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Crash-safety is an important property of real systems, as the main functionality of some systems is resilience to
crashes. Toward a compositional verification approach for crash-safety under full-system crashes, one observes
that crashes propagate instantaneously to all components across all levels of abstraction, even to unspecified
components, hindering compositionality. Furthermore, in the presence of concurrency, a correctness criterion
that addresses both crashes and concurrency proves necessary. For this, several adaptations of linearizability
have been suggested, each featuring different trade-offs between complexity and expressiveness. The recently
proposed compositional linearizability framework shows that to achieve compositionality with linearizability,
both a locality and observational refinement property are necessary. Despite that, no linearizability criterion
with crashes has been proven to support an observational refinement property.

In this paper, we define a compositional model of concurrent computation with full-system crashes. We
use this model to develop a compositional theory of linearizability with crashes, which reveals a criterion,
crash-aware linearizability, as its inherent notion of linearizability and supports both locality and observational
refinement. We then show that strict linearizability and durable linearizability factor through crash-aware
linearizability as two different ways of translating between concurrent computation with and without crashes,
enabling simple proofs of locality and observational refinement for a generalization of these two criteria. Then,
we show how the theory can be connected with a program logic for durable and crash-aware linearizability,
which gives the first program logic that verifies a form of linearizability with crashes. We showcase the
advantages of compositionality by verifying a library facilitating programming persistent data structures and
a fragment of a transactional interface for a file system.
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1 Introduction

In this paper, we develop a compositional account of linearizability under full-system crashes.
By a full-system crash, we mean a crash that results in all agents of a system failing or being
reset. This could result from a power outage, a user holding the power button on their computer,
a fatal crash in an OS, a critical component failure, etc. By compositional, we mean that verified
components can be freely composed vertically and horizontally so that the composed system is
correct by construction, in that no side conditions are necessary to derive its correctness from
the correctness of its components. As a result, we obtain a framework for verifying large-scale
crash-aware systems against linearizability. To see why compositionality is important, consider
one of our main examples: the FLiT library [39].

The FLiT Library. Implementing persistent data structures, even when non-volatile memory
(NVM) is available, is notoriously challenging. For instance, one of the challenges when program-
ming with NVM is that it provides a buffered interface BCell. We can encapsulate the operations of
a buffered memory cell in the following signature, where 1 stands for some singleton set (we will
write () € 1 if it is an argument, and ok € 1 if it is a return) and Val a set of memory values:

BCell := {load : 1 — Val,store : Val — 1,flush: 1 — 1}

What this signature expresses is that BCell provides three operations: load(), which takes unit
() € 1asargument and returns some value in Val; store(v), which takes a value v € Val as argument,
and returns the unit ok € 1; and flush(), which takes unit () as argument and returns a unit ok.
The signature BCell provides the syntax of the operations of a buffered memory cell. It must be
paired with a specification defined later, which provides the semantics of the operations. Such a
specification would state that stores are not guaranteed to persist immediately; instead, they are
buffered and persist only when the buffer is non-deterministically flushed or explicitly flushed by a
flush() invocation [34, 35]. In other words, once a crash happens, a load is only guaranteed to read
a value no older than the latest flush. The explicit flush operation guarantees a buffer flush at a
significant performance cost, so in practice, one would like to minimize its usage. For instance, in
the trace (where ag, a1, @;, and a3 are the names of the agents performing the operations):
ap:store(0) - ap:ok - ap:flush() - ap:0k - ay:store(1) - ay:0k - ap:load() - @z:0 - § - as:load() - a3:0”

the value v must be v = 1, as 1 is currently the buffered value. Meanwhile, either v’ = 0 (the value
at the latest flush), or v’ = 1 (which could have been non-deterministically flushed from the buffer).
This non-determinism of the value of a load after a crash complicates programming with NVM.

Some works attempt to facilitate programming persistent data structures by providing more
robust persistent objects than those available directly from the underlying NVM, which usually only
provides buffered memory cells. One such work is FLiT, a C++ library which provides a wrapper
for the BCell operations. Specifically, in its essence, FLiT provides an object with signature

FLiT := {load : 1 — Val, store : Val — 1}.

As is traditional in the linearizability literature, we use a set of valid concurrent traces v’ to represent
objects. v' may be further abstracted by providing a set v of less concurrent traces (often atomic,
i.e., traces where every invocation is immediately followed by its response) with respect to which
the traces in v’ are linearizable!. In the context of durable linearizability [22], v also differs from
its linearized specification v in that v" has explicit crashes while v does not. More precisely, durable
linearizability requires that ops(v’), the crash-less specification obtained by removing all crash
events from traces in v/, is linearizable (in the usual sense) w.r.t. v.

We specify the FLiT object vf, .+ to be durably linearizable to viit, the usual crash-less atomic
memory cell. This should be understood as stating that the FLiT operations are persistent in vf, 1,

1We take the convention that a primed specification is a concrete specification, and the un-primed an abstract specification
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meaning that a load after a crash does read the most recently written value, up to happens-before
reordering. FLiT’s implementation Mg 7, which runs on top of a buffered memory cell object V’BCe”
and of a volatile counter object v ., does this by: (1) always flushing stores; (2) using the counter
to keep track of when flushes are necessary; (3) having loads only flush when the counter marks
that a flush is necessary. The counter specified by v(. ... is volatile in that it lives in volatile
memory, so after a crash, a new instance is created with the initial value of 0. The code Mg ;7 for
our simplified formulation of FLiT is found below in Fig. 1.
For instance, a buffered memory cell allows for

the following trace: Import B:BCell

ap:store(1) - ag:load() - ay:1 - 4 - ag:load() - az:v Import C:Counter
where either v = 0 (when the buffer containing 1
load () store(v)

has not flushed before the crash) oro =1 (when [ — 5.102d0); { C.incQ;
the buffer is flushed before the crash). If v = 0, if(C.get() != @) B.store(v);
the trace is not durably linearizable to the usual { B.flush(); 3 B.flushO);

. . . return v; C.dec();
memory cell specification because a 0 is read after return: }

1 is read with no store(0) to justify it.

Meanwhile, when using FLiT, the call to
store(1) must execute at least up to the B.store(1) invocation (as load() manages to read 1). This
means that the call to store(1) will have executed C.inc(). Assuming it only executes up to re-
ceiving the response B.ok to its B.store(1) call (otherwise, it executes a flush). The a;:load() call
will execute to completion, so it will call B.load() and receive B.1 as response. Then, it will read 1
from C.get(), and will execute B.flush() before returning 1. Hence, when the crash 4 happens, the
buffered memory cell has been flushed, guaranteeing that any load() calls after the crash will read
1. Therefore, calling the memory operations using FLiT guarantees that v = 1.

The FLIiT paper claims that: “Using the library’s default mode makes any linearizable data
structure durable [...]", which they do not prove. In fact, it is challenging to state this theorem without
a compositional model of crash-aware computation, as it concerns discussing the composition
of arbitrary clients with FLiT. In addition, even if such a compositional model were available, it
must provide good support for durable linearizability and be closely connected with a concurrent
compositional model without crashes, also providing good support for usual linearizability [20]. The
reason for this is that this statement relates an implementation that assumes the usual concurrent
memory and implements a linearizable object, with an implementation that runs on top of the crash-
aware FLiT library and implements a durably linearizable object. No framework for verification of
concurrent systems with crashes allows for the correctness of FLiT to be stated in full formality,
much less for it to be proved and used to build provably correct durable components using a
crash-less component (i.e., one whose specification does not involve crashes) which has been
previously verified against a linearizability specification.

Using our compositional account of linearizability with crashes, we prove the following FLiT
correctness theorem (v(.,, is any crash-less object Herlihy-Wing linearizable to vr).

Fig. 1. FLiT Memory Cell Implementation Mgyt

ProposITION 1.1 (FLIT CORRECTNESS). For any object signature E, writing vy, = ®ie1V¢ for
the horizontal composition of several memory cells, if v}, ;M is an object linearizable to vg then,

writing v’BMem = ®i€1v’BCe”, it follows that VI,SMem; MegyiT; vol(M) is durably linearizable to v.

