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Abstract
Processing graphs with temporal information (the temporal
graphs) has become increasingly important in the real world.

In this paper, we study efficient solutions to temporal graph

applications using new algorithms for Incremental Minimum
Spanning Trees (MST). The first contribution of this work

is to formally discuss how a broad set of setting-problem

combinations of temporal graph processing can be solved using

incremental MST, along with their theoretical guarantees.

Despite the importance of the problem, we observe a

gap between theory and practice for efficient incremental

MST algorithms. While many classic data structures, such

as the link-cut tree, provide strong bounds for incremental

MST, their performance is limited in practice. Meanwhile,

existing practical solutions used in applications do not have

any non-trivial theoretical guarantees. Our second and main

contribution includes new algorithms for incremental MST

that are efficient both in theory and in practice. Our new

data structure, the AM-tree, achieves the same theoretical

bound as the link-cut tree for temporal graph processing and

shows strong performance in practice. In our experiments, the

AM-tree has competitive or better performance than existing

practical solutions due to theoretical guarantees, and can be

significantly faster than the link-cut tree (7.8–11× in updates

and 7.7–13.7× in queries).

1 Introduction
The concept of graphs is vital in computer science. It is

relevant to lots of applications as it abstracts real-world objects

as vertices and their relationships as edges. Regarding the

relationships between objects, time can usually be a crucial

component. Graphs with time information are referred to as

temporal graphs, and efficient algorithms for temporal graphs

have received immense attention recently. Time information

can be integrated in different settings. A classic setting is that

each edge has a timestamp, and a query, such as connectivity, is

augmented with a time interval [𝑡1, 𝑡2], and only edges within

this time period are involved in the query. Dually, each edge 𝑒

can have a time period [𝑡1, 𝑡2]; a query is on a certain timestamp

𝑡 , and only considers edges existing at time 𝑡 . Meanwhile, edges

and queries can come in either offline (known ahead of time)

or online (immediate response needed) manner. Combined

with numerous graph problems, there are a large number of

research topics (a short list of papers in the recent years: [4, 5, 9–

11, 18, 23, 25, 33, 40, 43, 47, 52, 55–59]). Most of them focus on

one specific setting-problem combination.

In this paper, we are interested in solutions for a class

of temporal graph applications for a wide range of setting-

problem combinations, both in theory and in practice. Our

core algorithmic idea is to support an efficient data structure

for the incremental minimum spanning trees (MST). The MST

for a weighted undirected graph 𝐺 = (𝑉 , 𝐸) is a subgraph

𝑇 = (𝑉 , 𝐸′) such that 𝐸′ ⊆ 𝐸 and 𝑇 is a tree that connects all

vertices in𝑉 with minimum total edge weight. The incremental

MST problem requires maintaining the MST while responding

to edge insertions. Some existing studies [4, 10, 47], both

from the algorithm and application communities, have shown

connections between incremental MST to a list of specific

temporal graph applications. At a high level, one can embed

the temporal information into the edge weight, and temporal

queries can then be converted to path-max queries on theMST,

i.e., reporting the maximum edge weight on the path between

two queried nodes. We show a running example in Sec. 2.2. The
first contribution of this paper is to formally discuss (in Sec. 7)
a wide range of temporal graph applications with different
setting-problem combinations, and how incremental MST
can be adapted to address them.

Given the broad applicability, efficient incremental MST

algorithms are of great importance. Indeed, many classic

data structures provide efficient solutions in theory. For

example, the famous link-cut tree [46] can maintain the

incremental MST with 𝑂 (log𝑛) time per insertion, and a path-

max query in 𝑂 (log𝑛) time, both amortized. Other relevant

data structures (e.g., the rake-compress tree (RC-tree) [2] and

the top tree [50]) can provide similar bounds. Despite the strong

bounds in theory, these results are often considered to have

limited practicality due to large hidden constants and/or high

programming complexity. Many other data structures, such

as OEC-forest [47] and D-tree [8], are used in practice and

can be much faster than the link-cut tree. Experiments in [47]

show that, on a specific temporal graph processing application,

the OEC-forest is up to 15× faster than the link-cut tree in

updates and 13× in queries. However, no non-trivial bounds

(better than 𝑂 (𝑛) per operation) are known for these practical

data structures. Hence, it remains open whether an efficient

solution exists for incremental MST (and relevant temporal
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graph applications) both in theory and in practice.
The second and the main contribution of this paper is a new,

theoretically and practically efficient data structure for
incremental MST, referred to as the Anti-Monopoly tree
(the AM-tree). In addition to strong theoretical guarantees

and practical efficiency, the algorithms of AM-tree are also

simple, leading to good programmability and applicability to

real-world problems. An AM-tree𝑇 is a rooted tree that reflects

a transformation of the MST 𝑇 of the graph, such that for any

two vertices 𝑢 and 𝑣 , the path-max query on 𝑇 is the same

as in 𝑇 . The most important property of AM-tree is the anti-
monopoly rule (AM-rule), which requires each subtree size to

be no more than a factor of 2/3 of its parent. This ensures

𝑂 (log𝑛) tree height for a tree with size 𝑛, and thus bounded

cost for updating and searching the tree. The algorithm for

AM-trees is based on two simple primitives. The first primitive,

Link(𝑢, 𝑣,𝑤), incorporates a new edge between 𝑢 and 𝑣 with

weight 𝑤 inserted to the original graph. Link will properly

update the tree to ensure that AM-tree still preserves the correct

answers to path-max queries to the new graph, but may violate

the size constraint of the tree. The second primitive, Calibrate,
modifies the tree to obey the AM-rule, and thus restores the

logarithmic tree height. In Sec. 4, we first present algorithms

that strictly keep the tree height in 𝑂 (log𝑛) after handling
edge insertions, which we call the strict AM-tree. We provide

two algorithms for Link: LinkByPerch, which is algorithmically

simpler, and LinkByStitch, which performs better in practice. In

both cases, we prove that a path-max query can be performed in

𝑂 (log𝑛) worst-case cost, and each insertion can be performed

with𝑂 (log𝑛) amortized cost (𝑂 (log2 𝑛) in the worst case). The

theoretical results are presented in Thm. 4.5.

The strict AM-tree, however, requires maintaining the

child pointers in each node, which may increase performance

overhead in practice. In Sec. 5, we further extend AM-tree to the

lazy AM-tree, which does not rebalance the tree immediately,

but postpones the Calibrate operation to the next time when

a node is accessed. The lazy version directly uses the same

link primitive as the strict version, which can be either Perch-
based or Stitch-based. It redesigns Calibrate such that it can be

performed lazily, and only requires each node to maintain the

parent pointer. Compared to the strict version, the lazy version

achieves the same 𝑂 (log𝑛) amortized cost for insertion and

path-max query, and provides better performance in practice.

For all versions of AM-tree, the (amortized) theoretical

bounds match the best-known bounds of link-cut tree. The core

idea to achieve the bounds is based on the potential function

in Eq. 4.2, such that the AM rule can be incorporated to ensure

the potential does not increase much during updates, and can

always be restored by the Calibrate functions.
To support more settings in temporal graph processing,

we also persist AM-trees in Sec. 6. A persistent data structure

keeps all history versions of itself upon updates. Our solution

is based on a standard approach using version lists [15, 42],

which preserves the same asymptotic cost for insertions and

incurs a logarithmic overhead per path-max query.

Using AM-tree to support incremental MST, we can derive

New algorithms for Incremental MST with PathMax Queries

Applications on Temporal Graphs (Sec. 7)
Online/
offline

Interval-point/
Point-interval

Connectivity/k-certificate/ 
bipartiteness/approx. MSF/…× ×

Algorithms

AM Tree (Sec. 3)
a size-balanced 

transformed MST 
that preserves 

PathMax queries

Insert: 𝑂(log 𝑛) amortized, 𝑂(log2 𝑛) worst-case
PathMax: 𝑂(log 𝑛) worst-case

Insert: 𝑂(log 𝑛) amortized
PathMax: 𝑂(log 𝑛) amortized
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Figure 1: Outline and contributions of this paper.

solutions for various temporal graph processing. In Sec. 7, we

discuss a series of relevant applications and their solutions

using incremental MST, as well as their theoretical bounds

enabled by our new algorithm.

The AM-tree is also easy to implement. Our source code is

publicly available [14]. We tested different versions of AM-tree

in the scenario of temporal graph processing. We compare

AM-tree against the solution using link-cut tree [46], and a

recent solution using OEC-forest [47]. As discussed, the link-

cut tree provides strong theoretical bounds, but may incur

high overhead in practice. OEC-forest was proposed as a more

practical solution, but has no theoretical guarantee. AM-tree

achieves the same theoretical guarantee as link-cut tree, and

also achieves strong performance in practice. Overall, our

lazy AM-tree based on Stitch gives the best performance— on

average across seven tested graphs, its updates are 8.7× faster

than link-cut tree and 1.2× faster than OEC-forest, and queries

are 10.4× faster than link-cut tree and 2.0× faster than OEC

forest. We summarize the contributions of this paper in Fig. 1.

2 Preliminaries
2.1 Graphs andMinimum Spanning Trees Given a graph

𝐺 = (𝑉 , 𝐸), we use a triple (𝑢, 𝑣,𝑤) to denote an edge in 𝐸

between 𝑢 and 𝑣 with weight𝑤 . With clear context we also use

(𝑢, 𝑣) and omit the weight𝑤 . We use 𝑛 = |𝑉 | as the number of

vertices. For simplicity, throughout this paper we assume that

the edge weights are distinct. In practice we can always break

ties consistently. For a path 𝑃 in 𝐺 , we use max(𝑃) to denote

the maximum edge weight in 𝑃 .

Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸), the
minimum spanning tree (MST) is a subgraph 𝑇 = (𝑉 , 𝐸′) such
that 𝐸′ ⊆ 𝐸 and 𝑇 is a tree that connects all vertices in 𝑉 with

minimum total edge weight. More generally, the minimum

spanning forest (MSF) problem is to compute an MST for every

connected component of the graph.

In a rooted tree, the depth of a node is the number of its

ancestors in the tree. The height of a (sub)tree is the longest
hop distance from it to any of its descendants. The size of a
(sub)tree is the number of nodes in the tree. We use node and
vertex interchangeably in this paper.

2.2 Temporal Graph and Path-Max Queries Throughout

the section, we will use one specific problem to introduce

the connection between temporal graphs and MST, with an
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illustration given in Fig. 2. This problem, which we refer to

as the point-interval temporal connectivity, considers a

temporal graph 𝐺∗ where each edge 𝑒 is associated with a

timestamp 𝑡 (𝑒). A query (𝑢, 𝑣, 𝑡1, 𝑡2) considers all edges with
timestamp in [𝑡1, 𝑡2] and determines whether 𝑢, 𝑣 ∈ 𝑉 are

connected by these edges. To do this, one can maintain an

auxiliary dynamic graph 𝐺1
such that an edge 𝑒 is added to 𝐺

at time 𝑡 (𝑒) with weight −𝑡 (𝑒) [10]. We use 𝐺𝑡 to denote the

status of the auxiliary graph at time 𝑡 . With clear context we

drop 𝑡 and directly use𝐺 . If a path 𝑃 in𝐺 between two vertices

𝑢 and 𝑣 has maximum edge weight max(𝑃) = 𝑤 , it means that

all edges on the path are added after time |𝑤 |. To consider

all paths between two vertices to determine connectivity, we

define the PathMax query on a graph 𝐺 as follows.

Definition 1. (Path-Max) Given a graph 𝐺 = (𝑉 , 𝐸), the
path-max query on two vertices 𝑢, 𝑣 ∈ 𝑉 is defined as
PathMax𝐺 (𝑢, 𝑣) = min{max{𝑤 | (𝑢, 𝑣,𝑤) ∈ 𝑃}} where 𝑃 is
any path connecting 𝑢 and 𝑣 . With clear context we drop the
subscript 𝐺 and only use PathMax(𝑢, 𝑣).

To determine whether 𝑢, 𝑣 ∈ 𝑉 are connected by edges

within time [𝑡1, 𝑡2], one can compute 𝑤 = PathMax(𝑢, 𝑣) on
the auxiliary graph 𝐺𝑡2 , which only contains edges appearing

before time 𝑡2. If |𝑤 | > 𝑡1, then there exists a path 𝑃 such that

all edges on 𝑃 appear after 𝑡1, and thus 𝑢 and 𝑣 are connected.

Otherwise 𝑢 and 𝑣 are disconnected. Fig. 2 shows an example

of how to use incremental MST to solve the point-interval

temporal connectivity problem.

To answer path-max queries, one can generate another

(usually sparser) graph to accelerate queries. We say two graphs

𝐺 = (𝑉 , 𝐸) and𝐺 ′ = (𝑉 , 𝐸′) are path-max equivalent, or PM-
equivalent, if ∀𝑢, 𝑣 ∈ 𝑉 , PathMax𝐺 (𝑢, 𝑣) = PathMax𝐺 ′ (𝑢, 𝑣).
Existing work has proved the following fact [10].

Fact 2.1. ([10]) The MST of a graph 𝐺 is PM-equivalent to 𝐺 .

Converting PathMax queries on a graph to its MST simpli-

fies the problem, since only one path exists between any two

vertices in the MST.

2.3 Incremental MST Given a graph 𝐺 = (𝑉 , 𝐸), starting
with 𝑛 vertices and no edges, a data structure is designed to

support the following operations:

• Insert(𝑢, 𝑣,𝑤): insert an edge (𝑢, 𝑣,𝑤) into the graph.

• PathMax(𝑢, 𝑣): report the maximum edge weight on the path

between 𝑢 and 𝑣 on the MST.

• ReportMST(): report the current MST. Such a query may

require to report the total weight or to determine whether

an edge is in the MST.

Based on the discussions in Sec. 2.2 and Fact. 2.1, we

can convert the aforementioned point-interval temporal con-

nectivity problem to an incremental MST problem. The main

1
Note that the main technique of this paper is to design efficient algorithms

for maintaining the MST for the auxiliary graph, which is more often referred

to in this paper. To avoid confusion, we use the notation 𝐺 to denote the

auxiliary graph and use𝐺∗ to denote the original temporal graph.

contribution of this paper is to support efficient incremental

MST both in theory and in practice, thus leading to improved

solutions to temporal graph applications.

In a graph 𝐺 , the edge with the largest weight on a

cycle is not included in the MST (the red rule [49]). Thus,

when inserting edge (𝑢, 𝑣,𝑤), many existing incremental MST

algorithms [4, 47] find the maximum edge weight between 𝑢

and 𝑣 in the current tree, and replace it with the new edge if𝑤

is smaller. Our algorithm also makes use of this idea.

3 The Anti-Monopoly tree
In this section, we propose the AM-tree to support incremental

MST. Recall that an incremental MST needs to maintain the

edges in the MST and efficiently answer PathMax queries. To
make the queries and updates efficient, we want to keep the tree

diameter small, specifically 𝑂 (log𝑛). However, this is not easy
since the MST itself may have a large diameter—it can even be

a chain of length 𝑛 − 1. Hence, we first introduce the concept
of a transformed MST (T-MST), and propose our solution, the

Anti-Monopoly tree (AM-tree), based on it.

Definition 2. (Transformed MST (T-MST)) Given a con-
nected weighted graph 𝐺 = (𝑉 , 𝐸) and its minimum spanning
tree 𝑇 = (𝑉 , 𝐸̂). A transformed MST (T-MST) of 𝑇 is a tree
𝑇 = (𝑉 , 𝐸) with the following properties:
• The vertex set in 𝑇 is the same as 𝑇 .
• There is a one-to-one mapping between 𝐸 and 𝐸̂, such that the
weights of corresponding edges are the same.

• ∀𝑢, 𝑣 ∈ 𝑉 , PathMax𝑇 (𝑢, 𝑣) = PathMax𝑇 (𝑢, 𝑣).

For simplicity, we use the same term T-MST to refer to

the transformed minimum spanning forest, if the graph is

disconnected. We say a T-MST is valid or correct if it satisfies
the invariants in Definition 2. We give an example of such a

transformation in Fig. 3. Note that, although there is a one-

to-one mapping between both the vertices and edges of 𝑇 and

𝑇 , the corresponding edges may or may not be linking two

corresponding vertices. For example, in Fig. 3, the edge (𝑏, 𝑒, 3)
in the MST corresponds to edge (𝑎, 𝑑, 3) in the T-MST.

The goal of transforming𝑇 to𝑇 is to achieve a low diameter,

such that a path-max query can simply check all edges on the

path. Similarly, organizing the tree as a rooted structure can

facilitate PathMax queries. Below, we define AM-tree, which is

a rooted, size-balanced T-MST structure. In AM-tree, each node

𝑢 maintains the following information: parent [𝑢] (the parent
of 𝑢), size[𝑢] (the subtree size of 𝑢), and weight [𝑢] (the edge
weight between 𝑢 and its parent).

Definition 3. (Anti-Monopoly tree (AM-tree)) Given a
connected weighted graph 𝐺 = (𝑉 , 𝐸), an AM-tree is a rooted
T-MST such that for each (non-root) node 𝑢,

size[𝑢] ≤ (2/3) · size[parent [𝑢]] (Anti-Monopoly Rule)

The key property of the AM-tree is the anti-monopoly rule,

which disallows any child’s size to be a factor of 2/3 or larger

than its parent. This guarantees 𝑂 (log𝑛) height of the tree.
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(a). Original 
temporal graph 
𝐺∗. Numbers on 
the edges are the 
timestamps.

(b). A query with time 
interval [3,7] only 
sees edges with 
timestamp in [3,7]. 
For example:
query(A, D, 3, 7)=true
query(D, F, 3, 7)=false

A B

D

C

E F

Problem Definition Solution using incremental MST
Construct an auxiliary graph 𝐺.
For each edge 𝑒 in 𝐺∗ with timestamp 𝑡(𝑒), 𝑒 is inserted to 𝐺 at time 𝑡(𝑒) with edge weight −𝑡(𝑒).
A B

D

C

E F-2

A B

D

C

E F

-7

-2
-4

-5

At t=2:
insert (E,F,-2)

A B

D

C

E F-2
-4

At t=4:
insert (A,D,-4)

A B

D

C

E F-2
-4

-5

At t=5:
insert (D,E,-5)

At t=7:
insert (B,C,-7)

At t=8:
insert (B,E,-8)

A B

D

C

E F

-7

-2
-4

-5
-8

At t=9:
insert (A,B,-9)

A B

D

C

E F

-7

-2
-4

-5
-8

-9

For query(A,D,3,7): take 𝐺 at 𝑡 = 7, perform PathMax(A,D)= -4. Since |-4|>3, 
the path between A and D is valid after time 3. Return true.
For query(D,F,3,7): PathMax(D,F)=-2 on 𝐺 at 𝑡 = 7. Since |-2|<3, that edge 
does not exist in time [3,7]. Return false.

