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Crash-safety is an important property of real systems, as the main functionality of some systems is resilience to

crashes. Toward a compositional verification approach for crash-safety under full-system crashes, one observes

that crashes propagate instantaneously to all components across all levels of abstraction, even to unspecified

components, hindering compositionality. Furthermore, in the presence of concurrency, a correctness criterion

that addresses both crashes and concurrency proves necessary. For this, several adaptations of linearizability

have been suggested, each featuring different trade-offs between complexity and expressiveness. The recently

proposed compositional linearizability framework shows that to achieve compositionality with linearizability,

both a locality and observational refinement property are necessary. Despite that, no linearizability criterion

with crashes has been proven to support an observational refinement property.

In this paper, we define a compositional model of concurrent computation with full-system crashes. We

use this model to develop a compositional theory of linearizability with crashes, which reveals a criterion,

crash-aware linearizability, as its inherent notion of linearizability and supports both locality and observational

refinement. We then show that strict linearizability and durable linearizability factor through crash-aware

linearizability as two different ways of translating between concurrent computation with and without crashes,

enabling simple proofs of locality and observational refinement for a generalization of these two criteria. Then,

we show how the theory can be connected with a program logic for durable and crash-aware linearizability,

which gives the first program logic that verifies a form of linearizability with crashes. We showcase the

advantages of compositionality by verifying a library facilitating programming persistent data structures and

a fragment of a transactional interface for a file system.
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1 Introduction
In this paper, we develop a compositional account of linearizability under full-system crashes.

By a full-system crash, we mean a crash that results in all agents of a system failing or being

reset. This could result from a power outage, a user holding the power button on their computer,

a fatal crash in an OS, a critical component failure, etc. By compositional, we mean that verified

components can be freely composed vertically and horizontally so that the composed system is

correct by construction, in that no side conditions are necessary to derive its correctness from

the correctness of its components. As a result, we obtain a framework for verifying large-scale

crash-aware systems against linearizability. To see why compositionality is important, consider

one of our main examples: the FLiT library [39].

The FLiT Library. Implementing persistent data structures, even when non-volatile memory

(NVM) is available, is notoriously challenging. For instance, one of the challenges when program-

ming with NVM is that it provides a buffered interface BCell. We can encapsulate the operations of

a buffered memory cell in the following signature, where 1 stands for some singleton set (we will

write () ∈ 1 if it is an argument, and ok ∈ 1 if it is a return) and Val a set of memory values:

BCell := {load : 1→ Val, store : Val→ 1, flush : 1→ 1}
What this signature expresses is that BCell provides three operations: load(), which takes unit

() ∈ 1 as argument and returns some value in Val; store(𝑣), which takes a value 𝑣 ∈ Val as argument,

and returns the unit ok ∈ 1; and flush(), which takes unit () as argument and returns a unit ok.
The signature BCell provides the syntax of the operations of a buffered memory cell. It must be

paired with a specification defined later, which provides the semantics of the operations. Such a

specification would state that stores are not guaranteed to persist immediately; instead, they are

buffered and persist only when the buffer is non-deterministically flushed or explicitly flushed by a

flush() invocation [34, 35]. In other words, once a crash happens, a load is only guaranteed to read

a value no older than the latest flush. The explicit flush operation guarantees a buffer flush at a

significant performance cost, so in practice, one would like to minimize its usage. For instance, in

the trace (where 𝛼0, 𝛼1, 𝛼2, and 𝛼3 are the names of the agents performing the operations):

𝛼0
𝛼0𝛼0:::store(0) · 𝛼0

𝛼0𝛼0:::ok · 𝛼0
𝛼0𝛼0:::flush( ) · 𝛼0

𝛼0𝛼0:::ok · 𝛼1
𝛼1𝛼1:::store(1) · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::load( ) · 𝛼2

𝛼2𝛼2:::𝑣 ·    · 𝛼3
𝛼3𝛼3:::load( ) · 𝛼3

𝛼3𝛼3:::𝑣
′

the value 𝑣 must be 𝑣 = 1, as 1 is currently the buffered value. Meanwhile, either 𝑣 ′ = 0 (the value

at the latest flush), or 𝑣 ′ = 1 (which could have been non-deterministically flushed from the buffer).

This non-determinism of the value of a load after a crash complicates programming with NVM.

Some works attempt to facilitate programming persistent data structures by providing more

robust persistent objects than those available directly from the underlying NVM, which usually only

provides buffered memory cells. One such work is FLiT, a C++ library which provides a wrapper

for the BCell operations. Specifically, in its essence, FLiT provides an object with signature

FLiT := {load : 1→ Val, store : Val→ 1}.
As is traditional in the linearizability literature, we use a set of valid concurrent traces 𝜈 ′ to represent
objects. 𝜈 ′ may be further abstracted by providing a set 𝜈 of less concurrent traces (often atomic,

i.e., traces where every invocation is immediately followed by its response) with respect to which

the traces in 𝜈 ′ are linearizable1. In the context of durable linearizability [22], 𝜈 ′ also differs from

its linearized specification 𝜈 in that 𝜈 ′ has explicit crashes while 𝜈 does not. More precisely, durable

linearizability requires that ops(𝜈 ′), the crash-less specification obtained by removing all crash

events from traces in 𝜈 ′, is linearizable (in the usual sense) w.r.t. 𝜈 .

We specify the FLiT object 𝜈 ′FLiT to be durably linearizable to 𝜈FLiT, the usual crash-less atomic

memory cell. This should be understood as stating that the FLiT operations are persistent in 𝜈 ′FLiT,

1
We take the convention that a primed specification is a concrete specification, and the un-primed an abstract specification
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meaning that a load after a crash does read the most recently written value, up to happens-before

reordering. FLiT’s implementation𝑀FLiT, which runs on top of a buffered memory cell object 𝜈 ′BCell
and of a volatile counter object 𝜈 ′Counter, does this by: (1) always flushing stores; (2) using the counter
to keep track of when flushes are necessary; (3) having loads only flush when the counter marks

that a flush is necessary. The counter specified by 𝜈 ′Counter is volatile in that it lives in volatile

memory, so after a crash, a new instance is created with the initial value of 0. The code𝑀FLiT for

our simplified formulation of FLiT is found below in Fig. 1.

Import B:BCell
Import C:Counter

load() store(v)

{ v ← B.load (); { C.inc ();

if(C.get() != 0) B.store(v);

{ B.flush (); } B.flush ();

return v; C.dec();

} return; }

Fig. 1. FLiT Memory Cell Implementation𝑀FLiT

For instance, a buffered memory cell allows for

the following trace:

𝛼0
𝛼0𝛼0:::store(1) · 𝛼1

𝛼1𝛼1:::load( ) · 𝛼1
𝛼1𝛼1:::1 ·    · 𝛼2

𝛼2𝛼2:::load( ) · 𝛼2
𝛼2𝛼2:::𝑣

where either 𝑣 = 0 (when the buffer containing 1

has not flushed before the crash) or 𝑣 = 1 (when

the buffer is flushed before the crash). If 𝑣 = 0,

the trace is not durably linearizable to the usual

memory cell specification because a 0 is read after

1 is read with no store(0) to justify it.

Meanwhile, when using FLiT, the call to

store(1) must execute at least up to the 𝐵.store(1) invocation (as load() manages to read 1). This

means that the call to store(1) will have executed 𝐶.inc(). Assuming it only executes up to re-

ceiving the response 𝐵.ok to its 𝐵.store(1) call (otherwise, it executes a flush). The 𝛼1𝛼1𝛼1:::load() call
will execute to completion, so it will call 𝐵.load() and receive 𝐵.1 as response. Then, it will read 1

from 𝐶.get(), and will execute 𝐵.flush() before returning 1. Hence, when the crash    happens, the

buffered memory cell has been flushed, guaranteeing that any load() calls after the crash will read

1. Therefore, calling the memory operations using FLiT guarantees that 𝑣 = 1.

The FLiT paper claims that: “Using the library’s default mode makes any linearizable data

structure durable [...]”, which they do not prove. In fact, it is challenging to state this theoremwithout

a compositional model of crash-aware computation, as it concerns discussing the composition

of arbitrary clients with FLiT. In addition, even if such a compositional model were available, it

must provide good support for durable linearizability and be closely connected with a concurrent

compositional model without crashes, also providing good support for usual linearizability [20]. The

reason for this is that this statement relates an implementation that assumes the usual concurrent

memory and implements a linearizable object, with an implementation that runs on top of the crash-

aware FLiT library and implements a durably linearizable object. No framework for verification of

concurrent systems with crashes allows for the correctness of FLiT to be stated in full formality,

much less for it to be proved and used to build provably correct durable components using a

crash-less component (i.e., one whose specification does not involve crashes) which has been

previously verified against a linearizability specification.

Using our compositional account of linearizability with crashes, we prove the following FLiT
correctness theorem (𝜈 ′Cell is any crash-less object Herlihy-Wing linearizable to 𝜈FLiT).

Proposition 1.1 (FLiT Correctness). For any object signature 𝐸, writing 𝜈 ′Mem := ⊗𝑖∈𝐼𝜈 ′Cell for
the horizontal composition of several memory cells, if 𝜈 ′Mem;𝑀 is an object linearizable to 𝜈𝐸 then,
writing 𝜈 ′BMem := ⊗𝑖∈𝐼𝜈 ′BCell, it follows that 𝜈

′
BMem;𝑀FLiT; vol(𝑀) is durably linearizable to 𝜈𝐸 .

The −⊗− operation stands for horizontal composition, which composes two objects into a single

object, allowing operations from both components to be issued by a client. Therefore, 𝜈 ′Mem defines

a memory array.𝑀 is code implementating a new object with signature 𝐸 using the memory array

𝜈 ′Mem. The −;− stands for vertical composition, so that 𝜈 ′Mem;𝑀 stands for the object obtained by

running the implementation𝑀 on top of the memory array. Similarly, 𝜈 ′BMem is a buffered memory
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array. vol(𝑀) adds crash semantics to𝑀 by running it in each epoch (the period in between crashes),

so that 𝜈 ′BMem;𝑀FLiT; vol(𝑀) is the object obtained by running𝑀 on top of the FLiT wrapper𝑀FLiT
around the buffered memory array.

(𝑏)

𝜈 ′Cell ; 𝜈FLiT ⊗ . . . ⊗ 𝜈 ′Cell ; 𝜈FLiT

𝑀Snapshot

𝜈 ′Snapshot ; 𝜈Snapshot

(𝑎)

𝜈 ′BCell ;
 𝜈BCell ⊗ 𝜈 ′Counter ;

 𝜈Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

𝜈 ′BCell ⊗ 𝜈 ′Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

⊗ . . . ⊗
𝜈 ′BCell ⊗ 𝜈 ′Counter

𝑀FLiT

𝜈 ′FLiT ;dur 𝜈FLiT

dur(𝑀Snapshot)

𝜈 ′Snapshot ;
dur 𝜈Snapshot

(𝑑)

(𝑐)
(𝑒)

Fig. 2. (a) Using our program logic for durable linearizability, we verify the FLiT implementation; (b) Using
the program logic for compositional linearizability we verify the crash-less snapshot object; (c) Using the FLiT
correctness theorem, we lift the crash-less snapshot object into durably linearizable snapshot object running
on top of a FLiT array; (d) Using vertical and horizontal composition, we obtain (e) a durably linearizable
snapshot object running on top of an array of buffered memory cells and volatile counters.

We prove this by developing a compositional theory of durable linearizability which supports

both locality and observational refinement (where we write 𝜈 ′ ;dur 𝜈 for “𝜈 ′ is durably linearizable

to 𝜈”), proving locality and observational refinement properties for durable linearizability, and then

introducing a program logic for verifying individual components to be durably linearizable. Using

our program logic, we show that (depicted diagrammatically in Fig. 2 (a)):

Proposition 1.2. (𝜈 ′Counter ⊗ 𝜈 ′BCell);𝑀FLiT is durably linearizable with respect to 𝜈FLiT.

(𝜈 ′Counter ⊗ 𝜈 ′BCell);𝑀FLiT is the object obtained by running the code in Fig. 1 on top of the volatile

counter 𝜈 ′Counter and the buffered memory cell 𝜈 ′BCell. By using an observational refinement property

for crash-aware linearizability, a novel linearizability criterion we introduce, we prove this using

instead the linearized specifications for the counter and the bufferedmemory cell, greatly simplifying

its proof by only considering atomic traces. By verifying that𝑀FLiT is durably linearizable, we can

use locality (Prop. 1.4) and observational refinement (Prop. 1.3) to prove FLiT’s correctness.

Proposition 1.3 (Observational Refinement). An object 𝜈 ′
𝐴
: 𝐴 is durably linearizable to 𝜈𝐴 if

and only if whenever an implementation𝑀 implements a concurrent object linearizable to 𝜈𝐵 using
𝜈𝐴, vol(𝑀) implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

Proposition 1.4 (Locality). For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵:

𝜈 ′
𝐴 ;dur 𝜈𝐴 and 𝜈 ′

𝐵 ;dur 𝜈𝐵 if and only if 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵
While the original paper on durable linearizability claims it satisfies locality, it does not do so

by formalizing horizontal composition. Meanwhile, our locality statement is directly formulated

within our compositional model of computation with crashes, which is defined independent of any

notion of linearizability. This makes our locality theorem much stronger as it interacts well with

refinement and vertical composition. Observational refinement, however, has never been shown for

any linearizability criteria with crashes. Our program logic is the first to verify any linearizability
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criteria with crashes. Moreover, as it is necessary to verify the FLiT library, our program logic can

reason about external linearization points and helpings [26], even across crashes.

We further showcase the benefits of compositionality and of the FLiT correctness theorem by

showing that we can lift a crash-less interval-sequential linearizable snapshot object [7] into a

durable one (Fig. 2 (b)). We do this by first verifying the write-snapshot implementation𝑀Snapshot
from Borowsky and Gafni [6] using the program logic of Oliveira Vale et al. [31, 32]. The imple-

mentation uses a (crash-less) memory cell object 𝜈 ′Cell (which is Herlihy-Wing linearizable to 𝜈FLiT)

to implement an object with interface Snapshot with a single operation write_snapshot:

Snapshot := {write_snapshot : Val→ P(Val)}

The operation write_snapshot writes the current value to the memory and returns a set of values

that have been written to the object before. The implementation𝑀Snapshot uses one memory cell

per agent 𝛼 ∈ 𝑆 in the snapshot system to implement the Snapshot object.
Using the soundness theorem for their program logic [31], we obtain a crash-less interval-

sequential linearizable object. Because we formally connect our model and durable linearizability

definition to their model, we can then use the FLiT correctness theorem to obtain that the write-

snapshot object is interval-sequential durably linearizable in the model with crashes. Note that

this also showcases that our linearizability criteria and program logic are all generalized to handle

interval-sequential objects. We display this setup in Fig. 2 (e).

