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Abstract

Processing graphs with temporal information (the temporal
graphs) has become increasingly important in the real world.
In this paper, we study efficient solutions to temporal graph
applications using new algorithms for Incremental Minimum
Spanning Trees (MST). The first contribution of this work
is to formally discuss how a broad set of setting-problem
combinations of temporal graph processing can be solved using
incremental MST, along with their theoretical guarantees.

Despite the importance of the problem, we observe a
gap between theory and practice for efficient incremental
MST algorithms. While many classic data structures, such
as the link-cut tree, provide strong bounds for incremental
MST, their performance is limited in practice. Meanwhile,
existing practical solutions used in applications do not have
any non-trivial theoretical guarantees. Our second and main
contribution includes new algorithms for incremental MST
that are efficient both in theory and in practice. Our new
data structure, the AM-tree, achieves the same theoretical
bound as the link-cut tree for temporal graph processing and
shows strong performance in practice. In our experiments, the
AM-tree has competitive or better performance than existing
practical solutions due to theoretical guarantees, and can be
significantly faster than the link-cut tree (7.8-11X in updates
and 7.7-13.7X in queries).

1 Introduction

The concept of graphs is vital in computer science. It is
relevant to lots of applications as it abstracts real-world objects
as vertices and their relationships as edges. Regarding the
relationships between objects, time can usually be a crucial
component. Graphs with time information are referred to as
temporal graphs, and efficient algorithms for temporal graphs
have received immense attention recently. Time information
can be integrated in different settings. A classic setting is that
each edge has a timestamp, and a query, such as connectivity, is
augmented with a time interval [#;, #;], and only edges within
this time period are involved in the query. Dually, each edge e
can have a time period [#1, £2]; a query is on a certain timestamp
t, and only considers edges existing at time t. Meanwhile, edges
and queries can come in either offline (known ahead of time)
or online (immediate response needed) manner. Combined
with numerous graph problems, there are a large number of
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research topics (a short list of papers in the recent years: [4, 5, 9—
11, 18, 23, 25, 33, 40, 43, 47, 52, 55-59]). Most of them focus on
one specific setting-problem combination.

In this paper, we are interested in solutions for a class
of temporal graph applications for a wide range of setting-
problem combinations, both in theory and in practice. Our
core algorithmic idea is to support an efficient data structure
for the incremental minimum spanning trees (MST). The MST
for a weighted undirected graph G = (V,E) is a subgraph
T = (V,E’) such that E’ C E and T is a tree that connects all
vertices in V with minimum total edge weight. The incremental
MST problem requires maintaining the MST while responding
to edge insertions. Some existing studies [4, 10, 47], both
from the algorithm and application communities, have shown
connections between incremental MST to a list of specific
temporal graph applications. At a high level, one can embed
the temporal information into the edge weight, and temporal
queries can then be converted to path-max queries on the MST,
i.e., reporting the maximum edge weight on the path between
two queried nodes. We show a running example in Sec. 2.2. The
first contribution of this paper is to formally discuss (in Sec. 7)
a wide range of temporal graph applications with different
setting-problem combinations, and how incremental MST
can be adapted to address them.

Given the broad applicability, efficient incremental MST
algorithms are of great importance. Indeed, many classic
data structures provide efficient solutions in theory. For
example, the famous link-cut tree [46] can maintain the
incremental MST with O(log n) time per insertion, and a path-
max query in O(logn) time, both amortized. Other relevant
data structures (e.g., the rake-compress tree (RC-tree) [2] and
the top tree [50]) can provide similar bounds. Despite the strong
bounds in theory, these results are often considered to have
limited practicality due to large hidden constants and/or high
programming complexity. Many other data structures, such
as OEC-forest [47] and D-tree [8], are used in practice and
can be much faster than the link-cut tree. Experiments in [47]
show that, on a specific temporal graph processing application,
the OEC-forest is up to 15X faster than the link-cut tree in
updates and 13X in queries. However, no non-trivial bounds
(better than O(n) per operation) are known for these practical
data structures. Hence, it remains open whether an efficient
solution exists for incremental MST (and relevant temporal
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graph applications) both in theory and in practice.

The second and the main contribution of this paper is a new,
theoretically and practically efficient data structure for
incremental MST, referred to as the Anti-Monopoly tree
(the AM-tree). In addition to strong theoretical guarantees
and practical efficiency, the algorithms of AM-tree are also
simple, leading to good programmability and applicability to
real-world problems. An AM-tree T is a rooted tree that reflects
a transformation of the MST T of the graph, such that for any
two vertices u and o, the path-max query on T is the same
as in T. The most important property of AM-tree is the anti-
monopoly rule (AM-rule), which requires each subtree size to
be no more than a factor of 2/3 of its parent. This ensures
O(log n) tree height for a tree with size n, and thus bounded
cost for updating and searching the tree. The algorithm for
AM-trees is based on two simple primitives. The first primitive,
Link(u, v, w), incorporates a new edge between u and v with
weight w inserted to the original graph. Link will properly
update the tree to ensure that AM-tree still preserves the correct
answers to path-max queries to the new graph, but may violate
the size constraint of the tree. The second primitive, Calibrate,
modifies the tree to obey the AM-rule, and thus restores the
logarithmic tree height. In Sec. 4, we first present algorithms
that strictly keep the tree height in O(logn) after handling
edge insertions, which we call the strict AM-tree. We provide
two algorithms for Link: LinkByPerch, which is algorithmically
simpler, and LinkByStitch, which performs better in practice. In
both cases, we prove that a path-max query can be performed in
O(log n) worst-case cost, and each insertion can be performed
with O(log n) amortized cost (O(log? n) in the worst case). The
theoretical results are presented in Thm. 4.5.

The strict AM-tree, however, requires maintaining the
child pointers in each node, which may increase performance
overhead in practice. In Sec. 5, we further extend AM-tree to the
lazy AM-tree, which does not rebalance the tree immediately,
but postpones the Calibrate operation to the next time when
a node is accessed. The lazy version directly uses the same
link primitive as the strict version, which can be either Perch-
based or Stitch-based. It redesigns Calibrate such that it can be
performed lazily, and only requires each node to maintain the
parent pointer. Compared to the strict version, the lazy version
achieves the same O(logn) amortized cost for insertion and
path-max query, and provides better performance in practice.

For all versions of AM-tree, the (amortized) theoretical
bounds match the best-known bounds of link-cut tree. The core
idea to achieve the bounds is based on the potential function
in Eq. 4.2, such that the AM rule can be incorporated to ensure
the potential does not increase much during updates, and can
always be restored by the Calibrate functions.

To support more settings in temporal graph processing,
we also persist AM-trees in Sec. 6. A persistent data structure
keeps all history versions of itself upon updates. Our solution
is based on a standard approach using version lists [15, 42],
which preserves the same asymptotic cost for insertions and
incurs a logarithmic overhead per path-max query.

Using AM-tree to support incremental MST, we can derive
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Figure 1: Outline and contributions of this paper.

solutions for various temporal graph processing. In Sec. 7, we
discuss a series of relevant applications and their solutions
using incremental MST, as well as their theoretical bounds
enabled by our new algorithm.

The AM-tree is also easy to implement. Our source code is
publicly available [14]. We tested different versions of AM-tree
in the scenario of temporal graph processing. We compare
AM-tree against the solution using link-cut tree [46], and a
recent solution using OEC-forest [47]. As discussed, the link-
cut tree provides strong theoretical bounds, but may incur
high overhead in practice. OEC-forest was proposed as a more
practical solution, but has no theoretical guarantee. AM-tree
achieves the same theoretical guarantee as link-cut tree, and
also achieves strong performance in practice. Overall, our
lazy AM-tree based on Stitch gives the best performance— on
average across seven tested graphs, its updates are 8.7x faster
than link-cut tree and 1.2x faster than OEC-forest, and queries
are 10.4x faster than link-cut tree and 2.0x faster than OEC
forest. We summarize the contributions of this paper in Fig. 1.

