance Metrics for Evaluation

The proposed CAT-U-Net framework’s effectiveness was
assessed using reconstruction accuracy and the Dice coefficient
to measure image precision and segmentation under limited
data constraints.

1) Reconstruction Accuracy: Reconstruction accuracy was
computed as the inverse of the mean squared error (MSE)
between the original and reconstructed images across the
test set. This metric reflects the model’s ability to faithfully
reconstruct key features in medical images, which is crucial
for accurate diagnosis:

N
. 1 -
Reconstruction Accuracy = 1 — N ;zl 17 — I;]| (14)

where I; represents the original image, fg- is the reconstructed
image by the model, and N is the number of images in the
test dataset.

2) Dice Coefficient: The Dice coefficient, also known as
the Dice similarity coefficient (DSC), was used to measure the
overlap between the predicted segmentation and the ground
truth, providing a spatial accuracy assessment of the segmen-
tation:

2x|XNnY]|
X+ Y]
Where X represents the set of pixels in the ground truth

segmentation, and Y denotes the set of pixels in the predicted

segmentation by the model. A higher Dice score indicates more
significant overlap and, thus, higher segmentation accuracy.

Dice Coefficient = (15)

D. Quantitative Evaluation of CAT-U-Net Across Diverse Med-
ical Imaging Datasets

The CAT-U-Net framework demonstrates high efficacy in
medical image analysis, as evidenced by comprehensive sta-
tistical and visual evaluations across multiple datasets. In the
Bone Fracture dataset, a confusion matrix (Figure 5) reveals
the model’s high predictive accuracy, correctly diagnosing
97 out of 99 positive cases, showcasing its sensitivity and
specificity in detecting medical conditions. This accuracy is
further supported by a high Dice coefficient of 0.946 (Figure
4), indicating an exceptional overlap between the model’s
predicted segmentations and the ground truth. Additionally,
the training and validation loss and accuracy curves (Figure 6)
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exhibit a steady convergence, highlighting the model’s robust
learning capability from a limited number of training samples.
As depicted in Figure 3, the CAT-U-Net achieves consistently
high performance across different datasets, with reconstruction
accuracies of 94% for Brain Tumor (MRI), 93% for COVID-
19 (CT Scan), and 98% for Wrist Fractures (X-ray). The
corresponding Dice coefficients also remain high, at 93%,
92%, and 95%, respectively. These results confirm the model’s
adaptability and precision across diverse clinical scenarios,
underscoring its potential as a reliable tool for medical image
diagnostics.

100

B Accuracy 98%
== Dice Coefficient

Percentage (%)

Brain Tumor (MRI)

COVID-19 (CT Scan)
Dataset

Wrist Fractures(X-ray)

Fig. 3: Performance Analysis of the Proposed Framework
Across Different Datasets
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Fig. 4: Dice-Cofficient value for Bone fracture dataset

E. Quantitative Comparison with Existing State-of-the-Art
Methods

Figure 7 provides a comparative analysis of the proposed
CAT-U-Net framework against several state-of-the-art models,
including SIFA [23], ARL-GAN semi-supervised [23], U-Net
[30], and PrEGAN [18], in terms of accuracy o Dice Similarity
Coefficient (DSC). The proposed framework achieves superior
performance with a DSC of 94.0%, outperforming other meth-
ods such as PrEGAN (88.32%), ARL-GAN semi-supervised
(84.09%), SIFA (81.3%), and U-Net (76.99%). These results

CAT-UNET Confusion Matrix
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Actual Classes
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Fig. 5: Proposed framework Confusion matrix
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demonstrate the efficacy of the CAT-U-Net framework in
achieving higher segmentation accuracy and robustness, partic-
ularly in medical imaging tasks with limited data availability.

VI. CONCLUSION AND FUTURE WORK

In conclusion, while the CAT-U-Net framework presents a
significant advancement in medical image analysis, its broader
adoption in the healthcare industry will depend on addressing
integration challenges and ensuring robustness across diverse
clinical environments. Future research could focus on optimiz-
ing the framework for even smaller datasets and more complex
imaging modalities and integrating advanced adversarial train-
ing methods to enhance robustness against adversarial attacks
in clinical applications. Continued research in these areas will
be essential to unlocking the full potential of this technology
for improving patient outcomes.
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