While durable linearizability is a good criterion for specifying persistent objects, it is inept

at expressing objects with less persistent behaviors, such as volatile objects, buffered objects,

or objects with hybrid crash behaviors (e.g., horizontal compositions of objects with different

persistency guarantees). Therefore, we use the methodology of compositional linearizability [31] to

derive the inherent notion of linearizability to our compositional model, which we call crash-aware
linearizability. We show that this criterion, though simple, is novel to our work and satisfies locality

and observational refinement. Then, we show that durable linearizability and strict linearizability

factor through crash-aware linearizability as different ways to translate crash-aware linearizable

objects to the crash-less model from compositional linearizability. We showcase that crash-aware

linearizability is a robust verification criterion by verifying a fragment of a transactional file system

interface featuring recovery and objects with many different persistency guarantees.

Summary of Main Contributions.

• A compositional model of concurrent computation with crashes directly connected to the model

of crash-less computation used in the compositional linearizability paper [31].

• A novel linearizability criterion, which we call crash-aware linearizability, is apt for specifying

objects with a variety of crash behaviors.

• Compositional formulations of strict and durable linearizability, in particular, generalizing them

away from atomic specifications.

• Proofs of locality, formulated for the first time in a compositional style, for crash-aware, strict,

and durable linearizability.

• The first proofs of observational refinement properties for any linearizability criterion with

crashes, which we show for crash-aware, strict, and durable linearizability.

• Two variations of a program logic for showing linearizability of crash-aware components: one

for crash-aware linearizability and the other for durable linearizability. This makes for the first

program logic that can prove linearizability specifications for components with crashes.

• A proof of correctness for FLiT and a proof that the snapshot object of Borowsky and Gafni

[6] is interval-sequential linearizable, yielding a verified durable interval-sequential snapshot

object using the FLiT correctness theorem.
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• A proof of correctness, against crash-aware linearizability, of a simplified file API, involving

objects with a variety of crash-behaviors and a few layers to exemplify compositionality under

heterogenous crash-behaviors.

We present a reduced treatment of our results, which emphasizes the main points and omits all

proofs. A full account of our results may be found in our extensive TR [33].

2 Three Linearizability Criteria under Crashes
We start the technical core of our paper by defining and contrasting three different linearizability

criteria under crashes: crash-aware linearizability, strict linearizability and durable linearizability.
We assume a crash model with full-system crashes, that is, a crash event crashes all agents in the

system. This is appropriate for, for example, a multicore machine but not for a distributed system,

which requires individual crashes for each node. It serves, however, as a crucial stepping stone

toward a realistic compositional modeling of distributed systems with crashes, as each node is

often a multi-threaded system over a multicore machine. We define the criteria formally but omit

many technical details of the compositional model, which we explain later in §3.

2.1 Preliminaries
Our model is parametrized by a set Υ of agent names 𝛼 ∈ Υ. Events look like 𝛼𝛼𝛼:::𝑚 denoting that

agent 𝛼 performs an invocation or response𝑚. If𝑀 denotes the given set of events then 𝑠 ∈ 𝑀∗
is said to be a crash-less well-formed trace if its projection 𝜋𝛼 (𝑠) to only events performed by 𝛼

alternates between invocations and responses, and denote the set of all such traces by Pconc
𝑀

.

We denote a crash event by    . We say a trace 𝑠 ∈ (𝑀 +   )∗ is a well-formed crash-aware trace if
it is of the form 𝑠1 ·   · 𝑠2 ·   · . . . ·   · 𝑠𝑛 where each 𝑠𝑖 ∈ Pconc𝑀

. Given this decomposition, we define

the number of epochs ∥𝑠 ∥ of 𝑠 to be ∥𝑠 ∥ := 𝑛. The trace 𝑠𝑖 is called the 𝑖-th epoch of 𝑠 and denoted

by epo𝑖 (𝑠) := 𝑠𝑖 . We denote the set of all well-formed crash-aware traces over𝑀 by P 
𝑀
.

As usual with linearizability, a specification is a non-empty, prefix-closed set of well-formed traces.

If the specification 𝜈 only has crash-less traces, i.e. 𝜈 ⊆ Pconc
𝑀

, we call it a crash-less specification,
and if it has crash-aware traces, i.e. 𝜈 ⊆ P 

𝑀
, we call it a crash-aware specification.

Toward defining our linearizability criteria, we start by defining a rewrite system that models the

preservation of happens-before ordering from the usual linearizability definition in a more localized

way. This formulation has been used in many developments on linearizability [2, 14, 18, 31].

Definition 2.1. We define a string rewrite system⇝ with local rewrite rule:

𝑠 · 𝛼𝛼𝛼:::𝑚 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝑡 ⇝ 𝑠 · 𝛼 ′𝛼 ′𝛼 ′:::𝑚′ · 𝛼𝛼𝛼:::𝑚 · 𝑡
whenever 𝛼 ≠ 𝛼 ′ and one of the following two conditions hold:

• 𝑚 and𝑚′ are both invocations or both responses, or

• 𝑚 is an invocation and𝑚′ is a response.

The definition of linearizability from the compositional linearizability paper is then given by:

Definition 2.2. A crash-less trace 𝑠 ∈ Pconc
𝑀

is linearizable to a crash-less trace 𝑡 ∈ Pconc
𝑀

when

there exists a sequence of responses 𝑠𝑃 ∈ 𝑀∗ and a sequence of invocations 𝑠𝑂 ∈ 𝑀∗ such that

𝑠 · 𝑠𝑃 ⇝ 𝑡 · 𝑠𝑂 . We write 𝑠 ; 𝑡 when 𝑠 is linearizable to 𝑡 . We say a crash-less specification 𝜈 ′

linearizes to another one 𝜈 , written 𝜈 ′ ; 𝜈 , when every trace 𝑠 ∈ 𝜈 ′ linearizes to some trace 𝑡 ∈ 𝜈 .

Note that 𝑡 is not required to be atomic, as in Herlihy-Wing linearizability, and that 𝑠𝑂 is not

required to contain every pending invocation of 𝑠 · 𝑠𝑃 , unlike most definitions of linearizability. If 𝑡

is an atomic trace, then this definition is equivalent to the original Herlihy-Wing definition [18, 31].
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2.2 Linearizability Under Full-System Crashes
We now define crash-aware linearizability, the criterion we propose in this paper. It requires that

each epoch of a trace 𝑠 linearizes, in the crash-less sense, to the corresponding epoch of 𝑡 .

Definition 2.3. A crash-aware trace 𝑠 ∈ P 
𝑀
is crash-aware linearizable to a trace 𝑡 ∈ P 

𝑀
when

∥𝑠 ∥ = ∥𝑡 ∥ and ∀𝑖 ≤ ∥𝑠 ∥ .epo𝑖 (𝑠) ; epo𝑖 (𝑡)

We denote this as 𝑠 ; 𝑡 , extending the notation to specifications as with linearizability (Def. 2.2).

Observe that crash-aware linearizability relates crash-aware specifications to crash-aware spec-

ifications. This is unusual in the literature on linearizability under crashes, as the other criteria

relate a crash-aware specification to a crash-less specification. We discuss the reasons for this later

when we have defined two other linearizability criteria and can better compare them.

We now define strict linearizability [2]. Our definition differs from the original one in that it

specializes it to full-system crashes (instead of allowing for each agent to crash independently),

removes the notion of aborted executions, and generalizes away from atomicity to allow for non-

atomic linearized specifications. The first two changes were already considered in Ben-David et al.

[3] and make the criterion appropriate for the settings we are interested in, such as NVM and file

systems. The later change goes along the lines of the way that Castañeda et al. [7] and Oliveira Vale

et al. [31] generalize Herlihy-Wing linearizability [20]. If we restrict our definition so that the

linearized trace must be atomic, we obtain the same criterion considered by Ben-David et al. [3].

Definition 2.4. For a crash-aware trace 𝑠 , we define, whenever well-formed, the crash-less trace

ops(𝑠) := epo
1
(𝑠) · epo

2
(𝑠) · . . . · epo∥𝑠 ∥ (𝑠)

We say a crash-aware trace 𝑠 ∈ P 
𝑀
is strictly linearizable to a crash-less trace 𝑡 , written 𝑠 ;str 𝑡 ,

when there exists a crash-aware trace 𝑡 ′ such that 𝑠 ; 𝑡 ′ and ops(𝑡 ′) = 𝑡 .

Note that our definition of strict linearizability shows a clear factoring of strict linearizability as

crash-aware linearizability followed by crash-removal.

The third and final linearizability criterion we consider here is durable linearizability [22]. Durable
linearizability is more expressive than strict linearizability [3, 19] in that it considers more objects

to be linearizable. This comes at the cost of the extra assumption on the model that new agent

names are used in each epoch, which we call the durability assumption.

Definition 2.5. We say a crash-aware trace 𝑠 ∈ P 
𝑀
is durable when:

∀𝑖, 𝑗 ≤ ∥𝑠 ∥.𝑖 ≠ 𝑗 =⇒ Υ(epo𝑖 (𝑠)) ∩ Υ(epo𝑗 (𝑠)) = ∅

where Υ(𝑡) is the set of agents appearing in a trace 𝑡 . We denote by Pdur
𝑀
⊆ P 

𝑀
the subset of

well-formed crash-aware traces that are durable.

When a trace 𝑠 is durable, ops(𝑠) is always a well-formed crash-less trace. Durable linearizability

is then defined in terms of usual crash-less linearizability. Our definition, similarly to our definitions

of the other linearizability criteria we consider, generalizes away from atomicity by allowing

linearized traces to be non-atomic and allows for the specification of blocking objects, as it does

not require all uncompleted pending invocations to be removed. It is, however, fully equivalent to

the original definition of durable linearizability if we require that the linearized trace be atomic.

Definition 2.6. We say a durable trace 𝑠 ∈ Pdur
𝑀

is durably linearizable, written 𝑠 ;dur 𝑡 , to a

crash-less trace 𝑡 when ops(𝑠) ; 𝑡 .
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Note that durable linearizability corresponds to the inverse factoring to strict linearizability,

one first removes crashes and then uses crash-less linearizability. These two factorings play an

important technical role in our proofs. Moreover, it is possible to show that both criteria factor (in

a different sense) through crash-aware linearizability.

Proposition 2.7.

•If 𝑠′ ; 𝑠 and 𝑠 ;str 𝑡 then 𝑠
′
;str 𝑡 • If 𝑠′ ; 𝑠 and 𝑠 ;dur 𝑡 then 𝑠

′
;dur 𝑡

Because of this fact, in practice, when verifying durably linearizable objects, we find it useful to

use a crash-aware specification 𝜈mid
satisfying: 𝜈 ′ ; 𝜈mid

and 𝜈mid ;dur 𝜈 . This allows us to consider

less concurrent traces within the linearized specification for 𝜈 ′ by linearizing as much as possible

within each epoch of 𝜈mid
first. This allows us to obtain the benefits of both crash-aware and

durable linearizability simultaneously: by maintaining both 𝜈mid
and 𝜈 we can still express durably

linearizable specifications, but by manipulating 𝜈mid
we achieve the same level of compositionality

as crash-aware linearizability. This technique is not necessary for strict linearizability because we

can just use crash-aware linearizability directly by always picking 𝜈mid
so that ops(𝜈mid) = 𝜈 .

2.3 Specifying a Buffered Memory Cell
In §1 we mentioned that we use crash-aware linearizability to specify a buffered memory cell with

signature BCell. As an example, we define here what the linearized specification for a buffered

memory cell implementation would be under crash-aware linearizability.

An example of a trace of a concrete buffered memory cell 𝜈 ′BCell is:

𝛼1
𝛼1𝛼1:::store(1) · 𝛼2

𝛼2𝛼2:::load( ) · 𝛼1
𝛼1𝛼1:::ok · 𝛼2

𝛼2𝛼2:::0 · 𝛼2
𝛼2𝛼2:::flush( ) · 𝛼1

𝛼1𝛼1:::store(2) · 𝛼1
𝛼1𝛼1:::ok ·    · 𝛼3

𝛼3𝛼3:::load( ) · 𝛼3
𝛼3𝛼3:::1

The trace above is crash-aware linearizable to the following trace, among others:

𝛼2
𝛼2𝛼2:::load( ) · 𝛼2

𝛼2𝛼2:::0 · 𝛼1
𝛼1𝛼1:::store(1) · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::flush( ) · 𝛼2

𝛼2𝛼2:::ok · 𝛼1
𝛼1𝛼1:::store(2) · 𝛼1

𝛼1𝛼1:::ok ·    · 𝛼3
𝛼3𝛼3:::load( ) · 𝛼3

𝛼3𝛼3:::1

We specify the semantics of the buffered memory cell by a set of traces 𝜈 ′BCell with only events that

are allowed by the signature BCell. Crashes can happen at any point. To specify the correctness

of 𝜈 ′BCell we require it to be crash-aware linearizable to the atomic linearized specification 𝜈BCell.