2 Preliminaries

2.1 Graphs and Minimum Spanning Trees Given a graph
G = (V,E), we use a triple (u,0,w) to denote an edge in E
between u and v with weight w. With clear context we also use
(u,v) and omit the weight w. We use n = |V| as the number of
vertices. For simplicity, throughout this paper we assume that
the edge weights are distinct. In practice we can always break
ties consistently. For a path P in G, we use max(P) to denote
the maximum edge weight in P.

Given a weighted undirected graph G = (V,E), the
minimum spanning tree (MST) is a subgraph T = (V, E’) such
that E’ C E and T is a tree that connects all vertices in V with
minimum total edge weight. More generally, the minimum
spanning forest (MSF) problem is to compute an MST for every
connected component of the graph.

In a rooted tree, the depth of a node is the number of its
ancestors in the tree. The height of a (sub)tree is the longest
hop distance from it to any of its descendants. The size of a
(sub)tree is the number of nodes in the tree. We use node and
vertex interchangeably in this paper.

2.2 Temporal Graph and Path-Max Queries Throughout
the section, we will use one specific problem to introduce
the connection between temporal graphs and MST, with an
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illustration given in Fig. 2. This problem, which we refer to
as the point-interval temporal connectivity, considers a
temporal graph G* where each edge e is associated with a
timestamp #(e). A query (u,v, 1, t;) considers all edges with
timestamp in [#1,#;] and determines whether u,0 € V are
connected by these edges. To do this, one can maintain an
auxiliary dynamic graph G! such that an edge e is added to G
at time t(e) with weight —¢(e) [10]. We use G; to denote the
status of the auxiliary graph at time ¢. With clear context we
drop t and directly use G. If a path P in G between two vertices
u and v has maximum edge weight max(P) = w, it means that
all edges on the path are added after time |w|. To consider
all paths between two vertices to determine connectivity, we
define the PathMax query on a graph G as follows.

DEFINITION 1. (PATH-MAX) Given a graph G = (V,E), the
path-max query on two vertices u,0 € V is defined as
PathMaxg(u,v) = min{max{w | (u,0,w) € P}} where P is
any path connecting u and v. With clear context we drop the
subscript G and only use PathMax(u, v).

To determine whether u,0 € V are connected by edges
within time [#, £;], one can compute w = PathMax(u, v) on
the auxiliary graph G;,, which only contains edges appearing
before time t,. If |w| > #;, then there exists a path P such that
all edges on P appear after #;, and thus u and v are connected.
Otherwise u and v are disconnected. Fig. 2 shows an example
of how to use incremental MST to solve the point-interval
temporal connectivity problem.

To answer path-max queries, one can generate another
(usually sparser) graph to accelerate queries. We say two graphs
G = (V,E) and G’ = (V, E’) are path-max equivalent, or PM-
equivalent, if Vu,0 € V,PathMaxg(u,v) = PathMaxg (u,v).
Existing work has proved the following fact [10].

Fact 2.1. ([10]) The MST of a graph G is PM-equivalent to G.

Converting PathMax queries on a graph to its MST simpli-
fies the problem, since only one path exists between any two
vertices in the MST.

2.3 Incremental MST Given a graph G = (V, E), starting
with n vertices and no edges, a data structure is designed to
support the following operations:

« Insert(u, v, w): insert an edge (u, v, w) into the graph.

« PathMax(u, v): report the maximum edge weight on the path
between u and v on the MST.

« ReportMST(): report the current MST. Such a query may
require to report the total weight or to determine whether
an edge is in the MST.

Based on the discussions in Sec. 2.2 and Fact. 2.1, we
can convert the aforementioned point-interval temporal con-
nectivity problem to an incremental MST problem. The main

Note that the main technique of this paper is to design efficient algorithms
for maintaining the MST for the auxiliary graph, which is more often referred
to in this paper. To avoid confusion, we use the notation G to denote the
auxiliary graph and use G* to denote the original temporal graph.
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contribution of this paper is to support efficient incremental
MST both in theory and in practice, thus leading to improved
solutions to temporal graph applications.

In a graph G, the edge with the largest weight on a
cycle is not included in the MST (the red rule [49]). Thus,
when inserting edge (u, v, w), many existing incremental MST
algorithms [4, 47] find the maximum edge weight between u
and o in the current tree, and replace it with the new edge if w
is smaller. Our algorithm also makes use of this idea.

3 The Anti-Monopoly tree

In this section, we propose the AM-tree to support incremental
MST. Recall that an incremental MST needs to maintain the
edges in the MST and efficiently answer PathMax queries. To
make the queries and updates efficient, we want to keep the tree
diameter small, specifically O(log n). However, this is not easy
since the MST itself may have a large diameter—it can even be
a chain of length n — 1. Hence, we first introduce the concept
of a transformed MST (T-MST), and propose our solution, the
Anti-Monopoly tree (AM-tree), based on it.

DEFINITION 2. (TRANSFORMED MST (T-MST)) Given a con-

nected weighted graph G = (V, E) and its minimum spanning

treeT = (V,E). A transformed MST (T-MST) of’f is a tree

T = (V, E) with the following properties:

« The vertex set in T is the same as T.

« There is a one-to-one mapping between E and E, such that the
weights of corresponding edges are the same.

« Yu,0 € V, PathMaxr(u,v) = PathMax;.(u,v).

For simplicity, we use the same term T-MST to refer to
the transformed minimum spanning forest, if the graph is
disconnected. We say a T-MST is valid or correct if it satisfies
the invariants in Definition 2. We give an example of such a
transformation in Fig. 3. Note that, although there is a one-
to-one mapping between both the vertices and edges of T and
T, the corresponding edges may or may not be linking two
corresponding vertices. For example, in Fig. 3, the edge (b, ¢, 3)
in the MST corresponds to edge (a,d, 3) in the T-MST.

The goal of transforming T to T is to achieve a low diameter,
such that a path-max query can simply check all edges on the
path. Similarly, organizing the tree as a rooted structure can
facilitate PathMax queries. Below, we define AM-tree, which is
arooted, size-balanced T-MST structure. In AM-tree, each node
u maintains the following information: parent[u] (the parent
of u), size[u] (the subtree size of u), and weight[u] (the edge
weight between u and its parent).

DEFINITION 3. (ANTI-MONOPOLY TREE (AM-TREE)) Given a
connected weighted graph G = (V,E), an AM-tree is a rooted
T-MST such that for each (non-root) node u,

size[u] < (2/3) - size[ parent[u]] (Anti-Monopoly Rule)

The key property of the AM-tree is the anti-monopoly rule,
which disallows any child’s size to be a factor of 2/3 or larger
than its parent. This guarantees O(log n) height of the tree.
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timestamps. For example:
query(A, D, 3, 7)=true
query(D, F, 3, 7)=false

For query(A,D,3,7): take G att = 7, perform PathMax(A,D)= -4. Since |-4|>3,
the path between A and D is valid after time 3. Return true.

For query(D,F,3,7): PathMax(D,F)=-2 on G att = 7. Since |-2|<3, that edge
does not exist in time [3,7]. Return false.

Figure 2: Solving point-interval temporal connectivity on graph G* using incremental MST [10].

A Transformed
MST (T-MST)

The Minimum

The original
Graph Spanning Tree (MST)

Figure 3: An example of the transformed MST (T-MST). A T-MST
redistribute the edges in an MST, but preserves the answers to path-
max queries in the MST.

Fact 3.1. In a tree T with size n, if all nodes satisfy the anti-
monopoly rule, then the height of T is O(logn).