The — ® — operation stands for horizontal composition, which composes two objects into a single
object, allowing operations from both components to be issued by a client. Therefore, v}, defines
a memory array. M is code implementating a new object with signature E using the memory array
VlMem' The —; — stands for vertical composition, so that V/,v\em; M stands for the object obtained by
running the implementation M on top of the memory array. Similarly, vg,,. . is a buffered memory
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array. vol(M) adds crash semantics to M by running it in each epoch (the period in between crashes),
so that véMem; MEyiT; vol(M) is the object obtained by running M on top of the FLiT wrapper Mgt
around the buffered memory array.

®) -
| |

VSnapshot ~ VSnapshot

(e)

E-CRY

v
Snapshof Snapshot

MSnapshot (c)
’ ’

(a)

/ dur / dur
/ dur ylodury Ve, Wy
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Muit

, ,
(d) VBcell | ® | VCounter

, ,
VBcell | ® | VCounter
®

’ 4 ’ 4
VBcell ~ VBCell VCounter ~ VCounter

Fig. 2. (a) Using our program logic for durable linearizability, we verify the FLiT implementation; (b) Using
the program logic for compositional linearizability we verify the crash-less snapshot object; (c) Using the FLiT
correctness theorem, we lift the crash-less snapshot object into durably linearizable snapshot object running
on top of a FLiT array; (d) Using vertical and horizontal composition, we obtain (e) a durably linearizable
snapshot object running on top of an array of buffered memory cells and volatile counters.

We prove this by developing a compositional theory of durable linearizability which supports
both locality and observational refinement (where we write v/ 44 v for “v’ is durably linearizable
to v”), proving locality and observational refinement properties for durable linearizability, and then
introducing a program logic for verifying individual components to be durably linearizable. Using
our program logic, we show that (depicted diagrammatically in Fig. 2 (a)):

/

7
PROPOSITION 1.2. (V(yunter ® Vhcell

); MrLiT is durably linearizable with respect to veit.

(Véounter @ Vacen)s MrLiT is the object obtained by running the code in Fig. 1 on top of the volatile
counter v¢ . and the buffered memory cell .V/BCe‘IIZ By using an obs‘ervational refinement prope.rty
for crash-aware linearizability, a novel linearizability criterion we introduce, we prove this using
instead the linearized specifications for the counter and the buffered memory cell, greatly simplifying
its proof by only considering atomic traces. By verifying that Mgt is durably linearizable, we can

use locality (Prop. 1.4) and observational refinement (Prop. 1.3) to prove FLiT’s correctness.

PROPOSITION 1.3 (OBSERVATIONAL REFINEMENT). An object v, : A is durably linearizable to v 4 if
and only if whenever an implementation M implements a concurrent object linearizable to vp using
va, vol(M) implements an object durably linearizable to vg using v/,.

ProrosITION 1.4 (LocAariTy). For v1’4 DA, v% :Bandvy : A,vg : B:
v dur and vy dur vy if and only ifv, ® vy dur v, ® vp

While the original paper on durable linearizability claims it satisfies locality, it does not do so
by formalizing horizontal composition. Meanwhile, our locality statement is directly formulated
within our compositional model of computation with crashes, which is defined independent of any
notion of linearizability. This makes our locality theorem much stronger as it interacts well with
refinement and vertical composition. Observational refinement, however, has never been shown for
any linearizability criteria with crashes. Our program logic is the first to verify any linearizability
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criteria with crashes. Moreover, as it is necessary to verify the FLiT library, our program logic can
reason about external linearization points and helpings [26], even across crashes.

We further showcase the benefits of compositionality and of the FLiT correctness theorem by
showing that we can lift a crash-less interval-sequential linearizable snapshot object [7] into a
durable one (Fig. 2 (b)). We do this by first verifying the write-snapshot implementation Msnapshot
from Borowsky and Gafni [6] using the program logic of Oliveira Vale et al. [31, 32]. The imple-
mentation uses a (crash-less) memory cell object v(,, (which is Herlihy-Wing linearizable to veyir)
to implement an object with interface Snapshot with a single operation write_snapshot:

Snapshot := {write_snapshot : Val — P (Val)}

The operation write_snapshot writes the current value to the memory and returns a set of values
that have been written to the object before. The implementation Mspapshot Uses one memory cell
per agent @ € S in the snapshot system to implement the Snapshot object.

Using the soundness theorem for their program logic [31], we obtain a crash-less interval-
sequential linearizable object. Because we formally connect our model and durable linearizability
definition to their model, we can then use the FLIiT correctness theorem to obtain that the write-
snapshot object is interval-sequential durably linearizable in the model with crashes. Note that
this also showcases that our linearizability criteria and program logic are all generalized to handle
interval-sequential objects. We display this setup in Fig. 2 (e).

While durable linearizability is a good criterion for specifying persistent objects, it is inept
at expressing objects with less persistent behaviors, such as volatile objects, buffered objects,
or objects with hybrid crash behaviors (e.g., horizontal compositions of objects with different
persistency guarantees). Therefore, we use the methodology of compositional linearizability [31] to
derive the inherent notion of linearizability to our compositional model, which we call crash-aware
linearizability. We show that this criterion, though simple, is novel to our work and satisfies locality
and observational refinement. Then, we show that durable linearizability and strict linearizability
factor through crash-aware linearizability as different ways to translate crash-aware linearizable
objects to the crash-less model from compositional linearizability. We showcase that crash-aware
linearizability is a robust verification criterion by verifying a fragment of a transactional file system
interface featuring recovery and objects with many different persistency guarantees.

Summary of Main Contributions.

o A compositional model of concurrent computation with crashes directly connected to the model
of crash-less computation used in the compositional linearizability paper [31].

o A novel linearizability criterion, which we call crash-aware linearizability, is apt for specifying
objects with a variety of crash behaviors.

e Compositional formulations of strict and durable linearizability, in particular, generalizing them
away from atomic specifications.

o Proofs of locality, formulated for the first time in a compositional style, for crash-aware, strict,
and durable linearizability.

o The first proofs of observational refinement properties for any linearizability criterion with
crashes, which we show for crash-aware, strict, and durable linearizability.

e Two variations of a program logic for showing linearizability of crash-aware components: one
for crash-aware linearizability and the other for durable linearizability. This makes for the first
program logic that can prove linearizability specifications for components with crashes.

o A proof of correctness for FLiT and a proof that the snapshot object of Borowsky and Gafni
[6] is interval-sequential linearizable, yielding a verified durable interval-sequential snapshot
object using the FLiT correctness theorem.
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e A proof of correctness, against crash-aware linearizability, of a simplified file API, involving
objects with a variety of crash-behaviors and a few layers to exemplify compositionality under
heterogenous crash-behaviors.

We present a reduced treatment of our results, which emphasizes the main points and omits all
proofs. A full account of our results may be found in our extensive TR [33].

2 Three Linearizability Criteria under Crashes

We start the technical core of our paper by defining and contrasting three different linearizability
criteria under crashes: crash-aware linearizability, strict linearizability and durable linearizability.
We assume a crash model with full-system crashes, that is, a crash event crashes all agents in the
system. This is appropriate for, for example, a multicore machine but not for a distributed system,
which requires individual crashes for each node. It serves, however, as a crucial stepping stone
toward a realistic compositional modeling of distributed systems with crashes, as each node is
often a multi-threaded system over a multicore machine. We define the criteria formally but omit
many technical details of the compositional model, which we explain later in §3.

2.1 Preliminaries

Our model is parametrized by a set Y of agent names « € Y. Events look like a:m denoting that
agent a performs an invocation or response m. If M denotes the given set of events then s € M*
is said to be a crash-less well-formed trace if its projection 7, (s) to only events performed by o
alternates between invocations and responses, and denote the set of all such traces by P;?I“C.

We denote a crash event by 4. We say a trace s € (M + 4)* is a well-formed crash-aware trace if
itis of the forms; - 4 s34 -...- 4 - s, where each s; € P{j"°. Given this decomposition, we define
the number of epochs ||s|| of s to be ||s|| := n. The trace s; is called the i-th epoch of s and denoted
by epo;(s) :=s;. We denote the set of all well-formed crash-aware traces over M by Pid.

As usual with linearizability, a specification is a non-empty, prefix-closed set of well-formed traces.
If the specification v only has crash-less traces, i.e. v C Py, we call it a crash-less specification,

and if it has crash-aware traces, i.e. v C ]wa, we call it a crash-aware specification.

