'.)

Check for
Updates

Unifying Compositional Verification and Certified
Compilation with a Three-Dimensional Refinement Algebra

YU ZHANG, Yale University, USA

JEREMIE KOENIG, Yale University, USA

ZHONG SHAO, Yale University, USA

YUTING WANG, Shanghai Jiao Tong University, China

Formal verification is a gold standard for building reliable computer systems. Certified systems in particular
come with a formal specification, and a proof of correctness which can easily be checked by a third party.

Unfortunately, verifying large-scale, heterogeneous systems remains out of reach of current techniques.
Addressing this challenge will require the use of compositional methods capable of accommodating and
interfacing a range of program verification and certified compilation techniques. In principle, compositional
semantics could play a role in enabling this kind of flexibility, but in practice existing tools tend to rely on
simple and specialized operational models which are difficult to interface with one another.

To tackle this issue, we present a compositional semantics framework which can accommodate a broad
range of verification techniques. Its core is a three-dimensional algebra of refinement which operates across
program modules, levels of abstraction, and components of the system’s state. Our framework is mechanized
in the Coq proof assistant and we showecase its capabilities with multiple use cases.

CCS Concepts: « Software and its engineering — Software verification; Correctness; Compilers; « Theory
of computation — Program semantics; Abstraction; Program verification; Program specifications.

Additional Key Words and Phrases: Compositional Verification, Compositional Compiler Correctness, Game
Semantics, Refinement Convention

ACM Reference Format:

Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang. 2025. Unifying Compositional Verification and
Certified Compilation with a Three-Dimensional Refinement Algebra. Proc. ACM Program. Lang. 9, POPL,
Article 64 (January 2025), 31 pages. https://doi.org/10.1145/3704900

1 Introduction

Programming language semantics make formal verification possible by providing a mathematical ac-
count of program execution. In particular, operational semantics are often used as a trusted “ground
truth” of program behavior, because they closely mirrors the mechanical process of computation.

However, reasoning about programs directly in terms of their operational semantics is often
difficult because traditional operational semantics act on a global state. To reason about a given
program, we must examine for every possible program step its effect on every component of the
state. Without additional structure, this can rapidly become intractable.

Authors’ Contact Information: Yu Zhang, Yale University, Department of Computer Science, New Haven, USA, yu.zhang.
yz862@yale.edu; Jérémie Koenig, Yale University, Department of Computer Science, New Haven, USA, jeremie koenig@
yale.edu; Zhong Shao, Yale University, Department of Computer Science, New Haven, USA, zhong.shao@yale.edu; Yuting
Wang, John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering, Shanghai
Jiao Tong University, Shanghai, China, yuting.wang@sjtu.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART64

https://doi.org/10.1145/3704900

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.


HTTPS://ORCID.ORG/0009-0009-1160-9851
HTTPS://ORCID.ORG/0000-0002-3168-5925
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0003-3990-2418
https://doi.org/10.1145/3704900
https://orcid.org/0009-0009-1160-9851
https://orcid.org/0000-0002-3168-5925
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0003-3990-2418
https://orcid.org/0000-0003-3990-2418
https://doi.org/10.1145/3704900
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704900&domain=pdf&date_stamp=2025-01-09

64:2 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

secret.s rot13.c

1 | .globl main 1 | void rot13(char *buf, int len)
2 |main:  pushl $13 2 ¢
3 pushl $msg 3 for (int i = 0; i < len; i++)
4 call rot13 4 if ('a' <= buf[i] && buf[il <= 'z")
5 pushl $1 5 buf[i] = (buf[i] - 'a' + 13) % 26 + 'a';
6 call write 6 |3}
7 addl $12, %esp
8 movl $0, %eax
9 ret decode.c
10 | .data 1 |#include <unistd.h>
11 | msg: .string "hello,_world!\n" 2 | extern void rot13(char *, int);

3 | int main()

4 |{
1 |$ cc -o secret secret.s rot13.c 5 char buf[100];
2 |'$ ./secret 6 int n = read(@, buf, sizeof buf);
3 |uryyb, jbeyq! 7 rot13(buf, n);
4 |$ cc -o decode decode.c rotl13.c 8 write(1, buf, n);
5 |$ ./secret | ./decode 9 return o;
6 |hello, world! 10 13

Fig. 1. Two programs which use a common library are compiled and made to interact through a pipe.

Fortunately, many compositional proof techniques have been developed which break down proofs
into localized obligations. For example, program logics can be used to establish correctness against
Hoare-style specifications compositionally. Modern logics can deal with complex memory layouts,
concurrency, and sophisticated language features while supporting a high degree of automation.
This has allowed practitioners to verify increasingly complex algorithms and data structures.

1.1 The Program Logic Paradigm Misses Crucial Aspects of Software Development

Despite its success, the traditional approach to verification discussed above does not account for all
aspects of the software development process, nor does it fully describe the operation of a typical
software artifact. Concerns outside the scope of a typical program logic include the following:

e To be executed, verified program components must first be compiled and linked, and this
compilation process may compromise any correctness results obtained at the source level.

e Operational semantics and program logics are typically designed for a single language, but
many programs are built from components written in several different languages.

e Programs such as network servers and clients are algorithmically simple but conduct complex
external interactions, which program logics rarely model or take into account.

The following example illustrates some of these limitations.

Example 1.1. The code shown in Figure 1 consists of two different programs which use a common
C library and are designed to work together. As illustrated in the usage scenario we have shown,
the 32-bit x86 assembly program secret.s outputs a coded message to be deciphered by decode.c.
In particular, the programs together satisfy the following informal specification:

Suppose that, after compilation, secret.s and decode.c are each linked with rot13.c. If the
output of the first program is fed as input to the second, “hello, world!” will be displayed.

(1)

The programs are simple; to verify that property (1) holds, a reader with the right background
can mentally execute the code step by step and convince themselves that the expected outcome will

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:3

occur. However, this task is complex in its own way because it mobilizes implicit knowledge and
assumptions regarding the C and x86 assembly languages, the compiler’s correctness with respect
to the calling convention in use, and some aspects of the Unix execution environment. Likewise,
any formal account of property (1) must involve these aspects of the problem as well, encompassing
all three of the challenges outlined at the beginning of this section. To our knowledge, there exists
no program logic or verification framework which can deal with this example.

A fair amount of work has sought to address the limitations outlined above. For example, the
certified compiler CompCert [Leroy 2009] comes with a mechanized proof of correctness. Better yet,
the Verified Software Toolchain (VST) [Appel 2011] provides a separation logic which interfaces
with the correctness proof of CompCert, ensuring that properties obtained for C programs can be
formally transferred to the compiled assembly code. In a further experiment, a network server was
verfied by incorporating interaction trees into VST to model external interactions [Koh et al. 2019].
Operational semantics [Matthews and Findler 2007] and program logics [Guéneau et al. 2023]
have also been developed for multi-language programs. Another line of work uses the Bedrock2
framework to perform integration verification. For example, Erbsen et al. [2024] presents the end-
to-end verification of a minimalistic but sophisticated embedded system, which mediates access
to an external actuator (the opening mechanism for a miniature garage door replica) through
cryptographically-authenticated network commands. The top-level correctness statement asserts
that a certain model of the complete system satisfies certain constraints on its observable behavior.

These efforts show that overcoming the limitations of the program logic paradigm is possible,
but they constitute one-off adaptations to specific settings: a particular specification logic, set of
interaction patterns, combination of languages, etc. To apply this methodology to Example 1.1, we
would need to develop a semantics and logic tailored to the situation at hand. The result would be
unlikely to apply directly to another verification task.

By contrast, we envision a situation where future certified systems architects will build com-
plex systems by assembling off-the-shelf certified components, and obtain end-to-end proofs of
correctness with little additional effort. The experiments mentioned above represent important
progress toward this vision; we seek to build on these successes to deepen our understanding of
the underlying principles and distill them into new mathematical tools, which can then serve as a
foundation for the next round of ground-breaking challenges and research.

1.2 Compositional Semantics Offer a More Flexible Approach

To be sure, there exist mechanized semantics, program logics and certified compilers which can
deal with the C and assembly code used in Example 1.1. However, in our situation, the main story
is not what each program as such is doing. The programs are part of a larger context where they
are interpreted as interacting processes and used as building blocks in a larger system. At that level
of abstraction, the function calls and shared memory states which a typical program logic deals
with are no longer in the picture, having been replaced with forms of inter-process communication.

Indeed, the main difficulty with Example 1.1 is that formalizing property (1) requires adjustments
to the model within which we consider the behavior of the programs secret.s and decode.c. This
is difficult to achieve in many frameworks based on operational semantics because they use a
fixed model, of a closed universe, relying on compositional proof techniques. As illustrated in Fig. 2,
compositional semantics can be used to improve this state of affairs. By their nature, compositional
semantics focus on the way open components interact with each other. As a result, they are more
likely to be suitable building blocks for modeling complex, heterogeneous systems.

Recent work embracing this paradigm shows promising results. For example, whereas prior
CompCert research largely focuses on compositional proof techniques, the work on CompCertO

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:4 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

manual compiler correctness program
program logical compositional proof and related results logic

logic relation semantics ... 7\1 ............ / ............... \ .......... \Z\ o

"""""" \ - I o / e compositional compositional
semantics semantics
operational
semantics k environment j

model

Fig. 2. Approaches to program verification. The system being verified is modeled using the facilities shown
below the line, and the techniques shown above are used to reason about its properties. Traditionally (left),
the whole universe in which the computation occurs must be modeled in a monolithic and closed operational
semantics. By using compositional semantics instead (right), both the model and reasoning techniques can
be constructed out of reusable building blocks and adapted to various contexts and situations.

[Koenig and Shao 2021] shows that formulating the compiler’s correctness result directly in terms
of a compositional semantics is possible with a reasonable proof effort. Likewise, the DimSum
framework [Sammler et al. 2023] successfully employs this approach to tackle multi-language
semantics and verification: the framework can be used to stitch together independent semantics
for individual languages, and to reason about refinement within and across these languages.

At the same time, compositional semantics remains underdeveloped as a practical tool for
verification, and lack a proper treatments of many techniques which are routine in the context of
operational semantics and program logics.

1.3 Three Dimensions of Compositionality

We will distinguish between several kinds of compositionality which semantic models, program
logics, refinement frameworks and other formal reasoning tools can exhibit:

e Horizontal compositionality refers to the ability to decompose behaviors and proofs along the
structure of program. For example, denotational semantics are compositional in this sense.
Likewise, the sequence rule of Hoare logic is a horizontal composition principle.

o Vertical compositionality allows the kind of stepwise reasoning afforded by transitive refine-
ment and data abstraction mechanisms. Compiler correctness proofs make use of vertical
compositionality when they combine correctness proofs for individual compilation phases.

e Spatial compositionality operates across the system state. This is the kind of compositionality
enabled in separation logic by the separating conjunction * and the associated frame rule.

One barrier to the use of semantics along the lines of Fig. 2b is that while horizontally compositional
semantics are a well-developed area of research, there is comparatively less work investigating
models which are vertically and spatially compositional, let alone the combination of all three.