For a node x and its parent y, we say x is a heavy child of
y if size[x] > (2/3)size[y]. A node y is unbalanced if it has a
heavy child, and is balanced or size-balanced otherwise.

The Promote primitive for the AM-tree To ensure the
anti-monopoly rule, we may need to transform the tree while
preserving the PathMax queries. We start by showing the TW
transformation mentioned in [47].

Fact 3.2. (TW TRANSFORMATION [47]) Given a graph G =
(V,E) and two edges (x,y,w;) and (y,z,wy) in E such that
w1 2 Ws, the PathMax queries on G are preserved if we replace
the edge (x,y, wy) with edge (x, z, wy).

Note that this is also simply true on a T-MST. Based on
this observation, we define a promote operation on the AM-tree.
Promote(x) promotes node x one level up (closer to the root)
without affecting the PathMax queries of the tree. We illustrate
this process in Fig. 4. Let y be the parent of x, and z the parent
of y. Promote(x) executes one of the two following operations
to promote x, both of which are TW-transformations.

« Shortcut. If w; > wy, x is directly promoted to be z’s child,
still with edge weight w;. y now becomes a sibling of x.

« Rotate. If w; < wy, or if y is the root, y is pushed down to
be x’s child, still with edge weight w;. If y is not the root, x
will be attached to z as a child with edge weight ws.

The Promote operation is an important building block to
both the correctness and the efficiency of AM-tree. In the next
sections, we will discuss efficient algorithms for AM-trees. We
first show a strict version of AM-tree in Sec. 4, which always
keeps the tree height in O(log n). However, the strict version
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Case1:w; >w, Case2:w; <w,
w2 Promote(x
0y, W,
w. '
shortcut rotate

Figure 4: An illustration of the Promote algorithm.

requires maintaining the child pointers for all nodes, which
brings up performance overhead in practice. To tackle this, in
Sec. 5 we discuss the lazy version of the AM-tree, which only
requires keeping the parent pointer of each node. By avoiding
maintaining child pointers, the lazy version is much simpler,
more practical, and easier to program.

4 The Strict AM-tree

In this section, we present the strict AM-tree, where all tree
nodes strictly follow the AM-rule at all times. Recall that an
AM-tree T supports the following operations: Insert(u, v, w),
which updates the tree to reflect an edge insertion (u, v, w)
to the graph, PathMax(u, v), which gives the maximum edge
weight between u and v on the MST, and ReportMST, which
reports information of the current MST.

Among them, we only need to design the Insert(u, v, w)
function that maintains the tree invariants, since PathMax and
ReportMST are read-only. We show two solutions to approach
this. The first solution is based on a helper function Perch, and
is algorithmically simpler. At a high level, it uses the Perch
function to promote both u and v to the root, and then connects
u and v with weight w, if w is smaller than the current edge
between u and v. The second approach is based on stitching the
paths from u and o to the root without affecting the PathMax
results, which is slightly more complicated but practically faster.
Both algorithms achieve the same theoretical guarantees. In
Sec. 5, we will extend both of them to lazy versions.

4.1 The High-Level Algorithmic Framework We start
with the high-level framework of AM-tree, presented in Alg. 1.
We will analyze the algorithms in Sec. 4.4 and 4.5.

Edge Insertion.  The strict AM-tree rebalances the tree
immediately once it is updated. To insert an edge (u, v, w) into
an AM-tree T, the algorithm starts with a function Link(u, v, w),
which applies the edge insertion (u,v, w) such that the tree
remains valid, but may be unbalanced. This operation may
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insert the new edge into T, or cause an existing edge on T to
be replaced by the new edge, or have no effect to the tree if
the new edge (u, v, w) does not appear in the MST of the graph.
The resulting tree is not unique—one can use multiple ways
to apply Link. We present two Link algorithms: the first one
(Sec. 4.2) is based on a primitive Perch, which is conceptually
simpler; the other one (Sec. 4.3) is based on a primitive Stitch,
which is more complicated but more efficient in practice. We
prove the correctness of the algorithm in Thm. 4.1.

The structural changes in the Link operation may cause the
tree unbalanced. We say a node y is affected (or may become
unbalanced) during the Link operation if either y’s children list
is changed, or the subtree size of any y’s child is changed. We
will show that all such nodes are on the path from u or v to
the root before the Link operation. We collect all these nodes
in a set S. Next, a DownwardCalibrate function is applied on
each node y in S. DownwardCalibrate(y) aims to ensure that
node y achieves a balance with all its children. This operation
first identifies whether y has a heavy child x. If so, x will
be promoted and removed from y’s subtree. This process is
repeated until y is balanced. In Thm. 4.2, we prove that the tree
becomes balanced after the Insert operation.

We note that, to perform DownwardCalibrate, we need to

store the child pointers in each node, and efficiently determine
whether the anti-monopoly rule is violated. To help the reader
understand the high-level idea more easily, we assume a black
box that can determine whether there is a heavy child of a tree
node u (and find it if one exists) with O(1) time. Throughout
the description and analysis, we assume the existence of this
black box, and we give a possible implementation in Sec. 4.6.
Path-max Queries. A PathMax query finds the maximum
edge on the path between u and v on T. Relevant edges can be
identified by first finding Least Common Ancestor (LCA) of u
and v as [, and finding all edges from u and v to [.
Other Queries. Other MST-related information can be easily
maintained during updates. For example, we can modify the
insertion function to maintain the membership of each edge
in the MST. We can use a boolean flag for each edge to denote
if it is in T. Note that an insertion can only cause one edge to
alter in the MST. In Link, when inserting an edge e incurs a
replacement of another edge e’, we can directly change the flag
of both edges in O(1) extra cost. Similarly, one can update the
total weight of the MST after each insertion in O(1) cost.

4.2 The Perch-based Solution We now present the first
implementation of the Link algorithm using the helper function
Perch. We call this algorithm LinkByPerch and present the
pseudocode on Lines 7 to 15 in Alg. 1.

To insert an edge (u, v, w) into the graph, we may need to
update the AM-tree T accordingly such that it is still a valid
transformed MST. Based on the properties of MST, if u and v
were not connected before the insertion, the new edge (u, v, w)
should just appear in the MST. Otherwise, if v and v were
previously connected, the MST may be changed due to the
new edge insertion. In particular, adding edge (u,v, w) may
introduce a cycle on the graph, and the largest edge on the
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cycle should be removed. The AM-tree needs to be updated to
reflect such a change in the true MST.

The LinkByPerch(u,v, w) algorithm starts by calling a
helper function, Perch, on both u and v. The goal of Perch(x)
is to restructure the tree and put node x at the top. It simply
applies Promote on x, until x becomes the root of the tree.
Based on Fact 3.2, the resulting tree is still a valid T-MST, but
the tree height may be affected. After calling Perch on both u
and v, if u and v were originally disconnected, u and v will be
made the root of their own tree in the spanning forest. Hence,
we directly attach u as v’s child with the new edge weight w.

If u and v were already connected before the edge insertion,
the first Perch on u will reroot the tree at u, and the second
Perch on v will further put v on the top, pushing u down as
the child of v. In this case, we simply check the current edge
weight between u and v (stored in weight[u]), and update it to
w if w provides a lower value.

Intuitively, the two Perch operations preserve the validity
of the T-MST before the edge insertion, and then the new edge
is directly reflected on T by connecting u and v by weight w. If
u and v were connected before, after perching both u and v, u
and v should be connected by another edge (u, v, w”). Note that
the design of Promote preserves the path-max queries. Hence,
since the edge (u, v, w’) is the only edge from u and v on T, w’
is the path-max. Therefore, if w < w’, we replace the old edge
with the new edge with weight w < w’.