Because we show observational refinement, we are able to leave 𝜈 ′BCell unspecified for the sake

of verifying the FLiT implementation, as only the linearized specification will be necessary. The

linearized specification 𝜈BCell is then defined by:

𝑠 ∈ 𝜈BCell ⇐⇒ 𝑠 is atomic ∧ (∀𝑠1, 𝑠2.∀𝑣 .𝑠 = 𝑠1 · 𝛼𝛼𝛼:::load() · 𝛼𝛼𝛼:::𝑣 · 𝑠2 =⇒ 𝑣 ∈ snd(mstate(𝑠1)))
where mstate(𝑠) assigns to an atomic complete trace 𝑠 a set of pairs mstate(𝑠) ⊆ Val × Val. A
pair (𝑣𝑝 , 𝑣𝑏) ∈ mstate(𝑠) consists of a possibility for a value 𝑣𝑝 that has persisted and a value 𝑣𝑏
currently in the buffer. mstate(𝑠) is then the function inductively defined below (𝑣0 ∈ Val is an
identified initial value for the memory cell):

mstate(𝜖) := {(𝑣0, 𝑣0)} mstate(𝑠 ·   ) := {(𝑣, 𝑣) | ∃𝑣 ′ .(𝑣, 𝑣 ′) ∈ mstate(𝑠)}

mstate(𝑠 · 𝛼𝛼𝛼:::store(𝑣) · 𝛼𝛼𝛼:::ok) := {(𝑣 ′, 𝑣) | ∃𝑣 ′′ .(𝑣 ′, 𝑣 ′′) ∈ mstate(𝑠)} ∪ {(𝑣, 𝑣)}

mstate(𝑠 · 𝛼𝛼𝛼:::load() · 𝛼𝛼𝛼:::𝑣) := {(𝑣 ′, 𝑣) | (𝑣 ′, 𝑣) ∈ mstate(𝑠)}

mstate(𝑠 · 𝛼𝛼𝛼:::flush() · 𝛼𝛼𝛼:::ok) := {(𝑣, 𝑣) | (𝑣 ′, 𝑣) ∈ mstate(𝑠)}

The function snd(𝑝) projects into the second component 𝑣𝑏 of the pair 𝑝 = (𝑣𝑝 , 𝑣𝑏), so that

snd(mstate(𝑠)) = {𝑣𝑏 | ∃𝑣𝑝 .(𝑣𝑝 , 𝑣𝑏) ∈ mstate(𝑠)}.
Note that we could have specified it instead using a labeled state transition system (LTS), in

which case 𝜈BCell is the set of traces that start from the initial state of the LTS. Either way of defining

𝜈BCell defines the same set of traces.
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2.4 Contrasting Crash-Aware Linearizability
We now compare crash-aware linearizability against strict and durable linearizability. We will not

compare strict and durable linearizability against each other since they are not new to our work,

and refer the interested reader to the following references [3, 19, 22]. We do briefly mention a key

difference that applies to crash-aware linearizability as well. In strict and crash-aware linearizability,

a pending invocation must be linearized within the epoch it was issued. Durable linearizability,

however, allows for a pending invocation to be linearized in (essentially) a later epoch by allowing

those pending invocations to be reordered after events from later epochs. This is what makes it

more expressive than strict linearizability, allowing for more complex crash behaviors, such as

recovering parts of a data structure only when they are demanded by a client, which could happen

several epochs later. As explained in the remark at the end of §2.2 crash-aware linearizability

interacts well with durable linearizability. This will be discussed further in §5.3.

As we saw, both durable and strict linearizability factor through crash-aware linearizability. The

key difference between the two former criteria and the latter is that the former use crash-less

linearized specifications, while the latter uses crash-aware linearized specifications. So let’s refer to

the former as crash-unaware criteria.
Crash-unaware criteria reduce the correctness of an object with crashes to that of an object with-

out crashes. This makes them great at specifying objects with very strong persistency guarantees,

that is, objects whose whole state (or almost) persists after a crash. But it makes them quite deficient

at specifying objects with weaker persistency guarantees such as volatile objects (all of the state is

lost on a crash), objects with hybrid persistency (part of the state is volatile and part of the state

is persistent), or objects whose persistency features some degree of non-determinism (such as in

buffered memory). Some of these issues were already known. For instance, in the original durable

linearizability paper [22], it is noted that the criteria do not behave well when used to specify a

buffered object, requiring them to define an ad-hoc notion of buffered durable linearizability which

does not satisfy locality, making it not compositional.

Consider the simple problem of specifying the correctness of a volatile object. Given a crash-less

specification 𝜈 , we can construct a crash-aware specification vol(𝜈) of a volatile version of that

object by the Kleene algebra formula vol(𝜈) := (𝜈 ·    )∗ · 𝜈 .
For example, given the usual atomic counter specification 𝜈Counter, the following trace is allowed

by vol(𝜈Counter) (the subscript 1 under the Counter operations will be useful later):
𝑠1 = 𝛼1

𝛼1𝛼1:::inc1 · 𝛼1
𝛼1𝛼1:::ok · 𝛼2

𝛼2𝛼2:::get1 · 𝛼2
𝛼2𝛼2:::1 ·    · 𝛼3

𝛼3𝛼3:::get1 · 𝛼3
𝛼3𝛼3:::0

Note that the crash move   plays a crucial role in the specification, as the counter only resets to 0

after a crash event (such as the last get event in 𝑠1), making the linearized specification deterministic.

Under crash-aware linearizability, a concurrent object 𝜈 ′ correctly implements a volatile version

of a crash-less object 𝜈 when 𝜈 ′ ; vol(𝜈). With our methods, it is easy to show that

Proposition 2.8. If 𝜈 ′ ; 𝜈 then vol(𝜈 ′) ; vol(𝜈).
A consequence of this is that if we have an implementation 𝑀 that implements a crash-less

object linearizable to 𝜈𝐵 on top of a crash-less object 𝜈𝐴, then if we run𝑀 on each epoch on top of

vol(𝜈𝐴) then𝑀 implements an object crash-aware linearizable to vol(𝜈𝐵). Formally,

𝜈𝐴;𝑀 ; 𝜈𝐵 =⇒ vol(𝜈𝐴); vol(𝑀) ; vol(𝜈𝐵)
In other words, crash-aware linearizability is able to appropriately specify and characterize the

correctness of volatile objects in a way that is useful to a client.

Now, consider what happens if we try to specify a volatile object using a crash-unaware criterion.

A crash-unaware linearized specification will need to include both of the following traces:

ops(𝑠1 ) = 𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 and 𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::1
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so that the linearized specification under crash-unaware criteria must admit non-deterministically

resetting the counter at any point. This can happen at any point, but the point at which it happens

is not detectable in the linearized specification, which makes the specification quite weak. This

means that even if some observational refinement theorem (à la Filipovic et al. [14]) holds for

the crash-unaware criterion, the client to the linearized specification will need to contend with

non-determinism, making the contextual refinement, and hence vertical composition, weaker.

This issue is compounded when considering horizontal composition. Both durable and strict

linearizability are known to satisfy locality. However, those locality theorems introduce even more

non-determinism into the resulting linearized specifications. Consider now a second trace 𝑠2 for a

second counter independent of the counter in play 𝑠1

𝑠2 = 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 ·    · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

Any trace in their parallel composition 𝑠1 ⊗ 𝑠2 (the set of well-formed crash-aware interleavings

of 𝑠1 and 𝑠2, defined in §3) synchronizes on the crash, so both counters reset their state at the same

time. For example, the following crash-aware trace belongs to 𝑠1 ⊗ 𝑠2:
𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 ·    · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0

Meanwhile, the corresponding linearized specifications under durable or strict linearizability

include these traces without the crash event, i.e., ops(𝑠1) and ops(𝑠2). Hence, the following trace is

in their parallel composition ops(𝑠1) ⊗ops(𝑠2) (the set of their well-formed crash-less interleavings):

𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

There is no trace of the concrete horizontally composed volatile counters that is linearizable to

the trace above, as we must at least introduce a crash right before 𝛼3𝛼3𝛼3:::get1 to justify its return 𝛼3𝛼3𝛼3:::0:

𝛼1
𝛼1𝛼1:::inc1 · 𝛼1

𝛼1𝛼1:::ok · 𝛼1
𝛼1𝛼1:::inc2 · 𝛼1

𝛼1𝛼1:::ok · 𝛼2
𝛼2𝛼2:::get1 · 𝛼2

𝛼2𝛼2:::1 ·    · 𝛼3
𝛼3𝛼3:::get1 · 𝛼3

𝛼3𝛼3:::0 · 𝛼2
𝛼2𝛼2:::get2 · 𝛼2

𝛼2𝛼2:::1 · 𝛼3
𝛼3𝛼3:::get2 · 𝛼3

𝛼3𝛼3:::0

This makes the trace inconsistent with the semantics of the second counter, as the crash should

also have reset it, so that 𝛼2𝛼2𝛼2:::get2 should not return 𝛼2𝛼2𝛼2:::1. The same kind of argument shows how

crash-unaware criteria fail to accurately handle hybrid and buffered objects (all the traces above

are valid for a buffered counter, for example).

3 A Concurrent Game Semantics with Crashes
So far, in §2 we focused on three linearizability criteria in a unstructured setup. For instance,

we did not enforce typing on specifications. This will not be enough to achieve the degree of

compositionality we seek, especially as we treat objects as open components.

In this section, we discuss our compositional model with crashes in detail. The model is defined

using a simple game semantics. The reader not familiar with game semantics jargon will find the

following approximation useful. A game 𝐴, 𝐵 roughly corresponds to a type; a move of the game 𝐴

corresponds to an event of type 𝐴 which also has a polarity, i.e. its metadata (such as the name of

the agent who issued it, and whether it is a move by the environment or by the system); a play
over a game 𝐴 is a trace of that type. Crucially, plays can have higher-order types (unlike in most

trace semantics); in particular, we may form the affine implication game 𝐴 ⊸ 𝐵 (the type of code

using an object of type𝐴 to implement one of type 𝐵) whose plays are well-formed traces involving

moves from both 𝐴 and 𝐵; a strategy 𝜎 of type 𝐴 is the denotation of some computation, be it a

state transition system, or the semantics of some code. It is represented as some prefix-closed set

of plays
2
of its type 𝐴. Readers looking for comprehensive introductions to game semantics may

2
It is folklore that prefix-closed sets of traces are in one-to-one correspondence with equivalence classes of transition

systems under forward-backward simulation [27]. Therefore, all of our results translate to equivalent statements that hold

up to forward-backward simulation. We use a presentation based on prefix-closed sets of traces as it aligns well with the

typical treatment of linearizability, while simplifying many aspects of the presentation and of the compositional structure.
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benefit from Abramsky and McCusker [1], Ghica [15], Hyland [21] though we warn that our model

simplifies several aspects of these game semantics, which are not necessary for our purposes.

3.1 Games with Full-System Crashes
Definition 3.1 (Polarities and Moves). A move set consists of a set of moves 𝑀 together with an

assignment 𝜆 : 𝑀 → ∑
𝛼∈Υ{𝑂, 𝑃}, that is, every move is labeled with the agent who plays it and

whether or not it is an environment (𝑂) or a system (𝑃 ) move. The elements of

∑
𝛼∈Υ{𝑂, 𝑃} are

called polarities and are denoted by 𝛼𝛼𝛼:::𝑂 or 𝛼𝛼𝛼:::𝑃 .

Most of the games we use in practice will be defined by first providing an effect signature. An

effect signature is a collection of operations, or effects, 𝐸 = (𝑒𝑖 )𝑖∈𝐼 together with assignments

par(−), ar(−) : 𝐸 → Set of a set of parameters par(𝑒) and a set of return values ar(𝑒) for each
operation 𝑒 ∈ 𝐸. This is conveniently described by the following notation.

𝐸 = {𝑒𝑖 : par(𝑒𝑖 ) → ar(𝑒𝑖 ) | 𝑖 ∈ 𝐼 }
All the signatures defined in §1 are effect signatures. We call an Υ-indexed collection of effect

signatures 𝐸 = (𝐸 [𝛼])𝛼∈Υ a concurrent effect signature. Given a concurrent effect signature 𝐸 we

define a corresponding move set as follows:

𝑀†𝐸 :=
∑

𝛼∈Υ (
∑

𝑒∈𝐸 [𝛼 ]par(𝑒) +
∑

𝑒∈𝐸 [𝛼 ]ar(𝑒))

𝜆†𝐸 (𝛼𝛼𝛼:::𝑒 (𝑎)) := 𝛼𝛼𝛼:::𝑂, 𝑒 ∈ 𝐸 [𝛼] ∧ 𝑎 ∈ par(𝑒) 𝜆†𝐸 (𝛼𝛼𝛼:::𝑣) := 𝛼𝛼𝛼:::𝑃, 𝑣 ∈ ar(𝑒) for some 𝑒 ∈ 𝐸 [𝛼]
in other words, moves in 𝑀†𝐸 are either 𝛼𝛼𝛼:::𝑒 (𝑎) for 𝑒 ∈ 𝐸 [𝛼] and 𝑎 ∈ par(𝑒), in which case

𝜆†𝐸 (𝛼𝛼𝛼:::𝑒 (𝑎)) = 𝛼𝛼𝛼:::𝑂 , or 𝛼𝛼𝛼:::𝑣 with 𝑣 ∈ ar(𝑒), in which case 𝜆†𝐸 (𝛼𝛼𝛼:::𝑣) = 𝛼𝛼𝛼:::𝑃 .

Definition 3.2. We denote a crash by   . Given a move set𝑀 we write𝑀 
for its extension𝑀 +{   }

with a crash move. We also extend its polarity function 𝜆 into 𝜆 with the assignment 𝜆 (   ) =  .

Recall that given a sequence 𝑠 ∈ 𝑀∗, we write 𝜋𝛼 (𝑠) for the projection of 𝑠 to its largest

subsequence involving only events by 𝛼 ∈ Υ.

Definition 3.3. A game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) consists of a move set (𝑀𝐴, 𝜆𝐴) and a non-empty,

prefix-closed set of well-formed crash-less plays 𝑃𝐴 ⊆ Pconc
𝑀𝐴

satisfying 𝑃𝐴 = ∥𝛼∈Υ 𝜋𝛼 (𝑃𝐴). We write

𝑃
 
𝐴
⊆ P 

𝑀𝐴
for the set 𝑃

 
𝐴
:= (𝑃𝐴 ·    )∗ · 𝑃𝐴.

The set of plays 𝑃𝐴 of a game𝐴 defines which plays are valid plays within an epoch. It is required

to be an arbitrary parallel compositions of the sequential plays that each agent can perform.

Meanwhile, 𝑃
 
𝐴
, the corresponding set of crash-aware plays, is defined by simply allowing crashes

to happen at any point in an epoch.

Some examples of crash-aware games are now due. The simplest game is the game 1 := (∅,∅, {𝜖}).
The game 1 has no non-crash moves, and its only crash-aware plays are the empty sequence 𝜖 and

sequences of crashes    ·    · . . . ·    .
Another game is the game Σ = ((∑𝛼∈Υ 𝑞 + 𝑎), (

∑
𝛼∈Υ 𝛼𝛼𝛼:::𝑂 +𝛼𝛼𝛼:::𝑃), ∥𝛼∈Υ ↓{𝑞 · 𝑎}) where ↓ − stands

for prefix-closure. Unrolling this definition, every agent has two moves: an 𝑂-move 𝑞 (question)

and a 𝑃-move 𝑎 (answer). The only valid sequential plays are 𝑞 · 𝑎 and its prefixes, and the valid

plays for the game are interleavings of these sequential plays at each epoch, such as:

𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼𝛼𝛼:::𝑎 ·    · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 · 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 ·    · 𝛼 ′𝛼 ′𝛼 ′:::𝑞

The most important kind of game for our examples are games †𝐸 generated by effect signatures

𝐸. We can extend the move set (𝑀†𝐸, 𝜆†𝐸) into a game with set of valid plays 𝑃†𝐸 defined by:

𝑃†𝐸 :=∥𝛼∈Υ ↓(∪𝑒∈𝐸 [𝛼 ] ∪𝑎∈par(𝑒 ) ∪𝑣∈ar(𝑒 )𝛼𝛼𝛼:::𝑒 (𝑎) · 𝛼𝛼𝛼:::𝑣)∗
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That is to say, locally, each agent 𝛼 ∈ Υ is allowed to alternate between making a call to an effect

𝑒 (𝑎) in 𝐸 [𝛼] or providing a response to the previously issued effect. For instance, recall that we

defined, in §1, a signature BCell encoding the operations available to a buffered memory cell. This

defines a concurrent effect signature BCell[𝛼] = BCell. The corresponding set of valid crash-aware

plays 𝑃
 
†BCell includes all traces seen in §2.3.