1.4 Contributions

We seek to bridge this gap by introducing a generic semantic model—based on effect signatures
and formulated in the style of game semantics—which combines horizontal, vertical and spatial
composition principles. Our model is mechanized in the Coq proof assistant [Zhang et al. 2024a],
and is flexible enough to express the CompCertO semantics of C and assembly programs, and to
describe the kind of process interactions required to handle Example 1.1.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:5

L Li:F»G Ly,:E—>»F ¢: L <s»t L] ¥:Ly <pss L,
El —1> Fl ! 2 ts-© ! ! 2 sim-0
LioL:E»G pOY:L1OLy <p1 L] OL,
RI ¢ Is
E F RZElHEz R’:Ez(—>E3 ¢ZL1SR45L2 IP:LZSR’»)S’LS '
— sC-§ sim-3
fLt RSR': Ey < Es 9 $5Y: L1 <psr»sgs Ls

Fig. 3. Horizontal (®) and vertical (3) composition principles in our model.

The multiple dimensions of compositionality allow us to account for sophisticated reasoning
techniques such as data abstraction and memory separation, and to capture—under a uniform notion
of refinement—properties as varied as program correctness results, the semantics preservation
theorem of CompCertO, the frame property of separation logic, and representation independence
for encapsulated state. These properties can then be combined to construct sophisticated refinement
proofs of statements such as (1).

We present a high-level overview in §2 and provide a formal description of the model in §3-4.
Spatial compositionality is treated separately in §5. We then showcase in §6 several applications:

e We explain in detail how CompCertO semantics and simulation proofs can be embedded, and
model the loading mechanism which turns an open program into a closed process;

e We use our model to define a framework for certified abstraction layers (CAL) [Gu et al. 2015].
Unlike the original work on CAL, our layer framework does not modify the underlying
compiler, and its meta-theory requires comparatively negligible effort.

o We define an extension of CompCert’s Clight language supporting encapsulated, module-local
private variables and provide a correctness proof for the erasure of private annotations.

We discuss related work in §7 and our conclusions in §8.

2 Compositional Semantics for Verification

Our framework consists of four kinds of objects, each subject to some or all of four different
composition principles (layered O, vertical s, flat @, spatial @). We start with a brief overview of
how these constructions fit together, then examine each one in more detail.

2.1 Overview

Our model is built around the notion of effect signature (E, F . ..). We use these signatures to describe
the interfaces between the components of a software system. Effect signatures serve as horizontal
endpoints for strategies and vertical endpoints for refinement conventions. Strategies (L : E - F)
describe the behaviors of program components. Refinement conventions (R : E; < E;) model
relationships between views of the system at different levels of abstraction. Finally, refinement
proofs (¢ : L1 <p_s L;) connect the three kinds of objects above in the shape of a square (Fig. 3).

Composition Principles. Our framework uses refinement squares as the building blocks of compo-
sitional proofs. They are assembled in the manner of puzzle pieces alongside matching edges:

e Layered composition (©) acts horizontally. It connects strategies at a common endpoint
(i.e. effect signature) over which they are made to interact, and connects refinement squares
alongside a common vertical edge (i.e. refinement convention), which ensures that the
refinement properties are based on compatible abstractions and constraints.

e Vertical composition (§) combines successive refinement steps, connecting refinement conven-
tions alongside an intermediate signature, and refinement squares along a common strategy,
which serves as an intermediate specification.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:6 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

F«——FE G«—F«—E E«——E
q€F—y —aq€E — = =
Hr}Ear(ql) a ;} qeE - » s g
L : L L, red 'OF k— rear(q)
> qn € E ] ﬁ
r € ar(q) < K— rn € ar(qn) < k| s
(a) General shape (b) Composition (c) Identity

Fig. 4. Informal description of our strategy model under layered composition

This basic framework is made more expressive by the introduction of two additional forms of
composition, which coherently act on all objects from effect signatures to refinement squares:

o Flat composition (&) serves as an alternative form of horizontal composition where compo-
nents are laid out side by side instead of being made to interact.
e Spatial composition (@) is the core of our infrastructure for compositional state.

2.2 Effect Signatures

Like interaction trees [Koh et al. 2019], our model uses effect signatures to describe interfaces
between the components of a system. An effect signature enumerates the external operations which
a component can invoke or implement, and describes for each one the set of possible outcomes.

Definition 2.1. An effect signature is a set E of questions together with an assignment ar : E — Set
associating to each question m € E a set of answers n € ar(m). We will often present them together
as the set of bindings {(m: N) | m € EA N = ar(m)}.

Example 2.2. Consider the execution environment for the programs secret and encode shown in
Figure 1 and described in Example 1.1. Since our programs do not use any command-line arguments
or environment variables, we can model their invocation with a single question:

P := {run:N}.

The answer x € N is the exit status of the process. Moreover, in the course of its execution each
process can invoke the read and write system calls. We can describe this interface with the signature

S = {read;[n] : 2%, write;[s] :N | ie N, n€N, s € X"},

where 3 := {0, 1}8 is the alphabet of possible byte values. In this formalism, the program secret
will invoke the operation write;["uryyb, jbeyq!\n"] € S, where i := 1 is the file descriptor
associated with the standard output; the outcome should be 14 € N if the operation succeeds.

Example 2.3 (CompCertO language interfaces). The semantic model of CompCertO uses language
interfaces of the form A = (A°, A*) as the basis for component interactions. These interfaces are
similar to effect signatures, but every question g € A° uses the same set of answers r € A®.

For the C language, questions are function calls of the form f(d)@m, where f identifies the
function to be called, o € val® are the actual parameters, and m € mem is the memory state at
the time of invocation; answers take the form o’ @m’ where v’ € val is the value returned by the
function f and m’ € mem is the new state of the memory. This is captured by the effect signature

C @mem = {f(d)@m:val X mem | f € val, 7 € val*, m € mem}.

We will see that CompCertO language interfaces can be systematically mapped to effect signatures,
and will elucidate the structure of the spatial decomposition C @ mem below.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:7

2.3 Strategies

We use effect signatures to assign coarse types to program components and to their behaviors. We
use a game semantics approach where a strategy L : E - F models the behavior of a component
which uses operations of the signature E to implement the operations enumerated in F. The strategy
can specify actions taken by the component in response to the possible actions of the environment,
and is represented as a set of traces.

As depicted in Fig. 4a, the environment can activate L by asking a question g € F, which the
component L is expected to eventually answer with a reply r € ar(q). In the process, L can perform
an arbitrary number of queries g; € E, which the environment answers with a response r; € ar(q;).
The process can then begin anew with a question ¢’ € F, and so on indefinitely. We will write

Lk (q>—>(m1fv>n1)>—>(m2'v>n2)>—>~~>—>(mk'v>nk)>—>r)'v>(q’>—>--->—>r’)~>~-

to mean that L accepts an execution trace of this kind. Note that > denotes a part of the execution
where L is in control, whereas ~» denotes a part of the execution controlled by the environment.

Example 2.4 (Command specifications). We can use strategies Tsecret, Idecode : S = P to formulate
specifications for the commands secret and decode. The processes admit the execution traces

Tsecret F run > (writer["uryyb, jbeyg!\n"] ~» 14) > 0
Tgecode F run > (reado[100] ~ "uryyb, jbeyq!\n") »» (write;["hello, world!\n"] ~» 14) > 0.

Example 2.5 (CompCertO semantics). We explained in Example 2.3 that CompCertO language
interfaces can be translated to effect signatures, and described the signature C @ mem used for
C-level function calls and returns. By the same token, CompCertO language semantics can be
translated to strategies as well. For example, the source language used by CompCertO is a simplified
version of C called Clight, and its semantics for a program M can be used to define:

Clight(M) : C @ mem -» C @ mem.
The resulting strategies will exhibit traces such as:
Clight(decode.c) £ main()@m > (read(0, b, 100) @m[b > unspecified] ~ 14@m[b — "uryyb, jbeyg!\n"])
> (rot13(b, 14)@m[b + "uryyb, jbeyq!\n"] ~> x@m[b +— "hello, world!\n"])
> (write(1,b, 14)@m[b — "hello, world!\n"] ~» 14@m[b — "hello, world!\n"])
> 0@m|[b — deallocated]

This trace is more complicated than the one shown in Example 2.4; among other things it involves
low-level considerations regarding the C memory model. Nevertheless, we will eventually use the
CompCertO semantics of C and assembly as a building block to model the scenario in Example 1.1,
and connect them to the kind of high-level specifications we have seen so far.

Refinement Ordering. In our model, components can exhibit undefined behavior (1) and spaces
of strategies are equipped with a refinement ordering <. Refinement means that a strategy L, is
more defined than L,, and admits at least the same behaviors and desirable properties. We will write

p ZL1 <E-»F Lz, or p:Ll SLz, orjust L1 SLZ

when such a refinement holds, with p understood as an elementary refinement proof term. While we
take a proof irrelevant approach and will treat refinement proofs of the same type as equal, using
explicit proof terms will allow us to construct formal refinement proofs from more elementary
properties, as a special case of our model’s compositional structure.

Example 2.6. We wish to show that the program decode satisfies the specification Xgecode given
in Example 2.4. This requires modeling the way in which decode.c and rot13.c behave together
as a process. Assuming that [decode] : S - P, models the response of the combined program to

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:8 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

1 |static int c1, c2; 1 |extern int inc1(void);
2 |static V buf[N]; 2 | extern int inc2(void);
3 3 |extern V get(int i);
4 |int inc1() { int i = c1++; c1 %= N; return i; } 4 | extern void set(int i, V val);
5 |int inc2() { int i = c2++; c2 %= N; return i; } 5
6 |V get(int i) { return buf[il; } 6 |void enq(V val) { set(inc2(), val); }
7 |void set(int i, V val) { buf[i] = val; } 7 |V deq() { return get(inc1()); }
(a) The translation unit rb.c (b) The translation unit bq.c

Fig. 5. Running example, adapted from Koenig and Shao [2020]. The component rb.c implements a ring buffer
of capacity N by encapsulating an array and two counters. It is used by bq.c to implement a bounded queue.

the trigger run € P in terms of system calls performed over the interface S, our goal will be to
establish a refinement S gecode < [decode]. The model [—] will involve CompCertO semantics and
take into account the way the program is compiled, linked and loaded.

2.4 Layered Composition

When a component Ly : F - G uses an interface F implemented by another component L, : E - F,
we can direct the questions asked by L; in F to L, (Fig. 4b). The result is the composite strategy
L; ©® Ly : E - G. This is the main form of horizontal composition which we will be using.

Example 2.7 (Verifying a bounded queue). The code shown in Fig. 5 implements a bounded queue
with at most N values of type V. This is done in two steps. The translation unit rb.c provides access
to a ring buffer in the form of an array as well as two counters which wrap around to stay in the
interval [0, N). The translation unit bq.c then uses that interface to implement the queue. We can
describe this situation using high-level specifications with the following types:

Lp:0-» Eyp, where Ey = {inc;:N, incy : N, get[i] : V, set[i,0]:1 | ieN, 0 eV}
Spq : Evb = Epq,  where Epq = {enq[v] : 1, deq:V | v € V},
and where 0 is the empty signature. The specifications I}, and X4 admit interaction traces such as:
Iip E (incz = 0) ~ (set[0,0] »> ) ~  Z}q F (enq[o] » (incz ~ 0) > (set[0,0] ~> %) > *) ~
(incg ™ 1) ~» (set[1,0"] »> *) ~» (enq[o’] = (incy ~ 1) »> (set[1,0"] ~ *) > *) ~
(incy » 0) ~ (get[0] »> v) (deq » (incy ~ 0) »> (get[0] ~ v) »> v)
Layered composition allows us to compute their behavior as they interact over E,,. The resulting

strategy Xpq © I'p : 0 — Epq will admit traces like the following one:

Zbq O Ty £ (enq[o] > #) ~ (enq[v'] > %) ~> (deq - 0).