4.3 Stitch-based Solution Our second approach for inser-
tion is based on the idea of stitching the tree paths from both
u and v to the root. The pseudocode is presented on Lines 16
to 28, and an illustration is shown in 5. Instead of relying on
Promote, this approach directly adds the edge (u, v, w) (for an
insertion) to the tree, and uses TW transformations to move
this edge to its final destination and accordingly restructure the
tree. This approach is slightly less intuitive, but performs faster
in practice since it can touch fewer vertices in this process.

Based on TW transformation, if weight[u] < w, we can
replace the edge with (parent[u],v, w), and recursively call
LinkByStitch(parent[u],v,w). We do the same thing for v.
When this process ends (Line 23), the recursive call must have
reached two vertices u and v such that weight[u] > w and
weight[v] > w. To connect u and v with edge weight w, we
attach the one with smaller subtree size as a child to the larger
one. Later in the analysis, we will show that this is important to
bound the amortized cost of this algorithm. WLOG we assume
size[u] < size[v] (swap them otherwise). In this case, we will
reassign the parent of u to be v with edge weight w.

By doing this, on the current tree T, u is connected to both
its original parent u’ and its new parent v. Let the weight of the
original edge between u and u’ be w’. Then this edge (u, u’, w")
is not a valid tree edge anymore, and we need to relocate it in
the tree. Consider the two edges (u, u’, w’) and (u, v, w). Based
on TW transformation, we can equivalently move (u, u’, w’)
to (u’,0,w’) since w’ > w. Hence, the algorithm finally calls
LinkByStitch(u’, v, w) to finish the process.

Finally, there are two base cases. First, when u and v were
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Algorithm 1: The Strict AM-tree

// We omit the maintenance of the size[-] array for simplicity
1 Function Insert(u, v, w)
2 S « {u,0} U {all ancestors of u} U {all ancestors of v}
3 Link(u, v, w) // Plug in LinkByPerch or LinkByStitch
4 foreach nodey € S do DownwardCalibrate(y)

5 Function PathMax(u, v)
6 ‘ return the maximum edge weight on the path from u to v

// Perch-based Link function
7 Function LinkByPerch(u,v, w)
8 Perch(u)
9 Perch(v)
10 if parent[u] = v then weight[u] < min(weight[u], w)

11 else //u and v were previously disconnected
12 parent[u] « v
13 weight[u] « w

14 Function Perch(x)
15 ‘ while parent[x] # null do Promote(x)

// Stitch-based Link function
16 Function LinkByStitch(u, v, w)

17 if u =0 oru = null or v = null then return

18 else if parent[u] # null and w > weight[u] then
19 ‘ LinkByStitch(parent[u], v, w)

20 else if parent[v] # null and w > weight[v] then
21 ‘ LinkByStitch(u, parent[v], w)

22 else

23 if size[u] > size[v] then swap(u,v)

24 u’ « parent[u]

25 w’ — weight[u]

26 parent[u] « v

27 weight[u] « w

28 LinkByStitch(u’, v, w")

29 Function DownwardCalibrate(y)

30 while y has a child x such that size[x] > %size[y] do
31 ‘ Promote(x)

connected before, then by moving edges up, u and v in the
recursive calls will finally move to their LCA in the tree and
become the same node. In that case, we do not need to further
connect them and can terminate. The second case is when they
were not in the same tree. Then by the recursive calls, one of
them will reach the root, and the parent in the recursive call
becomes null. In that case, the algorithm can also terminate,
since one of the trees has been fully attached to the other.

4.4 Correctness Analysis We first show the correctness of
the algorithm, i.e., after the insertion algorithm, the tree 1) is a
valid T-MST that handles the insertion of edge (u, v, w) to the
original graph, and 2) satisfies the AM rule.

THEOREM 4.1. (CORRECTNESS) Given a graph G = (V,E) and
a "MSTT = (V,Er) for G, after Insert(u,v,w) in Alg. 1,
using either LinkByPerch or LinkByStitch, T is a valid T-MST
forG' = (V,EU {(u,u,w)}).

Proof. To show correctness, we need to verify that the results
of path-max queries on any two vertices are still preserved.
Note that all modifications in DownwardCalibrate only use
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Link u and v with w=8.

Move the edge (u,v,8) up,
until we have weight[u]>w
and weight[v]>w.

In this example, the edge is[
moved up to (d,f,8).

All movements are valid TW
transformations.

Assume size[d]<size[f],
then d’s parent should
be changed to f.

Move edge (d,c,9) to
(c,f,9), which is stilla
TW transformation.
Finally, recursively call
link(c,f,9).

Figure 5: An example of LinkByStitch. The figure illusrates
LinkByStitch(u, v, 8). Values on the edges are edge weights. The
figure shows all vertices on the path from u and v to the root, and
omits all other vertices. An explanation about the process is shown in
the figure, and the pseudocode is presented in Alg. 1 Lines 16-28.

Promote, which are all TW transformations and preserve the
path-max results. Therefore, we only need to show that both
LinkByPerch and LinkByStitch preserve path-max results.

Consider we directly add edge (u,0,w) on T, and get a
graph T" = (V,Er U {(u,v, w)}). Consider the Link algorithm
applied to T, and we perform the same operations on 7’. Then
all path-max queries on T’ should be the same as that on G, so
T’ is PM-equivalent to G. We will show that the final result T
is PM-equivalent to T’. Note that T” may or may not be a tree,
depending on whether u and v were connected before.

For LinkByPerch, T’ is exactly the tree obtained after Line
9 augmented with an additional edge (u, v, w). The final step is
the if-conditions from Line 10. In the first case where u and v
were not connected before, u is set as the child of v with weight
w, obtaining a tree T that is the same as T’. In the second case,
u and v were in the same tree. Therefore after the two Perch
operations, u should be connected with v with an existing edge
(u,0,w’), and T’ further augments an edge (u,0,w) to T. In
this case, only the lower weight should be kept in the MST, and
therefore the algorithm selects the minimum of the original
weight w’ and the new weight w.

For LinkByStitch, the algorithm exactly first augments T
with the virtual edge and gets T’. All later edge movements
are TW transformations, as discussed in Sec. 4.3. Therefore,
during LinkByStitch, T is always PM-equivalent to T’. The
only exception is the base case where u = v, that the edge with
weight w will be dropped in T. In this case, conceptually this
edge in T’ is a self-loop on node u = v. Therefore, omitting it
does not change results for path-max queries. O

We then present the theorem below, which states that the
tree stays balanced after insertion. Due to page limit, we defer
the proof to the full version of this paper [13]. The key proof
idea is to verify that DownwardCalibrate(b) will always fix
the imbalance at node b, without introducing other unbalanced
nodes. Therefore, calling DownwardCalibrate on all affected
nodes in the previous process guarantees to rebalance the tree.

THEOREM 4.2. (BALANCE GUARANTEE) After each Insert opera-
tion, all nodes in the AM-tree are balanced, and the AM-tree has
O(logn) height.

4.5 Cost Analysis We now prove the cost bounds for the
strict AM-tree. Let d(-) be the depth of a node. We first show
the worst-case cost of the two Link functions.
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LEMMA 4.1. The worst-case cost of LinkByPerch or LinkByStitch
is O(d(u) +d(v)).

Proof. The simpler case is LinkByStitch. In each recursive call,
the algorithm reassigns u or v to another node on a higher level.
So the worst-case cost is trivially O(d(u) + d(v)).

For LinkByPerch, we first show that after Perch(u), the
depth of any node can increase by at most 1. Perch(u) performs
a series of Promote operations on u. In a Promote call, let y be
the parent of u. Only the nodes in y’s subtree may have their
depth increased by 1 (the rotate case in Fig. 4). After that, u is
promoted one level up, and y can never be the parent of u again.
Therefore, the depth of any node can increase by at most 1.