Toward defining our linearizability criteria, we start by defining a rewrite system that models the
preservation of happens-before ordering from the usual linearizability definition in a more localized
way. This formulation has been used in many developments on linearizability [2, 14, 18, 31].

Definition 2.1. We define a string rewrite system ~» with local rewrite rule:
scam-a'm’ - tws-a'tm -am-t
whenever a # a’ and one of the following two conditions hold:

e m and m’ are both invocations or both responses, or
e m is an invocation and m’ is a response.

The definition of linearizability from the compositional linearizability paper is then given by:

Definition 2.2. A crash-less trace s € P{}"° is linearizable to a crash-less trace t € P{"° when
there exists a sequence of responses sp € M* and a sequence of invocations so € M* such that
s-sp w t-so. We write s ~ t when s is linearizable to . We say a crash-less specification v/
linearizes to another one v, written v/ ~ v, when every trace s € v’ linearizes to some trace t € v.

Note that ¢ is not required to be atomic, as in Herlihy-Wing linearizability, and that so is not
required to contain every pending invocation of s - sp, unlike most definitions of linearizability. If ¢
is an atomic trace, then this definition is equivalent to the original Herlihy-Wing definition [18, 31].
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2.2 Linearizability Under Full-System Crashes

We now define crash-aware linearizability, the criterion we propose in this paper. It requires that
each epoch of a trace s linearizes, in the crash-less sense, to the corresponding epoch of ¢.

Definition 2.3. A crash-aware trace s € ]P’fw is crash-aware linearizable to a trace t € Pid when
sl = lell and Vi < |Is]l.epo;(s) ~ epo;(t)
We denote this as s £, t, extending the notation to specifications as with linearizability (Def. 2.2).

Observe that crash-aware linearizability relates crash-aware specifications to crash-aware spec-
ifications. This is unusual in the literature on linearizability under crashes, as the other criteria
relate a crash-aware specification to a crash-less specification. We discuss the reasons for this later
when we have defined two other linearizability criteria and can better compare them.

We now define strict linearizability [2]. Our definition differs from the original one in that it
specializes it to full-system crashes (instead of allowing for each agent to crash independently),
removes the notion of aborted executions, and generalizes away from atomicity to allow for non-
atomic linearized specifications. The first two changes were already considered in Ben-David et al.
[3] and make the criterion appropriate for the settings we are interested in, such as NVM and file
systems. The later change goes along the lines of the way that Castarieda et al. [7] and Oliveira Vale
et al. [31] generalize Herlihy-Wing linearizability [20]. If we restrict our definition so that the
linearized trace must be atomic, we obtain the same criterion considered by Ben-David et al. [3].

Definition 2.4. For a crash-aware trace s, we define, whenever well-formed, the crash-less trace
ops(s) := epo; (s) - epo,(s) - ... epoj 5 (s)

We say a crash-aware trace s € wa is strictly linearizable to a crash-less trace ¢, written s 2 ¢,
when there exists a crash-aware trace ¢’ such that s £, ¢’ and ops(t’) = ¢.

Note that our definition of strict linearizability shows a clear factoring of strict linearizability as
crash-aware linearizability followed by crash-removal.

The third and final linearizability criterion we consider here is durable linearizability [22]. Durable
linearizability is more expressive than strict linearizability [3, 19] in that it considers more objects
to be linearizable. This comes at the cost of the extra assumption on the model that new agent
names are used in each epoch, which we call the durability assumption.

Definition 2.5. We say a crash-aware trace s € wa is durable when:
Vi,j < Isll.i #j = Y(epo,;(s)) N Y(epo;(s)) =@

where Y(¢) is the set of agents appearing in a trace t. We denote by P}j\,;” c wa the subset of
well-formed crash-aware traces that are durable.

When a trace s is durable, ops(s) is always a well-formed crash-less trace. Durable linearizability
is then defined in terms of usual crash-less linearizability. Our definition, similarly to our definitions
of the other linearizability criteria we consider, generalizes away from atomicity by allowing
linearized traces to be non-atomic and allows for the specification of blocking objects, as it does
not require all uncompleted pending invocations to be removed. It is, however, fully equivalent to
the original definition of durable linearizability if we require that the linearized trace be atomic.

Definition 2.6. We say a durable trace s € P?V'[” is durably linearizable, written s 94 ¢, to a
crash-less trace t when ops(s) ~ f.
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Note that durable linearizability corresponds to the inverse factoring to strict linearizability,
one first removes crashes and then uses crash-less linearizability. These two factorings play an
important technical role in our proofs. Moreover, it is possible to show that both criteria factor (in
a different sense) through crash-aware linearizability.

ProposITION 2.7.
oIf s’ &, s ands St t thens’ 34 ¢t o Ifs’ &, s ands 4 t thens’ du t

Because of this fact, in practice, when verifying durably linearizable objects, we find it useful to
use a crash-aware specification v™¢ satisfying: v/ £, v™ and v™4 dur v This allows us to consider
less concurrent traces within the linearized specification for v’ by linearizing as much as possible
within each epoch of v™9 first. This allows us to obtain the benefits of both crash-aware and
durable linearizability simultaneously: by maintaining both v™d
linearizable specifications, but by manipulating v™¢ we achieve the same level of compositionality
as crash-aware linearizability. This technique is not necessary for strict linearizability because we
can just use crash-aware linearizability directly by always picking v™ so that ops(v™?) = .

and v we can still express durably

2.3 Specifying a Buffered Memory Cell

In §1 we mentioned that we use crash-aware linearizability to specify a buffered memory cell with
signature BCell. As an example, we define here what the linearized specification for a buffered
memory cell implementation would be under crash-aware linearizability.
An example of a trace of a concrete buffered memory cell vi ., is:
ay:store(1) - apzload() - ag:ok - @2:0 - ag:flush() - ay:store(2) - a0k - § - as:load() - a3:1
The trace above is crash-aware linearizable to the following trace, among others:
ay:load() - a:0 - @y:store(1) - ay:0k - ap:flush() - az:0k - @y:store(2) - ay:0k - § - as:load() - as:1

We specify the semantics of the buffered memory cell by a set of traces vy, with only events that
are allowed by the signature BCell. Crashes can happen at any point. To specify the correctness
of v} We require it to be crash-aware linearizable to the atomic linearized specification vgcel.
Because we show observational refinement, we are able to leave V’BCe” unspecified for the sake
of verifying the FLiT implementation, as only the linearized specification will be necessary. The

linearized specification vgcey is then defined by:
S € Vpcell & s is atomic A (Vsy,s2.Yo.s = s; - a@:load() - a:0 - s, = v € snd(mstate(s;)))

where mstate(s) assigns to an atomic complete trace s a set of pairs mstate(s) € Val x Val. A
pair (vp,vp) € mstate(s) consists of a possibility for a value v;, that has persisted and a value v,
currently in the buffer. mstate(s) is then the function inductively defined below (v, € Val is an
identified initial value for the memory cell):

mstate(e) == {(00,00)} mstate(s - ) == {(v,0) | 3’.(v,0") € mstate(s)}
mstate(s - a:store(v) - a:ok) = {(v/,0) | J”.(",0”) € mstate(s)} U {(0,0)}
mstate(s - a:load() - a:0) == {(v/,0) | (v/,0) € mstate(s)}
mstate(s - a:flush() - a:ok) := {(v,0) | (v”,v) € mstate(s)}

The function snd(p) projects into the second component v, of the pair p = (v),0), so that
snd(mstate(s)) = {05 | Jvp.(0p,05) € mstate(s)}.
Note that we could have specified it instead using a labeled state transition system (LTS), in
which case vgce is the set of traces that start from the initial state of the LTS. Either way of defining
vgcell defines the same set of traces.
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2.4 Contrasting Crash-Aware Linearizability

We now compare crash-aware linearizability against strict and durable linearizability. We will not
compare strict and durable linearizability against each other since they are not new to our work,
and refer the interested reader to the following references [3, 19, 22]. We do briefly mention a key
difference that applies to crash-aware linearizability as well. In strict and crash-aware linearizability,
a pending invocation must be linearized within the epoch it was issued. Durable linearizability,
however, allows for a pending invocation to be linearized in (essentially) a later epoch by allowing
those pending invocations to be reordered after events from later epochs. This is what makes it
more expressive than strict linearizability, allowing for more complex crash behaviors, such as
recovering parts of a data structure only when they are demanded by a client, which could happen
several epochs later. As explained in the remark at the end of §2.2 crash-aware linearizability
interacts well with durable linearizability. This will be discussed further in §5.3.