2.5 Data Abstraction and Vertical Composition

The functionality implemented in Example 2.7 can be described at different levels of abstraction.
The user may rely on a specification I,y : 0 = Ep,q defined in terms of a queue state g € V*.
However, the refinement >,q © Iy, : 0 - Epq might use a buffer state (c, ¢, 5) € Nx N x VN more
closely related to the in-memory representation used by the actual code.

Data abstraction techniques can be used to connect these two views. For example, simulation
relations are a simple form of data abstraction which express the relationship between state
representations used in two different transition systems. If I, and Zpq © T}, were defined as
transition systems, a simulation relation ppq € V*x (NxNx V) could spell out the correspondence

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:9

between high- and low-level views. Since the interface Epq reveals no details about internal state of
either component, this would be enough to prove a refinement.

The situation is more complicated when a component’s interactions change across levels of
abstraction. For example, consider the code of decode.c in Fig. 1. Seen as a process, the program is
invoked with the question run € ¥ and relies on system calls such as read;[n] € S. However, at a
lower level of abstraction, the action run will take the form of a call to the main function in the
context of a carefully prepared initial memory state, and likewise calls to read and write will take
the form of C-level calls into the C standard library.

Refinement Conventions. To address this challenge, we adapt to the setting of effect signatures and
game semantics the notion of simulation convention used in CompCertO. A simulation convention
connects the ways an interface is viewed at different levels of abstraction. In CompCertO, the
compiler’s correctness theorem involves a simulation convention C : C < A, which is used to
express the way in which C-level function calls (C) are encoded as assembly-level interactions (A).

We build on this idea and define a richer notion of refinement convention between effect signatures.
Then a refinement property ¢ : L; <g—s L, between L; : E; - F; and L, : E; - F, is parameterized
by two simulation conventions R : E; & E; and S : F; < F,. The corresponding refinement
property assumes that incoming source- and target-level questions in F; and F, will be related
according to the convention S, and guarantees that outgoing questions in E; and E; will be related
according to R. Conversely, it assumes that the environment’s answers in E will be related according
to R and guarantees that the components’ answers in F will be related according to S.

Example 2.8 (Semantics preservation of CompCert). We will see in §6 that the correctness proof of
CompCertO can be put in the form of a refinement square:

CompCert(p) =p’ = ¢, : Clight(p) <cc Asm(p’)

where C : C < A captures the calling convention used to represent C calls at the level of assembly.

2.6 Combining Effect Signatures

We now introduce a composition operation @ operating on the effect signatures themselves, which
will act on all higher-dimensional objects as well.

Definition 2.9 (Sum of signatures). A family (E;);er of effect signatures can be combined into

@Ei = {;(m):N|iel, (m:N) € E},

il
which uses the set of operations 1;(m) € }; E; and uses for each one the arity assigned to it in its
signature of origin E;. The binary case where i € {1, 2} will be written as E; & E.

The signature E @ F contains the combined questions of E and F. Each question retains the same
set of answers. Many of the signatures we have seen can be decomposed using ®.

Example 2.10 (Per-file interfaces). We have seen that processes can be modeled as strategies of
type P : § - P, where the signature S contains questions for each file descriptor i € N. We can
decompose this signature as S = P,y F, where ¥ := {read[n] : Z*, write[s] : N | n e N,s € £*}.
Since our examples focus on standard input (i = 0) and output (i = 1), we will simplify S := F & F.

The compositional properties of @ are summarized in Fig. 6 and discussed below. The strategy
L ®Ly: E; ® E; > F; @ F, is straightforward and lets L; and L, operate independently. When a
question q € F; is asked in the left-hand side component of F; @ F, it is used to activate L; which

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:10 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

LIZEI—»Fl Lz:Ez—»Fz R:E1<—>F1 SZE2<—>F2
ts-® sc-®

L1®L22E1®E2—»F1@F2 R@SSElﬂaEz(—)Fl@Fz

(Lio L) ® (L] O L)
idg @ idr

(Li®Ll) o (L®Ly) (Ri§R2) ®(S15S2) = (Ri®8S;1) 5 (R2®S)
idE@F idg ® idr = idE@F

¢ Ly Spyws, L] ¥ Loy <pyoss, Ly

¢ ® lﬁ L@ Ly <R, @R, >S5, @S, L; ® Lé

sim-@
Fig. 6. Signature composition (®) for strategies, refinement conventions and simulation proofs.

executes until the question is answered. L, handles the questions of F;, in a similar way. Additional
strategies can be defined in relation to ®, namely

Ap:E>»>E®E, ypr:E®F=F®E, 7 :E®F—»E,  n ' :E®F—>»F.

The strategy Ag passes along questions received in two independent copies of E but consolidates
them into a single copy. The projections nf’F can be used to “forget” the unused summand of the
signature E @ F. These constructions are illustrated in the following example.

Example 2.11 (Composing processes). We can define shell-like operators for composing processes.
Two processes P,Q : S -» P can be combined into (P ; Q) : S - P. To this end, we define the
scheduling component seq : £ & £ - P which invokes one process, then the other:

seq Erun - (rung - n) - (rung - m) - m
This component can be used to define:
P;0 =seqo(PoQ)o(FeyeF)o(AdA)

We could likewise model the shell operators & and | | by replacing seq with different scheduling
policies. In addition, we can use a component fifo : 0 — ¥ with behaviors such as:

fifo £ (write["hello, "] »> 7) ~ (write["world!\n"] »> 7) ~» (read[100] »> "hello, world!\n")
With fifo to model a buffer, we can define:
P|Q =5eq0 (P®Q) O (F & (Aofifo)eT).

Using this construction, we can express the relationship between the behaviors [secret and Iencode
to formulate a partial account of property (1). Specifically, we expect the behavior

Ty Erun > (write;["hello, world!\n"] ~> 14) » 0

to admit the refinement square ¢ 1) : [(1) < Tsecret | Tdecode-

Note that since our model does not support concurrency, the construction P | Q above can
only offer a sequential approximation of the corresponding Unix shell operator. We intend the
example shown in Figure 1 to illustrate the issues that come up when the horizon of verification
is pushed beyond the boundary of a fixed language or model, but providing a realistic account of
Unix processes remains beyond the scope of the present work.

Remark 2.12 (Morphisms in Context). Above we rely on the category theory convention by which
the same notation is used for a functor’s action on objects and morphisms. When functors are

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:11

combined and specialized, objects and morphisms may appear together in certain expressions. For
example, applying the functor U X —+V : Set — Set to a function f : X — Y yields

Uxf+V :UxX+V - UxY+V (also known as idy X f + idy)

Seeing id4 as the morphism part of the nullary functor A, another interpretation is that objects can
simply denote their identity morphism. In any case, this idea generalizes to higher dimensions. For
example, givenL; : A —>» B,L;: B» C,R: A< B,S:B < Cand ¢ : L; <p_,p B, we can write

Lz@(ﬁ : Ly © Ly <Rsc L2 and ¢;S Ly <R3S—»$ C.

3 Strategy Model

We now turn to the task of formalizing the constructions we have outlined in §2.

3.1 Strategies

We have already informally described many strategies using interaction traces of the form
g (my ~ ny) > (Mg ~> ng) > - (M ~> ) > 1~ g > o

We will often write such traces more compactly as gmin;many - - - mngrq’ - - -, where actions of
the component have been underlined and alternate with environment actions.

Definition 3.1 (Strategy). Consider an outgoing effect signature E and an incoming effect signa-
ture F. A play in the game E — F is an element s € Pg r in the set generated by the grammar:

qm q
geF se PZ,F meE sePpp ne ar(m) s €Pg;

et 7 qm qEF meE
qs € Ppr ms € Ppp ns € Ppp A e T o,
Per _ P < Ppp
rear(q) sePgr rear(q) near(m)

qm
€ € PE,F rs € PgF € € PE,F

and ordered by the prefix relation C. Moreover, the coherence relation  C Pg p X Py r is defined by:

D, ) ~gqm — _—
ecs Q=@ =>s5Ns, 51T $1CTsy ni=np =598, ¢ oqmg

= ~q ~ —~qm _
Y q151 < G252 rs1 S sy msy <9 msy n1s; S nysy s =dm ¢

Then a strategy o : E - F is a prefix-closed subset of Pg r where any two sy, s; € o satisfy s; < s3.

Example 3.2. The behavior of a queue with infinite capacity can be modeled as follows. For a
starting state g € V*, the strategy o; : 0 - Epq is defined by the following rules:

€ €05 s€o; = deq-v-s € 05 s € 05, = enq[v] x5 € 05

Note that as expected, the strategy never performs any outgoing calls but only interacts over Eq.
The behavior of a queue which is initially empty is described by o¢ : 0 = Ejq.

Unlike o5 above, many strategies of interest are stateless in the sense that every incoming

question is handled in the same way regardless of any previous history.

Definition 3.3 (Regular Strategy). Consider a strategy o : E - F. Given two plays s, t € Pgr the
play s > t initially proceeds as s but goes on to proceed as ¢ if s ends with € € Pr r when a question
q € F is expected. Formally, we can define >* : Py . X Pgr — Py as follows:

gs>t:=q(s>?1) ms>9t:=m(s>T"t) ns>It:=n(s>t)

e>ti=1t rs>9t:=r(s>t) exImri=¢

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:12 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

The regular closure c* : E - F allows the strategy o to start over with each new incoming question:
eeco” SEcAteEd = s>teo
Moreover, a strategy is single-use when its plays are of the form qmin; - - - mgngr or prefixes thereof.

We say that o is a regular strategy when it is the regular closure o = 7* of a single-use strategy 7.

In the previous section we described the behavior of various components by writing down
execution traces. We can use the constructions above to turn such descriptions into formal strategies.

3.2 Layered Composition

The layered composition of o : F - G with 7 : E - F allows the strategies to synchronize over the
signature F. Their interaction over the intermediate signature is then hidden from the composite
strategy 0 © 7 : E - G. Layered composition can be defined at the level of individual plays.

Definition 3.4 (Layered Composition of Strategies). The identity strategy idg : E - E is defined as:

idg :== ({e} U {mm | m € E} U {mmnn | m € E,n € ar(m)})

In addition, two strategies 0 : F - G and 7 : E - F compose to yield a strategy c © 7 : E -» G.
Individual plays compose according to the relations:
©:Prg X Pgr — P(PE,G) eot:={e}
gsOt:={qw|wesolt}
o7: Pg,c X Pgp — P(Pg’G) rsOlt={rw|wesot}
msOlt:={w|3t -t=mt' Awesol™t'}

eIm . PZZ X Pp'p — SD(PZ!G) s @I ut == {uw | w € s T t}
sOnt={w|3s'-s=ns’ Awes ot}

ot PIE X PE — P(PLG) s Q1™ ¢ := {e}

s ot .= {ow | w € s T t}

We can then define the layered composition of c and ras 0 © 7 == J(51)eoxr SO 1.