In LinkByPerch, we perch both u and v and then connect
u and v. The latter part takes constant time, so we only need to
consider the cost of perching u and v. The function Perch(u)
performs d(u) calls to Promote(u), each of which decreases
d(u) by 1. So Perch(u) takes O(d(u)) time. After perching u,
the depth of v is increased by at most 1. Therefore, Perch(v)
takes O(d(v)) time. Combining all the above, the worst-case
cost for LinkByPerch is O(d(u) + d(v)). 0

We then show the worst-case cost of the Insert operation.
THEOREM 4.3. The worst-case cost for Insert is O(log® n).

Proof. The total cost for Insert includes the cost for Link and
DownwardCalibrate. Based on Lemma 4.1, the cost for Link is
O(d(u) +d(v)) = O(log n). This also means that the number
of affected nodes in S is also O(log n).

To calibrate each node y € S, we use Promote to remove
a heavy child from y. This means that the size of y is reduced
by at least a factor of 2/3. Thus, at most O(logn) Promote
functions are used in DownwardCalibrate(y). Therefore, the
worst-case cost for the Insert is O(log® n). O

Next, we use amortized analysis to show that the Insert
and PathMax operations take O(logn) amortized time. We
define the potential function for a node u as:

(4.1) ¢ (u) = log size[u]

We also define the potential function for the whole tree as:
n n

(4.2) O(T) = Z $(i) = Z log size[i]
i=1 i=1

The potential function is always non-negative, and the potential
of the whole tree is O(nlog n). Recall that the amortized cost for
an operation 0p is Comortized (0p) = Cactuai(0p) +A(P(T)), where
Cactuai(0p) is the actual cost (number of instructions) in the
operation op, and A(®(T)) is the change of potential function
after the operation. We first prove the following important
lemma, which states that, if a promotion is performed due to
imbalance, the amortized cost of Promote is free. In other
words, the cost of the Promote can be fully charged to previous
operations that increase the potential of the tree.

LEmMMA 4.2. If size[x] > (2/3) - size[ parent[x]], the operation
Promote(x) has zero amortized cost.
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Proof. We first show that in both rotate and shortcut, the
potential of the tree will decrease by at least 1. Let y =
parent[x]. Note that during Promote(x), only the potential
for x and y will change. Let s(-) be the size of a node before
Promote, and s’(-) the size after. Based on the assumption
in the lemma, s(x) > (2/3)s(y). In a shortcut case, x’s
potential remains unchanged, and the size of y decreases by
at least a factor of 2/3, causing its potential to decrease by
log,3 > 1. In a rotate case, s’"(x) = s(y). For y, we have
s’'(y) = s(y) —s(x) < (1/2)s(x). The potential change after
a Promote is (logs’(x) + logs’(y)) — (logs(x) + logs(y)) <
log s(y) +log(1/2)s(x) —logs(x) —logs(y) = —1. Combining
the actual cost and the potential change, Promote(x) has zero
amortized cost when size[x] > (2/3)size[parent|x]].

Here we are assuming the cost for Promote(x) is 1. More
precisely, suppose the actual cost of Promote(x) is a constant c.
If we use potential function ¢’ (x) = ¢ log size[x], we will have
Camurtized(op) = Cactual(op) +A(®(T)) =c+(-¢c) =0. a

From Lemma 4.2, we have the following conclusion.

LEMMA 4.3. Assume identifying the heavy child of a node has
O(1) cost. Then DownwardCalibrate has O(1) amortized cost.

Proof. The DownwardCalibrate operation is a sequence of
Promote operations on a node x such that size[x] >
(2/3)size[parent[x]]. Based on Lemma 4.2, all Promote op-
erations have zero amortized cost. Hence, the amortized cost
for DownwardCalibrate is O(1). ]

We now show the amortized cost of the LinkByPerch and
LinkByStitch, which will be used to prove Thm. 4.5.

LEMMA 4.4. The LinkByPerch(u,v, w) operation has O(d(u) +
d(v) + log n) amortized cost.

Proof. By Lemma 4.1, the actual cost of LinkByPerch is
O(d(u) + d(v)). We then prove that the increment of the po-
tential is O(log n). The LinkByPerch function has three steps:
two Perch functions and the final step to link u and v. In the
two Perch calls, we repeatedly promote u or v to a higher level.
For both shortcut and rotate cases, the sizes of all other nodes
are non-increasing, so only ¢(u) and ¢(v) may increase. The
last step connects u and v. The only case that may change the
potential is when a new edge is established, u becomes a child
of v, and only ¢(v) may increase. Combining all steps, the only
increment on the potential function is ¢(u) and ¢(v), so the
increment of the potential function is at most O(log n). a

LEMMA 4.5. The LinkByStitch(u,v, w) operation has O(d(u) +
d(v)) amortized cost.

Proof. By Lemma 4.1, the actual cost of LinkByStitch is
O(d(u) + d(v)). For the potential increment, note that the only
structure change occurs on lines 26 and 27. Since we always
attach the smaller subtree to the larger one, size[v] can increase
by at most twice, increasing ¢(v) by at most 1. Since there are
at most O(d(u) + d(v)) nodes affected in the algorithm, the
potential change is also O(d(u) + d(v)). |
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In a size-balanced tree, d(u) and d(v) are O(logn). Com-
bining Fact 3.1, Lemmas 4.3, 4.4, and 4.5, we have the following
theorem for the entire Insert function.

THEOREM 4.4. The amortized cost for each Insert is O(logn)
using either LinkByPerch or LinkByStitch.

The bound of the PathMax(u, v) query is trivially O(log n)
since the tree height is O(logn). We can find the lowest
common ancestor (LCA) and compare all edges on the path
between u and v. To summarize, we have the following theorem
on the cost bounds for the strict AM-tree.

THEOREM 4.5. The strict AM-tree supports PathMax in O(log n)
worst-case cost, and Insert in O(log n) amortized cost (O(log? n)
worst-case cost).

4.6 Finding Heavy Child of a Node As mentioned, the
strict AM-tree requires a building block to identify the heavy
child (if any) of a given node in the DownwardCalibrate
function. This requires maintaining all child pointers in
each node, and maintaining the heaviest child under possible
changes to the tree structure. For page limit, we present the
algorithm in the full version of this paper [13].

5 The Lazy AM-tree

In Sec. 4, we introduced the strict version of AM-tree, which
always keeps the tree size-balanced. However, this version
requires maintaining all the child pointers in each node and
the building block in Sec. 4.6 to identify the heavy child, which
may bring up unnecessary performance overhead.

In this section, we introduce a lazy version of AM-tree,
which only requires each tree node to maintain the parent
pointer. This version rebalances the tree lazily, so the tree
height is not always bounded by O(logn). However, we will
show that the lazy AM-tree also achieves the same O(log n)
amortized cost for insertions and path-max queries.

5.1 Algorithms We present the algorithm in Alg. 2. This
algorithm still uses the two primitives: the same Link as the
strict version, and UpwardCalibrate. Different from Down-
wardCalibrate in the strict version that rebalances a node with
its children, the UpwardCalibrate function tries to rebalance
a node with its parent. UpwardCalibrate(u) checks the path
from u to the root and ensures that any two of u’s consecutive
ancestors x and y = parent|[x] satisfy size[x] < (2/3) - size[y].
As such, the depth of u is reset to O(log n). To do this, Upward-
Calibrate(x) repeatedly promotes x if x is a heavy child (i.e.,
its size is more than 2/3 of its parent). When x is no longer a
heavy child, we move to its parent and continue.

UpwardCalibrate balances the tree in a lazy way. In
LazyPathMax(u,v), we first call UpwardCalibrate on both u
and o to calibrate the path from each of them to the root. Then
we directly use the plain algorithm to find all edges on the path
and obtain the maximum one.