Figure 2: Solving point-interval temporal connectivity on graph 𝐺∗ using incremental MST [10].
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Figure 3: An example of the transformed MST (T-MST). A T-MST

redistribute the edges in an MST, but preserves the answers to path-

max queries in the MST.

Fact 3.1. In a tree 𝑇 with size 𝑛, if all nodes satisfy the anti-
monopoly rule, then the height of 𝑇 is 𝑂 (log𝑛).

For a node 𝑥 and its parent 𝑦, we say 𝑥 is a heavy child of

𝑦 if size[𝑥] > (2/3)size[𝑦]. A node 𝑦 is unbalanced if it has a

heavy child, and is balanced or size-balanced otherwise.

The Promote primitive for the AM-tree To ensure the

anti-monopoly rule, we may need to transform the tree while

preserving the PathMax queries. We start by showing the TW
transformation mentioned in [47].

Fact 3.2. (TW Transformation [47]) Given a graph 𝐺 =

(𝑉 , 𝐸) and two edges (𝑥,𝑦,𝑤1) and (𝑦, 𝑧,𝑤2) in 𝐸 such that
𝑤1 ≥ 𝑤2, the PathMax queries on𝐺 are preserved if we replace
the edge (𝑥,𝑦,𝑤1) with edge (𝑥, 𝑧,𝑤1).

Note that this is also simply true on a T-MST. Based on

this observation, we define a promote operation on the AM-tree.

Promote(𝑥) promotes node 𝑥 one level up (closer to the root)

without affecting the PathMax queries of the tree. We illustrate

this process in Fig. 4. Let 𝑦 be the parent of 𝑥 , and 𝑧 the parent

of 𝑦. Promote(𝑥) executes one of the two following operations

to promote 𝑥 , both of which are TW-transformations.

• Shortcut. If𝑤1 > 𝑤2, 𝑥 is directly promoted to be 𝑧’s child,

still with edge weight𝑤1. 𝑦 now becomes a sibling of 𝑥 .

• Rotate. If 𝑤1 < 𝑤2, or if 𝑦 is the root, 𝑦 is pushed down to

be 𝑥 ’s child, still with edge weight𝑤1. If 𝑦 is not the root, 𝑥

will be attached to 𝑧 as a child with edge weight𝑤2.

The Promote operation is an important building block to

both the correctness and the efficiency of AM-tree. In the next

sections, we will discuss efficient algorithms for AM-trees. We

first show a strict version of AM-tree in Sec. 4, which always

keeps the tree height in 𝑂 (log𝑛). However, the strict version

x

y

z
𝑤2

𝑤1 x
y

z
𝑤2

𝑤1x y

z
𝑤1 𝑤2

Case 1: 𝑤1 > 𝑤2 Case 2: 𝑤1 < 𝑤2

Promote(x)

shortcut rotate

Figure 4: An illustration of the Promote algorithm.

requires maintaining the child pointers for all nodes, which

brings up performance overhead in practice. To tackle this, in

Sec. 5 we discuss the lazy version of the AM-tree, which only

requires keeping the parent pointer of each node. By avoiding

maintaining child pointers, the lazy version is much simpler,

more practical, and easier to program.

4 The Strict AM-tree
In this section, we present the strict AM-tree, where all tree

nodes strictly follow the AM-rule at all times. Recall that an

AM-tree 𝑇 supports the following operations: Insert(𝑢, 𝑣,𝑤),
which updates the tree to reflect an edge insertion (𝑢, 𝑣,𝑤)
to the graph, PathMax(𝑢, 𝑣), which gives the maximum edge

weight between 𝑢 and 𝑣 on the MST, and ReportMST, which
reports information of the current MST.

Among them, we only need to design the Insert(𝑢, 𝑣,𝑤)
function that maintains the tree invariants, since PathMax and
ReportMST are read-only. We show two solutions to approach

this. The first solution is based on a helper function Perch, and
is algorithmically simpler. At a high level, it uses the Perch
function to promote both𝑢 and 𝑣 to the root, and then connects

𝑢 and 𝑣 with weight 𝑤 , if 𝑤 is smaller than the current edge

between 𝑢 and 𝑣 . The second approach is based on stitching the
paths from 𝑢 and 𝑣 to the root without affecting the PathMax
results, which is slightly more complicated but practically faster.

Both algorithms achieve the same theoretical guarantees. In

Sec. 5, we will extend both of them to lazy versions.

4.1 The High-Level Algorithmic Framework We start

with the high-level framework of AM-tree, presented in Alg. 1.

We will analyze the algorithms in Sec. 4.4 and 4.5.

Edge Insertion. The strict AM-tree rebalances the tree

immediately once it is updated. To insert an edge (𝑢, 𝑣,𝑤) into
an AM-tree𝑇 , the algorithm starts with a function Link(𝑢, 𝑣,𝑤),
which applies the edge insertion (𝑢, 𝑣,𝑤) such that the tree

remains valid, but may be unbalanced. This operation may
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insert the new edge into 𝑇 , or cause an existing edge on 𝑇 to

be replaced by the new edge, or have no effect to the tree if

the new edge (𝑢, 𝑣,𝑤) does not appear in the MST of the graph.

The resulting tree is not unique—one can use multiple ways

to apply Link. We present two Link algorithms: the first one

(Sec. 4.2) is based on a primitive Perch, which is conceptually

simpler; the other one (Sec. 4.3) is based on a primitive Stitch,
which is more complicated but more efficient in practice. We

prove the correctness of the algorithm in Thm. 4.1.

The structural changes in the Link operation may cause the

tree unbalanced. We say a node 𝑦 is affected (or may become

unbalanced) during the Link operation if either 𝑦’s children list

is changed, or the subtree size of any 𝑦’s child is changed. We

will show that all such nodes are on the path from 𝑢 or 𝑣 to

the root before the Link operation. We collect all these nodes

in a set 𝑆 . Next, a DownwardCalibrate function is applied on

each node 𝑦 in 𝑆 . DownwardCalibrate(𝑦) aims to ensure that

node 𝑦 achieves a balance with all its children. This operation

first identifies whether 𝑦 has a heavy child 𝑥 . If so, 𝑥 will

be promoted and removed from 𝑦’s subtree. This process is

repeated until 𝑦 is balanced. In Thm. 4.2, we prove that the tree

becomes balanced after the Insert operation.
We note that, to perform DownwardCalibrate, we need to

store the child pointers in each node, and efficiently determine

whether the anti-monopoly rule is violated. To help the reader

understand the high-level idea more easily, we assume a black

box that can determine whether there is a heavy child of a tree

node 𝑢 (and find it if one exists) with 𝑂 (1) time. Throughout

the description and analysis, we assume the existence of this

black box, and we give a possible implementation in Sec. 4.6.

Path-max Queries. A PathMax query finds the maximum

edge on the path between 𝑢 and 𝑣 on 𝑇 . Relevant edges can be

identified by first finding Least Common Ancestor (LCA) of 𝑢

and 𝑣 as 𝑙 , and finding all edges from 𝑢 and 𝑣 to 𝑙 .

Other Queries. Other MST-related information can be easily

maintained during updates. For example, we can modify the

insertion function to maintain the membership of each edge

in the MST. We can use a boolean flag for each edge to denote

if it is in 𝑇 . Note that an insertion can only cause one edge to

alter in the MST. In Link, when inserting an edge 𝑒 incurs a

replacement of another edge 𝑒′, we can directly change the flag

of both edges in 𝑂 (1) extra cost. Similarly, one can update the

total weight of the MST after each insertion in 𝑂 (1) cost.

4.2 The Perch-based Solution We now present the first

implementation of the Link algorithm using the helper function

Perch. We call this algorithm LinkByPerch and present the

pseudocode on Lines 7 to 15 in Alg. 1.

To insert an edge (𝑢, 𝑣,𝑤) into the graph, we may need to

update the AM-tree 𝑇 accordingly such that it is still a valid

transformed MST. Based on the properties of MST, if 𝑢 and 𝑣

were not connected before the insertion, the new edge (𝑢, 𝑣,𝑤)
should just appear in the MST. Otherwise, if 𝑢 and 𝑣 were

previously connected, the MST may be changed due to the

new edge insertion. In particular, adding edge (𝑢, 𝑣,𝑤) may

introduce a cycle on the graph, and the largest edge on the

cycle should be removed. The AM-tree needs to be updated to

reflect such a change in the true MST.

The LinkByPerch(𝑢, 𝑣,𝑤) algorithm starts by calling a

helper function, Perch, on both 𝑢 and 𝑣 . The goal of Perch(𝑥)
is to restructure the tree and put node 𝑥 at the top. It simply

applies Promote on 𝑥 , until 𝑥 becomes the root of the tree.

Based on Fact 3.2, the resulting tree is still a valid T-MST, but

the tree height may be affected. After calling Perch on both 𝑢

and 𝑣 , if 𝑢 and 𝑣 were originally disconnected, 𝑢 and 𝑣 will be

made the root of their own tree in the spanning forest. Hence,

we directly attach 𝑢 as 𝑣 ’s child with the new edge weight𝑤 .

If𝑢 and 𝑣 were already connected before the edge insertion,

the first Perch on 𝑢 will reroot the tree at 𝑢, and the second

Perch on 𝑣 will further put 𝑣 on the top, pushing 𝑢 down as

the child of 𝑣 . In this case, we simply check the current edge

weight between 𝑢 and 𝑣 (stored in weight [𝑢]), and update it to

𝑤 if𝑤 provides a lower value.