3.2 Combining Games
We now define a few combinators on games. We start by defining a dualizing operation on move

sets, which swaps the role of environment and system.

Definition 3.4 (Dual Move Set). Given a move set (𝑀, 𝜆) we define the moveset (𝑀⊥, 𝜆⊥) by
𝑀⊥ := 𝑀 and 𝜆⊥ (𝑚) := 𝜆(𝑚)⊥, where (𝛼𝛼𝛼:::𝑂)⊥ := 𝛼𝛼𝛼:::𝑃 and (𝛼𝛼𝛼:::𝑃)⊥ := 𝛼𝛼𝛼:::𝑂 .

In the context of games 𝐴, 𝐵, 𝐶 , given 𝑠 ∈ P 
𝑀𝐴+𝑀𝐵

we define 𝑠↾𝐴,− ∈ P 𝑀𝐴
and 𝑠↾−,𝐵 ∈ P 𝑀𝐵

to

be the projections to the corresponding components of𝑀𝐴 +𝑀𝐵 , but keeping the crash moves in

the projections too. Similarly, given 𝑠 ∈ P 
𝑀𝐴+𝑀𝐵+𝑀𝐶

, we write 𝑠↾𝐴,𝐵,− , for the projection of 𝑠 to its

largest subsequence with only moves in 𝐴, 𝐵 and crashes; we similarly define 𝑠↾𝐴,−,𝐶 and 𝑠↾−,𝐵,𝐶 .
We now define horizontal composition of games, and the affine arrow.

Definition 3.5. Fix games 𝐴 and 𝐵. We define the games 𝐴 ⊗ 𝐵 and 𝐴 ⊸ 𝐵 by the following data

𝑀𝐴⊗𝐵 := 𝑀𝐴 +𝑀𝐵 𝜆𝐴⊗𝐵 := 𝜆𝐴 + 𝜆𝐵 𝑃𝐴⊗𝐵 := {𝑠 ∈ P𝑀𝐴+𝑀𝐵
| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

𝑀𝐴⊸𝐵 := 𝑀⊥𝐴 +𝑀𝐵 𝜆𝐴⊸𝐵 := 𝜆⊥𝐴 + 𝜆𝐵 𝑃𝐴⊸𝐵 := {𝑠 ∈ P𝑀⊥
𝐴
+𝑀𝐵
| 𝑠↾𝐴,− ∈ 𝑃𝐴 ∧ 𝑠↾−,𝐵 ∈ 𝑃𝐵}

It is implicit in this definition that by composing in parallel the two crash-aware plays, the

resulting set of traces synchronizes the crash events, merging them into a single crash event and

then producing any (locally sequential) parallel composition of the subtraces appearing in each

epoch. Consider, for instance, the two plays below on the left, each of type Σ:

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎    𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎    𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎    𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎    𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎
      ⊗ ⊗ ⊗=⇒⊗

The resulting set of traces synchronizes the crashes, as depicted on the right. For example, the

following is a valid trace in their horizontal composition:

𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎    𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑎    𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑎· · · · · · · · · · · · ·

Similarly, consider the following play 𝑠 of Σ ⊸ Σ (on the left):

Σ 𝛼𝛼𝛼:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞 𝛼 ′𝛼 ′𝛼 ′:::𝑞

Σ 𝛼𝛼𝛼:::𝑞 𝛼𝛼𝛼:::𝑎 𝛼 ′𝛼 ′𝛼 ′:::𝑞

⊸    

𝑠↾−,Σ = 𝛼𝛼𝛼:::𝑞 · 𝛼 ′𝛼 ′𝛼 ′:::𝑞 ·    · 𝛼 ′𝛼 ′𝛼 ′:::𝑞

𝑠↾Σ,− = 𝛼𝛼𝛼:::𝑞 · 𝛼𝛼𝛼:::𝑎 ·    · 𝛼 ′𝛼 ′𝛼 ′:::𝑞
or, depicted sequentially: 𝛼𝛼𝛼:::𝑞 ·𝛼𝛼𝛼:::𝑞 ·𝛼 ′𝛼 ′𝛼 ′:::𝑞 ·𝛼𝛼𝛼:::𝑎 ·   ·𝛼 ′𝛼 ′𝛼 ′:::𝑞 ·𝛼 ′𝛼 ′𝛼 ′:::𝑞. Note that the crash signal synchronizes

across the source and target components of the play. This models that the crashes are synchronous
across components (they happen in all components at once) and that they are instantaneous (it
takes negligible time for the crash to propagate to components). On the right, above, we see the

projections of 𝑠 to the source and target components. Importantly, the crash event is retained in

both projections, so it effectively belongs to both components.

3.3 Crash-Aware Strategies
We now define strategies, which are the denotations of both object specifications and code.
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Definition 3.6 (Crash-Aware Strategy). A crash-aware strategy 𝜎 : 𝐴 over a game𝐴 is a non-empty,

prefix-closed, subset 𝜎 ⊆ 𝑃 
𝐴
, which is moreover  -receptive in that

∀𝑠 ∈ 𝜎.𝑠 ·    ∈ 𝑃 
𝐴

=⇒ 𝑠 ·    ∈ 𝜎

 -receptivity models the usual assumption that crashes may non-deterministically happen at

any point in an execution. It plays a crucial role in proving the locality property.

We specify the semantics of objects using strategies. For example, in §2.3 we specified the

linearized buffered memory cell by a strategy 𝜈BCell : †BCell. The denotations of implementations,

such as 𝑀FLiT : †BCell ⊗ †Counter ⊸ †FLiT or 𝑀Snapshot : †Mem ⊸ †Snapshot mentioned in §1

are examples of strategies with the affine arrow type. Strategies of type 𝐴 ⊸ 𝐵 can be vertically

composed, which amounts to the usual motto of “interaction + hiding”.

Definition 3.7. Given strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐵 ⊸ 𝐶 we define their vertical composition

𝜎 ;𝜏 : 𝐴 ⊸ 𝐶 by: 𝜎 ;𝜏 := {𝑠↾𝐴,−,𝐶 ∈ P 𝐴⊸𝐶
| ∃𝑠 ∈ ((𝑀𝐴 +𝑀𝐵 +𝑀𝐶 ) )∗.𝑠↾𝐴,𝐵,− ∈ 𝜎 ∧ 𝑠↾−,𝐵,𝐶 ∈ 𝜏}

Proposition 3.8. Composition of crash-aware strategies is well-defined and associative.

For the reader with familiarity with category theory, we can package all the information above:

Definition 3.9. We denote by Crash the semicategory of crash-aware games, with crash-aware

strategies 𝜎 : 𝐴 ⊸ 𝐵 as morphisms between games 𝐴 and 𝐵, and composition given by −;−.

Import F

f(a) {

r <- F.f(a);

ret r

}

. . .

Import F

f(a) {

r <- F.f(a);

ret r

}

...
...

Fig. 3. Code corresponding to the copycat strategy
crashcopy†𝐹⊸†𝐹 : †𝐹 ⊸ †𝐹

Unfortunately, and this is a common phe-

nomenon in concurrency models, Crash does

not assemble into a category, as the vertical

composition operation −;− does not have a

neutral element. That is, to say, there is no

choice of strategies id𝐴 : 𝐴 ⊸ 𝐴 for which

id𝐴;𝜎 ; id𝐵 = 𝜎 for every 𝜎 : 𝐴 ⊸ 𝐵. This issue

is explained extensively in Oliveira Vale et al.

[31] in the context of concurrent games.

We follow the approach from compositional

linearizability, and start by noting that there

are obvious candidates crashcopy𝐴 : 𝐴 ⊸ 𝐴 for the neutral elements, which are called the copycat

strategies and formalize the code seen in Fig. 3. The copycat strategy is idempotent, in that for

all games 𝐴, crashcopy𝐴; crashcopy𝐴 = crashcopy𝐴. This essentially means that the crashcopy𝐴
at least behaves like a neutral element for itself. In fact, they behave like a neutral element with

respect to any strategy which is a parallel composition of sequential strategies. This fact justifies

defining a class of strategies that behaves well when composed with the copycat:

Definition 3.10. We say a strategy 𝜎 : 𝐴 ⊸ 𝐵 is saturated with respect to crashcopy when

crashcopy𝐴;𝜎 ; crashcopy𝐵 = 𝜎

Since crashcopy is idempotent, it is saturated. Moreover, by definition, crashcopy behaves as a

neutral element for strategy composition of saturated strategies. It is also easy to see that saturated

strategies compose. Note that this means that we can promote Crash to a category by restricting

attention to these saturated strategies.

Saturation for concurrent strategies corresponds to, beyond 𝑂-receptivity (the environment can

make valid moves whenever it wants), strategies that are insensitive to certain delays, which might

be caused, for instance, if an agent is preempted. This is typically formalized using the rewrite

system −⇝ − we defined in §2.1 and redefined now in light of our more detailed formalism.
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Definition 3.11. Let 𝐴 = (𝑀𝐴, 𝑃𝐴) be a game. We define a string rewrite system (𝑃𝐴,⇝𝐴) with
local rewrite rules:

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .∀𝑋 ∈ {𝑂, 𝑃}.𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑋 ∧ 𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑋 ∧ 𝛼 ≠ 𝛼 ′ =⇒ 𝑚 ·𝑚′ ⇝𝐴 𝑚
′ ·𝑚

• ∀𝑚,𝑚′ ∈ 𝑀𝐴 .𝜆𝐴 (𝑚) = 𝛼𝛼𝛼:::𝑂 ∧ 𝜆𝐴 (𝑚′) = 𝛼 ′𝛼 ′𝛼 ′:::𝑃 ∧ 𝛼 ≠ 𝛼 ′ =⇒ 𝑚 ·𝑚′ ⇝𝐴 𝑚
′ ·𝑚

A concrete characterization of saturation for crash-aware strategies is possible, but we do not

cover it here for the sake of space (see the TR). We will soon see an equivalent characterization in

terms of crash-aware linearizability, which will be sufficient for our purposes.

3.4 Refinement and Horizontal Composition
Before proceeding, we briefly address refinement and horizontal composition. We take as our notion

of refinement behavior containment, 𝜎 ⊆ 𝜏 , with joins given by set union. This makes all of the

models we discuss into enriched (semi)categories over join semi-lattices, which means that:

Proposition 3.12. Strategy composition −;− is monotonic and join-preserving.

For horizontal composition, recall that we have already defined a game 𝐴 ⊗ 𝐵 ∈ Crash. The
tensor can be extended to strategies 𝜎 : 𝐴 ⊸ 𝐵 and 𝜏 : 𝐴′ ⊸ 𝐵′ by:

𝜎 ⊗ 𝜏 := {𝑠 ∈ 𝑃𝐴⊗𝐴′⊸𝐵⊗𝐵′ | 𝑠↾𝐴⊸𝐵 ∈ 𝜎 ∧ 𝑠↾𝐴′⊸𝐵′ ∈ 𝜏}
Proposition 3.13. Let Crash be the restriction of the semicategory Crash to strategies saturated

with respect to crashcopy. Then, (Crash,− ⊗ −, 1) defines an enriched symmetric monoidal category.

These definitions permit us to prove Prop. 3.13. This means that − ⊗ − defines a monotonic

and join-preserving functor so that horizontal composition behaves well with respect to both

vertical composition and refinement. This formalizes what we mean when we say that our model

is compositional. It remains to extend this compositional structure to linearizability.

4 Three Linearizability Criteria Revisited
We now revisit the linearizability criteria discussed in §2 from the perspective of our just defined

model and following ideas from compositional linearizability. In particular, we argue that their

methodology recovers crash-aware linearizability as the notion of linearizability associated with

the compositional structure of our model and use their general theorem around locality and

observational refinement to obtain these results for crash-aware linearizability. Then, we extend

these results to strict and durable linearizability by analyzing translations from our crash-aware

model to the crash-less model from compositional linearizability.

4.1 Abstract Crash-Aware Linearizability
In §2 we defined a new linearizability criterion which we called crash-aware linearizability (; ). We,

however, did not come up with this definition of linearizability. Instead, following the methodology

of compositional linearizability, we have derived it from the structure of the model, Crash.
To understand this, we start by defining the operation 𝐾 − : Crash→ Crash by the formula

𝐾 𝜏 := crashcopy𝐴;𝜏 ; crashcopy𝐵
for 𝜏 : 𝐴 ⊸ 𝐵 ∈ Crash. This operation assigns to 𝜏 the smallest saturated strategy containing 𝜏 .

The framework of compositional linearizability proposes that the native notion of linearizability

for crash-aware objects should be equivalent to the refinement 𝜈 ′ ⊆ 𝐾 𝜈 . Indeed, we are able to
show the following characterization of 𝐾 −, which provides a concrete characterization of 𝐾 𝜈 as

the set of all plays that are crash-aware linearizable w.r.t. 𝜈 .

Proposition 4.1. For any crash-aware strategy 𝜈 : 𝐴 it holds that: 𝐾 𝜈 = {𝑠 ∈ P 
𝐴
| ∃𝑡 ∈ 𝜈.𝑠 ; 𝑡}.
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It follows immediately from this characterization that

Proposition 4.2. 𝜈 ′ is crash-aware linearizable w.r.t. 𝜈 if and only if 𝜈 ′ ⊆ 𝐾 𝜈 .
This effectively turns linearizability into a refinement property. This has many benefits from the

point of view of verification, as refinement techniques are well-understood. Moreover, since we

derive it in this way, we may use the general category-theoretic result in Oliveira Vale et al. [31] to

obtain locality and observational refinement.

Proposition 4.3 (Observational Refinement and Locality).