In Lazylnsert(u, v, w), we also first use UpwardCalibrate
on both u and v to calibrate the path from each of them to
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Algorithm 2: The Lazy AM-tree

1 Function Lazylnsert(u, v, w)

2 UpwardCalibrate(u)

3 UpwardCalibrate(v)

4 Link(u,0,w)  //plug in LinkByPerch or LinkByStitch in Alg. 1
5 Function LazyPathMax(u,v)

6 UpwardCalibrate(u)

7 UpwardCalibrate(v)

8

return PathMax(u, v) // See Alg. 1
9 Function UpwardCalibrate(x)
10 while parent[x] is not null do
11 while size[x] > %size[parent[x]] do promote(x)

12 X «— parent[x]

the root. Then we use the same LinkByPerch or LinkByStitch
functions to connect u and v as in the strict version, and connect
them by an edge with weight w (modifying other edges of the
tree if necessary). The algorithm does not then calibrate the
tree after Link. For this reason, the tree after a Lazylnsert is not
guaranteed to be size-balanced. The rebalance process will be
postponed to the next time when a node is accessed in either
an insertion or a path-max query.

In the next section, we will show that, although the tree
is not guaranteed to be balanced, the amortized costs for both
Lazylnsert and LazyPathMax are still O(log n).

5.2 Analysis We now analyze the lazy AM-tree. We use the
same potential function as in the strict version. We first note
that the correctness of the lazy version can be directly derived
from the same proof for the strict version (Thm. 4.1), and the
following theorem holds.

THEOREM 5.1. (CORRECTNESS OF THE LAZY AM-TREE) Given a
graph G = (V,E) and a T-MST T = (V,Er) for G, after
the Lazyinsert(u,v,w) in Alg. 2 using either LinkByPerch or
LinkByStitch, T is a valid T-MST for G’ = (V,EU {(u,v,w)}).

We now analyze the amortized cost. The UpwardCali-
brate(x) function will not fully calibrate the tree, but it will
calibrate the path from x to the root to ensure the depth of x
becomes O(log n), as stated in the following lemma.

LEmMA 5.1. After UpwardCalibrate on u and v, the depth of u
and v becomes O(logn).

Proof. UpwardCalibrate(x) will make all nodes on the path
from x to the root size-balanced, so the depth of u and then v
will be adjusted to O(log n).

However, the second UpwardCalibrate on v may affect the
depth of u. Similar to the proof of Lemma 4.1, we can show that
UpwardCalibrate(v) increases the depth of any node by at most
1. UpwardCalibrate(v) performs a series of Promote operations
on v or v’s ancestors. Let x be the node being promoted and
y the parent of x, then the depth of nodes in y’s subtree may
increase by 1 (the rotate case in Fig. 4). After that, y can never
be the parent of the node being promoted again. Hence, the
depth of any node can be increased by at most 1. Both u and v
have depth O(log n) after UpwardCalibrate on u and v. a
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We then show that the UpwardCalibrate function itself
only has O(log n) amortized cost. Note that since UpwardCali-
brate may work on an unbalanced tree, it may access Q(log n)
nodes on the path, resulting in an Q(log n) actual cost. How-
ever, since some of the operations, specifically the Promote
operations, rebalance the tree and decrement the potential
function, the amortized cost can be bounded in O(log n).

LEMMA 5.2. The amortized cost of UpwardCalibrate is O(log n).

Proof. First of all, note that the Promote function in the inner
while-loop on Line 11 is performed only if imbalance occurs. In
Lemma 4.2, we proved that this operation has zero amortized
cost, since it decrements the potential function. Therefore, the
entire while-loop on Line 11 has O(1) amortized cost, indicating
that each iteration of the outer while-loop on Line 10 only has
O(1) amortized cost.

We then prove that the outer while-loop has O(logn)
iterations. This is because in each iteration, when the inner loop
terminates, we must have size[x] < %size[parent[x]]. Then
we update x to its parent and continue to the next iteration.
Therefore, each iteration increases the size of the current node
x by at least a factor of 3/2. In at most O(log n) iterations, the
outer while-loop terminates. a

Combining the above lemmas and the amortized cost of
LinkByPerch and LinkByStitch proved in Lemma 4.4 and 4.5,
we have the following theorem.

THEOREM 5.2. The lazy AM-tree supports the Lazylnsert and
LazyPathMax in O(log n) amortized time per operation.

6 Persisting the AM-tree

We now discuss how to persist AM-tree upon updates, which is
required in certain temporal graph applications. Since we focus
on temporal graphs, we mainly consider partial persistence,
where updates are applied only to the last version but we can
query any history version. The methodology here also extends
to the fully persistent setting where all versions form a DAG
instead of a chain. To persist the AM-tree, we need to persist
the arrays parent|-] and weight[-]. Below we use the parent|-]
as an example. Assume there are m = Q(log n) edge insertions
to the AM-tree. Let k be the total number of nodes that are
modified by the m edge insertions. The analysis in Sec. 4.5 and
5.2 shows that k = O(mlogn).

Version Lists. We first consider a simple and practical solution
based on version lists (referred to as “fat nodes method” in
[15]). All experiments in this paper use this approach. For
this approach, each node u in the AM-tree maintains a list of
versions of parent[u], in the form of (t, parent,[u]) ordered by
t, where t is the time when the edge is added, and parent, [u] is
the parent of u in this version. When the parent of u is updated,
a new pair of (¢, parent[u];) is appended to the version list. In
this case, no asymptotic cost is needed for supporting persistent
insertions. and the version lists take O(k) = O(mlog n) space.
However, when querying a history version, we need a binary
search to locate the pointers of the current version, which adds
an O(logk) = O(log m) overhead to query costs.

301

Note that only the strict AM-tree can guarantee the
O(log mlog n) query cost, where PathMax will check O(log n)
edges in the tree. The query cost for the lazy AM-tree
is amortized; however, in practice, the difference in query
performance between the two versions is minimal.
vEB-Trees-based Solution. Theoretically, the overhead for
persistence can be reduced from O(logm) to O(loglogm) by
using the approach given in Straka [48]. At a high level, the
ordered set is maintained by a van Embe Boas Tree [53] that
provides doubly logarithmic update and lookup cost.

7 Applications on Temporal Graphs

Given the algorithms for AM-tree with support for persistence,
we are ready to solve various temporal graph applications.
In Sec. 2.2, we briefly introduced the point-interval temporal
connectivity problem. In this section, we show other temporal
graph problems and how AM-trees can solve them.

7.1 Temporal Graph Settings Two categories in temporal
graph processing have received significant attention. The first
is the point-interval setting (e.g., [4, 9, 10, 33, 47, 52, 55-59])
as mentioned in Sec. 2.2. In this setting, each edge e has a
timestamp t(e) (i.e., edge (u,v) arrives at time t(e)). A query
is associated with a time interval [#;, #;] and is performed on
a sub-graph GEtlytZ] with edge set E' = {e | t(e) € [t1,t2]}. A
simpler case is the so-called sliding-window setting [4, 10].

Dually, there is the interval-point setting (e.g., [5, 11, 16, 18,
23, 40, 43]), where each edge e has a time interval [, (e), t2(e)].
A query is associated with a timestamp ¢ and is performed on
the sub-graph G, with edge set E' = {e | t € [t;(e), t2(e)]}. A
similar setting is the “offline dynamic graphs” [16, 40], where
each edge can be inserted/deleted at a certain time, and queries
are performed on a snapshot of the graph. From a temporal
view, each edge has a lifespan (an interval) from its insertion to
its deletion, and queries are performed on a specific timestamp.
However, in fully dynamic graphs [6, 19-21, 34, 35, 38, 51], the
deletion time is unknown at the time of insertion.