As we saw, both durable and strict linearizability factor through crash-aware linearizability. The
key difference between the two former criteria and the latter is that the former use crash-less
linearized specifications, while the latter uses crash-aware linearized specifications. So let’s refer to
the former as crash-unaware criteria.

Crash-unaware criteria reduce the correctness of an object with crashes to that of an object with-
out crashes. This makes them great at specifying objects with very strong persistency guarantees,
that is, objects whose whole state (or almost) persists after a crash. But it makes them quite deficient
at specifying objects with weaker persistency guarantees such as volatile objects (all of the state is
lost on a crash), objects with hybrid persistency (part of the state is volatile and part of the state
is persistent), or objects whose persistency features some degree of non-determinism (such as in
buffered memory). Some of these issues were already known. For instance, in the original durable
linearizability paper [22], it is noted that the criteria do not behave well when used to specify a
buffered object, requiring them to define an ad-hoc notion of buffered durable linearizability which
does not satisfy locality, making it not compositional.

Consider the simple problem of specifying the correctness of a volatile object. Given a crash-less
specification v, we can construct a crash-aware specification vol(v) of a volatile version of that
object by the Kleene algebra formula vol(v) := (v- 4)* - v.

For example, given the usual atomic counter specification vcoynter, the following trace is allowed
by vol(Vcounter) (the subscript 1 under the Counter operations will be useful later):

s1 = aqtincy - agiok - ap:gety - il - § - aiget; - @3:0

Note that the crash move 4 plays a crucial role in the specification, as the counter only resets to 0
after a crash event (such as the last get event in s;), making the linearized specification deterministic.

Under crash-aware linearizability, a concurrent object v/ correctly implements a volatile version
of a crash-less object v when v’ £, vol(v). With our methods, it is easy to show that

PROPOSITION 2.8. IfV' ~ v then vol(v') £, vol(v).

A consequence of this is that if we have an implementation M that implements a crash-less
object linearizable to vp on top of a crash-less object v4, then if we run M on each epoch on top of
vol(vy4) then M implements an object crash-aware linearizable to vol(vg). Formally,

Vas; M~ vg = vol(v4);vol(M) £, vol(v)

In other words, crash-aware linearizability is able to appropriately specify and characterize the
correctness of volatile objects in a way that is useful to a client.

Now, consider what happens if we try to specify a volatile object using a crash-unaware criterion.
A crash-unaware linearized specification will need to include both of the following traces:

ops(sy) = ayincy - ay:ok - aiget; - az:1 - a3:get, - @3:0 and aygiincy - ap:ok - az:get, - a1 - a3:get; - a3:l
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so that the linearized specification under crash-unaware criteria must admit non-deterministically
resetting the counter at any point. This can happen at any point, but the point at which it happens
is not detectable in the linearized specification, which makes the specification quite weak. This
means that even if some observational refinement theorem (d la Filipovic et al. [14]) holds for
the crash-unaware criterion, the client to the linearized specification will need to contend with
non-determinism, making the contextual refinement, and hence vertical composition, weaker.

This issue is compounded when considering horizontal composition. Both durable and strict
linearizability are known to satisfy locality. However, those locality theorems introduce even more
non-determinism into the resulting linearized specifications. Consider now a second trace s, for a
second counter independent of the counter in play s;

s = aqtincy - aq:ok - az:get, - ap:l - 4 - as:get, - as:0

Any trace in their parallel composition s; ® s, (the set of well-formed crash-aware interleavings
of s; and s;, defined in §3) synchronizes on the crash, so both counters reset their state at the same
time. For example, the following crash-aware trace belongs to s; ® s:

ay:incy - a:ok - agiincy - ag:ok - az:get, - ap:l - ap:iget, - ap:1 - 4 - as:get, - a3:0 - asz:get, - a3:0

Meanwhile, the corresponding linearized specifications under durable or strict linearizability
include these traces without the crash event, i.e., ops(s;) and ops(sz). Hence, the following trace is
in their parallel composition ops(s;) ® ops(sz) (the set of their well-formed crash-less interleavings):

ay:incy - ag:ok - ayzincy - ag:ok - az:get; - az:1 - az:get; - @3:0 - az:get, - az:1 - az:get, - a3:0

There is no trace of the concrete horizontally composed volatile counters that is linearizable to

the trace above, as we must at least introduce a crash right before as:get; to justify its return as:0:
ay:incy - ag:ok - agzincy - ag:ok - apiget; - @il - § - asiget; - a3:0 - ap:get, - az:l - a3iget, - a3:0

This makes the trace inconsistent with the semantics of the second counter, as the crash should
also have reset it, so that a:get, should not return a:1. The same kind of argument shows how
crash-unaware criteria fail to accurately handle hybrid and buffered objects (all the traces above
are valid for a buffered counter, for example).

3 A Concurrent Game Semantics with Crashes

So far, in §2 we focused on three linearizability criteria in a unstructured setup. For instance,
we did not enforce typing on specifications. This will not be enough to achieve the degree of
compositionality we seek, especially as we treat objects as open components.

In this section, we discuss our compositional model with crashes in detail. The model is defined
using a simple game semantics. The reader not familiar with game semantics jargon will find the
following approximation useful. A game A, B roughly corresponds to a type; a move of the game A
corresponds to an event of type A which also has a polarity, i.e. its metadata (such as the name of
the agent who issued it, and whether it is a move by the environment or by the system); a play
over a game A is a trace of that type. Crucially, plays can have higher-order types (unlike in most
trace semantics); in particular, we may form the affine implication game A —o B (the type of code
using an object of type A to implement one of type B) whose plays are well-formed traces involving
moves from both A and B; a strategy o of type A is the denotation of some computation, be it a
state transition system, or the semantics of some code. It is represented as some prefix-closed set
of plays? of its type A. Readers looking for comprehensive introductions to game semantics may

21t is folklore that prefix-closed sets of traces are in one-to-one correspondence with equivalence classes of transition
systems under forward-backward simulation [27]. Therefore, all of our results translate to equivalent statements that hold
up to forward-backward simulation. We use a presentation based on prefix-closed sets of traces as it aligns well with the
typical treatment of linearizability, while simplifying many aspects of the presentation and of the compositional structure.
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benefit from Abramsky and McCusker [1], Ghica [15], Hyland [21] though we warn that our model
simplifies several aspects of these game semantics, which are not necessary for our purposes.

3.1 Games with Full-System Crashes

Definition 3.1 (Polarities and Moves). A move set consists of a set of moves M together with an
assignment A : M — },y{O, P}, that is, every move is labeled with the agent who plays it and
whether or not it is an environment (O) or a system (P) move. The elements of },.{O, P} are
called polarities and are denoted by a:O or a:P.

Most of the games we use in practice will be defined by first providing an effect signature. An
effect signature is a collection of operations, or effects, E = (e;);e; together with assignments
par(—),ar(—) : E — Set of a set of parameters par(e) and a set of return values ar(e) for each
operation e € E. This is conveniently described by the following notation.

E ={e; : par(e;) — ar(e;) | i € I}
All the signatures defined in §1 are effect signatures. We call an Y-indexed collection of effect

signatures E = (E[a])qer a concurrent effect signature. Given a concurrent effect signature E we
define a corresponding move set as follows:

Mg = ZaeY(ZeeE[a] par(e) + ZeEE[a]ar(e))
Mie(aze(a)) :=a:0, e € E[a] A a € par(e) Aie(a:v) == a:P, v € ar(e) for some e € E[a]

in other words, moves in M;gp are either a:e(a) for e € E[a] and a € par(e), in which case
Aie(aze(a)) = a:0, or a:v with v € ar(e), in which case A;g(a:0) = a:P.

Definition 3.2. We denote a crash by 4. Given a move set M we write M* for its extension M+{4 }
with a crash move. We also extend its polarity function A into A with the assignment ¢ (4) = 4.

Recall that given a sequence s € M*, we write 7,(s) for the projection of s to its largest
subsequence involving only events by & € Y.