• 𝜈 ′
𝐴
: 𝐴 is crash-aware linearizable w.r.t 𝜈𝐴 : 𝐴 iff for all saturated 𝜎 : 𝐴 ⊸ 𝐵, 𝜈 ′

𝐴
;𝜎 ⊆ 𝜈𝐴;𝜎

• For 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′

𝐴 ; 𝜈𝐴 and 𝜈 ′
𝐵 ; 𝜈𝐵 if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵 ; 𝜈𝐴 ⊗ 𝜈𝐵

4.2 Compositional Verification of a File System Fragment
To showcase the benefits of compositionality and to show that crash-aware linearizability provides

a flexible criterion for mixing objects with different, and complicated, crash behaviors, we verify

against a crash-aware linearizable specification a fragment of a file API. Instead of providing a

detailed description, we emphasize the salient aspects to our point (a detailed description is available

in the TR). The system also features recovery, our handling of which is discussed later (§5).

The file system fragment involves four main objects: the file interface File, a disk interface Disk
implemented using a disk array Disk[𝑁 ] with a finite number 𝑁 of disks each with 𝑆 + 1 blocks,
and a write-ahead log Log. The signatures for File and Disk are given below:

File :=


write : block_id × file_id × block→ 1,

read : block_id × file_id→ block,

swap : block_id × block_id × file_id × file_id→ 1

 Disk :=

{write : block_id × block→ 1,

read : block_id→ block

}
The file interface exposes a two-level structure. At the first level lies a set of folders, each

occupying a single disk block as its inode. For simplicity, the API uses block ids instead of strings

to uniquely identify folders. Each folder contains a set of files identified by their file id. The swap
operation swaps the pointers in the respective folders’ inodes, which provides a symmetric move

operation as seen in actual file systems. Thewrite and read operations are as usual. The file interface
is implemented on top of a disk, providing write and read operations to read and write to a block.

𝜈 ′Disk[𝑁 ]

𝑀Disk

𝜈 ′Disk ⊗

𝜈 ′LockMapB

vol(𝑀Lock) [𝑆]

vol(𝜈 ′FAI) [𝑆] ⊗ vol(𝜈 ′Counter) [𝑆]

𝑀Log ⊗ idDisk

𝜈 ′Log ⊗ 𝜈 ′Disk

𝑀File

𝜈 ′File

Fig. 4. The structure of our File example.

All the objects involved are specified using crash-

aware linearizability. For instance, a single disk is

specified as the horizontal composition of its blocks,

using locality, guaranteeing that its concrete spec-

ification 𝜈 ′Disk : †Disk is crash-aware linearizable

to a specification 𝜈Disk : †Disk which guarantees

read and writes are persistent and atomic. The disk

array specification 𝜈 ′Disk[𝑁 ] is required to be crash-

aware linearizable to the horizontal composition of

𝑁 atomic disk specifications 𝜈Disk[𝑁 ] := ⊗𝑖∈[𝑁 ]𝜈Disk.
The concrete object 𝜈 ′File is required to be crash-

aware linearizable to a specification 𝜈File that en-

sures that writes, reads and swaps are persistent and

seem to happen atomically. All the specifications

also enforce that the recovery routines correctly re-

construct any relevant lost state after a crash.

We implement the replicated disk on top of the disk array by replicating writes to all the disks in

the array in a specific order. Reads to the disk array non-deterministically choose a disk to read
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from, mimicking the behavior of a disk array controller. On a crash, a recovery procedure copies

the contents of the first disks to all disks.

The File implementation𝑀File for write and read is mostly straight-forward. The swap operation

requires special treatment for its atomicity. As swap operations need to update two different folders

(and thus two different disk blocks), to ensure persistency, we record the operations in a write-ahead

log 𝜈 ′Log so that the recovery routine can finish incomplete operations. The log is itself implemented

on top of a single block of the disk together with a volatile array and a volatile lock (omitted from

Fig. 4). Since the disk is itself equivalent to the parallel composition of individual blocks, we use

locality together with our compositionality properties (the symmetric monoidal structure of the

model) to separate the part of the disk used for the log, from the rest of the disk.

The file system also uses a set of dynamically allocated locks 𝜈 ′LockMapB to guarantee atomicity

when writing to a block. These locks are volatile objects residing in memory that only last for the

duration of a single File operation. Because of this, we use the verified lock from Oliveira Vale et al.

[31] and lift it to a volatile object using Prop. 2.8, benefiting from the fact that we have connected

our model to their model. The whole structure of the example is depicted in Fig. 4.

At this point it is worth remarking that even this small fragment of a file system features a mix

of persistent objects, volatile objects, and objects that fit neither category well. Some of the objects

involved are horizontal compositions of these objects, making them have hybrid crash behavior.

We model all of these objects using crash-aware linearizability, which proves to be robust enough

to verify the whole system compositionally.

4.3 Crash Abstraction
Recall that strict and durable linearizability relate a crash-aware concrete specification to a crash-

less specification. In this section we develop conversions between these computational models,

which serve as a building block for strict and durable linearizability. So, first, we briefly recall that:

Definition 4.4. Given a game 𝐴, a crash-less strategy 𝜎 : 𝐴 consists of a non-empty, prefix-closed

set of plays 𝜎 ⊆ 𝑃𝐴.

The main difficulty in removing crashes from a play 𝑠 is that the removal may generate traces

that do not satisfy well-formedness. This happens when the same agent has a pending invocation

in one epoch and also moves in a later epoch. So, in the definition of the operation −♭ (read de-crash,
and the same as ops(−)), the projections ops(𝑠) are required to be well-formed plays.

Definition 4.5. Given a game 𝐴 = (𝑀𝐴, 𝜆𝐴, 𝑃𝐴) we define the game 𝐴♭
, by:

𝑀𝐴♭ := 𝑀𝐴 𝜆𝐴♭ (𝑚) := 𝜆𝐴 (𝑚) 𝑃𝐴♭ := (𝑃𝐴)∗ ∩ Pconc𝑀𝐴

Given a crash-aware strategy 𝜎 : 𝐴 ∈ Crash we define the crash-less strategy 𝜎♭ : 𝐴♭
as below.

Note that −♭ formalizes ops(−) (§2). It is also useful to provide a reverse operation −♯, read re-crash,
that lifts, in a persistent way, a crash-less strategy 𝜎 : 𝐴♭

into a strategy 𝜎♯ : 𝐴.

𝜎♭ := {ops(𝑠) ∈ Pconc𝑀𝐴
| 𝑠 ∈ 𝜎} 𝜎♯ := {𝑠 ∈ P 

𝑀𝐴
| ops(𝑠) ∈ 𝜎}

4.4 Strict Linearizability
Similarly to how Oliveira Vale et al. [31] characterizes linearizability by lifting a non-saturated

strategy to a saturated strategy, we formalize strict linearizability by lifting a strategy without

crashes into a strategy with crashes.

Definition 4.6. Given games 𝐴, 𝐵, we define the strict lift str(𝜎) : 𝐴 ⊸ 𝐵 of a crash-less strategy

𝜎 : 𝐴♭ ⊸ 𝐵♭ as the crash-aware strategy: str(𝜎) := 𝐾 𝜎♯
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It then turns out that, similarly to what we did for crash-aware linearizability, strict linearizability

supports the following refinement-based characterization:

Proposition 4.7. 𝜈 ′ : 𝐴 is strictly linearizable to 𝜈 : 𝐴♭ if and only if 𝜈 ′ ⊆ str(𝜈).

We make use of this characterization to show the following observational refinement property:

Proposition 4.8 (Observational Refinement). Suppose 𝜈 ′
𝐴
: 𝐴 is strictly linearizable to 𝜈𝐴 : 𝐴♭

and that 𝜎 : 𝐴♭ ⊸ 𝐵♭ implements an object linearizable to 𝜈𝐵 : 𝐵♭ using 𝜈𝐴, i.e. 𝜈𝐴;𝜎 ⊆ 𝜈𝐵 , then,
str(𝜎) implements an object strictly linearizable to str(𝜈𝐵) using 𝜈 ′𝐴, i.e. 𝜈 ′𝐴; str(𝜎) ⊆ str(𝜈𝐵).

The reverse direction, unfortunately, does not hold, fundamentally because str(ccopy𝐴♭ ) ≠
crashcopy𝐴. By similar reasoning as the locality for crash-aware linearizability, we also obtain:

Proposition 4.9 (Locality). For crash-aware strategies 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and crash-less strategies

𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′
𝐴
⊆ str(𝜈𝐴) and 𝜈 ′𝐵 ⊆ str(𝜈𝐵) if and only if 𝜈 ′

𝐴
⊗ 𝜈 ′

𝐵
⊆ str(𝜈𝐴 ⊗ 𝜈𝐵)

4.5 Durable Linearizability
Recall that a crash-aware play (i.e., a trace) is durable when the set of agents on different epochs

is disjoint. Given a game 𝐴, let 𝑃dur
𝐴

be the subset of 𝑃
 
𝐴
containing only its durable plays. As we

noted in §2, durable plays 𝑠 have the important property that their de-crash 𝑠♭ is always defined.

We call a crash-aware strategy durable if it only contains durable plays.

Now, for our refinement-based formulation, we define a durable lift dur(−), which assigns to a

crash-less strategy 𝜈 : 𝐴♭
the durable strategy dur(𝜈) : 𝐴 defined by dur(𝜈) : 𝐴 := (𝐾Conc 𝜈)♯ ∩ 𝑃dur𝐴

.

The operation 𝐾Conc − in the formula is defined by Oliveira Vale et al. [31] similarly to 𝐾 −, but
in the crash-less setting. It may be more intuitively understood through their result that:

𝐾Conc 𝜈 = {𝑠 ∈ 𝑃𝐴♭ | ∃𝑡 ∈ 𝜈.𝑠 ; 𝑡}

that is to say, 𝐾Conc − assigns to a crash-less strategy 𝜈 the smallest strategy containing 𝜈 that has

all plays linearizable w.r.t. to 𝜈 . We observe that, indeed, dur(−) does provide an appropriate lifting

operation for durable linearizability.

Proposition 4.10. 𝜈 ′ : 𝐴 is durably linearizable to 𝜈 : 𝐴♭ if and only if 𝜈 ′ ⊆ dur(𝜈).

This refinement characterization enables us to show observational refinement and locality.

Proposition 4.11 (Observational Refinement and Locality).

• Let 𝐴, 𝐵 be games. Then 𝜈 ′
𝐴

: 𝐴 is durably linearizable to 𝜈𝐴 : 𝐴♭ if and only if whenever
𝜎 : 𝐴♭ ⊸ 𝐵♭ is a crash-less strategy implementing a crash-less object linearizable to 𝜈𝐵 using 𝜈𝐴,
then dur(𝜎) : 𝐴 ⊸ 𝐵 implements an object durably linearizable to 𝜈𝐵 using 𝜈 ′

𝐴
.

• For durable strategies 𝜈 ′
𝐴
: 𝐴,𝜈 ′

𝐵
: 𝐵 and crash-less 𝜈𝐴 : 𝐴,𝜈𝐵 : 𝐵: 𝜈 ′

𝐴 ;dur 𝜈𝐴 and 𝜈 ′
𝐵 ;dur 𝜈𝐵 if and

only if 𝜈 ′
𝐴
⊗ 𝜈 ′

𝐵 ;dur 𝜈𝐴 ⊗ 𝜈𝐵

5 Program Logic
In this section, we present a program logic for verifying durable linearizability, which is based on

rely-guarantee reasoning, crash Hoare logic and possibility reasoning. We first (§5.1) briefly discuss

how to abstract away recovery. Then (§5.2) we define an object-agnostic imperative programming

language. Lastly (§5.3) we demonstrate the key rules of the program logic. We refer readers to our

TR for its variation for verifying crash-aware linearizability, which is largely similar.
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5.1 Recovery
We start by discussing a simple way of removing recovery events from a play, which is enough for

our purposes. First, we fix a certain kind of signature for objects with recovery.

Definition 5.1. We define a recovery signature 𝐸 ⟲ 𝑅 to be the union of two effect signatures 𝐸

for regular operations and 𝑅 for recovery operations.

To simplify reasoning about programs with recovery, it is common to provide a way to remove

the recovery events from the specification. In our setting, this is notoriously simple.

Definition 5.2. We say a strategy 𝜈 ′ : †(𝐸 ⟲ 𝑅) recovery-refines to 𝜈 : †𝐸 when 𝜈 ′↾𝐸 ⊆ 𝜈 .

It is straightforward to see that the following refinement theorem holds.

Proposition 5.3 (Recovery Refinement Theorem). Suppose 𝜈 ′ : †(𝐸 ⟲ 𝑅) recovery-refines to
𝜈 : †𝐸 and that 𝜎 ′ : †(𝐸 ⟲ 𝑅) ⊸ †𝐹 then, for 𝜎 : †𝐸 ⊸ †𝐹 , 𝜎 ′↾†𝐸⊸†𝐹 ⊆ 𝜎 =⇒ 𝜈 ′;𝜎 ′ ⊆ 𝜈 ;𝜎

5.2 Programming Language
5.2.1 Syntax. We start by defining a language Com for commands over some effect signature 𝐸.

Prim := 𝑥 ← 𝑒 (𝑎) | assume(𝜙) | ret 𝑣 Com := Prim | Com;Com | Com + Com | Com∗ | skip

Prim stands for primitive commands. The assignment command, 𝑥 ← 𝑒 (𝑎), executes the effect
𝑒 ∈ 𝐸 with argument 𝑎 and stores the response to variable 𝑥 in a local environment Δ ∈ Env. The
assume command, assume(𝜙), takes a boolean function 𝜙 over Δ and terminates the computation

if it evaluates to False. We implement loops and if-statements using assume(−) in the usual way.

The return command, ret 𝑣 , stores the value 𝑣 into a reserved variable res, and is executed once per

invocation of a procedure. Com is the grammar of commands defined as usual in a Kleene algebra.

The implementation𝑀 of an object (with the effect signature 𝐹 ⟲ 𝑅𝐹 ) is defined as a collection

of commands 𝑀 [𝛼] 𝑓 ∈ Com, 𝑀 = (𝑀 [𝛼])𝛼∈Υ =
(
𝑀 [𝛼] 𝑓

)
𝛼∈Υ,𝑓 ∈𝐹∪𝑅𝐹

, which implements each

method 𝑓 ∈ 𝐹 ∪ 𝑅𝐹 per agent 𝛼 ∈ Υ. Here 𝐹 defines the overlay’s regular procedures and 𝑅𝐹 its

recovery procedures. For simplicity, we require that there is only one recovery program 𝑟 in 𝑅𝐹 ,

i.e. 𝑅𝐹 = {𝑟 : 1→ 1}. We call𝑀 [𝛼] a local implementation and𝑀 ∈ CMod a concurrent module,

where CMod is the set of all concurrent modules.