7.2 Online/Offline Settings The graph and queries can also
be either online or offline. Offline means the information is
known ahead of time, while online means the algorithm needs
to respond to every update/query before the next one comes.
We first consider the graph:

« Offline Graph [16, 40, 52, 55-58]: all edges in the graph are
known ahead of time (before or with the queries).

+ (Online) Streaming Graph [4, 10, 47, 52, 59]: New edges
arrive one by one, forming a graph stream. In this case,
the timestamp of the edge is the ordering of it in the stream,
so only the point-interval setting applies here.

Note that the offline setting can be converted to online by
sorting all edges based on the time and processing them.
The queries can also come in different settings:

« Offline [4, 10, 47, 58, 59]: Queries are known ahead of time.

« Historical (Online) [16, 40, 52, 55-58]: Queries come as a
stream, and can travel back in history to query any previous
timestamp or time interval. This requires to persist the graph
(or the corresponding data structure).
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In summary, there are a variety of different temporal
graph settings, and they have been studied either within the
temporal graph scope or as other problems (e.g., offline dynamic
graphs [16, 40]). However, even though the literature has
designed solutions for some specific settings, one contribution
of our work is to show how a base data structure can be
adapted to different settings. In particular, the AM-tree, which
supports efficient incremental MST, can be used for a wide
range of problems (mostly connectivity-related problems) in
this section, combined with all the settings discussed above.
Next, we will use connectivity as the main example, and show
two other problems that can also be solved with some moderate
modifications. For page limit, more applications are discussed
in the full version of this paper [13]. For many applications,
their reductions to MST-related problems have been studied
in a specific graph-query setting [4, 10]. Our discussions show
that they can all be solved by AM-trees and can be extended to
other settings in a straightforward way.

7.3 Connectivity On an undirected graph G = (V, E) there
are two crucial problems related to graph connectivity:

+ Determine whether u and v are connected in G.

« Report the number of connected components in G.

In temporal graph applications, the graph contains edges with
temporal information. We show that both the point-interval
and the interval-point settings can be converted to incremental
MST and solved by AM-trees efficiently.

The point-interval setting is discussed in Sec. 2.2 as a
motivating example and we briefly recap here. Each edge e is
treated as an edge insertion at time ¢(e) with weight —t(e). We
can then maintain an AM-tree by processing all edges in order
as an incremental MST. We use T; to denote the AM-tree up
to time ¢. For a query (u, v, t1, t;), we check and report if the
PathMaxr, (u,v) = w satisfies |[w| > #; [4, 10, 47]. To report
the number of connected components (CC) [10], note that all
edges e in T;, with ¢(e) < t; break the connectivity of the graph
and increase the number of CCs by 1. We keep an ordered set
D to store all edges in the current MST, ordered by ¢(e). For
each edge insertion, we update the edges in D (up to one edge
inserted/removed). For a query (t1, t;), we look at D;, (D at time
up to t,), and report n — |{e | t(e) > f;}|. D can be maintained
by any balanced BST in O(log n) cost per operation.

For the interval-point setting, each edge has a time interval
[t1(e), t2(e)]. We convert it to an incremental MST problem by
adding this edge at time #; (e) with weight —#,(e). Again we use
T; to denote the AM-tree up to time ¢. For a query (u,0,t), we
query w = PathMaxr, (u,v) on T; and check whether |w| > t.
If so, u and v remain connected at time t. We can use AM-tree
for the number of connected components queries similarly.

Note that we need to perform the PathMax (or check BSTs
for the number of CCs) for each query. If the queries are offline,
we can sort the query time (¢ or #;) together with the edges,
so all PathMax queries apply to the “current” AM-tree in the
stream. For the historical setting, we need to persist the AM-
tree (and also the ordered set D), so queries can travel back
and check any previous version of AM-tree or D. We show the
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theoretical guarantees on this problem along with the following
application on bipartiteness in Thm. 7.1.

7.4 Bipartiteness An undirected graph G = (V, E) is bipar-
tite iff there exists a vertex subset V’ € V such that every edge
has one endpoint in V’ and the other endpoint in V' \ V’.

There is a known reduction [3, 10] of the bipartiteness
problem to the connectivity problem. We generate another
graph G’ by duplicating each vertex v € V into two copies v;
and v, in G’, and duplicating each edge (u,v) € E into (uy,v;)
and (v, uz) in G’. The graph G is bipartite if and only if G” has
twice as many connected component as G.

Bipartiteness checking in the temporal setting is similar to
connectivity. We run the same algorithm for connectivity on
both G and G’. For a query at time ¢, we check and return if
the number of connected components on G; is twice as G;. The
same cost analysis for connectivity also applies here. Using
VEB tree for persistence leads to the following theorem.

THEOREM 7.1. Given a temporal graph with n vertices and m
edges, the temporal connectivity or bipartiteness can be solved
by AM-trees with O(n) initialization cost and O(logn) cost per
edge update; the offline query and historical query have O(log n)
and O(lognloglog m) cost, respectively.

Note that we assume m = Q(n) since otherwise singleton
vertices can be filtered out.

7.5 k-Connectivity and k-Certificate Given an undirected
graph G = (V,E), two vertices u and v are k-connected if
there are k edge-disjoint paths connecting them. A graph is
k-connected if every pair of vertices is k-connected.

A k-certificate is a sequence of edge-disjoint spanning
forests Fy, Fy, ..., Fx from G, and F; is a maximal spanning forest
of G\ (F; UF, U---U F;_;). The connection between the k-
certificate and k-connectivity is that u and v are k-connected in
G if and only if they are k-connected in (F; UF, U --- U F;_1).

We can generate k-certificate using a connectivity algo-
rithm [10]. F; is simply the same MST computed in Sec. 7.3
using the AM-tree. Then, when F; is updated—an edge e is re-
placed by another edge in the MST, it will be inserted into F;.
Hence, in total we maintain k AM-trees, so the cost is multiplied
by k (asymptotically the same when assuming k = O(1)).

7.6 Other Applications Due to the space limit, we discuss
other applications in the full version of this paper [13].

8 Experiments

This section provides experimental evaluation of the effec-
tiveness of AM-trees. We mostly focus on one setting, the
point-interval temporal connectivity, due to the following rea-
sons. First, there exist fast baselines for this problem [47] that
are apple-to-apple comparisons to AM-trees. Second, when
mapping to incremental MST, the interval-point setting only
changes the edge weight distribution, and the runtime is similar.
Additional experiments are in the full version of this paper [13].
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Name Graph V| |E|

WT  *wiki-talk [32] LIM  7.8M
SX *sx-stackoverflow [32] 6.0M 63.5M
SB *soc-bitcoin [44] 24.6M  122.4M
USA  RoadUSA [37] 240M  57.7M
GL5  GeolLife [54, 60] 249M  124.3M
TW  Twitter [31] 417M  147B
SD sd_arc [36] 89.2M 2.04B

Table 1: Graph Information. *: real-world temporal graphs. Others
are static graphs with randomly generated temporal information.

For the point-interval connectivity, each edge e has a
timestamp t,. A query has a time interval [, 2], and only
edges e with timestamp t, € [, ;] are considered in the query.
In this section, we mainly focus on querying the connectivity
between two vertices. We provide the reqults for querying the
number of connected components in the full version of this
paper [13]. As discussed in Sec. 7.3, it is an important building
block for many temporal applications such as bipartiteness
checking. Our source code is publicly available on Github [14].