Intuitively, the two Perch operations preserve the validity

of the T-MST before the edge insertion, and then the new edge

is directly reflected on 𝑇 by connecting 𝑢 and 𝑣 by weight𝑤 . If

𝑢 and 𝑣 were connected before, after perching both 𝑢 and 𝑣 , 𝑢

and 𝑣 should be connected by another edge (𝑢, 𝑣,𝑤 ′). Note that
the design of Promote preserves the path-max queries. Hence,

since the edge (𝑢, 𝑣,𝑤 ′) is the only edge from 𝑢 and 𝑣 on 𝑇 ,𝑤 ′

is the path-max. Therefore, if𝑤 < 𝑤 ′, we replace the old edge

with the new edge with weight𝑤 < 𝑤 ′.

4.3 Stitch-based Solution Our second approach for inser-

tion is based on the idea of stitching the tree paths from both

𝑢 and 𝑣 to the root. The pseudocode is presented on Lines 16

to 28, and an illustration is shown in 5. Instead of relying on

Promote, this approach directly adds the edge (𝑢, 𝑣,𝑤) (for an
insertion) to the tree, and uses TW transformations to move

this edge to its final destination and accordingly restructure the

tree. This approach is slightly less intuitive, but performs faster

in practice since it can touch fewer vertices in this process.

Based on TW transformation, if weight [𝑢] < 𝑤 , we can

replace the edge with (parent [𝑢], 𝑣,𝑤), and recursively call

LinkByStitch(parent [𝑢], 𝑣,𝑤). We do the same thing for 𝑣 .

When this process ends (Line 23), the recursive call must have

reached two vertices 𝑢 and 𝑣 such that weight [𝑢] > 𝑤 and

weight [𝑣] > 𝑤 . To connect 𝑢 and 𝑣 with edge weight 𝑤 , we

attach the one with smaller subtree size as a child to the larger

one. Later in the analysis, we will show that this is important to

bound the amortized cost of this algorithm. WLOG we assume

size[𝑢] < size[𝑣] (swap them otherwise). In this case, we will

reassign the parent of 𝑢 to be 𝑣 with edge weight𝑤 .

By doing this, on the current tree𝑇 , 𝑢 is connected to both

its original parent 𝑢′ and its new parent 𝑣 . Let the weight of the

original edge between𝑢 and𝑢′ be𝑤 ′. Then this edge (𝑢,𝑢′,𝑤 ′)
is not a valid tree edge anymore, and we need to relocate it in

the tree. Consider the two edges (𝑢,𝑢′,𝑤 ′) and (𝑢, 𝑣,𝑤). Based
on TW transformation, we can equivalently move (𝑢,𝑢′,𝑤 ′)
to (𝑢′, 𝑣,𝑤 ′) since 𝑤 ′ > 𝑤 . Hence, the algorithm finally calls

LinkByStitch(𝑢′, 𝑣,𝑤 ′) to finish the process.

Finally, there are two base cases. First, when 𝑢 and 𝑣 were
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Algorithm 1: The Strict AM-tree

// We omit the maintenance of the size[·] array for simplicity
1 Function Insert(𝑢, 𝑣,𝑤 )

2 𝑆 ← {𝑢, 𝑣} ∪ {all ancestors of 𝑢} ∪ {all ancestors of 𝑣}
3 Link(𝑢, 𝑣,𝑤) // Plug in LinkByPerch or LinkByStitch
4 foreach node 𝑦 ∈ 𝑆 do DownwardCalibrate(𝑦)
5 Function PathMax(𝑢, 𝑣)
6 return the maximum edge weight on the path from 𝑢 to 𝑣

// Perch-based Link function
7 Function LinkByPerch(𝑢, 𝑣,𝑤)
8 Perch(𝑢)
9 Perch(𝑣)

10 if parent [𝑢] = 𝑣 then weight [𝑢] ← min(weight [𝑢],𝑤)
11 else // 𝑢 and 𝑣 were previously disconnected
12 parent [𝑢] ← 𝑣

13 weight [𝑢] ← 𝑤

14 Function Perch(𝑥)
15 while parent [𝑥] ≠ null do Promote(𝑥)

// Stitch-based Link function
16 Function LinkByStitch(𝑢, 𝑣,𝑤)
17 if 𝑢 = 𝑣 or 𝑢 = null or 𝑣 = null then return
18 else if parent [𝑢] ≠ null and𝑤 > weight [𝑢] then
19 LinkByStitch(parent [𝑢], 𝑣,𝑤)
20 else if parent [𝑣] ≠ null and𝑤 > weight [𝑣] then
21 LinkByStitch(𝑢, parent [𝑣],𝑤)
22 else
23 if size[𝑢] > size[𝑣] then swap(𝑢, 𝑣)
24 𝑢′ ← parent [𝑢]
25 𝑤 ′ ← weight [𝑢]
26 parent [𝑢] ← 𝑣

27 weight [𝑢] ← 𝑤

28 LinkByStitch(𝑢′, 𝑣,𝑤 ′)

29 Function DownwardCalibrate(𝑦)
30 while 𝑦 has a child 𝑥 such that size[𝑥] > 2

3
size[𝑦] do

31 Promote(𝑥)

connected before, then by moving edges up, 𝑢 and 𝑣 in the

recursive calls will finally move to their LCA in the tree and

become the same node. In that case, we do not need to further

connect them and can terminate. The second case is when they

were not in the same tree. Then by the recursive calls, one of

them will reach the root, and the parent in the recursive call

becomes null. In that case, the algorithm can also terminate,

since one of the trees has been fully attached to the other.

4.4 Correctness Analysis We first show the correctness of

the algorithm, i.e., after the insertion algorithm, the tree 1) is a

valid T-MST that handles the insertion of edge (𝑢, 𝑣,𝑤) to the

original graph, and 2) satisfies the AM rule.

Theorem 4.1. (Correctness) Given a graph 𝐺 = (𝑉 , 𝐸) and
a T-MST 𝑇 = (𝑉 , 𝐸𝑇 ) for 𝐺 , after Insert(𝑢, 𝑣,𝑤) in Alg. 1,
using either LinkByPerch or LinkByStitch, 𝑇 is a valid T-MST
for 𝐺 ′ = (𝑉 , 𝐸 ∪ {(𝑢, 𝑣,𝑤)}).

Proof. To show correctness, we need to verify that the results

of path-max queries on any two vertices are still preserved.

Note that all modifications in DownwardCalibrate only use
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Link u and v with w=8. 
Move the edge (u,v,8) up, 
until we have weight[u]>w 
and weight[v]>w.
In this example, the edge is 
moved up to (d,f,8).
All movements are valid TW 
transformations.

Assume size[d]<size[f], 
then d’s parent should 
be changed to f. 
Move edge (d,c,9) to 
(c,f,9), which is still a 
TW transformation. 
Finally, recursively call 
link(c,f,9).
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Figure 5: An example of LinkByStitch. The figure illusrates

LinkByStitch(𝑢, 𝑣, 8). Values on the edges are edge weights. The

figure shows all vertices on the path from 𝑢 and 𝑣 to the root, and

omits all other vertices. An explanation about the process is shown in

the figure, and the pseudocode is presented in Alg. 1 Lines 16-28.

Promote, which are all TW transformations and preserve the

path-max results. Therefore, we only need to show that both

LinkByPerch and LinkByStitch preserve path-max results.

Consider we directly add edge (𝑢, 𝑣,𝑤) on 𝑇 , and get a

graph 𝑇 ′ = (𝑉 , 𝐸𝑇 ∪ {(𝑢, 𝑣,𝑤)}). Consider the Link algorithm
applied to 𝑇 , and we perform the same operations on 𝑇 ′. Then
all path-max queries on𝑇 ′ should be the same as that on𝐺 ′, so
𝑇 ′ is PM-equivalent to 𝐺 . We will show that the final result 𝑇

is PM-equivalent to 𝑇 ′. Note that 𝑇 ′ may or may not be a tree,

depending on whether 𝑢 and 𝑣 were connected before.

For LinkByPerch, 𝑇 ′ is exactly the tree obtained after Line

9 augmented with an additional edge (𝑢, 𝑣,𝑤). The final step is

the if-conditions from Line 10. In the first case where 𝑢 and 𝑣

were not connected before, 𝑢 is set as the child of 𝑣 with weight

𝑤 , obtaining a tree 𝑇 that is the same as 𝑇 ′. In the second case,

𝑢 and 𝑣 were in the same tree. Therefore after the two Perch
operations, 𝑢 should be connected with 𝑣 with an existing edge

(𝑢, 𝑣,𝑤 ′), and 𝑇 ′ further augments an edge (𝑢, 𝑣,𝑤) to 𝑇 . In
this case, only the lower weight should be kept in the MST, and

therefore the algorithm selects the minimum of the original

weight𝑤 ′ and the new weight𝑤 .

For LinkByStitch, the algorithm exactly first augments 𝑇

with the virtual edge and gets 𝑇 ′. All later edge movements

are TW transformations, as discussed in Sec. 4.3. Therefore,

during LinkByStitch, 𝑇 is always PM-equivalent to 𝑇 ′. The
only exception is the base case where 𝑢 = 𝑣 , that the edge with

weight𝑤 will be dropped in 𝑇 . In this case, conceptually this

edge in 𝑇 ′ is a self-loop on node 𝑢 = 𝑣 . Therefore, omitting it

does not change results for path-max queries.