5.2.2 Memory Model & Object State. Observe that our programming language is object-agnostic

in that it operates over an arbitrary object of type 𝐸. This means that the language does not have a

memory model baked in. Instead, the underlay object’s effect signature 𝐸, over which the language

is parameterized, determines which memory operations the user can perform. For example, to

implement the FLiTmemory cell in Fig. 1, one would use as the underlay a bufferedmemory cell with

the BCell signature. Then, one can write a program with statements like 𝑥 ← 𝐵.load();𝐵.flush()
to manipulate the memory shared across threads.

We define the underlay state as (Δ, 𝑠) ∈ UndState, a tuple of a local environment Δ and a

history 𝑠 ∈ 𝑃†𝐸 . The local environment Δ is defined solely as a mapping from local variables to

their values (with Δ0 representing the empty local environment). The history 𝑠 is a canonical

representation for shared state, since it records all previous operations to the shared underlay

object. One may reconstruct other more intuitive definitions of the shared state by defining an

interpretation function over the trace 𝑠 . For example, given the traces 𝑝 ∈ 𝜈FLiT of one FLiTmemory

cell, we can define the evaluation function fstate : 𝜈FLiT → Val to compute the current value of the

cell by reading the latest stored value. In particular, note that we may use the (atomic) linearized

specification for FLiT because of observational refinement.
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5.2.3 Semantics. Primitive commands 𝐵 are interpreted as state transformers J𝐵K𝛼 : UndState→
P(UndState) from a set of underlay states to a new set of states. The J𝐵K𝛼 depends on 𝛼 only in

that it tags event it adds to the history with an agent identifier 𝛼 . We then lift the state transformer

J𝐵K𝛼 to a thread-local small-step semantics ⟨𝐶,Δ, 𝑠⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′⟩, which encodes how 𝛼 steps

through commands in a mostly standard way following the Kleene algebra structure of commands.

−→ ⊆ (Com × UndState) × Υ × (Com × UndState) −↠𝑅𝐸
⊆ (Cont ×ModState) × CMod × (Cont ×ModState)

𝑓 ∈ 𝐹 𝑎 ∈ par(𝑓 ) Δ′ = Δ[𝛼 ↦→ [arg ↦→ 𝑎] ]
⟨𝑐 [𝛼 ↦→ idle],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝑀 [𝛼 ] 𝑓 ],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑓 ⟩

Inv

⟨𝐶,Δ, 𝑠↾𝐸 ⟩ −→𝛼 ⟨𝐶′,Δ′, 𝑠′↾𝐸 ⟩
⟨𝑐 [𝛼 ↦→ 𝐶 ],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶′ ],Δ′, 𝑠′ ⟩

Step

𝜋𝛼 (𝑠↾𝐹 ) = 𝑝 · 𝑓 Δ(𝛼 ) (res) = 𝑣 ∈ ar(𝑓 ) Δ′ = Δ[𝛼 ↦→ ∅]
⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠 ⟩ −↠𝑀

𝑅𝐸
⟨𝑐 [𝛼 ↦→ idle],Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

Ret

∀𝛼 ∈ 𝑠.𝑐′ [𝛼 ] = dead
∀𝛼 ∈ Υ.𝛼 ∉ 𝑠 ⇒ 𝑐′ [𝛼 ] = halt

⟨𝑐,Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ0, 𝑠 ·  ⟩

Crash

𝑠 = 𝑠′ ·  ®𝑟 = perm(𝑅𝐸 )
𝐶 = sequence(®𝑟,𝑀 [𝛼 ]𝑟 )

⟨𝑐 [𝛼 ↦→ halt],Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐 [𝛼 ↦→ 𝐶 ],Δ, 𝑠 · 𝛼𝛼𝛼:::𝑟 ⟩

StartRec

𝜋𝛼 (𝑠↾𝐹∪𝑅𝐹
) = 𝑠′ · 𝑟 Δ(𝛼 ) (res) = 𝑣 ∈ ar(𝑟 ) Δ′ = Δ[𝛼 ↦→ ∅]

∀𝛼 ∈ Υ.𝑐 [𝛼 ] = dead⇒ 𝑐′ [𝛼 ] = dead ∀𝛼 ∈ Υ.𝑐 [𝛼 ] ≠ dead⇒ 𝑐′ [𝛼 ] = idle

⟨𝑐 [𝛼 ↦→ skip],Δ, 𝑠 ⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠 · 𝛼𝛼𝛼:::𝑣⟩

EndRec

where sequence(®𝑟,𝐶 ) =
{
𝐶 ®𝑟 = 𝜖

(𝑥𝑟 ← 𝑟 (𝑎) ) ; sequence(®𝑟 ′,𝐶 ) ®𝑟 = 𝑟 · ®𝑟 ′ ∧ 𝑎 ∈ par(𝑟 ) ∧ reserved(𝑥𝑟 )
Fig. 5. Local Small-Step Semantics (−→) and Module Small-step semantics (−↠𝑅𝐸

)

In Fig. 5, we lift this local small-step semantics to a concurrent module small-step semantics

⟨𝑐,Δ, 𝑠⟩ −↠𝑀
𝑅𝐸
⟨𝑐′,Δ′, 𝑠′⟩, which takes a continuation 𝑐 ∈ Cont := Υ → {idle, skip, dead, halt} +

Com and a module state (Δ, 𝑠) ∈ ModState := (Υ → Env) × 𝑃†(𝐸⟲𝑅𝐸 )⊸†(𝐹⟲𝑅𝐹 ) containing local

environments for all agents and the global trace of the system. The first three rules come from the

semantics in Oliveira Vale et al. [31] to handle mainly the execution of regular procedures:

Inv Allows a new invocation of any overlay operation 𝑓 in an idle thread and appends the new

invocation to the end of 𝑠 .

Step Non-deterministically chooses some thread that is running a program𝐶 and performs a thread

local small-step in that thread with its effect applied to the concurrent module state.

Ret Allows any thread that has finished its program to return to idle by appending the return value

as a response to the end of 𝑠 and clearing Δ[𝛼].
We add three highlighted rules to handle crashes and recoveries:

Crash Allows for crashes to happen at any time, resetting local environments to Δ0 for all agents,

marking all the previously active agents as dead and all remaining ones as halt.
StartRec Non-deterministically selects a halted thread 𝛼 and starts the recovery phase by using

𝐶 as its continuation, which sequentially runs first a permutation of underlay recoveries

(®𝑟 = perm(𝑅𝐸)) and then the overlay recovery 𝑀 [𝛼]𝑟 . This is achieved by using sequence
to sequence a list of commands (note that reserved(𝑥𝑟 ) simply means that 𝑥𝑟 is a reserved

variable). During the recovery phase, other threads must wait for 𝛼 to finish the recovery

before their executions. The execution of 𝛼 follows the Step rule.

EndRec When the recovery finishes, any agent that is not dead becomes idle, so that the system
can now run normally. To enforce the durable assumption, dead agents will no longer run.

We define the denotation of a module by the formula below as the set of traces generated by

the small-step semantics from the initial configuration, where 𝑐0 is the initial continuation (every

agent is idle) and Δ0 is the initial environment where every agent has an empty local environment.

J𝑀K𝑅𝐸
:= {𝑠 | ∃𝑐 ∈ Cont,Δ ∈ (Υ→ Env) .⟨𝑐0,Δ0, 𝜖⟩ −↠𝑀

𝑅𝐸
⟨𝑐,Δ, 𝑠⟩} ⊆ 𝑃†(𝐸⟲𝑅𝐸 )⊸†(𝐹⟲𝑅𝐹 )
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5.3 A Program Logic for Durable Objects
5.3.1 Interfaces. The interface of a crash-aware linearizable object 𝐸 is a (round bracket) tuple.

(𝜈 ′
𝐸
: †(𝐸 ⟲ 𝑅𝐸 ), 𝜈𝐸 : †𝐸) s.t. 𝜈 ′

𝐸
↾𝐸 ;

 𝜈𝐸

𝜈 ′
𝐸
is the concrete specification containing all possible traces the object can produce, including

crash and recovery events, and 𝜈𝐸 is the linearized specification after removing recovery events.

Similarly, we define the interface of a durable linearizable object 𝐸 as the (angle bracket) tuple

but with a major difference: the durable interface’s linearized specification 𝜈𝐸 is crash-less.

⟨𝜈 ′
𝐸
: †(𝐸 ⟲ 𝑅𝐸 ), 𝜈𝐸 : †𝐸⟩ s.t. 𝜈 ′

𝐸
↾𝐸 ;dur 𝜈𝐸

The objective of our program logic is to establish the judgment

⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸 ) → (𝜈 ′𝐹 , 𝜈𝐹 ) or ⊢ 𝑀 : (𝜈 ′

𝐸
, 𝜈𝐸 ) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩

which means under the assumption that the implementation𝑀 implements 𝐹 with either a crash-

aware interface (𝜈 ′
𝐹
, 𝜈𝐹 ) (the variation described in our TR) or a durable interface ⟨𝜈 ′

𝐹
, 𝜈𝐹 ⟩ (the

variation we describe here), using the crash-aware underlay 𝐸 with interface (𝜈 ′
𝐸
, 𝜈𝐸). The concrete

specification 𝜈 ′
𝐹
is defined by running an implementation 𝑀 above 𝜈 ′

𝐸
, i.e., 𝜈 ′

𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

. The

program logic’s soundness guarantees the validity of the crash-aware/durable overlay interface. In

this context, (𝜈 ′
𝐸
, 𝜈𝐸) is called𝑀’s underlay, while ⟨𝜈 ′

𝐹
, 𝜈𝐹 ⟩ is called𝑀’s overlay.

The specifications 𝜈 ′
𝐸
, 𝜈𝐸, 𝜈

′
𝐹
, 𝜈𝐹 are fixed in the program logic. For simplicity, we take them as a

parameter in all that follows and omit the parametrization in the concrete proof rules.

5.3.2 The Rely-Guarantee Crash Linearizability Hoare Logic (CLHL).

Configurations & Assertions. CLHL uses as proof configurations triples (Δ, 𝑠, 𝜌) ∈ Config :=

ModState × Poss, where 𝜌 ∈ Poss, called a possibility, is a play of type †𝐹 linearizable w.r.t. 𝜈𝐹 .

A configuration is valid when 𝑠 is durably linearizable to 𝜌 and 𝜌 is linearizable w.r.t. 𝜈𝐹 . This

ensures that the concrete trace 𝑠 is always durably linearizable with respect to 𝜈𝐹 after the recovery

refinement. Pre-conditions 𝑃 , post-conditions 𝑄 , and crash conditions 𝑄 are given by sets of

configurations, while rely conditions R and guarantee conditions G are relations over Config.

Top Level Rules. The top level rule Object Impl proves that𝑀 implements the overlay ⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩

using the underlay (𝜈 ′
𝐸
, 𝜈𝐸). It requires the prover to find an object invariant 𝐼 : Υ → P(Config)

for the implementation and then verify regular procedures and the recovery separately.

∀𝛼, 𝛼 ′ ∈ Υ.𝛼 ≠ 𝛼 ′ ⇒ G[𝛼 ] ∪ invoke𝛼 (−) ∪ return𝛼 (−) ⊆ R[𝛼 ′ ]
∀𝛼 ∈ Υ.R[𝛼 ], G[𝛼 ], 𝐼 [𝛼 ] ⊨𝐹𝛼 𝑀 [𝛼 ] ∀𝛼 ∈ Υ.𝐼 ⊨𝑅𝛼 𝑀 [𝛼 ]

⊢ 𝑀 : (𝜈′𝐸 , 𝜈𝐸 ) → ⟨𝜈
′
𝐹 , 𝜈𝐹 ⟩

Object Impl

Verifying Regular Procedures. To verify a concurrent object, the Object Impl rule requires finding

appropriate rely R and guarantee G for the object. The rely R[𝛼 ′] of an agent models the interfer-

ence of other threads in the executions and therefore must take into account at least invocations,

returns, and the guarantee of other agents 𝛼 (specified, respectively, by invoke𝛼 (−), return𝛼 (−),
and G[𝛼]). The prover needs to show R[𝛼],G[𝛼], 𝐼 [𝛼] ⊨𝐹𝛼 𝑀 [𝛼], which asserts that when 𝛼 runs

regular methods in 𝐹 , assuming other threads behave according to R[𝛼], 𝛼 will behave according

to G[𝛼], and 𝐼 [𝛼] is satisfied when the thread 𝛼 is idle.

The Local Impl rule proves this judgment by splitting 𝐼 [𝛼] into conjunctions of 𝑃 [𝛼] 𝑓 , each
specifying the pre-condition of a method invocation, and then proving a series of objectives (− ◦ −
stands for relational composition).

𝐼 [𝛼 ] = ∩𝑓 ∈𝐹𝑃 [𝛼 ] 𝑓 ∀𝑓 ∈ 𝐹 .(Δ0, 𝜖, 𝜖 ) ∈ 𝑃 [𝛼 ] 𝑓 ∀𝑓 ∈ 𝐹 .stable(R[𝛼 ], 𝑃 [𝛼 ] 𝑓 )
∀𝑓 ∈ 𝐹 .R[𝛼 ], G[𝛼 ] ⊨𝑓𝛼 {𝑃 [𝛼 ] 𝑓 }𝑀 [𝛼 ] 𝑓 {𝑄 [𝛼 ] 𝑓 }{⊤} ∀𝑓 ∈ 𝐹 .return𝛼 (𝑓 ) ◦𝑄 [𝛼 ] 𝑓 ⊆ 𝐼 [𝛼 ]

R[𝛼 ], G[𝛼 ], 𝐼 [𝛼 ] ⊨𝛼 𝑀𝐹 [𝛼 ]
Local Impl
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Firstly, each pre-condition 𝑃 [𝛼] 𝑓 needs to include the initial configuration and must be stable

under interferences R[𝛼] of the environment, which implies the invariant 𝐼 [𝛼] to be stable.