THEOREM 3.5. Layered composition is associative and admits identity strategies as units.

3.3 Flat Composition

In addition to layered composition, strategies can also be combined side-by-side. Specifically, two
strategies o7 : E - F; and 03 : E > F, can be used to independently handle the two components
of an incoming effect signature F; & F,.

Definition 3.6 (Flat Composition). The strategy n; : E; ® E, - E; can be defined as:
mi=({e} U{mu(m) |meE}U{my(m)nn|meE,near(m}) .

Moreover, two strategies o1 : E » F; and 0, : E - F, can be combined into (o1, 02) : E - F; & F.
Individual plays combine as follows:

(gs1,82) ={n(@wl|we (51,52>§1} (s1,9s2) = {a(@w|we (31,32>g}

<£S1,Sz>? ={rw|we (s,52)} <S1,£52>g ={rw|we (s,52)}
(msl,Sz)f ={mw | we <31,32>?m} <31,m32>§1 ={mw | we (51532>gm}
("51,52>?m ={nw|we <31,Sz>?} <31,n32>2qm ={nw|we <S1,Sz>g}

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:13

Then (o1, 02) = U(s,.5,) €0y x0, (515 S2)- In addition, for o : E; - Fy and 03 : E; - F, we define
0190y =(010m,050m) : EE®E, » F{®F,.

THEOREM 3.7 (PROPERTIES OF ®). The definitions above satisfy the rules and properties in Fig. 6.

4 Refinement Conventions

The inclusion order induces a simple notion of strategy refinement. For example, consider the
strategies 0 C 7 : E » {x : @}. Ignoring the initial move *, plays of ¢ and z take the form
mynimyny - - - my. Operationally, inclusion induces the following coinductive simulation property,
where we write mn\o for the residual strategy {s | mns € o}:

o Mmoo n — (mn\o)
cLl1:& Vm-meo=>merA I 2)
Vn - (mn\o) < (mn\7). < H 1< (
T n---> (mn\r)

In other words, any behavior prescribed by the specification o must be mirrored by the refinement 7.
Refinement conventions and refinement squares generalize this notion of refinement to cover
situations where the source o and target 7 differ in their interactions with the environment.

4.1 Overview

Building on the example above, suppose ¢ : E; - {* : @} and 7 : E; » {* : @} now differ
in the type of their outgoing interactions. To relate them, we will define a notion of refinement
convention R : E; & E, establishing a correspondence between the questions and answers of E;
and E;. A refinement up to R, written in this case 0 <, {wg} 7, Will correspond to the property

Vm; -my€o=3Imy -myerT AmR my A © My e ng — (mini\o)
e m | |
vnl My m le’m2 ny = <R Ro: R;nlmz SR?nl]nrglz : (3)
ming\o) <prin .. Mana\T !
(_1 \ ) le,mz_»{*'g} (_ \ ) T mmmm My ny ____> (mznz\‘r)

Here, the refinement convention provides a relation R° C E X F between the questions of E and the
questions of F; furthermore, for related question m; R° m; the refinement convention provides a
relation on answers R}, , C ar(m;) X ar(m;) and an updated refinement convention Ry, to be
used for the next question whenever the answers n; R}, ,,, n2 are received.

As this example illustrates, one source of complexity is the alternating character of (3). While the
client is free to choose matching questions m; and ms, it must be ready to accept for every answer
n; any related ny which the handler could return. In other words, the kind of data abstraction
realized by refinement conventions involves demonic as well as angelic choices. While <g becomes
larger when R° relates more questions, the opposite is true of R®, which introduces additional
constraints. Moreover, since our strategies simultaneously play the roles of a client and a handler
on their outgoing and incoming sides, general refinement squares involve two different refinement
conventions, again with opposite variances.

4.2 Refinement Conventions

Our construction of refinement conventions is similar in spirit to that of strategies. However, to
tackle the challenges outlined above, we must introduce an important technical novelty. Specifically,
to handle the alternating angelic and demonic choices which a refinement convention can perform,
we must go beyond the usual prefix ordering of plays.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:14 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Definition 4.1. Refinement conventions of type R : E <> F are constructed using plays of the form

my € E, ny € ar(my)

ep n= 1 T .
s € Pror (my,ma) L | (my,mp)(ny,n2)s | (my, my)(ny, ny) my € F.ny € ar(my)

As suggested by the notation, the plays are ordered by the smallest relation < such that
s1 252 = (my,mp) L 2 (my,ma)(ny,nz)st 2 (my,my)(ny,nz)sy 2 (my,mp)(ny,nz) T
Then refinement conventions are elements of
Seer = D(Peor, =) = {RC Ppop | Vst-sZtAteR=s€eR}.

The plays of Pg,F, interpreted as follows, allow more simulations to succeed as more and larger
plays are added to the convention:

o The play (m1, mz) L allows the questions m; and m; to be related by R°. By default, all possible
pairs of answers (ny, ny) are permitted by R}, . However, no questions are allowed beyond
that point until plays of the following kind are added to the refinement convention.

e The play (my, mz)(ni, nz)s extends the “next” convention Ry, with the play s. Importantly,
it does not modify the “answers” relation R°. As explained above, the pair (n;,n2) € Ry, .,
was already—and remains—permitted. However,

e the play (m, m;)(ny, ny) T disallows the pair (ni, nz) € Ry, ,,, as related answers. Since this
restricts the handler, simulations between client computations become easier to prove, which

is why plays of the form (my, ms)(ny, ny) T are the “largest”.

Based on this interpretation, we could define the components R°, R® and Ry, 77, as follows:

mq R° my & (ml, mz)J_ (S R, ny R;nlmz ny & (ml,mz)(nl, T’lz)T ¢ R,
Ry = (my,mg)(n,nz)\R = {s | (my, mz)(ny,nz)s € R}.

Note the negative involvement of (mq, mz)(ny, n2) T in the definition of R®. When this play appears
in R, then by construction R must contain all plays of the form (m;, my) (ny, nz)s as well. However,
they become meaningless as a simulation can never proceed in a way that they could influence.

4.3 Refinement Squares

We now use refinement conventions to express our general notion of a refinement square o <p_,s 7.
Specifically, we will use R and S to translate each play of o into a challenge for the strategy 7. Because
of the alternating nature of refinement, this challenge will involve nested V and 3 quantifiers over
the possible choices of questions and answers offered by the refinement conventions.

Definition 4.2 (Refinement Square). Consider two strategies o : E; - F; and 7 : E; > F, as well
as two refinement conventions R : E; <> E; and S : F; < F,. We say that there is a refinement
square when the proposition o <g_,s 7 defined below holds. To this end, we recursively define a
family of relations <3 ¢ between the possible plays of o and the possible residuals of 7. Using the
short-hands R := (my, my)(ny, nz)\R and S’ := (qy, g2) (r1, r2)\S, we can write:

€ <R-»$ T & €€T
¢1S <r»s T & Vg (qqz)LleS=s ﬂgljfsz (g2\7)
rs slg‘_’fsz (e 3y (q1,q2)(r,r2) T €S A s Spossr (1,\7)
mss < e & Imy - (my,mp)L €R A s 2]TE™ (my\7)
€ ﬂglml’qzmz T & €€r
—»§
e .
nis SPTCE T o Vny - (my,mp)(ny,np) T € R = s 4D (np\17)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:15

Then we can formulate the existence of a refinement square as:
O <RssT & Vs€o-s<dpssT.
Refinement squares are compatible with strategy composition in the following sense.
THEOREM 4.3. Refinement squares compose horizontally as described by the rule sim-O in Fig. 3.

Refinement squares are also connected to the inclusion ordering on both strategies and refinement
conventions. The relationship is formulated using identities.

Definition 4.4. The identity refinement convention idg associated with a signature E is defined by:
(my,my) L €idg : & m; =my
(my,my)(ny,ny)T €idg :© my=my Any # ny
(my,my)(ny,ny)s €idg :© my=my A (n; =ny, = s € idg)
THEOREM 4.5. Forallo,7: E - F and for allR,S : E & F, the following relationships hold:
0C 7T 0 Sidg»idp T» R 2 S = idg <gs idr.

Remark 4.6. Refinement conventions enforce a 1-to-1 mapping between the moves of the source-
and target-level strategies, and require that their plays have similar structures. However, in some
cases the relationship between events in the high-level view of the system and their realization
in low-level terms is more complex; for example, the high-level view of a TCP/IP connection as
a stream of bytes could model the transmission of a block of data as a single event, whereas its
realization in terms of low-level packets may involve a complex interaction.

While the strict mapping enforced by refinement conventions is a limitation, situations like the
one described above can still be modeled within our formalism. Suppose o : 8 — E uses the “byte
stream” interface B while its refinement 7 : K — E is implemented in terms of a network packet
interface K. It remains possible to express their relationship as a refinement square 0 © x <p»g 7
with the help of auxiliary constructions x : X » B and R : X < K, proceeding in two steps:

o the effect signature X can provide a high-level, abstract representation of the packet interac-
tion, and the strategy x : X - B explains how byte stream operations are expanded into
abstract packet interactions with more complex shapes;

e the refinement convention R : X < K can then be used to express the data abstraction
component of the relationship, refining high-level abstract packets into their low-level actual
representations, and encapsulating details such as TCP sequence numbers.

4.4 Vertical Composition

Refinement conventions compose similarly to relations, in that R§ S relates two incoming questions
m, and m, when there exists an intermediate m such that (m, m) L € Rand (m, m,) L € S. However,
we take into account the history of the interaction and the mixed variance of questions vs. answers.

Definition 4.7 (Vertical composition of refinement conventions). For the refinement conventions
R:E; & E;and S : E, & Es, the refinement convention R$ S : E; < Ej is defined as follows:

(my,m3)L€RSS : & Tmy - (my,my)L €ER A (my,m3)L €S
(my,m3)(ny,n3) T ERSS : & TAmy - (m,my) L ER A (my,m3)L €S A
Vn, - (my, my)(ny,n2) T €R V (my, m3)(no,n3)T €S
(mq,m3)(ny,n3)s € RS & dmy - (m,my)L € R A (my,m3) L €S A
Vn, - (my, my)(ny,n2) T €R V (my, m3)(ny,n3)TES V
S € ((ml,m2)(n1,nz)\R) 9 ((mz,mg)(ng,ng)\S) .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:16 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

This allows us to express the vertical composition property for refinement squares.

THEOREM 4.8 (VERTICAL COMPOSITION OF REFINEMENT SQUARES). Refinement squares compose
vertically as described by the rule sim-§ shown in Fig. 3.

Remark 4.9 (Associativity of vertical composition). It should be noted that the vertical composition
of refinement conventions is not associative in general (although associativity holds in most
practical cases that we have encountered). We discuss this phenomenon and a counter-example in
Appendix A [Zhang et al. 2024b].

4.5 Flat Composition
Finally, we show that the flat composition operation & which we have defined for effect signatures
and strategies can be extended to refinement conventions and refinement squares as well.
Definition 4.10 (Flat composition of refinement conventions). The conventions R; : E; < F; and
R, : E; & F, compose into Ry ® R, : E; @ E; & F; @ F,, defined by:
(ti(m1), 1;(mz)) L € Ry @Ry :& (my,my)L €R;

(1i(m1), 1i(m2)) (n1,n2) T € Ry ® Ry :& (my,my)(n1,nz)T €R;

(11(m1), 1 (m2))(n1,n2) s € Ry ® Ry i s € ((my,mz)(n1,n2)\Ry) ® Ry

(12(m1),12(m32)) (n1,n2) s € Ry ® Ry : & s € Ry & ((my, m) (n1,n2)\Ry)

THEOREM 4.11. Flat composition of refinement conventions and squares obeys the rules in Fig. 6.