8.1 Setup We implemented the strict and the lazy versions
of AM-tree in C++ and persist them by version lists (see Sec.
6). Experiments are run on a Linux server with four Intel Xeon
Gold 6252 CPUs and 1.5 TB RAM, though only one core is
utilized. We compiled our code using Clang 18.1 with -03 flag.
Datasets We tested seven real-world graphs (summarized in
Tab. 1) with very different features. The first three graphs are
real-world temporal graphs where each edge is associated with
a timestamp. The last four are static graphs and we assign a
uniformly random timestamp in the range [0, 10°] to each edge.
Evaluated Methods We compared six data structures in total.
For each of them, we test the throughput for both updates
(processing all temporal edges) and queries.

« Strict-Stitch, Strict-Perch, Lazy-Stitch, Lazy-Perch: Our
implementations of four versions of AM-tree using strict/lazy
strategy based on Perch/Stitch.

« OEC-Forest [47]: A state-of-the-art implementation for
incremental MST, which solves temporal connectivity.

+ LC-Tree: Our own implementation of link-cut trees [46].

Recall that the LC-Tree is a classic data structure offering
theoretical guarantees, whereas OEC-Forest is a practical data
structure without non-trivial bounds. All four versions of AM-
tree provide the same (amortized) bounds as LC-Tree, and are
also designed to be practical. For the AM-trees and OEC-
Forest we also tested their persistent versions for historical
queries. We note that, as mentioned in Sec. 6, the lazy AM-
trees do not guarantee the polylogarithmic query bound. The
update bounds for the lazy version, and all bounds for the strict
versions still hold in the persistent setting.

8.2 AM-trees for Offline Queries We first tested the non-
persistent AM-tree for offline queries, i.e., the queries are given
ahead of time with all edges. In this case, there is no need
to persist the AM-tree. We can simply process (insert) the
edges in order, and after each insertion, if there is a query that
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corresponds to this time, we directly perform it. Fig. 6 shows
the update and query throughput in this setting.

Update Throughput. We first compare among the four
versions of AM-tree in updates. The lazy version always
achieves much better performance than the strict version, due
to two main reasons. First, the lazy version does not maintain
the children pointers and does not actively check the heaviest
child, which saves much work. Second, the lazy version does
not rebalance the whole tree after an update, and thus requires
less work than the strict version. In total, the performance for
the lazy version is 3.6—6.2x faster on average on all graphs.

The stitch-based versions are usually slightly faster than
the perch-based versions. Such a difference is more pronounced
in the persistent settings, which we discuss later.

Compared to other baselines, while LC-Tree achieves

strong theoretical guarantee, it has the lowest throughput on
all graphs. It is slower than the strict AM-trees by a factor
of 1.2-2.6%, and is slower than the lazy AM-trees and OEC-
Forest by at least 4.5X. OEC-Forest tree has reasonably good
performance on all graphs. The best version of AM-trees, Lazy-
Stitch still achieves competitive or better performance than
OEC-Forest, which is from 4% slower (on WT) to 1.5% faster
(on SB). On average across seven graphs, Lazy-Stitch is 1.2x
faster. This speedup comes from the theoretical guarantees of
the AM-tree that leads to shallower tree depths.
Query Throughput. For queries, all versions of AM-tree have
better performance than both OEC-Forest and LC-Tree. The
advantage over LC-Tree is from the algorithmic simplicity, and
the advantage over OEC-Forest is from the depth guarantee
of AM-tree in theory. To verify this, we further tested the
average tree height for AM-tree and OEC-Forest, and present
the results in the full version of this paper [13] for completeness.
Comparing OEC-Forest with Lazy-Stitch as an example, OEC-
Forest is 1.8-2.9% deeper than AM-tree, making AM-tree 1.6—
2.5% faster than OEC-Forest for queries.

8.3 AM-trees for Historical Queries We now discuss
the setting with historical queries, which requires using the
persistent version of AM-trees. In this setting, the queries
are not known when the index is constructed, so we need to
preserve all versions of the AM-tree at all timestamps. We
present the results in Fig. 7.

The performance for updates is pretty consistent with
the non-persistent version. In all cases, Lazy-Stitch achieves
the best performance, and OEC-Forest is close to our best
performance. For queries, the slowdown of the perch-based
version over the stitch-based one becomes significant. As
mentioned, the difference comes from the more substantial tree
restructuring in Perch. LinkByPerch changes ©(d(u) + d(v))
nodes in the tree. Note that this bound is tight, since u and v
both have to be perched to the top, causing all nodes on the path
to generate a new version. For LinkByStitch, in many cases, the
edge is just conceptually moved up without changing the tree.
To verify this, in the full version of this paper [13] we report
the number of versions generated during the algorithm, which
indicates the total number of nodes that have been touched and
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changed their parent/child pointers during the entire algorithm.
The perch-based algorithms indeed modified 1.4-5.5X more
nodes than the stitch-based versions.

Since the lazy versions have loose query bounds, the strict
version achieves better performance than the lazy ones. This
is more pronounced for the perch-based algorithms. For the
stitch-based algorithms, the difference is marginal except for
the last graph SD. On all graphs other than SX, both Strict-Stitch
and Lazy-Stitch outperforms the baseline OEC-Forest.

In summary, Lazy-Stitch achieves the best overall perfor-
mance for almost all settings. When the application emphasizes
the query throughput in the online setting, Strict-Stitch may
provide better performance in queries.

9 Related Work

Minimum spanning tree/forest (MST/MSF) is one of the most
fundamental graph problems, and has been studied from a cen-
tury ago [7, 26] to recent years [12, 27, 29]. Some famous algo-
rithms include but are not limited to: Bortivka’s algorithm (7],
Prim’s algorithm [26, 41], Kruskal’s algorithm [30], and KKT
algorithm [28]. Regarding dynamic MSTs, the classic setting
with both edge insertions and deletions is challenging—the best-
known algorithm [22] needs O(log* n/log log n) amortized cost
per edge update. Incremental MST with only edge insertions is
simpler and is proven to be very useful.

Some classic data structures solve incremental MST ef-
ficiently in theory, including the link-cut tree [46], the rake
compress tree (RC-tree) [2], and the top tree [50]. They can
support each edge insertion in O(log n) cost either amortized
or on average. These data structures actually solve the more
general “dynamic tree/forest” problem (see [1]). There are
also parallel algorithms that apply a large batch of edge up-
dates [4, 17, 39, 45]. To the best of our knowledge, these results
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are mostly of theoretical interest and no implementations are
available. Practically, people have designed data structures
such as the OEC-forest [47] and the D-tree [8] for faster per-
formance. D-tree maintains a BFS-tree and patches it when
updates come. It has decent performance when the graph has
certain properties, but no non-trivial cost bounds are known.
The OEC-forest [47] was the latest work on this topic and also
the main baseline we compare with. The OEC-forest is a T-MST
using an idea similar to our stitch-based algorithms. However,
it does not support any non-trivial (better than linear) bounds
for the tree diameter. Our main improvement is to introduce
the anti-monopoly rule, which bounds the tree height and guar-
antees the cost bounds for AM-tree.

Temporal graph processing is a popular research topic
recently, and we refer the audience to an excellent survey [24]
for more background. The connection between temporal graph
and incremental MST has been shown, but only for specific
cases. Song et al. [47] discussed the historical point-interval
connectivity, and Anderson et al. [4] discussed the offline
point-interval setting. To the best of our knowledge, the
generalization of this connection is novel in our paper.

10 Conclusion

This paper proposes new algorithms for incremental MST for
efficient temporal graph processing on numerous applications.
Our new data structure, the AM-tree, is efficient both in theory
and in practice. In theory, the cost bounds of using AM-trees
for temporal graphs match the best-known results using link-
cut trees or other data structures. In practice, we compare
AM-tree to both the theoretically-efficient solution and state-
of-the-art practical solutions. Our Lazy-Stitch version achieves
the best performance in most tests including various graphs
with offline/historical queries on both updates and queries.
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