Definition 3.3. A game A = (Ma, Aa, P4) consists of a move set (Mg, A4) and a non-empty,
prefix-closed set of well-formed crash-less plays P4 C ]P’;?Izc satisfying Pa = ||qer 7o (Pa). We write

Pé C Pé for the set P =(Pa-4)" - Py

The set of plays P4 of a game A defines which plays are valid plays within an epoch. It is required
to be an arbitrary parallel compositions of the sequential plays that each agent can perform.
Meanwhile, Pf\, the corresponding set of crash-aware plays, is defined by simply allowing crashes
to happen at any point in an epoch.

Some examples of crash-aware games are now due. The simplest game is the game 1 := (@, @, {€}).
The game 1 has no non-crash moves, and its only crash-aware plays are the empty sequence € and
sequences of crashes § - 4 -...- 4.

Another game is the game 2 = ((Zaer g+ a), Cpex @:0 +a:P), |laer 1{q - a}) where | — stands
for prefix-closure. Unrolling this definition, every agent has two moves: an O-move g (question)
and a P-move a (answer). The only valid sequential plays are q - a and its prefixes, and the valid
plays for the game are interleavings of these sequential plays at each epoch, such as:

aq-a':q-aa-§-a:q-aq-aa-§-a'q

The most important kind of game for our examples are games E generated by effect signatures
E. We can extend the move set (M;g, A;g) into a game with set of valid plays P;g defined by:

PTE :=”aeY l(UeEE[a] UaEpar(e) UUEar(e)a:e(a) . aw)*
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That is to say, locally, each agent € Y is allowed to alternate between making a call to an effect
e(a) in E[«a] or providing a response to the previously issued effect. For instance, recall that we
defined, in §1, a signature BCell encoding the operations available to a buffered memory cell. This
defines a concurrent effect signature BCell[«] = BCell. The corresponding set of valid crash-aware
includes all traces seen in §2.3.

4
plays Py

3.2 Combining Games

We now define a few combinators on games. We start by defining a dualizing operation on move
sets, which swaps the role of environment and system.

Definition 3.4 (Dual Move Set). Given a move set (M, 1) we define the moveset (M*, A*) by
M+ := M and At (m) := A(m)*, where (a:0)* := a:P and (a:P)* := a:O.

In the context of games A, B, C, given s € PfW“MB we define sf4 - € P/évIA andsl_p € Pzév[B to

be the projections to the corresponding components of M4 + Mp, but keeping the crash moves in
the projections too. Similarly, given s € PfWA MM
largest subsequence with only moves in A, B and crashes; we similarly define s[4 —c and s[_ g c.

We now define horizontal composition of games, and the affine arrow.

, we write s[4 p -, for the projection of s to its

Definition 3.5. Fix games A and B. We define the games A ® B and A — B by the following data
Magp = Ma+Mp  Aagp=Aa+Ap  Pagp = {s € Pmysmy | STa- € PAAs|_p € Pp}
Myp = MX"'MB ApopB = /12'+/13 Pyop = {SEPMXJrMB |SFA,_ EPAAST_,B EPB}

It is implicit in this definition that by composing in parallel the two crash-aware plays, the
resulting set of traces synchronizes the crash events, merging them into a single crash event and
then producing any (locally sequential) parallel composition of the subtraces appearing in each
epoch. Consider, for instance, the two plays below on the left, each of type >:

aq aa 4§ aq aa 4§ a:q a:a aq aa ‘ aq aa ‘ a':q a':a
X = ® 4 ® 4 ®

aq aa 4§ a:q ada 4§ a:q a:a a:q aa ‘ a':q a':a ‘ a':q a':a

The resulting set of traces synchronizes the crashes, as depicted on the right. For example, the
following is a valid trace in their horizontal composition:

aq - aa - aq - oaa - é Caq a':q coaa a':a : é : a':q : a’:a : a’:q : a’:a

Similarly, consider the following play s of ¥ — X (on the left):

T aq a':q ‘ a':q sl-y=a:q-a':q-§ -a'q
)
% axq aa ‘ a':q shy-=aq-aa-§-a'q
or, depicted sequentially: @:q - a:q - @’:q - a:a - § - @’:q - &’:q. Note that the crash signal synchronizes
across the source and target components of the play. This models that the crashes are synchronous
across components (they happen in all components at once) and that they are instantaneous (it
takes negligible time for the crash to propagate to components). On the right, above, we see the
projections of s to the source and target components. Importantly, the crash event is retained in
both projections, so it effectively belongs to both components.

3.3 Crash-Aware Strategies

We now define strategies, which are the denotations of both object specifications and code.
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Definition 3.6 (Crash-Aware Strategy). A crash-aware strategy o : A over a game A is a non-empty,
prefix-closed, subset o C p! , which is moreover 4 -receptive in that

Vsea.s-éePf‘ = s-4j€co

4 -receptivity models the usual assumption that crashes may non-deterministically happen at
any point in an execution. It plays a crucial role in proving the locality property.

We specify the semantics of objects using strategies. For example, in §2.3 we specified the
linearized buffered memory cell by a strategy vpcei : TBCell. The denotations of implementations,
such as MLt : TBCell ® TCounter —o FFLIT or Msnapshot : TMem —o FSnapshot mentioned in §1
are examples of strategies with the affine arrow type. Strategies of type A —o B can be vertically
composed, which amounts to the usual motto of “interaction + hiding”.

Definition 3.7. Given strategies 0 : A — B and 7 : B — C we define their vertical composition
0;7:A— Cby: o7 :={sla-c € Pﬁ\_oc | 3s € ((Ma + Mg +Mc)?)*.slap_ €0 Asl_pc €T}

ProrosITION 3.8. Composition of crash-aware strategies is well-defined and associative.
For the reader with familiarity with category theory, we can package all the information above:

Definition 3.9. We denote by Crash the semicategory of crash-aware games, with crash-aware
strategies o : A —o B as morphisms between games A and B, and composition given by —; —.

Unfortunately, and this is a common phe-

nomenon in concurrency models, Crash does

K —_— . Import F Import F
not assemble into a category, as the vertical
composition operation —; — does not have a fa) { fla) {
neutral element. That is, to say, there is no ie:_rF'f(a); :e:_rF‘f(a);
choice of strategies id4 : A — A for which 3 3
ids; 0;idp = o for every o : A — B. This issue

is explained extensively in Oliveira Vale et al.
[31] in the context of concurrent games.

We follow the approach from compositional
linearizability, and start by noting that there
are obvious candidates crashcopy, : A —o A for the neutral elements, which are called the copycat

Fig. 3. Code corresponding to the copycat strategy
crashcopyyp_op 0 TF — TF

strategies and formalize the code seen in Fig. 3. The copycat strategy is idempotent, in that for
all games A, crashcopy 4; crashcopy, = crashcopy . This essentially means that the crashcopy,
at least behaves like a neutral element for itself. In fact, they behave like a neutral element with
respect to any strategy which is a parallel composition of sequential strategies. This fact justifies
defining a class of strategies that behaves well when composed with the copycat:

Definition 3.10. We say a strategy o : A — B is saturated with respect to crashcopy when
crashcopy ,; 0; crashcopyy = o

Since crashcopy is idempotent, it is saturated. Moreover, by definition, crashcopy behaves as a
neutral element for strategy composition of saturated strategies. It is also easy to see that saturated
strategies compose. Note that this means that we can promote Crash to a category by restricting
attention to these saturated strategies.

Saturation for concurrent strategies corresponds to, beyond O-receptivity (the environment can
make valid moves whenever it wants), strategies that are insensitive to certain delays, which might
be caused, for instance, if an agent is preempted. This is typically formalized using the rewrite
system — ~w» — we defined in §2.1 and redefined now in light of our more detailed formalism.
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Definition 3.11. Let A = (Mg, P4) be a game. We define a string rewrite system (P4, ~4) with
local rewrite rules:

o Vm,m' € Ma.VX € {O,P}.Aa(m) =a:X Aa(m') =a’:XAa+d — m-m' ~am -m

o Vm,m' € Ma.Aa(m) =a:OANAy(m’) =’ Prhatd — m-m' ~am' -m

A concrete characterization of saturation for crash-aware strategies is possible, but we do not
cover it here for the sake of space (see the TR). We will soon see an equivalent characterization in
terms of crash-aware linearizability, which will be sufficient for our purposes.