5 Compositional State

The model described so far adds a vertical dimension to the usual horizontal dimension of composi-
tional semantics. We now discuss how the model can be extended further by introducing a spatial
dimension, which serves as a foundation of our compositional treatment of state. We omit many
formal definitions in the interest of space and readability, but they can be found in Appendix B
[Zhang et al. 2024b].

5.1 Explicit State

Like the sum used by flat composition, the tensor product is another well-known operation on
effect signatures, which expects the client to simultaneously ask a question in each component:
®Ei = {(miier : [Ties Ni | Vi (m; : N) € E;}
i€l
Unfortunately, while the simulation convention R ® S is straightforward to define, the tensor
product unlike @ does not generalize easily to strategies. Defining L; ® L, we have no reason to
expect that outgoing questions of L; and L, will synchronize to combine into questions of E; ® E;.
Although a general form of ® does not apply in our framework, by restricting the right-hand side
to a form of passive components we obtain a form of spatial composition and a way to approach
compositional state. Specifically, for a set U we start from the effect signature construction

E@U =E®{u:U|lueU} = {m@u:NxXU | (m:N)€E ueU},

where m@u is a stylized version of the pair (m, u). This construction will play an important role in
our treatment of spatial composition and state encapsulation.

Example 5.1. In CompCertO language interfaces, every question and answer includes a global
memory state m € mem (Example 2.3). The decomposition C @ mem allows us to separate

C ={f(¥):val| f €ident,d € val*},

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:17

Lpq: 0 » Epq @ Dpq  Lpg F enq[0]@G = +*@Gv GEDyg =V 0eV
Lypq F deq@2vg » 0@4
Zpq : Erp = Epq Zpq F enq[o] > (incg ~ i) = (set[i,v] ~ ) »> * ieNoeV

Zpq F deq > (incl ~ i) = (get[i] ~ v) » v
Ly :0—>»Eyp @Dy Lip Einci@(b, c1,c2) » c1@(b, (c1+1)%N, ¢2) (b,c1,¢2) € Dy = VN xNxN,
Ly, E inc2@(b, c1, c2) ™ c2@(b, c1, (coH1)%N) ieNoveV
Ly E set[i,0]@(b, c1,c2) » *@(b[i == 0], c1,c2)
Lyp F get[il@(b, c1,c2) » bi@(b, c1, c2)
Rbq S Dpg X Db G Roq (bier,c2) © (c1<eca <NAG=be +be-1) V (b, c1,¢2) € Dy,
(c2<c1 <NAG=be ---by_1bo--be,-1) qubq

Fig. 7. Abstract specifications for bq.c and rb.c, formulated as regular strategies using explicit state. The
overall specification Tj,q describes the queue operations in terms of a sequence of values § € Dyq = V*.
Verification can be decomposed using the intermediate specifications pq and I}y, for bg.c and rb.c.

which does not mention the memory state. This affords us more flexibility when describing the
ways in which C code can affect both the global memory and other forms of more abstract state.

Example 5.2 (Abstract specifications). The specification Lpq shown in Fig. 7 gives an abstract
description of the code in Fig. 5 by representing the queue state as a sequence §. Likewise Ly, uses
the data (b, c1, c2) to represent the contents of the buffer and the counter values. Finally, bqg.c does
not use any state of its own and can be described by the simple specification Xpq : Er, = Epq. We
hope to decompose a correctness proof along the following lines:

o1 t Lhq <0-»? qu“Q” Tip oo Ybq 77 Clight(bg.c) &b = Leb <z Clight(rb.c)
However, the different types of states prevent the components from being composed directly.

To make the approach outlined above practical, we must turn @ into a proper composition
principle and establish its action on strategies, refinement conventions and refinement squares.

5.2 Passing State Through

We start by outlining how the construction — @ U acts on strategies in the case of a fixed set U.
Namely, given L : A - B, the strategy L@ U : A@ U - B @ U transparently passes along a state
component of type U as follows:

LEg—(qr~or)» o (qn~>r)—r

L@U k q@uy = (q1@up ~ r1@uy) > -+ > (¢n@Up_1 ~> m@uy) = r@uy,

4

Here, the value uy € U is initially received from the environment as part of the incoming question.
L @ U then mirrors the execution of L but keeps track of this additional state component. The state
is attached to any outgoing question in A and updated when the corresponding answer is received.
When L terminates, the final value of the state is returned with the answer in B.

Example 5.3. We can use @ to interface Xy : Eq, = Epq with the specification Ly, : 0 = E, @ Dyp.
The result (3pq@Drb) OLyp, : 0 = Epq @Dy, uses the construction Xpq @ Dyp : Er, @ Drp = Epq @Dy,
which allows X4 to “pass through” the abstract data Dy, on which Ly, operates.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:18 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

L:A»B f:USV R:AoB S:UoV
ts-@ S|
L@f:A@U »B@V R@S:A@U o B@V

c-@

(Ri@8S1)5(R; @83)
idA@U

(Liol) @ (feog)
ida @ idy

(L@f)o(l,@g) (R1§Rz) @ (S15S2)
ida@u idg @ idy

L <p»s, L' ¢ f <pyss, [’ im-@
sim-
$@Y:L@f <pers@s. L' @f

Fig. 8. Spatial composition (@) for strategies, simulation conventions and simulation proofs.

5.3 Transforming State

It is possible to generalize the construction L @ U to incorporate a lens f : U & V with a more
sophisticated action on the state component than a simple pass-through. Lenses [Bohannon et al.
2008] provides access to a field of type U within V through functions:

-
get,:V > U getp(setp(o,u)) =u VaU
f setr (v, gety(0)) =0 veV ¥ - gety(0)
sety : VXU =V setr(setr(v, u1), uz) = sety (v, up) setr (v, u) < k-ueU

Operationally, as illustrated above, we think of a lens as a component which behaves somewhat
like the identity strategy (Fig. 4c). When an incoming question v € V activates the components,
the view get(v) € U is extracted and forwarded as an outgoing question. When this outgoing
question is answered with an update u € U, the updated value set f(v, u) is returned to the caller.
Aswith L @ U, in the strategy L@ f : A@ U —» B @V, every question and answer consists
of a pair, with one component from A or B and one component from the sets U or V; the first
component is handled by L while the second one is just carried along. But now, when L makes an
outgoing call, the second component first passes through the lens f to be projected into U:

(g:v0) f - (91, to)
— (r1,u1)

U

ot [y F O @)
b(rn,un)

(?", Un) 57

In practice, two kinds of lens turn out to be especially useful. First, every bijection is a lens, and
this can be used to define structural isomorphisms such as yyy : U XV = V x U. Secondly, the
trivial lens (V] : 1 & V where get W] (v) = * and set(y|(v, *) = v can act as a “terminator”, which
does not propagate any part of the state in U but instead returns it unchanged to the caller.

The @ construction can be further extended to act on refinement conventions and refinement
squares to obtain the compositional structure shown in Fig. 8. The composite refinement convention
R@S simply requires that the two fields within the questions and answers of the composite language
interfaces be independently related by the corresponding simulation conventions. Moreover, a
relation R C U X V can be promoted to a simple simulation convention. See the appendix for details.

Example 5.4. Building on Example 5.3, consider the relationship between the overall specification
Lpq : 0 = Epq @ Dypq and its partial refinement (Zpq @ Drp) © Ly, : 0 = Epq @ Dip. To establish

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:19

a simulation between them, we use the abstraction relation Rpq C Dpq X Dy given in Fig. 7. The
refinement property can then be formulated as ¢1 : Lbq <o-»Eq@Ry, (Zbqg @ Drb) © Tip.

5.4 State Encapsulation
To go beyond the realm of regular strategies, in our model a component f : U & V allows a hidden
persistent state component P to be incorporated into the incoming data V x P used by the lens f.

Encapsulation Primitive. Hidden state allows us to define an encapsulation primitive [u) : U & 1,
which can be used to turn an explicit state component into a private one. This primitive uses P := U
for its persistent state. When it is activated by * € 1, the current state (initially u € U) is used as an
outgoing question; the answer u” € U is then used as an updated state for the next activation.

Example 5.5. The component [}, := (qu @ [6)) O Lpq : 0 = Ejpq describes the behavior of an
initially empty bounded queue. The set of abstract states Dy is used to define it, but is not exposed
as part of its interface, so that client code will only observe call traces where state is implicit:

Iq F (enq[o1] > %) ~ (eng[vz] > %) ~ (deq »> v1) ~ (enq[ov3] > *) ~» (deq »> v2) ~» - -+
Likewise, we can use dy := ({...},0,0) € Dy, to define I}, := (Ex, @ [do)) ® Ly : 0 - Eyp as an

encapsulated specification for the ring buffer data structure.

Representation Independence. Two components may use different representations for their explicit
state, but otherwise exhibit identical behaviors. In this case, encapsulating their state will yield
identical strategies. Within our framework, this follows from the property:

{:uRo = [{):[u) <p»1 [0) ©)
Indeed, to establish that L; : E» F@ U and L, : E » F @ V exhibit similar behaviors, we can
define a relation R C U X V between their explicit states and prove the simulation
¢:Li <g»Far L2 .

This shows that when invoked in related states, L; and L, behave similarly and the updated states
they eventually return are related as well. Per (5), the primitives [u) and [v) establish this invariant
for the initial states and preserve it across successive calls. This allows us to show that:

(F@[i)od: F@lu) ol < (F@[v)) OL,.
Proving the simulation in both directions would allow us to conclude that the behaviors are equal.

Example 5.6. Following up on Example 5.5, we can use the fact {},q : € Rpq do that the initial states
are related to prove the following property:

(]5; = (qu @ [gqu» Q¢ : Ihg < Zpq O L.

That is, encapsulation not only makes it easier to interface Zpq : Eyp = Epq with Iy, : 0 = Eyp,, but
it also means the simulation ¢] can be stated in terms of the identity refinement convention.

5.5 Implementing Encapsulated State

Ultimately, our goal is to connect a high-level specification such as I}, which uses encapsulated
state to a low-level implementation like the one shown in Fig. 5b where state is explicit and stored
as part of the concrete C memory. To construct refinement conventions which can capture this
concretization process, we can use vertical versions of our encapsulation primitives.

Definition 5.7. We say that a strategy L : A - Borlens L : A & B has:
e a companion L* : A & Bwhen L® : A <4,;» Land LY : L <j«,5 B;
e a conjoint L, : B<> AwhenL, : B<p _,pLand Ly : L <41, A.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:20 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Table 1. Components of our Coq artifact, with corresponding lines of code counted by coqwc.