We then present the theorem below, which states that the

tree stays balanced after insertion. Due to page limit, we defer

the proof to the full version of this paper [13]. The key proof

idea is to verify that DownwardCalibrate(𝑏) will always fix
the imbalance at node 𝑏, without introducing other unbalanced

nodes. Therefore, calling DownwardCalibrate on all affected

nodes in the previous process guarantees to rebalance the tree.

Theorem 4.2. (Balance Guarantee) After each Insert opera-
tion, all nodes in the AM-tree are balanced, and the AM-tree has
𝑂 (log𝑛) height.

4.5 Cost Analysis We now prove the cost bounds for the

strict AM-tree. Let 𝑑 (·) be the depth of a node. We first show

the worst-case cost of the two Link functions.
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Lemma 4.1. The worst-case cost of LinkByPerch or LinkByStitch
is 𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)).

Proof. The simpler case is LinkByStitch. In each recursive call,

the algorithm reassigns𝑢 or 𝑣 to another node on a higher level.

So the worst-case cost is trivially 𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)).
For LinkByPerch, we first show that after Perch(𝑢), the

depth of any node can increase by at most 1. Perch(𝑢) performs

a series of Promote operations on 𝑢. In a Promote call, let 𝑦 be

the parent of 𝑢. Only the nodes in 𝑦’s subtree may have their

depth increased by 1 (the rotate case in Fig. 4). After that, 𝑢 is

promoted one level up, and𝑦 can never be the parent of𝑢 again.

Therefore, the depth of any node can increase by at most 1.

In LinkByPerch, we perch both 𝑢 and 𝑣 and then connect

𝑢 and 𝑣 . The latter part takes constant time, so we only need to

consider the cost of perching 𝑢 and 𝑣 . The function Perch(𝑢)
performs 𝑑 (𝑢) calls to Promote(𝑢), each of which decreases

𝑑 (𝑢) by 1. So Perch(𝑢) takes 𝑂 (𝑑 (𝑢)) time. After perching 𝑢,

the depth of 𝑣 is increased by at most 1. Therefore, Perch(𝑣)
takes 𝑂 (𝑑 (𝑣)) time. Combining all the above, the worst-case

cost for LinkByPerch is 𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)).

We then show the worst-case cost of the Insert operation.

Theorem 4.3. The worst-case cost for Insert is 𝑂 (log2 𝑛).

Proof. The total cost for Insert includes the cost for Link and
DownwardCalibrate. Based on Lemma 4.1, the cost for Link is

𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)) = 𝑂 (log𝑛). This also means that the number

of affected nodes in 𝑆 is also 𝑂 (log𝑛).
To calibrate each node 𝑦 ∈ 𝑆 , we use Promote to remove

a heavy child from 𝑦. This means that the size of 𝑦 is reduced

by at least a factor of 2/3. Thus, at most 𝑂 (log𝑛) Promote
functions are used in DownwardCalibrate(𝑦). Therefore, the
worst-case cost for the Insert is 𝑂 (log2 𝑛).

Next, we use amortized analysis to show that the Insert
and PathMax operations take 𝑂 (log𝑛) amortized time. We

define the potential function for a node 𝑢 as:

(4.1) 𝜙 (𝑢) = log size[𝑢]
We also define the potential function for the whole tree as:

(4.2) Φ(𝑇 ) =
𝑛∑︂
𝑖=1

𝜙 (𝑖) =
𝑛∑︂
𝑖=1

log size[𝑖]

The potential function is always non-negative, and the potential

of the whole tree is𝑂 (𝑛 log𝑛). Recall that the amortized cost for

an operation op is Camortized (op) = Cactual (op)+Δ(Φ(𝑇 )), where
Cactual (op) is the actual cost (number of instructions) in the

operation op, and Δ(Φ(𝑇 )) is the change of potential function
after the operation. We first prove the following important

lemma, which states that, if a promotion is performed due to

imbalance, the amortized cost of Promote is free. In other

words, the cost of the Promote can be fully charged to previous

operations that increase the potential of the tree.

Lemma 4.2. If size[𝑥] > (2/3) · size[parent [𝑥]], the operation
Promote(𝑥) has zero amortized cost.

Proof. We first show that in both rotate and shortcut, the

potential of the tree will decrease by at least 1. Let 𝑦 =

parent [𝑥]. Note that during Promote(𝑥), only the potential

for 𝑥 and 𝑦 will change. Let 𝑠 (·) be the size of a node before
Promote, and 𝑠′ (·) the size after. Based on the assumption

in the lemma, 𝑠 (𝑥) > (2/3)𝑠 (𝑦). In a shortcut case, 𝑥 ’s

potential remains unchanged, and the size of 𝑦 decreases by

at least a factor of 2/3, causing its potential to decrease by

log
2
3 > 1. In a rotate case, 𝑠′ (𝑥) = 𝑠 (𝑦). For 𝑦, we have

𝑠′ (𝑦) = 𝑠 (𝑦) − 𝑠 (𝑥) < (1/2)𝑠 (𝑥). The potential change after
a Promote is (log 𝑠′ (𝑥) + log 𝑠′ (𝑦)) − (log 𝑠 (𝑥) + log 𝑠 (𝑦)) <
log 𝑠 (𝑦) + log(1/2)𝑠 (𝑥) − log 𝑠 (𝑥) − log 𝑠 (𝑦) = −1. Combining

the actual cost and the potential change, Promote(𝑥) has zero
amortized cost when size[𝑥] > (2/3)size[parent [𝑥]].

Here we are assuming the cost for Promote(𝑥) is 1. More

precisely, suppose the actual cost of Promote(𝑥) is a constant 𝑐 .
If we use potential function 𝜙 ′ (𝑥) = 𝑐 · log size[𝑥], we will have
Camortized (op) = Cactual (op) + Δ(Φ(𝑇 )) = 𝑐 + (−𝑐) = 0.

From Lemma 4.2, we have the following conclusion.

Lemma 4.3. Assume identifying the heavy child of a node has
𝑂 (1) cost. Then DownwardCalibrate has 𝑂 (1) amortized cost.

Proof. The DownwardCalibrate operation is a sequence of

Promote operations on a node 𝑥 such that size[𝑥] >

(2/3)size[parent [𝑥]]. Based on Lemma 4.2, all Promote op-

erations have zero amortized cost. Hence, the amortized cost

for DownwardCalibrate is 𝑂 (1).

We now show the amortized cost of the LinkByPerch and

LinkByStitch, which will be used to prove Thm. 4.5.

Lemma 4.4. The LinkByPerch(𝑢, 𝑣,𝑤) operation has 𝑂 (𝑑 (𝑢) +
𝑑 (𝑣) + log𝑛) amortized cost.

Proof. By Lemma 4.1, the actual cost of LinkByPerch is

𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)). We then prove that the increment of the po-

tential is 𝑂 (log𝑛). The LinkByPerch function has three steps:

two Perch functions and the final step to link 𝑢 and 𝑣 . In the

two Perch calls, we repeatedly promote 𝑢 or 𝑣 to a higher level.

For both shortcut and rotate cases, the sizes of all other nodes

are non-increasing, so only 𝜙 (𝑢) and 𝜙 (𝑣) may increase. The

last step connects 𝑢 and 𝑣 . The only case that may change the

potential is when a new edge is established, 𝑢 becomes a child

of 𝑣 , and only 𝜙 (𝑣) may increase. Combining all steps, the only

increment on the potential function is 𝜙 (𝑢) and 𝜙 (𝑣), so the

increment of the potential function is at most 𝑂 (log𝑛).

Lemma 4.5. The LinkByStitch(𝑢, 𝑣,𝑤) operation has 𝑂 (𝑑 (𝑢) +
𝑑 (𝑣)) amortized cost.

Proof. By Lemma 4.1, the actual cost of LinkByStitch is

𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)). For the potential increment, note that the only

structure change occurs on lines 26 and 27. Since we always

attach the smaller subtree to the larger one, size[𝑣] can increase
by at most twice, increasing 𝜙 (𝑣) by at most 1. Since there are

at most 𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)) nodes affected in the algorithm, the

potential change is also 𝑂 (𝑑 (𝑢) + 𝑑 (𝑣)).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited299

D
ow

nl
oa

de
d 

09
/2

5/
25

 to
 7

6.
17

4.
21

8.
23

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



In a size-balanced tree, 𝑑 (𝑢) and 𝑑 (𝑣) are 𝑂 (log𝑛). Com-

bining Fact 3.1, Lemmas 4.3, 4.4, and 4.5, we have the following

theorem for the entire Insert function.

Theorem 4.4. The amortized cost for each Insert is 𝑂 (log𝑛)
using either LinkByPerch or LinkByStitch.

The bound of the PathMax(𝑢, 𝑣) query is trivially𝑂 (log𝑛)
since the tree height is 𝑂 (log𝑛). We can find the lowest

common ancestor (LCA) and compare all edges on the path

between𝑢 and 𝑣 . To summarize, we have the following theorem

on the cost bounds for the strict AM-tree.

Theorem 4.5. The strict AM-tree supports PathMax in 𝑂 (log𝑛)
worst-case cost, and Insert in 𝑂 (log𝑛) amortized cost (𝑂 (log2 𝑛)
worst-case cost).

4.6 Finding Heavy Child of a Node As mentioned, the

strict AM-tree requires a building block to identify the heavy

child (if any) of a given node in the DownwardCalibrate
function. This requires maintaining all child pointers in

each node, and maintaining the heaviest child under possible

changes to the tree structure. For page limit, we present the

algorithm in the full version of this paper [13].

5 The Lazy AM-tree
In Sec. 4, we introduced the strict version of AM-tree, which

always keeps the tree size-balanced. However, this version

requires maintaining all the child pointers in each node and

the building block in Sec. 4.6 to identify the heavy child, which

may bring up unnecessary performance overhead.