Then, the prover needs to show that R[𝛼],G[𝛼] ⊨𝑓𝛼 {𝑃 [𝛼] 𝑓 } 𝑀 [𝛼] 𝑓 {𝑄 [𝛼] 𝑓 }{⊤} is satisfied for

each method 𝑓 . The hexad R,G ⊨𝑓𝛼 {𝑃} 𝐶 {𝑄}{𝑄 } means that given states satisfying 𝑃 , running

the program 𝐶 on thread 𝛼 in an environment with interference in R will produce actions in G,
and if it terminates normally, the state will satisfy 𝑄 , and if it crashes, the state will satisfy 𝑄 . A

hexad is proved with proof rules introduced later. It is worth mentioning that there is no need to
explicitly specify and prove a crash condition for any regular method, and we can simply put ⊤ as the

crash condition. This is true because:

(1) The guarantee G[𝛼] of the current thread is included in any other thread’s rely R[𝛼 ′], and
therefore any step during the execution of any method in thread 𝛼 is captured in R[𝛼 ′].

(2) For any other thread 𝛼 ′, its invariant 𝐼 [𝛼 ′] is stable w.r.t. R[𝛼 ′], which means any state after

any execution step of any method in thread 𝛼 (captured in R[𝛼 ′]) is in 𝐼 [𝛼 ′].
(3) Therefore, the state of thread 𝛼 will satisfy any other thread’s invariant 𝐼 [𝛼 ′] at any time

(including the point of crash), and the crash condition in 𝛼 can be derived from 𝐼 [𝛼 ′].
Lastly, after finishing the execution of a method and returning from it, the invariant 𝐼 [𝛼] needs

to be satisfied so that the current thread can still access the object by invoking its procedures.

Verifying Recovery. Then, to ensure the durability of the object, provers need to show 𝐼 ⊨𝑅𝛼 𝑀 [𝛼],
which means whenever a crash happens, the execution of the recovery on any thread 𝛼 can restore

the program state to satisfy the object invariant 𝐼 . It can be verified via the Recover rule.

ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼 ] }𝑀 [𝛼 ]𝑟 {𝑄𝑟 [𝛼 ] } {𝑄 [𝛼 ] } 𝑄 [𝛼 ] ⊆ 𝑃𝑟 [𝛼 ]
∪𝛼 ′∈Υ𝐼 [𝛼 ′ ] ⇒ 𝑄 [𝛼 ] return𝛼 (𝑟 ) ◦𝑄𝑟 [𝛼 ] ⊆ ∩𝛼 ′∈Υ𝐼 [𝛼 ′ ]

𝐼 ⊨𝑅𝛼 𝑀 [𝛼 ]
Recover Impl

The prover needs to find a recovery pre-condition 𝑃𝑟 , a recovery post-condition 𝑄𝑟 , and a crash

condition𝑄 for the recovery program, and prove ID,⊤ ⊨𝑟𝛼 {𝑃𝑟 [𝛼]}𝑀 [𝛼]𝑟 {𝑄𝑟 [𝛼]}{𝑄 [𝛼]}, which
means running the recovery program𝑀 [𝛼]𝑟 from states in 𝑃𝑟 [𝛼] will either recover the system
into states in 𝑄𝑟 [𝛼] or crash into states in 𝑄 [𝛼]. Since the recovery program always runs after a

crash, the crash condition𝑄 needs to imply 𝑃𝑟 . But as the recovery program executes sequentially,

with no interference from other threads, the rely and guarantee for it are ID and ⊤.
The invariant 𝐼 [𝛼 ′] serves as the crash condition of other threads. Therefore, we require that

all 𝐼 [𝛼 ′] crash into the crash condition 𝑄 of the recovery program. The crash-into relation (⇒ )

amounts to implication after adding a crash: 𝐼 ⇒ 𝑄 ⇐⇒ ∀(Δ, 𝑠, 𝜌) ∈ 𝐼 .(Δ0, 𝑠 ·  , 𝜌) ∈ 𝑄 .
Lastly, after the execution of the recovery, the system is restored and ready to run, so the program

state after the recovery’s return needs to imply the invariant 𝐼 [𝛼 ′] of any thread 𝛼 ′.

The Core Proof Rule. According to these top-level rules, proofs of both the regular procedures and

the recovery boil down to proofs of hexads like R,G ⊨𝛼 {𝑃}𝐶{𝑄}{𝑄 }. Among CLHL proof rules

for the hexad, the core proof rule for proving the durable linearizability is the Prim rule, which we

focus on in this section and refer readers to the TR for other proof rules, which are standard.

𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑄 𝑄 ⇒ 𝑄 stable(R, 𝑃 ) stable(R,𝑄 ) G ⊢𝛼 {𝑃 }𝐵{𝑄 }
R, G ⊨𝛼 {𝑃 }𝐵{𝑄 }{𝑄 }

Prim

There are three groups of Prim rule’s premises. Firstly, as crashes can happen at any point, the

pre-/post-condition and the crash condition should be able to crash into (⇒ ) the crash condition.

Then, as any rely-guarantee logic, the pre-/post-condition needs to be stable w.r.t. the rely R.
G ⊢𝛼 {𝑃 }𝐵{𝑄 } ⇐⇒ ∀Δ, 𝑠, 𝜌,Δ′, 𝑠′ .( (Δ, 𝑠, 𝜌 ) ∈ 𝑃 ∧ (Δ′, 𝑠′ ) ∈ J𝐵K𝛼 (Δ, 𝑠 ) ∩ 𝜈𝐸 )

⇒ (∃𝜌 ′ .(Δ′, 𝑠′, 𝜌 ′ ) ∈ 𝑄 ∧ (Δ, 𝑠, 𝜌 ) G(Δ′, 𝑠′, 𝜌 ′ ) ∧ 𝜌 d 𝜌 ′ )
where 𝜌 d 𝜌 ′ ⇐⇒

∃𝑡𝑃 ∈ (𝑀𝑃
𝐹 )
∗ .𝜌 · 𝑡𝑃 ⇝†𝐹 𝜌 ′
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Lastly, we need to prove the commit rule G ⊢𝛼 {𝑃}𝐵{𝑄} for the primitive command 𝐵. It states that

after a step from a state in 𝑃 made by the command 𝐵 the new state will satisfy the post-condition𝑄

and the guarantee. This step may be the commitment point of some pending operations. To maintain

the invariant that 𝑠 is durably linearizable to 𝜌 , the commit rule allows an angelic linearization

update, 𝜌 d 𝜌 ′, where provers can append several response events to 𝜌 and rewrite it according to

⇝†𝐹 to obtain 𝜌 ′, a new possibility that 𝑠 linearizes into. Moreover, since possibility updates are

recorded in G, its effect is visible to any other thread. Only a careful choice of possibility updates

will respect other threads’ relies and prove that this object is indeed durably linearizable.

Soundness. CLHL is justified by the following soundness theorem.

Proposition 5.4 (Soundness). If ⊢ 𝑀 : (𝜈 ′
𝐸
, 𝜈𝐸) → ⟨𝜈 ′𝐹 , 𝜈𝐹 ⟩ is provable, and (𝜈 ′𝐸, 𝜈𝐸) is a valid

crash-aware interface, and 𝜈 ′
𝐹
= 𝜈 ′

𝐸
; J𝑀K𝑅𝐸

, then ⟨𝜈 ′
𝐹
, 𝜈𝐹 ⟩ is a valid durable interface.

5.4 Examples Revisited
In this section, we present some high-level proof ideas of the FLiT example and demonstrate the

usage of the program logic. The FLiT object is built above the buffered memory cell BCell.

The Buffered Cell. The bufferedmemory cell’s concrete traces in 𝜈 ′BCell are crash-aware linearizable
to its specification 𝜈BCell, which we can define through an interpretation function,mstate : 𝜈BCell →
P(Val × Val), which computes the set of all possible combinations of the persisted value (the first

component) and the buffered value (the second component), as seen in §2.3.

Using mstate, the specification 𝜈BCell is essentially defined as the set of traces that can step from

the initial state, the singleton set {(𝑣0, 𝑣0)}, to some non-empty state, with the step function below.

The sets on the two sides of the arrow are the value ofmstate before and after appending the events
to the trace.

𝑆
𝛼𝛼𝛼:::store(𝑣) ·𝛼𝛼𝛼:::ok
−−−−−−−−−−→ {(𝑣𝑝 , 𝑣) | (𝑣𝑝 , 𝑣𝑏 ) ∈ 𝑆 } ∪ { (𝑣, 𝑣) } 𝑆

𝛼𝛼𝛼:::flush·𝛼𝛼𝛼:::ok−−−−−−−−→ {(𝑣𝑏 , 𝑣𝑏 ) | (𝑣𝑝 , 𝑣𝑏 ) ∈ 𝑆 }

𝑆
   
−→ {(𝑣𝑝 , 𝑣𝑝 ) | (𝑣𝑝 , 𝑣𝑏) ∈ 𝑆} 𝑆

𝛼𝛼𝛼:::load·𝛼𝛼𝛼:::ok(𝑣)
−−−−−−−−−−→ {(𝑣𝑝 , 𝑣) | (𝑣𝑝 , 𝑣) ∈ 𝑆}

• When a store operation finishes, there are two possible outcomes: the value may have been

stored only to the buffered content, while the persisted content remains the same as before the

store; the value may be persisted, making the buffered content the same as the persisted one.

• When a flush operation finishes, the buffered value gets flushed into the persisted part. Since

after each store operation, the buffered content is uniquely determined (synchronized), after a

consequent flush operation, the content of mstate is uniquely determined.

• When a crash  happens, the buffered content is lost, and after the crash, the buffered content

is overwritten by the persisted value, which may have various possibilities because a flush may

not have happened before the crash. As a result, the uniqueness of the buffered content no

longer holds after the crash and is un-synchronized. The non-determinism brought by store and
 is the first challenge of the FLiT proof and the reason we define mstate in this way.
• When a load operation finishes, the actual buffered content is determined and all future load
will not observe other possibilities of the buffered content. As we will explain later, this behavior

makes the load operation an external linearization point of buffered operations before a crash.

The helping mechanism, especially helpings across crashes, is the second challenge of the FLiT
proof. The returned value must be consistent with at least one possible buffered content in 𝑆 .

Otherwise, the post-state is an empty set and this trace will not be accepted in 𝜈BCell.

To use CLHL to verify the FLiT overlay, we need an invariant 𝐼 that links the overlay and underlay

states and is maintained by any program step. Depending on the current buffered memory cell

state, we split the invariant into three cases. (1) When the buffered content 𝑣𝑏 is synchronized
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and persisted (the Flushed state), then the overlay state fstate(𝜌) should also be 𝑣𝑏 , i.e., the store
operation that writes this 𝑣𝑏 is durably linearized. (2) When the buffered content 𝑣𝑏 is synchronized

but not persisted (the Unflushed state), we use a ghost list 𝐵 to buffer the pending overlay store(𝑣𝑏)
operations in order, so future operations can help linearize it when the value gets persisted. (3)When

a crash happens (the Unsynced state), the buffered content 𝑣𝑏 is un-synchronized and corresponds

to some store(𝑣𝑏) operation in the ghost list 𝐵, in case it has persisted, or is equal to the current

overlay state fstate(𝜌), when none of the buffered operations persisted.

As a result, the proof configuration now becomes (Δ, 𝑠, 𝜌, 𝐵) ∈ ModState×Poss×𝑀∗
𝐹
. According to

the Object Impl rule, we need to find rely and guarantee conditions verifying R[𝛼],G[𝛼], 𝐼 [𝛼] |=𝐹
𝛼

𝑀 [𝛼] for the load and store operations and 𝐼 |=𝑅𝛼 𝑀 [𝛼] for an empty recovery procedure.

5.4.1 Regular Procedure Proofs. To prove regular procedures through the Local Impl rule, we must

find the pre-/post-conditions corresponding to each procedure and prove their Hoare quadruples.

For the FLiT implementation, we prove Hoare quadruple (1) and (2) for the load and store operations.

R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (load) ◦ 𝐼 }load(){returned𝛼 (load) ◦ 𝐼 }{⊤} (1)

R[𝛼],G[𝛼] |=𝛼 {invoke𝛼 (store) ◦ 𝐼 }store(){returned𝛼 (store) ◦ 𝐼 }{⊤} (2)

The invoke and returned relations are defined below. The invoke simply adds an invocation (by

clients of the overlay object) to the procedure 𝑓 to the end of 𝑠 and 𝜌 . The returned asserts the

returned result recorded in Δ is consistent with the one linearized in 𝜌 by the prover.

(Δ, 𝑠, 𝜌 ) invoke𝛼 (𝑓 ) (Δ′, 𝑠′, 𝜌 ′ ) ⇐⇒
(

(Δ, 𝑠, 𝜌 ) ∈ idle𝛼 ∧ ∃𝑎.Δ′ (𝛼 ) = [arg ↦→ 𝑎]∧
∀𝛼 ′ ≠ 𝛼.Δ′ (𝛼 ′ ) = Δ(𝛼 ) ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑓 ∧ 𝜌 ′ = 𝜌 · 𝛼𝛼𝛼:::𝑓

)
(Δ, 𝑠, 𝜌 )returned𝛼 (𝑓 ) (Δ′, 𝑠′, 𝜌 ′ ) ⇐⇒ (Δ′, 𝑠′, 𝜌 ′ ) = (Δ, 𝑠, 𝜌 ) ∧ ∃𝑣 ∈ ar(𝑓 ) .Δ(𝛼 ) (ret) = 𝑣 ∧ last(𝜋𝛼 (𝜌 ) ) = 𝛼𝛼𝛼:::𝑣

These quadruples are proved by mainly using the Prim rule to step through primitive commands.

In most of the cases, the underlay load/store operations only add pending overlay operations to

the list 𝐵, and a consequent flush operation makes sure they are persisted and helps operations in

𝐵 linearize. The Counter object prevents unnecessary flushes in this process but is not the main

complexity of the FLiT object, and thus we refer readers to the TR for its treatment.

Figure 6 shows the proof outline for the load operation, which we use as an example for demon-

stration. The program contains two potential linearization points, line 2 and line 5, and we show

how to use the Prim rule to complete proofs and find linearizations at these points.

The underlay load operation at line 2 may execute from three different situations depending

on the object state (Flushed, Unflushed, Unsynced). We choose to perform three different updates

to the possibility 𝜌 and the ghost list 𝐵 and illustrate them through guarantee conditions below,

which record the effects of these updates on proof configurations.