Component Definitions Proofs Application Definitions Proofs
coqrel library 2,382 959 CompCertO embedding (§6.2) 1,000 1,743
CompCertO 124,217 95,187 Bounded queue example (§6.3) 1,572 2,606
Other support code 271 491 Process example (§6.4) 1,414 2,621
Our framework (§2-5, §6.1) 2,198 3,252 CAL (§6.5) 262 667

ClightP (§6.6) 1,656 2,126

Concretely, these properties mean that for certain refinement squares, we can choose whether a
particular component should appear horizontally or vertically. This makes it possible to decompose
proofs along non-rectangular boundaries, and generally affords us additional flexibility. In practice,
companions and conjoints are especially useful for lenses, which satisfy the following property.

THEOREM 5.8. Everylens f : U & V has a companion f* : U < V and a conjoint f, : V & U.

In particular, the conjoint [u), : 1 < U can be used to formalize state “deencapsulation”.
Concretely, [u). requires the first target question to carry the value u. When the question is
answered with a new state v’, this new state replaces u. The next question is expected to carry
the value u’, and so on. In other words, [u). requires the target system to be provided with a state
component of type U, maintained across successive activations and initially set to the value u.

6 Evaluation and Applications

Having described our formalism, we discuss its mechanization in the Coq proof assistant and
several possible applications. This is demonstrated in the companion artifact [Zhang et al. 2024a],
whose components are outlined in Table 1 and discussed below.

6.1 Mechanization in the Coq Proof Assistant

Our code uses a library called coqrel [Koenig 2024] for relational reasoning and the relevant parts
interface with CompCertO as well. In addition, our goal is eventually to incorporate our model
into a broader library for compositional semantics and heterogeneous system verification’, and we
rely (“other support code”) on this library’s formalization of downward-closed sets.

With these dependencies, the definitions and theorems given in §2-5 can be mechanized in
2,198 lines of Coq definitions and 3,252 lines of proofs, as counted by coqwc. The mechanization is
straightforward and closely follows the definitions we have given.

Use of Dependent Types. One interesting aspect of our development is its use of dependent types
to capture combinatorial aspects of strategy interaction.

As suggested by the inductive grammar given in Definition 3.1, we use dependent types to enforce
the structure of plays, defining play E F : position E F — Type and strat E F : position E F — Type
as families indexed by the type:

Variant position E F := ready | running (q : op F) | suspended (q : op F) (m : op E).
This way, rather than defining plays as simple lists of moves and separately demanding that they
satisfy some validity criterion, we can use the type system to enforce their expected shape and
avoid having to deal with a proliferation of side-conditions.

At the same time, under this approach, definitions and proofs which involve plays and strategies
in different positions require a way to express the combinatorial constraints which tie them together.

Thttps://github.com/CertiKOS/rbgs

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.


https://github.com/CertiKOS/rbgs

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:21

Our solution is to define a new position type for each of these constructions, with fully unbundled
projections onto the corresponding positions of their components. For example, our formalization
of layered composition (Definition 3.4) involves the type:

Variant cpos : position F G -> position E F -> position E G -> Type :=
cpos_ready : cpos ready ready ready

cpos_left g : cpos (running q) ready (running q)

cpos_right g m : cpos (suspended g m) (running m) (running q)
cpos_suspended g m u : cpos (suspended q m) (suspended m u) (suspended q u).

where the first two parameters specify compatible positions for the strategies or plays being
composed, and the third specifies the position for the result. The same principle is applied for
higher-level constructions; for example the proof of

(01®03)0(101)=(0107) ® (020 12) (6)

involves a position type whose parameters project onto the four simple positions for the strategies
involved, as well as the © and @ composite positions for each intermediate expression. The fully
unbundled approach allows us to use the type system to encode the complex synchronization
constraints involved. In fact, for many proofs of that nature, laying down those constraints was the
most complex part of the job, and once the cases were enumerated the proof itself became more
or less self-evident. It would be interesting to compare them with the definitions and proofs that
would be obtained under a more traditional approach.

Note that for high-level reasoning, the user will usually only manipulate strategies and use
properties such as (6) above in the context of trivial ready positions, so that they are not exposed
to the internal complexity associated with the combinatorial constraints.

6.2 CompCertO semantics

As mentioned in Examples 2.3 and 2.5, the language semantics and correctness properties defined
by the certified compiler CompCertO can be used within our model.

Open Transition System. CompCertO uses a notion of open transition system to describe interac-
tions across component boundaries. These boundaries are specified using language interfaces of
the form A := (A°, A*), which translate to effect signatures [A] := {q: A® | g € A°}.

A CompCertO transition system L : A - Bisatuple L = (S, —,[,X,Y, F) consisting of:

e aset S of states and a transition relation —» C S X S;

arelation I C B° X S which assigns possible initial states to each question of B;

arelation F C S X B® which specifies final states together with corresponding answers in B;
arelation X C S X A° which identifies external states and corresponding questions of A;
arelation Y € S X A® X S, which identifies resumption states.

Writing (s,r,s’) € Y asr Y® §’, executions take the form
qlso=>"s1 X qrornYisi—="sy -5, Xquor, Ys), ="sgFr,

corresponding to an interaction trace g > (g1 ~> r1) ™ -+ > (qn ~> 1) ™ 1.
To describe the strategy associated with a CompCertO transition system, we first formalize the
set of plays generated by an internal state s € S as follows:

’ "
s> Xm~>nY's” §srw s—>"s'Fr
s Ik mnw shkr

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:22 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

For an invocation on the transition system, the play gw will then result when g I s £ w. To handle
subsequent invocations, the process is iterated using the regular closure operator defined in §3.1:

[L] = (U{qw|33-q1s/\su—w})*.

qeB°

Simulation Convention. The simulation conventions used in CompCertO can likewise be trans-
lated to our richer notion of refinement convention.

Definition 6.1. A simulation convention R : A & B := (W,R° R®) between the CompCertO
language interfaces A and B is specified by a set W of worlds, a Kripke relation R° € W X A° x B°
between questions and a Kripke relation R®* € W X A® x B® between answers.

Kripke worlds are used to ensure that questions and answers for a given call are related consis-
tently. However, every pair of calls is related in isolation, independently of any past or future calls.
Thus, the following refinement convention embeds the simulation conventionR : A & B:

(ml,mg)J_ € [[R]] = dw- mlR‘;mz
(m1,mz)(n,nz)T € [R] :© Iw-mRymy A =n1R3n,

(my, my)(ny, nz)s € [R] :& Iw-mRymy A (mR3n2 = s € [R]).

Simulations. Using the embedding above, simulations between CompCertO transition systems
and simulation conventions induce refinement squares between the corresponding strategies
and refinement conventions within our model. In particular, CompCertO’s compiler correctness
corresponds to the following refinement:

[¢5] : [Clight(p.c)] <[cj»[c [Asm(p.s)] .

Composition. To model linking CompCertO introduces an operator @4 : (A » A) X (A » A) —
(A —» A). This operator allows mutual recursion: in L; @ Ly, both outgoing calls of L; to functions
of L, and outgoing calls of L, to functions of L; become internal calls and are hidden from the
environment. It is known that the syntactic linking of assembly programs implements &:

£ : Asm(p1) @ Asm(pz) < Asm(p1 + pz)
The embedding is compatible with the & operator in CompCertO in the following sense:
e:[[Ll]]Q[[Lz]]S[Iq@Lzﬂ VLl,Lz EA»A

This is no surprise because © only permits calls from one direction, and therefore under-approximates
the & combinator where mutually recursive calls can happen. In the rest of this section, we will
omit [—] for brevity when the context is clear.

6.3 Memory Separation

Spatial composition allows us to separate complex states into different fields; we can then reason
about components independently of the fields which they do not access, and use @ to connect these
components with the rest of the system. However, eventually this abstract description must be
refined into a concrete program acting on a global memory, where all state has been consolidated.

To achieve this in a way which preserves compositionality, we use a partial commutative monoid
over the CompCert memory model. This provides an operation ® which can be used to decompose
a memory state m into a number of shares m; o - - - @ m,,. This construction is similar in spirit to the
algebraic memory model of Gu et al. [2018]; its construction is explained in Appendix C [Zhang
et al. 2024b].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:23

The properties of e and its interaction with memory operations ensure that CompCert semantics
satisfy a frame property, meaning that they are insensitive to additional memory shares:

L E q@my = (q1@m; ~> ri@m}) »> -+ > (gu@mp ~> ra@my,) »> r@m’

L & q@(mo ® wo) = (q@(my & wo) ~> ri@(m ® wy)) = -+ @
e (qn@(mn i Wn—l) ~> rn@(m;l i Wn)) - r@(m/ ° Wn)
The similarity of (7) with the behavior (4) of the transition system L @ U (§5.2) is no coincidence.

Reading e as a join relation Y C (mem X mem) X mem, we can state one in terms of the other.

THEOREM 6.2 (FRAME PROPERTY FOR CLIGHT). The Clight semantics satisfies
FP(M) : Clight(M) @ mem <s@v-pay Clight(M), where (my,m;) Y m :& m; emy =m.

It will often be the case that the join relation is applied to the target of simulation convention
components R: U <> mem and S : V < mem. In this case, we will use the notation:

ReS: U@V & mem ReS=R@S)sY.

Example 6.3. To show that rb.c faithfully implements I}y, we establish a correspondence between
the operations of the signature E,, and their representation as C calls by defining a refinement
convention Ey, : E;p, &> C. In addition, we explain how the abstract states of Dy, are realized in the
concrete memory using the relation Ry, € Dy, X mem defined by:

(b,c1,¢2) Ry [buf > {by,...,bn_1}, 1 ¢1, 2 ¢].

At the implementation level, the memory state passed to rb.c will contain buf, c1 and c2, whose
values must match the high-level abstract state and will be updated according to the specification.
Also, the initial memory share mg := init_mem(rb.c) associated with rb.c satisfies (i, : dy Rip my.
The remaining part of the memory should not be changed by rb.c. This can be expressed as

Seb : Iip <p»E@(mg) Clight(rb.c) (8)

where the refinement convention component (mg) := (mem]* ® [mg). : 1 <> mem expresses the
idea that the memory state introduced at the target level is split into two halves. One half will
contain buf, ¢1 and c2; it must be initialized to mg and preserved by the environment from one call
to the next. The other half is unconstrained but is guaranteed to be left unchanged by rb.c.

Verifying rb.c. To establish (8) above, it suffices to show ¢ : Ly, <gg,@r, Clight(rb.c). In
other words, we can prove the correctness of rb.c in the context of a minimal memory share which
contains only the variables buf, c1 and c2.

On one end, the program must manage all the memory shares passed from the client. To achieve
this, we can use the Clight frame property for rb.c and the absorption property z : @ C @® (mem]*
to derive ¢/, : Lib <g_»E,,@(mem]*oR,, Clight(rb.c) as follows:

Pl = (qS:Ei“ @ (mem]* ¢ FP(rb.c)) © z
On the other end, we transform the explicit state passing specification Ly, to its encapsulated
counterpart Iy, using the auxiliary property ¢, where

‘prb = (Erb @ <mem]* @ ([Qb) 9 [m0>v)) : Ep @ [d0> SE,b@(mem]*—»E,b@(mg) C @ mem.
With these ingredients, the desired property ¢, can be derived as:
Geb = Yip © Q{);b ¢ L Zo>»Ep@(mp) C“ght(rb~c) .