In this section, we introduce a lazy version of AM-tree,

which only requires each tree node to maintain the parent

pointer. This version rebalances the tree lazily, so the tree

height is not always bounded by 𝑂 (log𝑛). However, we will
show that the lazy AM-tree also achieves the same 𝑂 (log𝑛)
amortized cost for insertions and path-max queries.

5.1 Algorithms We present the algorithm in Alg. 2. This

algorithm still uses the two primitives: the same Link as the

strict version, and UpwardCalibrate. Different from Down-
wardCalibrate in the strict version that rebalances a node with

its children, the UpwardCalibrate function tries to rebalance

a node with its parent. UpwardCalibrate(𝑢) checks the path
from 𝑢 to the root and ensures that any two of 𝑢’s consecutive

ancestors 𝑥 and 𝑦 = parent [𝑥] satisfy size[𝑥] ≤ (2/3) · size[𝑦].
As such, the depth of 𝑢 is reset to𝑂 (log𝑛). To do this, Upward-
Calibrate(𝑥) repeatedly promotes 𝑥 if 𝑥 is a heavy child (i.e.,

its size is more than 2/3 of its parent). When 𝑥 is no longer a

heavy child, we move to its parent and continue.

UpwardCalibrate balances the tree in a lazy way. In

LazyPathMax(𝑢, 𝑣), we first call UpwardCalibrate on both 𝑢

and 𝑣 to calibrate the path from each of them to the root. Then

we directly use the plain algorithm to find all edges on the path

and obtain the maximum one.

In LazyInsert(𝑢, 𝑣,𝑤), we also first use UpwardCalibrate
on both 𝑢 and 𝑣 to calibrate the path from each of them to

Algorithm 2: The Lazy AM-tree

1 Function LazyInsert(𝑢, 𝑣,𝑤)
2 UpwardCalibrate(𝑢)
3 UpwardCalibrate(𝑣)
4 Link(𝑢, 𝑣,𝑤) // plug in LinkByPerch or LinkByStitch in Alg. 1
5 Function LazyPathMax(𝑢, 𝑣)
6 UpwardCalibrate(𝑢)
7 UpwardCalibrate(𝑣)
8 return PathMax(𝑢, 𝑣) // See Alg. 1

9 Function UpwardCalibrate(𝑥)
10 while parent [𝑥] is not null do
11 while size[𝑥] > 2

3
size[parent [𝑥]] do promote(𝑥)

12 𝑥 ← parent [𝑥]

the root. Then we use the same LinkByPerch or LinkByStitch
functions to connect𝑢 and 𝑣 as in the strict version, and connect

them by an edge with weight𝑤 (modifying other edges of the

tree if necessary). The algorithm does not then calibrate the

tree after Link. For this reason, the tree after a LazyInsert is not
guaranteed to be size-balanced. The rebalance process will be

postponed to the next time when a node is accessed in either

an insertion or a path-max query.

In the next section, we will show that, although the tree

is not guaranteed to be balanced, the amortized costs for both

LazyInsert and LazyPathMax are still 𝑂 (log𝑛).

5.2 Analysis We now analyze the lazy AM-tree. We use the

same potential function as in the strict version. We first note

that the correctness of the lazy version can be directly derived

from the same proof for the strict version (Thm. 4.1), and the

following theorem holds.

Theorem 5.1. (Correctness of the Lazy AM-tree) Given a
graph 𝐺 = (𝑉 , 𝐸) and a T-MST 𝑇 = (𝑉 , 𝐸𝑇 ) for 𝐺 , after
the LazyInsert(𝑢, 𝑣,𝑤) in Alg. 2 using either LinkByPerch or
LinkByStitch, 𝑇 is a valid T-MST for 𝐺 ′ = (𝑉 , 𝐸 ∪ {(𝑢, 𝑣,𝑤)}).

We now analyze the amortized cost. The UpwardCali-
brate(𝑥) function will not fully calibrate the tree, but it will

calibrate the path from 𝑥 to the root to ensure the depth of 𝑥

becomes 𝑂 (log𝑛), as stated in the following lemma.

Lemma 5.1. After UpwardCalibrate on 𝑢 and 𝑣 , the depth of 𝑢
and 𝑣 becomes 𝑂 (log𝑛).

Proof. UpwardCalibrate(𝑥) will make all nodes on the path

from 𝑥 to the root size-balanced, so the depth of 𝑢 and then 𝑣

will be adjusted to 𝑂 (log𝑛).
However, the second UpwardCalibrate on 𝑣 may affect the

depth of𝑢. Similar to the proof of Lemma 4.1, we can show that

UpwardCalibrate(𝑣) increases the depth of any node by at most

1. UpwardCalibrate(𝑣) performs a series of Promote operations
on 𝑣 or 𝑣 ’s ancestors. Let 𝑥 be the node being promoted and

𝑦 the parent of 𝑥 , then the depth of nodes in 𝑦’s subtree may

increase by 1 (the rotate case in Fig. 4). After that, 𝑦 can never

be the parent of the node being promoted again. Hence, the

depth of any node can be increased by at most 1. Both 𝑢 and 𝑣

have depth 𝑂 (log𝑛) after UpwardCalibrate on 𝑢 and 𝑣 .
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We then show that the UpwardCalibrate function itself

only has 𝑂 (log𝑛) amortized cost. Note that since UpwardCali-
brate may work on an unbalanced tree, it may access Ω(log𝑛)
nodes on the path, resulting in an Ω(log𝑛) actual cost. How-
ever, since some of the operations, specifically the Promote
operations, rebalance the tree and decrement the potential

function, the amortized cost can be bounded in 𝑂 (log𝑛).

Lemma 5.2. The amortized cost of UpwardCalibrate is 𝑂 (log𝑛).

Proof. First of all, note that the Promote function in the inner

while-loop on Line 11 is performed only if imbalance occurs. In

Lemma 4.2, we proved that this operation has zero amortized

cost, since it decrements the potential function. Therefore, the

entire while-loop on Line 11 has𝑂 (1) amortized cost, indicating

that each iteration of the outer while-loop on Line 10 only has

𝑂 (1) amortized cost.

We then prove that the outer while-loop has 𝑂 (log𝑛)
iterations. This is because in each iteration, when the inner loop

terminates, we must have size[𝑥] ≤ 2

3
size[parent [𝑥]]. Then

we update 𝑥 to its parent and continue to the next iteration.

Therefore, each iteration increases the size of the current node

𝑥 by at least a factor of 3/2. In at most 𝑂 (log𝑛) iterations, the
outer while-loop terminates.

Combining the above lemmas and the amortized cost of

LinkByPerch and LinkByStitch proved in Lemma 4.4 and 4.5,

we have the following theorem.

Theorem 5.2. The lazy AM-tree supports the LazyInsert and
LazyPathMax in 𝑂 (log𝑛) amortized time per operation.

6 Persisting the AM-tree
We now discuss how to persist AM-tree upon updates, which is

required in certain temporal graph applications. Since we focus

on temporal graphs, we mainly consider partial persistence,
where updates are applied only to the last version but we can

query any history version. The methodology here also extends

to the fully persistent setting where all versions form a DAG

instead of a chain. To persist the AM-tree, we need to persist

the arrays parent [·] and weight [·]. Below we use the parent [·]
as an example. Assume there are𝑚 = Ω(log𝑛) edge insertions
to the AM-tree. Let 𝑘 be the total number of nodes that are

modified by the𝑚 edge insertions. The analysis in Sec. 4.5 and

5.2 shows that 𝑘 = 𝑂 (𝑚 log𝑛).
Version Lists. We first consider a simple and practical solution

based on version lists (referred to as “fat nodes method” in

[15]). All experiments in this paper use this approach. For

this approach, each node 𝑢 in the AM-tree maintains a list of

versions of parent [𝑢], in the form of (𝑡, parent𝑡 [𝑢]) ordered by

𝑡 , where 𝑡 is the time when the edge is added, and parent𝑡 [𝑢] is
the parent of 𝑢 in this version. When the parent of 𝑢 is updated,

a new pair of (𝑡, parent [𝑢]𝑡 ) is appended to the version list. In

this case, no asymptotic cost is needed for supporting persistent

insertions. and the version lists take 𝑂 (𝑘) = 𝑂 (𝑚 log𝑛) space.
However, when querying a history version, we need a binary

search to locate the pointers of the current version, which adds

an 𝑂 (log𝑘) = 𝑂 (log𝑚) overhead to query costs.

Note that only the strict AM-tree can guarantee the

𝑂 (log𝑚 log𝑛) query cost, where PathMax will check 𝑂 (log𝑛)
edges in the tree. The query cost for the lazy AM-tree

is amortized; however, in practice, the difference in query

performance between the two versions is minimal.

vEB-Trees-based Solution. Theoretically, the overhead for

persistence can be reduced from 𝑂 (log𝑚) to 𝑂 (log log𝑚) by
using the approach given in Straka [48]. At a high level, the

ordered set is maintained by a van Embe Boas Tree [53] that

provides doubly logarithmic update and lookup cost.

7 Applications on Temporal Graphs
Given the algorithms for AM-tree with support for persistence,

we are ready to solve various temporal graph applications.

In Sec. 2.2, we briefly introduced the point-interval temporal

connectivity problem. In this section, we show other temporal

graph problems and how AM-trees can solve them.