3.4 Refinement and Horizontal Composition

Before proceeding, we briefly address refinement and horizontal composition. We take as our notion
of refinement behavior containment, o C 7, with joins given by set union. This makes all of the
models we discuss into enriched (semi)categories over join semi-lattices, which means that:

PROPOSITION 3.12. Strategy composition —; — is monotonic and join-preserving.

For horizontal composition, recall that we have already defined a game A ® B € Crash. The
tensor can be extended to strategies 0 : A — Band 7 : A" — B’ by:

0®1:={s € Paga'~Bop | STa~B € 0 Asla—p €1}

ProrosITION 3.13. Let Crash be the restriction of the semicategory Crash to strategies saturated
with respect to crashcopy. Then, (Crash, — ® —, 1) defines an enriched symmetric monoidal category.

These definitions permit us to prove Prop. 3.13. This means that — ® — defines a monotonic
and join-preserving functor so that horizontal composition behaves well with respect to both
vertical composition and refinement. This formalizes what we mean when we say that our model
is compositional. It remains to extend this compositional structure to linearizability.

4 Three Linearizability Criteria Revisited

We now revisit the linearizability criteria discussed in §2 from the perspective of our just defined
model and following ideas from compositional linearizability. In particular, we argue that their
methodology recovers crash-aware linearizability as the notion of linearizability associated with
the compositional structure of our model and use their general theorem around locality and
observational refinement to obtain these results for crash-aware linearizability. Then, we extend
these results to strict and durable linearizability by analyzing translations from our crash-aware
model to the crash-less model from compositional linearizability.

4.1 Abstract Crash-Aware Linearizability

In §2 we defined a new linearizability criterion which we called crash-aware linearizability (-£,). We,
however, did not come up with this definition of linearizability. Instead, following the methodology
of compositional linearizability, we have derived it from the structure of the model, Crash.

To understand this, we start by defining the operation K; — : Crash — Crash by the formula

K, 7 := crashcopy 4; 7; crashcopyg

for 7 : A — B € Crash. This operation assigns to 7 the smallest saturated strategy containing 7.

The framework of compositional linearizability proposes that the native notion of linearizability
for crash-aware objects should be equivalent to the refinement v/ C K; v. Indeed, we are able to
show the following characterization of K; —, which provides a concrete characterization of K; v as
the set of all plays that are crash-aware linearizable w.r.t. v.

PROPOSITION 4.1. For any crash-aware strategy v : A it holds that: K, v = {s € ]P’f4 | 3t € v.s L, t).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 352. Publication date: October 2024.



Compositionality and Observational Refinement for Linearizability with Crashes 352:15

It follows immediately from this characterization that
PROPOSITION 4.2. V' is crash-aware linearizable w.r.t. v if and only if v/ C K, v.

This effectively turns linearizability into a refinement property. This has many benefits from the
point of view of verification, as refinement techniques are well-understood. Moreover, since we
derive it in this way, we may use the general category-theoretic result in Oliveira Vale et al. [31] to
obtain locality and observational refinement.

PROPOSITION 4.3 (OBSERVATIONAL REFINEMENT AND LOCALITY).
° v;‘ : A is crash-aware linearizable w.r.t va : A iff for all saturated o : A — B, qu; o C Va0
e Forv, : A,vg:Bandva:A,vp: B: V;‘Af\é,; VA andv}im@ vg if and only if v/, ® vy A va®vp

4.2 Compositional Verification of a File System Fragment

To showcase the benefits of compositionality and to show that crash-aware linearizability provides
a flexible criterion for mixing objects with different, and complicated, crash behaviors, we verify
against a crash-aware linearizable specification a fragment of a file API. Instead of providing a
detailed description, we emphasize the salient aspects to our point (a detailed description is available
in the TR). The system also features recovery, our handling of which is discussed later (§5).

The file system fragment involves four main objects: the file interface File, a disk interface Disk
implemented using a disk array Disk[N] with a finite number N of disks each with S + 1 blocks,
and a write-ahead log Log. The signatures for File and Disk are given below:

write : block_id x file_id x block — 1,

File := read : block_id x file_id — block, Disk := {

write : block_id X block — 1,}
swap : block_id X block_id X file_id X file_id — 1

read : block_id — block

The file interface exposes a two-level structure. At the first level lies a set of folders, each
occupying a single disk block as its inode. For simplicity, the API uses block ids instead of strings
to uniquely identify folders. Each folder contains a set of files identified by their file id. The swap
operation swaps the pointers in the respective folders’ inodes, which provides a symmetric move
operation as seen in actual file systems. The write and read operations are as usual. The file interface
is implemented on top of a disk, providing write and read operations to read and write to a block.

All the objects involved are specified using crash-
aware linearizability. For instance, a single disk is ‘
specified as the horizontal composition of its blocks,
using locality, guaranteeing that its concrete spec- Mite
ification V/Disk : TDisk is crash-aware linearizable
to a specification vp;s : TDisk which guarantees
read and writes are persistent and atomic. The disk
array specification Vl’Disk[N] is required to be crash-
aware linearizable to the horizontal composition of ® vol(Mioci) [S]
N atomic disk specifications vpisk[n] = ®ie[N]VDIsk- | . |
The concrete object vi,, is required to be crash-
aware linearizable to a specification v that en-
sures that writes, reads and swaps are persistent and
seem to happen atomically. All the specifications
also enforce that the recovery routines correctly re-
construct any relevant lost state after a crash.

We implement the replicated disk on top of the disk array by replicating writes to all the disks in
the array in a specific order. Reads to the disk array non-deterministically choose a disk to read

File

,
VLog

, v
® Vbisk LockMapB

Miog |® idpisk

Mbpisk

vol(vegunter) [5]

vol (v, [5] ‘ ®

,
VDisk[N] ‘

Fig. 4. The structure of our File example.
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from, mimicking the behavior of a disk array controller. On a crash, a recovery procedure copies
the contents of the first disks to all disks.

The File implementation Mg for write and read is mostly straight-forward. The swap operation
requires special treatment for its atomicity. As swap operations need to update two different folders
(and thus two different disk blocks), to ensure persistency, we record the operations in a write-ahead
log v| o SO that the recovery routine can finish incomplete operations. The log is itself implemented
on top of a single block of the disk together with a volatile array and a volatile lock (omitted from
Fig. 4). Since the disk is itself equivalent to the parallel composition of individual blocks, we use
locality together with our compositionality properties (the symmetric monoidal structure of the
model) to separate the part of the disk used for the log, from the rest of the disk.

The file system also uses a set of dynamically allocated locks v’LockMapB to guarantee atomicity
when writing to a block. These locks are volatile objects residing in memory that only last for the
duration of a single File operation. Because of this, we use the verified lock from Oliveira Vale et al.
[31] and lift it to a volatile object using Prop. 2.8, benefiting from the fact that we have connected
our model to their model. The whole structure of the example is depicted in Fig. 4.

At this point it is worth remarking that even this small fragment of a file system features a mix
of persistent objects, volatile objects, and objects that fit neither category well. Some of the objects
involved are horizontal compositions of these objects, making them have hybrid crash behavior.
We model all of these objects using crash-aware linearizability, which proves to be robust enough
to verify the whole system compositionally.

4.3 Crash Abstraction

Recall that strict and durable linearizability relate a crash-aware concrete specification to a crash-
less specification. In this section we develop conversions between these computational models,
which serve as a building block for strict and durable linearizability. So, first, we briefly recall that:

Definition 4.4. Given a game A, a crash-less strategy o : A consists of a non-empty, prefix-closed
set of plays o C Py.

The main difficulty in removing crashes from a play s is that the removal may generate traces
that do not satisfy well-formedness. This happens when the same agent has a pending invocation
in one epoch and also moves in a later epoch. So, in the definition of the operation - (read de-crash,
and the same as ops(—)), the projections ops(s) are required to be well-formed plays.

Definition 4.5. Given a game A = (My, A4, P4) we define the game A", by:

MAb = MA AAb (m) = AA(m) PAb = (PA)* N P;:V?::c
Given a crash-aware strategy o : A € Crash we define the crash-less strategy o” : A” as below.