This process of deriving the full-blown property from a minimal one can be easily streamlined.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:24 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Verifying bq.c. In Example 5.2, we were unable to state the relationship between the specification
Zbq : Erb > Epq and the corresponding implementation Clight(bg.c) : C @ mem - C @ mem due
to their difference in type. We can now formulate the requirement

(ﬁ{)q : qu @ mem SE,b@mem—»qu@mem C“ght(bQ~C)

which expresses that bq.c makes the outgoing calls prescribed by X},q but does not modify the
global memory state. To interface with the property ¢y, its incoming simulation convention (my)
can easily be incorporated into the property as follows:

Pbq = (Zbq @ (Mo)) § Pq ¢ Zbq SEu@(mo)»Eng@(my) Clight(bg.c)

Revisiting the challenge articulated in Example 5.2, we now give the complete proof:
$1 3 ((Bhq5Ppg) @ (v 33) ©2) 5 €5 = Tog <om(B@im)sc Asm(bg.s+rb.s).

Remark 6.4 (Allocation permission). Defining a partial commutative monoid e which satisfies the
properties above is largely straightforward, but some subtleties arise when it comes to memory
allocation. In a real-world scenario, memory is a finite resource and calls to malloc can fail contingent
upon the amount of memory available. Under an accurate model of memory as a finite resource,
this would have to be taken into account by our notion of memory share and the definition of
. For example, memory states (m, k) could incorporate a number of bytes k € N which remain
to be allocated (or perhaps the size of the largest contiguous memory region available, to take
fragmentation into account), and malloc would trigger an undefined behavior when the program
attempts to allocate a region of size greater than k. In this case the partial monoid e could be defined
along the lines

(my, ky) ® (Mg, kz) == (my o my, ky +ky) .

In this setting, incorporating an additional memory share could only increase the amount of memory
available; the behavior of malloc on the larger, composite share would refine that of the original
one, validating the frame property.

Since in CompCert, memory is modeled as an infinite resource and malloc always succeeds,
this was not an issue in our implementation. However, CompCert memory states maintain a
nextblock counter which is used to assign identifiers to newly allocated memory blocks. Since this
counter increases as the program executes, in order to enable the frame property we must allow
the nextblock counters of the two shares m; ® m;, to become out of sync. But in this case, allocating
a new block in the “stale” share would result in a naming conflict.

To work around this, we model memory allocation as a permission, such that at any given time,
only one of the two shares is able to allocate new blocks and carries the up-to-date nextblock
counter. This requires a slight modification to the CompCert memory model to incorporate this
permission flag and allow Mem.alloc to fail when the flag is not set. This flag is subject to ownership
transfer reasoning and similar techniques used in the context of separation logic—in our framework
this can be accommodated by the refinement convention Y, which allows partial memory shares to
migrate between the two source-level branches at any time.

6.4 Modeling Loading and the Execution Environments

Verifying functionalities of library code substantially benefits from CompCertO’s open semantics.
However, the openness hinders reasoning on the behavior of executables. For the executables, it is
desirable to model them in terms of the process behavior; the behaviors are self-contained, and can
be characterized by the sequence of system calls they perform. To bridge the gap between the open
semantics of the process behavior, we introduce the notion of a loader.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:25

On one end, the loader launches the component as a process by using the entry 5 : A — P to
invoke its main function:

entry 4 E run > (r$[PC — main, RA = null, RSP = nulll@mg ~ Fs[RAX = rl@m) = r.

The registers rsy and the memory my are initialized that the program counter PC holds a pointer
value that points to the main function, and the static variables are properly initialized in the memory.
The return address RA and the stack pointer RSP are initialized to null according to CompCertO’s
simulation convention. At the end, the value stored in RAX is returned.

On the other end, the runtime : S — A acts as the conduit for runtime libraries to interface
the program with the operating system. In our scenario, the programs only use read and write
functions from unistd.h to perform I/O operations. Thus, we implement the minimalist runtime:

runtimeg E Fs[PC  read, RDI + 0,RS| — b, RDX — n]@m[b — unspecified]
 (readg[n] ~ s) — rs’[RAX > len(s) |@m[b — s]

runtimeg F rs[PC — write, RDI > 1,RSI - b,RDX - n]@m[b  s]
> (write; [s[0: n]] ~ n’) = rs'[RAX - n’]@m[b - s]

Following the x86 conventions, arguments are passed via the RDI, RSI, and RDX registers. The
read function loads a sequence of bytes from the standard input, stores them into the memory
where the pointer value b points to, and returns the length of the byte sequence. Conversely, the
write function writes the first n bytes of the byte sequence s to the standard output, and the return

value n’ indicates the number of bytes that are successfully written.
The assembly loader can be obtained from:

load#(L) = entry 4 © [L] © runtimez.
With the assembly loader, we then formally formulate the property (1) as follows:

I(q) < load #(secret.s + rot13.s) | load #(decode.s + rot13.s) .

Verifying Loaded Programs. Reasoning about the process behavior directly at the level of assembly
programs is intricate because of the large abstraction gap between the strategy-level specifications
and the assembly semantics. Therefore, we also introduce a loader for the Clight semantics to
divide the proof into manageable pieces. Furthermore, the loaders must transport the C-related
CompCertO simulations into simulation relations between process behaviors:

¢ : L <coe L2

@! :load¢(Ly) < load #(Ly)

load¢(-) : (C@mem » C@mem) — (S » P)

Example 6.5. Revisiting the task articulated in property (1), we first define the program-level
specifications Zsecret, Zdecode : C@mem —» C@mem, and prove they meet the strategy-level
specifications via the loader:

¢dec0de : 1—‘decode < lOadC(Zdecode) ¢secret : 1—‘secret < lOadC(Zsecret) .

Then, the rest of the proof only involves the CompCertO semantics. In particular, the following
properties state that the programs correctly implement their corresponding specifications:

Tsecret * Zsecret < Lsecret @© Clight(r0t13~c) ”s,ecret : Lsecret <cc Asm(secret.s)

Tdecode : Zdecode < Clight(decode.c) @ Clight(rot13.c) .

where Lgecret is a transition system defined in terms of the C language interface that captures the
behavior of the assembly program secret.s. Combining the above simulations with CompCertO’s

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:26 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

compiler correctness, we obtain:
Ysecret *= Tsecret § (”s,ecret @ ¢f§t13) $¢ + Zsecret <cc Asm(secret.s + rot13.s)
Ydecode = Tdecode 3 (P5ocode @ Prat1z) € Zdecode <c—c Asm(decode.s + rot13.s).
Note the @ operator here is CompCertO’s linking operator, which should not be confused with the
flat composition on strategies. Eventually, the property (1) is witnessed by the following proof:
¢(1)3(¢secret3¢§ecret | ¢decode3¢§ecode) : T(1) < load#(secret.s+rot13.s) | load #(decode.s+rot13.s)

The definitions of the Clight loader and the Clight level specifications, and the detailed proof of
directly proving simulation between Lgecret and Asm(secret.s) can be found in Appendix G [Zhang
et al. 2024b].

6.5 Certified Abstraction Layers

The bounded queue example in §2 was ad-hoc and relied on our framework as a versatile glue.
However, in many contexts additional structure is preferable. The methodology of Gu et al. [2015]
divides the code of a large system into standardized certified abstraction layers. The functionality
exposed to client code at each layer is specified in a layer interface. Within the terms of our formalism,
a layer interface is a set D of abstract states together with a specification L : 0 » C @ mem @ D.
The semantics of client code then takes this underlay interface as a parameter:

L:0»C@mem@D + Clight;[M]:0»>C@mem@D. 9)

A certified abstraction layer involves an underlay interface Ly, an overlay interface Ly, a program
module M and an abstraction relation R € D, X (D; X mem). They must satisfy the property:

LirgM:L, & Ly <,,cor Clight; [M].
where R C (mem x D) x (mem X D) extends R to a relationship between the entire states of the
source and target programs. The main challenge is then to prove the vertical composition property
Y12t Litr MLy o3 : Lyks Nt Ls
Y13 : Ly Frs M+ N : Ls

(10)

Implementing Layers. This methodology is implemented in CompCertX, a modified version of
CompCert where every language semantics and correctness proof has been updated to take into
account the abstract state and underlay interface. A complex memory injection is used in R to
express the embedding of the source memory into the target, alongside the concretized abstract
state of the overlay. Finally, the proof of vertical compositionality is complex and largely monolithic,
involving aspects of our frame property, CompCertO’s linking theorem, and more.

By contrast, the toolbox provided by our framework makes it straightforward to formulate a
comparable theory of certified abstraction layers. A layer-aware semantics can be defined as:

Clight, [M] := (Clight(M) @ D) © L
and does not require any compiler change. Our memory join relation can be leveraged to define:
R=(mem@R o (Y@D;) R-S:=S3(mem@R): (Y@ D)

such that the composition property a : (S §R) = R-S holds by associativity of the join operation e.
Finally, the vertical composition property (10) can be established with the single-line proof term:

Y13 = a O (Y235 ((Clight(N) @ R) § (FP(N) @ D1)) © ¥12) .
We provide additional details in Appendix D [Zhang et al. 2024b].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:27

6.6 Clight with Module-Local State

Beyond verification-oriented applications, incorporating state encapsulation into CompCert seman-
tics opens the door to new language features. As an example, we have defined a language called
ClightP which supports encapsulated module-local state and can be soundly compiled to Clight.

Semantics. In ClightP, global variables can be declared private. Private variables cannot be
accessed from other translation units and are stored in a separate private environment p € penv.
The semantics of a ClightP program M are defined using an underlying transition system of type:

ClightP(M) : C @ mem » C @ mem @ penv

We can then extract from the program M the initial private environment p, = init_penv(M) and
obtain the encapsulated semantics ClightP(M) : C @ mem — C @ mem as:

ClightP{M) := (C @ mem @ [po)) © ClightP(M).
Note that the resulting type means that ClightP semantics in this form can be composed directly.

Compiling to Clight. We have defined a simple transformation M’ := ClightUnP(M) which turns
a ClightP program M into a regular Clight program M’ by erasing the private annotations from all
variables. We can then show the associated correctness property:

CllghtP<M> < C@mem®(mem]*—»C@mem®[mo)s Clight(M’) N

where my is a memory share computed from M containing the initial values of its private variables.
The incoming simulation convention mem @ [my). requires my to be added to the target global
memory state. The outgoing convention mem @ (mem]* allows the target program to include this
additional memory region into its outgoing calls, with a guarantee that it will not be changed.

Composition. One challenge is that the correctness property depicted above is not directly
compositional, because the incoming and outgoing simulation conventions are different. Fortunately,
the frame property for Clight ensures that the correctness properties for multiple ClightP translation
units can be combined in a meaningful way. See Appendix E [Zhang et al. 2024b] for more details.

7 Related Work

Finally, we briefly discuss past and future research relevant to the work and goals we have described.