7.1 Temporal Graph Settings Two categories in temporal

graph processing have received significant attention. The first

is the point-interval setting (e.g., [4, 9, 10, 33, 47, 52, 55–59])

as mentioned in Sec. 2.2. In this setting, each edge 𝑒 has a

timestamp 𝑡 (𝑒) (i.e., edge (𝑢, 𝑣) arrives at time 𝑡 (𝑒)). A query

is associated with a time interval [𝑡1, 𝑡2] and is performed on

a sub-graph 𝐺 ′[𝑡1,𝑡2 ] with edge set 𝐸′ = {𝑒 | 𝑡 (𝑒) ∈ [𝑡1, 𝑡2]}. A
simpler case is the so-called sliding-window setting [4, 10].

Dually, there is the interval-point setting (e.g., [5, 11, 16, 18,

23, 40, 43]), where each edge 𝑒 has a time interval [𝑡1 (𝑒), 𝑡2 (𝑒)].
A query is associated with a timestamp 𝑡 and is performed on

the sub-graph 𝐺 ′𝑡 with edge set 𝐸′ = {𝑒 | 𝑡 ∈ [𝑡1 (𝑒), 𝑡2 (𝑒)]}. A
similar setting is the “offline dynamic graphs” [16, 40], where

each edge can be inserted/deleted at a certain time, and queries

are performed on a snapshot of the graph. From a temporal

view, each edge has a lifespan (an interval) from its insertion to

its deletion, and queries are performed on a specific timestamp.

However, in fully dynamic graphs [6, 19–21, 34, 35, 38, 51], the

deletion time is unknown at the time of insertion.

7.2 Online/Offline Settings The graph and queries can also

be either online or offline. Offline means the information is

known ahead of time, while online means the algorithm needs

to respond to every update/query before the next one comes.

We first consider the graph:

• Offline Graph [16, 40, 52, 55–58]: all edges in the graph are

known ahead of time (before or with the queries).

• (Online) Streaming Graph [4, 10, 47, 52, 59]: New edges

arrive one by one, forming a graph stream. In this case,

the timestamp of the edge is the ordering of it in the stream,

so only the point-interval setting applies here.

Note that the offline setting can be converted to online by

sorting all edges based on the time and processing them.

The queries can also come in different settings:

• Offline [4, 10, 47, 58, 59]: Queries are known ahead of time.

• Historical (Online) [16, 40, 52, 55–58]: Queries come as a

stream, and can travel back in history to query any previous

timestamp or time interval. This requires to persist the graph

(or the corresponding data structure).
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In summary, there are a variety of different temporal

graph settings, and they have been studied either within the

temporal graph scope or as other problems (e.g., offline dynamic

graphs [16, 40]). However, even though the literature has

designed solutions for some specific settings, one contribution

of our work is to show how a base data structure can be

adapted to different settings. In particular, the AM-tree, which

supports efficient incremental MST, can be used for a wide

range of problems (mostly connectivity-related problems) in

this section, combined with all the settings discussed above.

Next, we will use connectivity as the main example, and show

two other problems that can also be solved with some moderate

modifications. For page limit, more applications are discussed

in the full version of this paper [13]. For many applications,

their reductions to MST-related problems have been studied

in a specific graph-query setting [4, 10]. Our discussions show

that they can all be solved by AM-trees and can be extended to

other settings in a straightforward way.

7.3 Connectivity On an undirected graph 𝐺 = (𝑉 , 𝐸) there
are two crucial problems related to graph connectivity:

• Determine whether 𝑢 and 𝑣 are connected in 𝐺 .

• Report the number of connected components in 𝐺 .

In temporal graph applications, the graph contains edges with

temporal information. We show that both the point-interval

and the interval-point settings can be converted to incremental

MST and solved by AM-trees efficiently.

The point-interval setting is discussed in Sec. 2.2 as a

motivating example and we briefly recap here. Each edge 𝑒 is

treated as an edge insertion at time 𝑡 (𝑒) with weight −𝑡 (𝑒). We

can then maintain an AM-tree by processing all edges in order

as an incremental MST. We use 𝑇𝑡 to denote the AM-tree up

to time 𝑡 . For a query (𝑢, 𝑣, 𝑡1, 𝑡2), we check and report if the

PathMax𝑇𝑡
2

(𝑢, 𝑣) = 𝑤 satisfies |𝑤 | ≥ 𝑡1 [4, 10, 47]. To report

the number of connected components (CC) [10], note that all

edges 𝑒 in𝑇𝑡2 with 𝑡 (𝑒) < 𝑡1 break the connectivity of the graph

and increase the number of CCs by 1. We keep an ordered set

𝐷 to store all edges in the current MST, ordered by 𝑡 (𝑒). For
each edge insertion, we update the edges in 𝐷 (up to one edge

inserted/removed). For a query (𝑡1, 𝑡2), we look at𝐷𝑡2 (𝐷 at time

up to 𝑡2), and report 𝑛 − |{𝑒 | 𝑡 (𝑒) ≥ 𝑡1}|. 𝐷 can be maintained

by any balanced BST in 𝑂 (log𝑛) cost per operation.
For the interval-point setting, each edge has a time interval

[𝑡1 (𝑒), 𝑡2 (𝑒)]. We convert it to an incremental MST problem by

adding this edge at time 𝑡1 (𝑒) with weight −𝑡2 (𝑒). Again we use
𝑇𝑡 to denote the AM-tree up to time 𝑡 . For a query (𝑢, 𝑣, 𝑡), we
query 𝑤 = PathMax𝑇𝑡 (𝑢, 𝑣) on 𝑇𝑡 and check whether |𝑤 | ≥ 𝑡 .

If so, 𝑢 and 𝑣 remain connected at time 𝑡 . We can use AM-tree

for the number of connected components queries similarly.

Note that we need to perform the PathMax (or check BSTs
for the number of CCs) for each query. If the queries are offline,

we can sort the query time (𝑡 or 𝑡2) together with the edges,

so all PathMax queries apply to the “current” AM-tree in the

stream. For the historical setting, we need to persist the AM-

tree (and also the ordered set 𝐷), so queries can travel back

and check any previous version of AM-tree or 𝐷 . We show the

theoretical guarantees on this problem along with the following

application on bipartiteness in Thm. 7.1.

7.4 Bipartiteness An undirected graph 𝐺 = (𝑉 , 𝐸) is bipar-
tite iff there exists a vertex subset 𝑉 ′ ∈ 𝑉 such that every edge

has one endpoint in 𝑉 ′ and the other endpoint in 𝑉 \𝑉 ′.
There is a known reduction [3, 10] of the bipartiteness

problem to the connectivity problem. We generate another

graph 𝐺 ′ by duplicating each vertex 𝑣 ∈ 𝑉 into two copies 𝑣1
and 𝑣2 in 𝐺

′
, and duplicating each edge (𝑢, 𝑣) ∈ 𝐸 into (𝑢1, 𝑣2)

and (𝑣1, 𝑢2) in𝐺 ′. The graph𝐺 is bipartite if and only if𝐺 ′ has
twice as many connected component as 𝐺 .

Bipartiteness checking in the temporal setting is similar to

connectivity. We run the same algorithm for connectivity on

both 𝐺 and 𝐺 ′. For a query at time 𝑡 , we check and return if

the number of connected components on𝐺 ′𝑡 is twice as𝐺𝑡 . The

same cost analysis for connectivity also applies here. Using

vEB tree for persistence leads to the following theorem.

Theorem 7.1. Given a temporal graph with 𝑛 vertices and 𝑚

edges, the temporal connectivity or bipartiteness can be solved
by AM-trees with 𝑂 (𝑛) initialization cost and 𝑂 (log𝑛) cost per
edge update; the offline query and historical query have𝑂 (log𝑛)
and 𝑂 (log𝑛 log log𝑚) cost, respectively.

Note that we assume𝑚 = Ω(𝑛) since otherwise singleton
vertices can be filtered out.

7.5 𝑘-Connectivity and 𝑘-Certificate Given an undirected

graph 𝐺 = (𝑉 , 𝐸), two vertices 𝑢 and 𝑣 are 𝑘-connected if

there are 𝑘 edge-disjoint paths connecting them. A graph is

𝑘-connected if every pair of vertices is 𝑘-connected.

A 𝑘-certificate is a sequence of edge-disjoint spanning

forests 𝐹1, 𝐹2, ..., 𝐹𝑘 from𝐺 , and 𝐹𝑖 is a maximal spanning forest

of 𝐺 \ (𝐹1 ∪ 𝐹2 ∪ · · · ∪ 𝐹𝑖−1). The connection between the 𝑘-

certificate and 𝑘-connectivity is that 𝑢 and 𝑣 are 𝑘-connected in

𝐺 if and only if they are 𝑘-connected in (𝐹1 ∪ 𝐹2 ∪ · · · ∪ 𝐹𝑖−1).
We can generate 𝑘-certificate using a connectivity algo-

rithm [10]. 𝐹1 is simply the same MST computed in Sec. 7.3

using the AM-tree. Then, when 𝐹𝑖 is updated—an edge 𝑒 is re-

placed by another edge in the MST, it will be inserted into 𝐹𝑖+1.
Hence, in total wemaintain𝑘 AM-trees, so the cost is multiplied

by 𝑘 (asymptotically the same when assuming 𝑘 = 𝑂 (1)).

7.6 Other Applications Due to the space limit, we discuss

other applications in the full version of this paper [13].

8 Experiments
This section provides experimental evaluation of the effec-

tiveness of AM-trees. We mostly focus on one setting, the

point-interval temporal connectivity, due to the following rea-

sons. First, there exist fast baselines for this problem [47] that

are apple-to-apple comparisons to AM-trees. Second, when

mapping to incremental MST, the interval-point setting only

changes the edge weight distribution, and the runtime is similar.