Note that —” formalizes ops(—) (§2). It is also useful to provide a reverse operation —¥ read re-crash,
that lifts, in a persistent way, a crash-less strategy o : A” into a strategy o* : A.

o’ = {ops(s) € Py | s € o} ot i={se Pﬁ/IA | ops(s) € o}

4.4 Strict Linearizability

Similarly to how Oliveira Vale et al. [31] characterizes linearizability by lifting a non-saturated
strategy to a saturated strategy, we formalize strict linearizability by lifting a strategy without
crashes into a strategy with crashes.

Definition 4.6. Given games A, B, we define the strict lift str(o) : A — B of a crash-less strategy
o : A’ — B as the crash-aware strategy: str(o) := K 4 ot
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It then turns out that, similarly to what we did for crash-aware linearizability, strict linearizability
supports the following refinement-based characterization:

PROPOSITION 4.7. V' : A is strictly linearizable to v : A” if and only if v C str(v).
We make use of this characterization to show the following observational refinement property:

PROPOSITION 4.8 (OBSERVATIONAL REFINEMENT). Suppose v, : A is strictly linearizable to va : AP
and that o : A’ — B° implements an object linearizable to vp : B using v, i.e. va;o C vp, then,
str(o) implements an object strictly linearizable to str(vg) using v/,, i.e. v);;str(o) C str(va).

The reverse direction, unfortunately, does not hold, fundamentally because str(ccopy ) #
crashcopy 4. By similar reasoning as the locality for crash-aware linearizability, we also obtain:

PROPOSITION 4.9 (LocALITY). For crash-aware strategies V), : A, vy, : B and crash-less strategies
va: A vg: B: V), C str(va) and vy, C str(vp) if and only if v/, ® vy C str(va ® vp)

4.5 Durable Linearizability

Recall that a crash-aware play (i.e., a trace) is durable when the set of agents on different epochs
is disjoint. Given a game A, let Pf‘”r be the subset of Pf‘ containing only its durable plays. As we
noted in §2, durable plays s have the important property that their de-crash s’ is always defined.
We call a crash-aware strategy durable if it only contains durable plays.

Now, for our refinement-based formulation, we define a durable lift dur(—), which assigns to a
crash-less strategy v : A the durable strategy dur(v) : A defined by dur(v) : A := (Kconc nin Pf“”.

The operation Kcone — in the formula is defined by Oliveira Vale et al. [31] similarly to K; —, but
in the crash-less setting. It may be more intuitively understood through their result that:

Kconev={s€Pyp | Tt €v.s~ t}

that is to say, Kconc — assigns to a crash-less strategy v the smallest strategy containing v that has
all plays linearizable w.r.t. to v. We observe that, indeed, dur(—) does provide an appropriate lifting
operation for durable linearizability.

PROPOSITION 4.10. V' : A is durably linearizable to v : A if and only if v/ C dur(v).
This refinement characterization enables us to show observational refinement and locality.

PROPOSITION 4.11 (OBSERVATIONAL REFINEMENT AND LOCALITY).

o Let A, B be games. Then v), : A is durably linearizable to v, : A if and only if whenever
o : A’ — B is a crash-less strategy implementing a crash-less object linearizable to vg using v4,
then dur(o) : A — B implements an object durably linearizable to vg using v',.

e For durable strategies v/, : A, vy : B and crash-less va : A, vp : B: V/, dur vy, and Vg dur vy if and
only if v, ® vi, 44 vy ® vp

5 Program Logic

In this section, we present a program logic for verifying durable linearizability, which is based on
rely-guarantee reasoning, crash Hoare logic and possibility reasoning. We first (§5.1) briefly discuss
how to abstract away recovery. Then (§5.2) we define an object-agnostic imperative programming
language. Lastly (§5.3) we demonstrate the key rules of the program logic. We refer readers to our
TR for its variation for verifying crash-aware linearizability, which is largely similar.
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5.1 Recovery

We start by discussing a simple way of removing recovery events from a play, which is enough for
our purposes. First, we fix a certain kind of signature for objects with recovery.

Definition 5.1. We define a recovery signature E O R to be the union of two effect signatures E
for regular operations and R for recovery operations.

To simplify reasoning about programs with recovery, it is common to provide a way to remove
the recovery events from the specification. In our setting, this is notoriously simple.

Definition 5.2. We say a strategy v/ : T(E O R) recovery-refines to v : TE when v/ [g C v.
It is straightforward to see that the following refinement theorem holds.

PROPOSITION 5.3 (RECOVERY REFINEMENT THEOREM). Suppose V' : T(E O R) recovery-refines to
v: TE and that ¢’ : $1(E O R) — 1F then, foro : TE —o {F, o' [4gotF S0 = Vo' Cvio

5.2 Programming Language

5.2.1 Syntax. We start by defining a language Com for commands over some effect signature E.
Prim := x < e(a) | assume(¢) | ret v Com := Prim | Com; Com | Com + Com | Com™ | skip

Prim stands for primitive commands. The assignment command, x < e(a), executes the effect
e € E with argument a and stores the response to variable x in a local environment A € Env. The
assume command, assume(¢), takes a boolean function ¢ over A and terminates the computation
if it evaluates to False. We implement loops and if-statements using assume(—) in the usual way.
The return command, ret v, stores the value v into a reserved variable res, and is executed once per
invocation of a procedure. Com is the grammar of commands defined as usual in a Kleene algebra.

The implementation M of an object (with the effect signature F O Rp) is defined as a collection
of commands M[a]/ € Com, M = (M[a]) ey = (M[a]f)zxeT,feFURp’ which implements each
method f € F U R per agent o € Y. Here F defines the overlay’s regular procedures and Rr its
recovery procedures. For simplicity, we require that there is only one recovery program r in Rp,
ie. Rp ={r:1— 1}. We call M[«] a local implementation and M € CMod a concurrent module,
where CMod is the set of all concurrent modules.

5.2.2 Memory Model & Object State. Observe that our programming language is object-agnostic
in that it operates over an arbitrary object of type E. This means that the language does not have a
memory model baked in. Instead, the underlay object’s effect signature E, over which the language
is parameterized, determines which memory operations the user can perform. For example, to
implement the FLiT memory cell in Fig. 1, one would use as the underlay a buffered memory cell with
the BCell signature. Then, one can write a program with statements like x « B.load(); B.flush()
to manipulate the memory shared across threads.

We define the underlay state as (A,s) € UndState, a tuple of a local environment A and a
history s € P;g. The local environment A is defined solely as a mapping from local variables to
their values (with A representing the empty local environment). The history s is a canonical
representation for shared state, since it records all previous operations to the shared underlay
object. One may reconstruct other more intuitive definitions of the shared state by defining an
interpretation function over the trace s. For example, given the traces p € vg ;1 of one FLiT memory
cell, we can define the evaluation function fstate : vg it — Val to compute the current value of the
cell by reading the latest stored value. In particular, note that we may use the (atomic) linearized
specification for FLiT because of observational refinement.
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5.2.3 Semantics. Primitive commands B are interpreted as state transformers [B], : UndState —
P (UndState) from a set of underlay states to a new set of states. The [B], depends on & only in
that it tags event it adds to the history with an agent identifier . We then lift the state transformer
[B]« to a thread-local small-step semantics (C, A, s) —, (C’, A’,s’), which encodes how « steps
through commands in a mostly standard way following the Kleene algebra structure of commands.