Interaction Trees. As a “semantics toolbox” of sorts, interaction trees share some goals and
techniques with our model. In fact, an interaction tree ¢ : ITreeg(X) can be interpreted into our
framework as a strategy () : E - {x : X}. However, strategies generalize ITrees in several ways:

e Strategies are two-sided and encode incoming as well as outgoing interactions, forming the
basis for layered composition.

e By design, ITrees must be executable programs, whereas strategies can be described logically
using arbitrary Coq specifications.

e Strategies that exhibit the same external behavior are formally equal. By contrast, [Trees
are compared using bisimulation equivalences. Equational reasoning requires Coq’s setoid
support, which can be slower and more fragile than rewriting with eq.

e Our strategies come with built-in notions of partial definition, refinement and data abstraction,
whereas similar notions for ITrees have to be defined and tailored to a particular application.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:28 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Game Semantics. The horizontal fragment of our framework is a particularly simple form of game
semantics. The framework’s novelty resides in the vertical and spatial fragments, for which, to our
knowledge, there exists no precedent in the game semantics literature. In particular, refinement
conventions involve alternations of angelic and demonic choices; we were surprised to find they
can be modeled using a fairly standard approach, although a rather unconventional ordering of
plays must be used. An interesting question for further research would be to investigate how far
this can be pushed and whether games more complex than effect signatures could admit their own
forms of refinement conventions.

Refinement Calculus. The refinement calculus [Back and Wright 1998] was a source of inspira-
tion for our framework. One defining feature of the refinement calculus is dual nondeterminism,
which provides very powerful abstraction mechanisms. At the same time, models like predicate
transformers do not deal with external interactions or state encapsulation.

CompCertO. The semantic model of CompCertO [Koenig and Shao 2021; Zhang et al. 2024c]
introduced simulation conventions and the associated idea of a full-blown, two-dimensional refine-
ment framework, so it is worth pointing out the ways in which our framework generalizes the
CompCertO model, especially when it comes to refinement conventions:

e CompCertO transition systems and simulation conventions use explicit states and Kripe
worlds in their definitions, whereas strategies and refinement conventions provide canonical
representations for the components’ observable behaviors.

o Effect signatures are more general than the language interfaces used in CompCertO, which
force all questions to use the same set of answers.

e CompCertO transition systems do not retain any history between successive incoming
questions; as such, they cannot support the kind of state encapsulation which our framework
enables. Likewise, simulation conventions only specify 4-way relationships between isolated
pairs of questions and answers, but unlike refinement conventions they cannot be sensitive
to the history of the computation.

Other CompCert-based Verification Frameworks. CompCertM [Song et al. 2019] is another project
which builds on CompCert to provide a compositional verification framework. Like CompCertO, it
introduces a better model of the interaction between C and assembly programs and more flexibility
in simulation conventions. However, while it permits some form of localized state, CompCertM still
does not support full-blown data abstraction and state encapsulation of the kind we have presented.
See Koenig and Shao [2021]; Zhang et al. [2024c] for a detailed comparison between Compositional
CompCert, CompCertM and CompCertO.

We have also touched on certified abstraction layers and CompCertX in §6.5. Subsequent work
has extended CAL to support concurrency [Gu et al. 2018]. There are more recent treatments of
CAL which, like our work, attempt to streamline the underlying theory [Koenig and Shao 2020;
Oliveira Vale et al. 2022], but this work has not been mechanized or interfaced with CompCert.

Separation Logic. For the most part, the frameworks discussed above do not provide program-
level verification facilities, but rather focus on a more coarse-grained, module-level “glue”. Likewise,

min

we have assumed that elementary module correctness properties such as ¢, ¢, and ¢)bq were

provided by the user? and focused on the problem of connecting such proofs. Nevertheless, program
logics in general and separation logic in particular are relevant to our work in the following ways.

First, it would be beneficial to incorporate such program logics into our framework. For example,
Gu et al. [2015] provides a rudimentary Clight program logic which can be used to help prove

20ur example is simple enough that, in our implementation, manual simulation proofs were sufficient.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:29

abstraction layers correct. It may be useful to investigate whether the Clight separation logic
provided by the Verified Software Toolchain [Appel 2011] could be interfaced with our model.
Secondly, spatial composition is in fact the defining feature of separation logic. Our treatment of
memory separation draws extensively from separation algebra [Calcagno et al. 2007], an approach to
building models of separation logic. More recently, Conditional Contextual Refinement (CCR) [Song
et al. 2023] combined (vertical) refinement and (spatial) separation logic into a unified, mechanized
framework. CCR however does not support state encapsulation or certified compilation.

Multi-language Semantics. We have demonstrated that our framework is able to reason across
languages through non-trivial examples such as the one in Fig 1. In Compositional CompCert
and CompCertM, assembly programs are given C-level semantics, making it possible to directly
reason about composite programs (but only for Asm code, which behaves according to the C calling
convention). CAL uses the opposite approach and can translate C-level layer specification into
assembly behaviors. Recent work on the DimSum framework [Sammler et al. 2023] attempts to
give a more general account of multi-language semantics by introducing wrappers to translate
between different languages.

These various approaches all attempt to represent horizontally what the simulation conventions
of CompCertO represent vertically. In our framework, the notions of companion and conjoint could
provide a natural way to formalize approaches of this kind, so that, for example, the CompCertO
calling convention C : C < A would be in companion/conjoint relationships with adapter
components C, : A -» C and C* : C - A. The complexity of CompCertO’s convention as
presently stated makes this challenging, but we do not believe it to be a fundamental issue.

Event-based Semantics. The DimSum framework [Sammler et al. 2023] employs a language-
agnostic, event-based semantics as a generic framework for multi-language semantics. Both the
DimSum framework and our strategy model feature rich compositional structures, and support
private states across function invocations. However, there are several key differences set DimSum
apart from our approach. First, DimSum introduces explicit angelic and demonic nondeterminism
alongside events. These nondeterministic structures facilitate the transformation and ordering
of event sequences at different abstraction levels. However, this also adds complexity due to the
intricate commuting properties between events and nondeterministic choices. In contrast, our
strategy model adheres to a transitional approach where plays solely consist of events. Here, dual
nondeterminism is concealed within the construction of refinement conventions and simulations,
activating only when necessary. Second, events in DimSum are not well-bracketed, allowing for
modeling complex interactions such as coroutines, which are challenging to implement within our
current strategy model. Generalization to asynchronous games semantics would be required to
accommodate such behaviors. Third, the DimSum framework does not support spacial composi-
tion. Instead, data abstraction must go through the semantics wrapper, which is a rather heavy
mechanism. Lastly, the DimSum framework features a four-pass compiler that translates idealized
source- and target-level programs. By contrast, our strategy model integrates a realistic optimizing
compiler that compiles C program into assembly.

8 Conclusion

Combining compositional semantics, abstraction, encapsulation and certified compilation is an
important step towards the construction of large-scale systems certified end-to-end. Moreover, we
believe that the underlying algebraic structures that we have uncovered in this process constitute
an elegant conceptual framework with applications beyond the present work, and may become an
important facet of future certified systems engineering work.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.



64:30 Yu Zhang, Jérémie Koenig, Zhong Shao, and Yuting Wang

Acknowledgments

We wish to thank the anonymous POPL 2025 reviewers, whose feedback significantly improved the
quality of this paper. This material is based upon work supported in part by NSF grants 2313433
and 2019285 and by the National Natural Science Foundation of China (NSFC) under Grant No.
62372290 and 62002217. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the funding
agencies.

References

Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the 20th European Symposium on Programming (ESOP
2011). Springer, Berlin, Heidelberg, 1-17. https://doi.org/10.1007/978-3-642-19718-5_1

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus: A Systematic Introduction. Springer, New York.
https://doi.org/10.1007/978-1-4612-1674-2

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008. Boomerang:
Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, California, USA) (POPL *08). Association for Computing Machinery, New York,
NY, USA, 407-419. https://doi.org/10.1145/1328438.1328487

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 366—378. https://doi.org/10.1109/LICS.2007.30

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Samuel Gruetter, Clément Pit-Claudel, and Adam Chlipala. 2024.
Foundational Integration Verification of a Cryptographic Server. Proceedings of the ACM on Programming Languages 8,
PLDI (2024), 1704-1729.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 595-608.
https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Newman Wu, Jérémie Koenig, Vilhelm Sjéberg, Hao Chen, David Costanzo,
and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 646-661.
https://doi.org/10.1145/3192366.3192381

Armaél Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A
program logic for verified interoperability between OCaml and C. Proceedings of the ACM on Programming Languages 7,
OOPSLA2 (2023), 716-744.

Jérémie Koenig. 2016-2024. Cogrel: a binary logical relations library for the Coq proof assistant. https://github.com/CertiKOS/
coqrel

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS °20). ACM, New York, NY, USA, 633-647.
https://doi.org/10.1145/3373718.3394799

Jérémie Koenig and Zhong Shao. 2021. CompCertO: compiling certified open C components. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation. 1095-1109.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C Pierce, and Steve
Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM, 234-248.

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107-115.  https:
//doi.org/10.1145/1538788.1538814

Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics for multi-language programs. ACM SIGPLAN Notices
42,1 (2007), 3-10.

Arthur Oliveira Vale, Paul-André Mellies, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered and Object-Based
Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (Jan. 2022), 32 pages. https://doi.org/10.1145/3498703

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.
2023. DimSum: A Decentralized Approach to Multi-Language Semantics and Verification. Proc. ACM Program. Lang. 7,
POPL, Article 27 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571220

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert
with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.
2019), 31 pages. https://doi.org/10.1145/3371091

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.


https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381
https://github.com/CertiKOS/coqrel
https://github.com/CertiKOS/coqrel
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3498703
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3371091

Unifying Compositional Verification and Certified Compilation with a Three-Dimensional Refinement Algebra 64:31

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual
Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571232

Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. 2024c. Fully Composable and Adequate Verified
Compilation with Direct Refinements between Open Modules. Proc. ACM Program. Lang. 8, POPL, Article 72 (Jan. 2024),
31 pages. https://doi.org/10.1145/3632914

Yu Zhang, Jérémie Koenig, Yuting Wang, and Zhong Shao. 2024a. Unifying compositional verification and certified compilation
with a three-dimensional refinement algebra (artifact). https://doi.org/10.5281/zenodo.14202535

Yu Zhang, Jérémie Koenig, Yuting Wang, and Zhong Shao. 2024b. Unifying compositional verification and certified compilation
with a three-dimensional refinement algebra (extended version). Technical Report YALEU/DCS/TR1572. Yale University.

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 64. Publication date: January 2025.


https://doi.org/10.1145/3571232
https://doi.org/10.1145/3632914
https://doi.org/10.5281/zenodo.14202535

	Abstract
	1 Introduction
	1.1 The Program Logic Paradigm Misses Crucial Aspects of Software Development
	1.2 Compositional Semantics Offer a More Flexible Approach
	1.3 Three Dimensions of Compositionality
	1.4 Contributions

	2 Compositional Semantics for Verification
	2.1 Overview
	2.2 Effect Signatures
	2.3 Strategies
	2.4 Layered Composition
	2.5 Data Abstraction and Vertical Composition
	2.6 Combining Effect Signatures

	3 Strategy Model
	3.1 Strategies
	3.2 Layered Composition
	3.3 Flat Composition

	4 Refinement Conventions
	4.1 Overview
	4.2 Refinement Conventions
	4.3 Refinement Squares
	4.4 Vertical Composition
	4.5 Flat Composition

	5 Compositional State
	5.1 Explicit State
	5.2 Passing State Through
	5.3 Transforming State
	5.4 State Encapsulation
	5.5 Implementing Encapsulated State

	6 Evaluation and Applications
	6.1 Mechanization in the Coq Proof Assistant
	6.2 CompCertO semantics
	6.3 Memory Separation
	6.4 Modeling Loading and the Execution Environments
	6.5 Certified Abstraction Layers
	6.6 Clight with Module-Local State

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