Additional experiments are in the full version of this paper [13].
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Name Graph |𝑉 | |𝐸 |

WT ∗
wiki-talk [32] 1.1M 7.8M

SX ∗
sx-stackoverflow [32] 6.0M 63.5M

SB ∗
soc-bitcoin [44] 24.6M 122.4M

USA RoadUSA [37] 24.0M 57.7M

GL5 GeoLife [54, 60] 24.9M 124.3M

TW Twitter [31] 41.7M 1.47B

SD sd_arc [36] 89.2M 2.04B

Table 1: Graph Information.
∗
: real-world temporal graphs. Others

are static graphs with randomly generated temporal information.

For the point-interval connectivity, each edge 𝑒 has a

timestamp 𝑡𝑒 . A query has a time interval [𝑡1, 𝑡2], and only

edges 𝑒 with timestamp 𝑡𝑒 ∈ [𝑡1, 𝑡2] are considered in the query.

In this section, we mainly focus on querying the connectivity

between two vertices. We provide the reqults for querying the

number of connected components in the full version of this

paper [13]. As discussed in Sec. 7.3, it is an important building

block for many temporal applications such as bipartiteness

checking. Our source code is publicly available on Github [14].

8.1 Setup We implemented the strict and the lazy versions

of AM-tree in C++ and persist them by version lists (see Sec.

6). Experiments are run on a Linux server with four Intel Xeon

Gold 6252 CPUs and 1.5 TB RAM, though only one core is

utilized. We compiled our code using Clang 18.1 with -O3 flag.

Datasets We tested seven real-world graphs (summarized in

Tab. 1) with very different features. The first three graphs are

real-world temporal graphs where each edge is associated with

a timestamp. The last four are static graphs and we assign a

uniformly random timestamp in the range [0, 109] to each edge.

Evaluated Methods We compared six data structures in total.

For each of them, we test the throughput for both updates
(processing all temporal edges) and queries.
• Strict-Stitch, Strict-Perch, Lazy-Stitch, Lazy-Perch: Our
implementations of four versions of AM-tree using strict/lazy

strategy based on Perch/Stitch.
• OEC-Forest [47]: A state-of-the-art implementation for

incremental MST, which solves temporal connectivity.

• LC-Tree: Our own implementation of link-cut trees [46].

Recall that the LC-Tree is a classic data structure offering
theoretical guarantees, whereas OEC-Forest is a practical data
structure without non-trivial bounds. All four versions of AM-

tree provide the same (amortized) bounds as LC-Tree, and are

also designed to be practical. For the AM-trees and OEC-
Forest we also tested their persistent versions for historical

queries. We note that, as mentioned in Sec. 6, the lazy AM-

trees do not guarantee the polylogarithmic query bound. The

update bounds for the lazy version, and all bounds for the strict

versions still hold in the persistent setting.

8.2 AM-trees for Offline Queries We first tested the non-

persistent AM-tree for offline queries, i.e., the queries are given

ahead of time with all edges. In this case, there is no need

to persist the AM-tree. We can simply process (insert) the

edges in order, and after each insertion, if there is a query that

corresponds to this time, we directly perform it. Fig. 6 shows

the update and query throughput in this setting.

Update Throughput. We first compare among the four

versions of AM-tree in updates. The lazy version always

achieves much better performance than the strict version, due

to two main reasons. First, the lazy version does not maintain

the children pointers and does not actively check the heaviest

child, which saves much work. Second, the lazy version does

not rebalance the whole tree after an update, and thus requires

less work than the strict version. In total, the performance for

the lazy version is 3.6–6.2× faster on average on all graphs.

The stitch-based versions are usually slightly faster than

the perch-based versions. Such a difference is more pronounced

in the persistent settings, which we discuss later.

Compared to other baselines, while LC-Tree achieves

strong theoretical guarantee, it has the lowest throughput on

all graphs. It is slower than the strict AM-trees by a factor

of 1.2–2.6×, and is slower than the lazy AM-trees and OEC-
Forest by at least 4.5×. OEC-Forest tree has reasonably good

performance on all graphs. The best version of AM-trees, Lazy-
Stitch still achieves competitive or better performance than

OEC-Forest, which is from 4% slower (on WT) to 1.5× faster

(on SB). On average across seven graphs, Lazy-Stitch is 1.2×
faster. This speedup comes from the theoretical guarantees of

the AM-tree that leads to shallower tree depths.

Query Throughput. For queries, all versions of AM-tree have

better performance than both OEC-Forest and LC-Tree. The
advantage over LC-Tree is from the algorithmic simplicity, and

the advantage over OEC-Forest is from the depth guarantee

of AM-tree in theory. To verify this, we further tested the

average tree height for AM-tree and OEC-Forest, and present

the results in the full version of this paper [13] for completeness.

Comparing OEC-Forest with Lazy-Stitch as an example, OEC-
Forest is 1.8–2.9× deeper than AM-tree, making AM-tree 1.6–

2.5× faster than OEC-Forest for queries.

8.3 AM-trees for Historical Queries We now discuss

the setting with historical queries, which requires using the

persistent version of AM-trees. In this setting, the queries

are not known when the index is constructed, so we need to

preserve all versions of the AM-tree at all timestamps. We

present the results in Fig. 7.

The performance for updates is pretty consistent with

the non-persistent version. In all cases, Lazy-Stitch achieves

the best performance, and OEC-Forest is close to our best

performance. For queries, the slowdown of the perch-based

version over the stitch-based one becomes significant. As

mentioned, the difference comes from the more substantial tree

restructuring in Perch. LinkByPerch changes Θ(𝑑 (𝑢) + 𝑑 (𝑣))
nodes in the tree. Note that this bound is tight, since 𝑢 and 𝑣

both have to be perched to the top, causing all nodes on the path

to generate a new version. For LinkByStitch, in many cases, the

edge is just conceptually moved up without changing the tree.

To verify this, in the full version of this paper [13] we report

the number of versions generated during the algorithm, which

indicates the total number of nodes that have been touched and
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Figure 6: Update and query throughput (millions of operations per second) for offline queries. Higher is better.
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Figure 7: Update and query throughput (millions of operations per second) for online (historical) queries. Higher is better.

changed their parent/child pointers during the entire algorithm.

The perch-based algorithms indeed modified 1.4–5.5× more

nodes than the stitch-based versions.

Since the lazy versions have loose query bounds, the strict

version achieves better performance than the lazy ones. This

is more pronounced for the perch-based algorithms. For the

stitch-based algorithms, the difference is marginal except for

the last graph SD. On all graphs other than SX, both Strict-Stitch
and Lazy-Stitch outperforms the baseline OEC-Forest.

In summary, Lazy-Stitch achieves the best overall perfor-

mance for almost all settings. When the application emphasizes

the query throughput in the online setting, Strict-Stitch may

provide better performance in queries.

9 Related Work
Minimum spanning tree/forest (MST/MSF) is one of the most

fundamental graph problems, and has been studied from a cen-

tury ago [7, 26] to recent years [12, 27, 29]. Some famous algo-

rithms include but are not limited to: Borůvka’s algorithm [7],

Prim’s algorithm [26, 41], Kruskal’s algorithm [30], and KKT

algorithm [28]. Regarding dynamic MSTs, the classic setting

with both edge insertions and deletions is challenging—the best-

known algorithm [22] needs𝑂 (log4 𝑛/log log𝑛) amortized cost

per edge update. Incremental MST with only edge insertions is

simpler and is proven to be very useful.

Some classic data structures solve incremental MST ef-

ficiently in theory, including the link-cut tree [46], the rake

compress tree (RC-tree) [2], and the top tree [50]. They can

support each edge insertion in 𝑂 (log𝑛) cost either amortized

or on average. These data structures actually solve the more

general “dynamic tree/forest” problem (see [1]). There are

also parallel algorithms that apply a large batch of edge up-

dates [4, 17, 39, 45]. To the best of our knowledge, these results

are mostly of theoretical interest and no implementations are

available. Practically, people have designed data structures

such as the OEC-forest [47] and the D-tree [8] for faster per-

formance. D-tree maintains a BFS-tree and patches it when

updates come. It has decent performance when the graph has

certain properties, but no non-trivial cost bounds are known.

The OEC-forest [47] was the latest work on this topic and also

the main baseline we compare with. The OEC-forest is a T-MST

using an idea similar to our stitch-based algorithms. However,

it does not support any non-trivial (better than linear) bounds

for the tree diameter. Our main improvement is to introduce

the anti-monopoly rule, which bounds the tree height and guar-

antees the cost bounds for AM-tree.

Temporal graph processing is a popular research topic

recently, and we refer the audience to an excellent survey [24]

for more background. The connection between temporal graph

and incremental MST has been shown, but only for specific

cases. Song et al. [47] discussed the historical point-interval

connectivity, and Anderson et al. [4] discussed the offline

point-interval setting. To the best of our knowledge, the

generalization of this connection is novel in our paper.

10 Conclusion
This paper proposes new algorithms for incremental MST for

efficient temporal graph processing on numerous applications.

Our new data structure, the AM-tree, is efficient both in theory

and in practice. In theory, the cost bounds of using AM-trees

for temporal graphs match the best-known results using link-

cut trees or other data structures. In practice, we compare

AM-tree to both the theoretically-efficient solution and state-

of-the-art practical solutions. Our Lazy-Stitch version achieves

the best performance in most tests including various graphs

with offline/historical queries on both updates and queries.
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