(𝑠, 𝜌, 𝐵) G
load-f
[𝛼 ] (𝑠′, 𝜌 ′, 𝐵′ ) ⇐⇒

(
∃𝑣.Flushed(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾BCell ) ∧ 𝑣 = fstate(𝜌 )∧
lin(𝜌 ′ ) = lin(𝜌 ) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

)
(3)

(𝑠, 𝜌, 𝐵) G
load-uf

[𝛼 ] (𝑠′, 𝜌 ′, 𝐵′ ) ⇐⇒
(
∃𝑣.Unflushed(𝑠, 𝐵) ∧ last(𝐵↾store ) = store(𝑣)∧
𝐵′ = 𝐵 · 𝛼𝛼𝛼:::load ∧ 𝜌 ′ = 𝜌 ∧ 𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣

)
(4)

(𝑠, 𝜌, 𝐵) G
load-us

[𝛼 ] (𝑠′, 𝜌 ′, 𝐵′ ) ⇐⇒
©­­­­­«

∃𝑣, 𝐵1, 𝐵2 .Unsynced(𝑠, 𝐵) ∧ (𝑣, 𝑣) ∈ mstate(𝑠↾BCell )∧

𝑠′ = 𝑠 · 𝛼𝛼𝛼:::𝑀.load · 𝛼𝛼𝛼:::𝑣 ∧
(
(𝐵 = 𝐵1 · 𝐵2 ∧ last(𝐵1 ) = store(𝑣) )
∨(fstate(𝜌 ) = 𝑣 ∧ 𝐵1 = 𝜖 )

)
∧

lin(𝜌 ′ ) = merge(lin(𝜌 ), 𝐵1 ) · 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 ∧ 𝐵′ = 𝜖

ª®®®®®¬
(5)
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{invoke𝛼 (load) ◦ 𝐼 }
1: load( ) {

{𝐼 ∧𝛼𝛼𝛼:::load ∈ 𝑠𝑂 ∧ (Flushed ∨ Unflushed ∨ Unsynced) } // 𝑃load
2: 𝑣 ← 𝑀.load( ) ; // load-f/load-uf/load-us{

𝐼 ∧
(

(Flushed ∧ last(𝜋𝛼 (𝜌 ) ) = 𝑣)∨(
Unflushed ∧

(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌 ) ) = 𝑣

) ))} //𝑄load

3: 𝑛 ← 𝐶.get( ) ;{
𝐼 ∧

(
(𝑛 = 0 ∧ last(𝜋𝛼 (𝜌 ) ) = 𝑣)∨(

𝑛 ≠ 0 ∧
(
∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌 ) ) = 𝑣

) )) ∧ (Flushed ∨ Unflushed)}
4: if (𝑛 ≠ 0) {{

𝐼 ∧ (Flushed ∨ Unflushed) ∧ (∃𝐵′ .𝐵′ · 𝛼 ′𝛼 ′𝛼 ′:::store(𝑣) · 𝛼𝛼𝛼:::load ⊑ 𝐵 ∨ last(𝜋𝛼 (𝜌 ) ) = 𝑣)
}

5: 𝑀.flush( ) ; // flush

{𝐼 ∧ last(𝜋𝛼 (𝜌 ) ) = 𝑣}
6: }

{𝐼 ∧ last(𝜋𝛼 (𝜌 ) ) = 𝑣}
7: ret 𝑣
8: }
{returned𝛼 (load) ◦ 𝐼 } {⊤}

Fig. 6. A Proof Snippet of the load operation of FLiT Memory Cell

Load from Flushed State. When the underlay memory cell is at the Flushed state, i.e., there are

no buffered operations and 𝐵 = 𝜖 , then, the current memory content fstate(𝜌) is exactly the same

as the content in the underlay memory cell 𝑣 . Therefore, we can simply extend the linearized prefix

lin(𝜌) in 𝜌 with 𝛼𝛼𝛼:::load ·𝛼𝛼𝛼:::𝑣 by reordering the pending load to the place and add the response as (3).

Load from Unflushed State. When the underlay memory is at the Unflushed state, there are

different possible values for the persisted content. Although the underlay load will load the most

recently buffered value 𝑣 , we do not know whether 𝑣 has been persisted or not. If a crash happens

before returning from the current overlay load, this value may be lost from the memory and we

are not supposed to linearize 𝛼𝛼𝛼:::load · 𝛼𝛼𝛼:::𝑣 to lin(𝜌). Therefore, instead of linearizing it at this point,

we choose to append the pending load to the buffered list 𝐵 so that a subsequent flush operation

from either the current program or other threads can help linearize it as (4).

Load from Unsynced State. The most special case is when the load is executed after a crash

with some buffered store not flushed yet. As explained before, both the buffered and the persisted

contents may have various values depending on previously buffered stores. The load operation

will determine the actual content in the memory cell, which reveals and linearizes the operations

that are persisted before the crash, making it an external linearization point across crashes.
Figure 7 shows an example of this kind of load operation. After a buffered store(2) operation,

the persisted data has not been synchronized with the buffered value 2 since no flush has been

performed, and the system crashes at this moment, resulting in a state with unknown content of

the buffered cell. Just like (4), buffered store operations will be put into the list 𝐵 instead of directly

linearized into 𝜌 . If the result of the load operation following the recovery is 2, like in this example,

it implies that the buffered store operation has been persisted before the crash, and thus we can

linearize the store(2) cached in 𝐵 followed by the current load operation. In the other case, where

the load after recovery gets 1, we know the buffered store operation failed to persist, and thus we

do not linearize the store(2) and instead remove it from the list 𝐵.

We follow this pattern and modify the proof configuration as (5). We maintain as an object

invariant that any persisted value in the underlay memory corresponds to some store in 𝐵 or lin(𝜌).
Based on the return value 𝑣 of the underlay load, we decide how to handle buffered operations
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Fig. 7. External Linearization Point and Crash: the tables above the timeline show the content of the linearized
trace 𝜌 and the ghost list 𝐵 in the first two rows and the mstate content in the remaining rows. 𝑠 (−) is a
shorthand for the store(−) operation.

in 𝐵. If 𝑣 is the result of some store(𝑣) in 𝐵, then we know this store(𝑣) has persisted before the

crash, and we linearize all operations 𝐵1 (by reordering them before the crash, adding responses to

invocations in 𝐵1 and putting them after their corresponding invocations) in 𝐵 preceding this store
into lin(𝜌) along with the current load operation and discard what remains in 𝐵.

Then by merging these three branches into one Hoare quadruple through the disjunction rule

and weakening the post-condition to the stable 𝑄load, we prove the Hoare quadruple

R[𝛼],G[𝛼] |=𝛼 {𝑃load}𝑣 ← 𝑀.load(){𝑄load}{⊤}

at line 2 in Figure 6. According to the Prim rule, the quadruple is provable because we can prove

G ⊢𝛼 {𝑃load}𝑣 ← 𝑀.load(){𝑄load} by our reasoning in previous paragraphs, i.e., any update obeys

the rewrite relation⇝†𝐹 , and other entailments and stability checks are all true.

The post-condition 𝑄load indicates that either the current load is linearized and it is obvious that

the returned value 𝑣 is equal to the linearized value 𝑣 , or the state is unflushed and the current load
is buffered in 𝐵. In the second case, the proof that remains to be done for the rest of commands is

still non-trivial. Specifically, the current load may be linearized by some external operations, or it

will be linearized when the flush at line 5 takes place and we need to prove it is a valid linearization

step. The proof of either case will follow the outline in Figure 6 and we can prove (1). We can also

prove (2) and we refer readers to the TR for its detailed proof.

5.4.2 Recovery Procedure Proof. The FLiT object has no recovery procedure, and therefore we use

the empty recovery signature 𝑅∅ := {𝑟∅} with the recovery program,𝑀 [𝛼]𝑟∅ := r() { ret ok }.
According to the Recover Impl rule, we need to prove the hexad ID,⊤ ⊨𝛼 {𝐼 }𝑀 [𝛼]𝑟∅ {𝐼 }{𝐼 } for 𝑟∅,
which reduces to the idempotence of the invariant w.r.t. crashes, i.e., 𝐼 ⇒ 𝐼 .

As we have shown R[𝛼],G[𝛼], 𝐼 [𝛼] |=𝐹
𝛼 𝑀 [𝛼] and 𝐼 |=𝑅𝛼 𝑀 [𝛼] for any 𝛼 ∈ Υ, according to the

Object Impl rule, we prove ⊢ 𝑀FLiT : (𝜈 ′BCell ⊗ 𝜈
′
Counter, 𝜈BCell ⊗ 𝜈Counter) → ⟨𝜈 ′FLiT, 𝜈FLiT⟩, i.e., the

FLiT memory cell is durably linearizable. Based on the FLiT memory cell, we implement a durable

version of the one-shot write-snapshot object [6], a famous interval-sequential [7] concurrent

object. We prove its linearizability using the logic in Oliveira Vale et al. [31] and use the FLiT
correctness theorem 1.1 to derive its durable linearizability.

We also prove the transactional file system to be crash-aware linearizable with the crash-aware

linearizability variant of CLHL. It demonstrates CLHL’s ability to verify non-trivial recoveries,

and to decompose complicated systems into multiple layers with simpler proofs and then easily

compose these proofs to obtain the originally challenging proof of the entire system.
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6 Related Works
Game Semantics. Our game semantics model is directly based on that of Ghica and Murawski

[16], Oliveira Vale et al. [31], and our use of object-based game semantics traces back to Oliveira Vale

et al. [30], Reddy [36, 37]. To develop our crash-awaremodel, we indirectly made use of insights from

Mellies [28]. In its goal of describing systems written in imperative languages, our game semantics

is related to some of the work by Ghica and Tzevelekos [17], Koenig and Shao [25]. It is important

to note that crashes are not accurately modeled as a separate computational agent responsible for

issuing crashes: crashes are instantaneous and pervasive, synchronous across components, are not

invoked, and are unimplemented. Because of this, our crash-aware model is rather unorthodox in

that it breaks the tradition of having only two players (Opponent and Proponent) by adding an extra

player for crash events. It models crash events differently from usual moves in traditional game

models by having crash events happen instantaneously and synchronously across all components,

while typically, a move belongs to a single component and happens mostly asynchronously. As

far as we are aware, this is the first game semantics of its kind. Because of this, while we build on

the model from Oliveira Vale et al. [31] and benefit significantly from the theory there, our model

needs to address the intrusive effects of properly modeling crashes.

Linearizability with Crashes. We already discussed some of the history of linearizability criteria

with crashes throughout the paper [2, 4, 19, 22]. In our paper, we address strict linearizability (in

the context of full-system crashes) and durable linearizability. We generalize both of them by not

requiring the linearized specifications to be atomic and by allowing for blocking objects. This

makes our variations of these linearizability criteria closer to interval-sequential linearizability [7].

We formulate these criteria in the style of compositional linearizability [31], which is novel. This

allows us to give simple proofs of locality, develop a compositional verification framework around

these criteria, give the first proof of observational refinement properties for these two criteria, and

provide a counterpart to the analogous result proved for Herlihy-Wing linearizability [14] and

for compositional linearizability [31]. We also discover that the inherent notion of linearizability

to crash-aware objects is the linearizability criterion we called crash-aware linearizability (§4)

satisfying locality and observational refinement. Although related to strict linearizability, it does not

appear elsewhere. We note that while crash-aware linearizability is the compositional linearizability

[31] one gets from our model Crash, our formulations of strict and durable linearizability impose

new challenges and new structures, in particular, because they relate two distinct models of

computation (concurrency with and without crashes). We conjecture that this different structure

can be reconciled with that from compositional linearizability through a weakening of the notion

of a Grothendieck fibration, following ideas from functorial refinement [29].

Verification with Crashes. There are approaches for verifying systems with crashes that do not

involve linearizability. Much of the work on this line has been done in the context of file system

verification. A perhaps notable start is the development of Crash Hoare Logic [11], later refined

into recovery refinement [8], and generalized to handle concurrent systems [9, 10]. Of these, only

Chajed et al. [8], which only handles sequential systems, formally proves a refinement theorem that

enables building large systems. The later variants that handle concurrency lack such a contextual

refinement theorem. These works, different from ours, have been mechanized.

Another important work is Khyzha and Lahav [24], which proves a contextual refinement

theorem for programs with crashes. Quite interesting is the fact that their approach is reminiscent

of that used by Oliveira Vale et al. [31] and by us, in that they define a notion of refinement by

composition with a “Most General Client”. This most general client seems to be a special case

of the copycat strategies that appear in our game models. Since they do this using operational
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semantics, we believe their work is further evidence of the practicality of our approach. Moreover,

their programming language features a buffered memory interface with global flushes, which our

example does not. Despite the similarities, they only address linearizability by providing a few

examples where linearizability specifications can be encoded in their framework, but they do not

describe a generic framework to do so, nor prove a formal connection with linearizability. Modeling

a memory model with global flushes in our model is straightforward: its specification is almost the

same as our buffered memory cell arrays, but with a requirement of proving a memory separation

property, like they had to do. We do not do this here as it was not required for our examples.

A recent line of work proves linearizability specifications, but only for a single component [13],

and focuses on data structures implemented on top of NVM only. It is quite impressive in that it

assumes a weak memory model, which requires handling weak consistency models, which we do

not. Despite that, they do not provide a program logic and are closer to axiomatic approaches, which

could hinder scalability. It is unlikely that their framework could be generalized to a compositional

verification methodology without significant effort.

Concurrently to our work Bodenmüller et al. [5] verified the FLiT library and have a mechanized

proof of correctness. Part of their simulation-based technique is reminiscent of our use of refinement

and dur(−), which they define as a specific transformation of a state-transition system into another

and do not note its relationship to the structure of some compositional model (which they do not

develop). Their technique is restricted to durable linearizability w.r.t. atomic specifications and

is specialized in verifying persistency libraries over NVM. Our work is, therefore, significantly

more general in scope. Our FLiT correctness theorem shows that linearizable objects in the sense of

Oliveira Vale et al. [31] are transformed into durable linearizable libraries in our sense, and therefore

applies even to non-atomic and blocking objects, proving a stronger correctness theorem for FLiT
(in fact, stronger than the FLiT author’s informal claim of correctness, for the same reasons).

Our program logic is the first to verify a linearizability criterionwith crashes. It is based on Khyzha

et al. [23], Oliveira Vale et al. [31], and takes inspiration from Crash Hoare Logic and Argosy [8]. It

differs from the aforementioned works in that it proves durable, and crash-aware linearizability

specifications. The compositional framework, which we directly connect with our program logic, is

the only one that simultaneously provides refinement, linearizability specifications, and vertical

and horizontal composition. Our theory allows us to state the correctness of systems like FLiT [39].

We also show we can verify a simplified variant of a file system interface. Note that previous file

system interfaces are not verified against linearizability specifications, which are deemed as more

intuitive than the kind of specifications one gets from HOCAP style specifications [12, 38].
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