— C (Com X UndState) x Y x (Com x UndState) —»Rg € (Cont x ModState) x CMod x (Cont X ModState)
feF acpar(f) AN =Alaw [arg a]] (C,As1g) ——a (C', N, s'1E)
(c[a > idle], A, s) HK_ (c[a > M[al 1.0, s - a:f) (c[a— C],A,s) —41’;’15 (cl[a— C'],A,s")

STEP

o (slp)=p-f A(er)(res) =v € ar(f) N =Ala - 2]

- i - - ReT
(cla > skip], A, s) —»p, (c[a > idle], A, s - a:0)

Va € s.c’'[a] = dead s=s"-4 7 = perm(Rg)
VaeY.a¢s=c[a] =halt _ C = sequence (7, M[a]") .

i CrAasH v STARTREC
{c,A,s) Ry (', Mo, s+ §) {c[a + halt],A,s) —wR'E (cla > C],A,s - acr)

7o (STFURp) =8 - 7 A(ar)(res) = v € ar(r) N =Ala - 2]
Va € Y.c[a] = dead = ¢’[a] = dead Va € Y.c[a] # dead = ¢’[a] = idle

- R ENDREC
(cla > skip],A,'s) Ry (c',A;s - a:v)
N C
where sequence(7,C) = . =
(xr < r(a));sequence(¥',C) F=r-7 Aa € par(r) Areserved(x;)

Fig. 5. Local Small-Step Semantics (—) and Module Small-step semantics (—»g;)

o

=€

In Fig. 5, we lift this local small-step semantics to a concurrent module small-step semantics
(¢, A\, s) —»ﬁ‘fE (c’, A\, s"), which takes a continuation ¢ € Cont := Y — {idle, skip, dead, halt} +
Com and a module state (A,s) € ModState := (Y — Env) X P;(EOR,)—+(FORy) COntaining local
environments for all agents and the global trace of the system. The first three rules come from the
semantics in Oliveira Vale et al. [31] to handle mainly the execution of regular procedures:

Inv Allows a new invocation of any overlay operation f in an idle thread and appends the new
invocation to the end of s.

ster Non-deterministically chooses some thread that is running a program C and performs a thread
local small-step in that thread with its effect applied to the concurrent module state.

Rer Allows any thread that has finished its program to return to idle by appending the return value
as a response to the end of s and clearing A[«].

We add three highlighted rules to handle crashes and recoveries:

Crasu Allows for crashes to happen at any time, resetting local environments to A, for all agents,
marking all the previously active agents as dead and all remaining ones as halt.

StartRec Non-deterministically selects a halted thread « and starts the recovery phase by using
C as its continuation, which sequentially runs first a permutation of underlay recoveries
(7 = perm(Rg)) and then the overlay recovery M[a]". This is achieved by using sequence
to sequence a list of commands (note that reserved(x,) simply means that x, is a reserved
variable). During the recovery phase, other threads must wait for « to finish the recovery
before their executions. The execution of « follows the STEP rule.

EnpRec When the recovery finishes, any agent that is not dead becomes idle, so that the system
can now run normally. To enforce the durable assumption, dead agents will no longer run.

We define the denotation of a module by the formula below as the set of traces generated by
the small-step semantics from the initial configuration, where cy is the initial continuation (every
agent is idle) and A is the initial environment where every agent has an empty local environment.

[M]Rg, := {s|3c € Cont, A € (Y — Env).{co, Ao, €) —»]}\é (¢, A, 5)} S Py(EORg) ot (FORR)
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5.3 A Program Logic for Durable Objects

5.3.1 Interfaces. The interface of a crash-aware linearizable object E is a (round bracket) tuple.
(v : T(E O Rg), vg : TE) s.t. Vi IE L v

vr is the concrete specification containing all possible traces the object can produce, including

crash and recovery events, and vg is the linearized specification after removing recovery events.

Similarly, we define the interface of a durable linearizable object E as the (angle bracket) tuple

but with a major difference: the durable interface’s linearized specification vg is crash-less.
(V'E :T(E O Rg),vg : TE) s.t. Vfl';“ g dur vg
The objective of our program logic is to establish the judgment
FM:(vi,vg) > (Vi VF) or FM:(V,vg) = (v, vE)

which means under the assumption that the implementation M implements F with either a crash-
aware interface (v}, vr) (the variation described in our TR) or a durable interface (v}, vr) (the
variation we describe here), using the crash-aware underlay E with interface (v, vg). The concrete
specification v}, is defined by running an implementation M above v, i.e., v, = vi; [M]g,. The
program logic’s soundness guarantees the validity of the crash-aware/durable overlay interface. In
this context, (VI/E, vg) is called M’s underlay, while (v}, vE) is called M’s overlay.

The specifications v, Vg, vj,, vr are fixed in the program logic. For simplicity, we take them as a
parameter in all that follows and omit the parametrization in the concrete proof rules.

5.3.2 The Rely-Guarantee Crash Linearizability Hoare Logic (CLHL).

Configurations & Assertions. CLHL uses as proof configurations triples (4, s, p) € Config =
ModState X Poss, where p € Poss, called a possibility, is a play of type {F linearizable w.r.t. vg.
A configuration is valid when s is durably linearizable to p and p is linearizable w.r.t. vp. This
ensures that the concrete trace s is always durably linearizable with respect to vp after the recovery
refinement. Pre-conditions P, post-conditions Q, and crash conditions Q; are given by sets of
configurations, while rely conditions R and guarantee conditions G are relations over Config.

Top Level Rules. The top level rule OBjecT IMPL proves that M implements the overlay (v, vr)
using the underlay (v}, vg). It requires the prover to find an object invariant I : Y — % (Config)
for the implementation and then verify regular procedures and the recovery separately.

Va,a' € Y.a #+ a’ = G[a] Uinvokey (=) U returng (=) € R[a’]
Va e Y.R[a], Glal.I[a] EE M[a]  Va € Y.IER M[a]

FM: (v, ve) = (Vg VF)

OBjJECT IMPL

Verifying Regular Procedures. To verify a concurrent object, the OBJEcT IMPL rule requires finding
appropriate rely R and guarantee G for the object. The rely R[a’] of an agent models the interfer-
ence of other threads in the executions and therefore must take into account at least invocations,
returns, and the guarantee of other agents « (specified, respectively, by invoke, (—), returny(-),
and G[a]). The prover needs to show R[a], G[a], I[a] kL M[a], which asserts that when a runs
regular methods in F, assuming other threads behave according to R[«a], @ will behave according
to Gla], and I[«a] is satisfied when the thread « is idle.

The LocaL Impr rule proves this judgment by splitting I[a] into conjunctions of P[a]/, each
specifying the pre-condition of a method invocation, and then proving a series of objectives (— o —
stands for relational composition).

Ila]l =npepPlal/  Vf e F.(Aoe€) € Plal  Vf e F.stable(R[a], P[a]/)
Vf € FR[al. Gla] &l (Pla)/ yM[a)/ (Q[a)/ }{T}  Vf € Fretung(f) o Qlalf € I[a]
Rlal, Glal.I[a] Fa Mp[a]

LocaAL ImpL
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Firstly, each pre-condition P[]/ needs to include the initial configuration and must be stable
under interferences R[] of the environment, which implies the invariant I[«] to be stable.

Then, the prover needs to show that R[«a], G[«] l=£ {Pla]} M[a]f {Q[a]f}{T} is satisfied for
each method f. The hexad R, G !:£ {P} C {Q}{Q; } means that given states satisfying P, running
the program C on thread « in an environment with interference in R will produce actions in G,
and if it terminates normally, the state will satisfy Q, and if it crashes, the state will satisfy Q;. A
hexad is proved with proof rules introduced later. It is worth mentioning that there is no need to
explicitly specify and prove a crash condition for any regular method, and we can simply put T as the
crash condition. This is true because:

(1) The guarantee G[a] of the current thread is included in any other thread’s rely R[a’], and
therefore any step during the execution of any method in thread « is captured in R[a’].

(2) For any other thread o', its invariant I[@’] is stable w.r.t. R[a’], which means any state after
any execution step of any method in thread « (captured in R[a’]) is in I[a’].

(3) Therefore, the state of thread o will satisfy any other thread’s invariant I[a’] at any time
(including the point of crash), and the crash condition in & can be derived from I[a’].

Lastly, after finishing the execution of a method and returning from it, the invariant I{«] needs
to be satisfied so that the current thread can still access the object by invoking its procedures.

Verifying Recovery. Then, to ensure the durability of the object, provers need to show I £R M[a],
which means whenever a crash happens, the execution of the recovery on any thread « can restore
the program state to satisfy the object invariant I. It can be verified via the RECOVER rule.

ID, T &g {Prlal}M[a]™{Qrla]}{Qy[a]}  Q4la] € Prla]
Uwerlla'] =4 Qlal  returng(r) o Orlal € Nwerlla’]

= RECOVER IMmPL
Ie, M[a]

The prover needs to find a recovery pre-condition P,, a recovery post-condition Q,, and a crash
condition Q, for the recovery program, and prove ID, T £, {P[a]}M[a]"{Q,[a] }{Q; [@]}, which
means running the recovery program M[a]” from states in P, [«] will either recover the system
into states in Q, [a] or crash into states in Q, [«]. Since the recovery program always runs after a
crash, the crash condition Q; needs to imply P,. But as the recovery program executes sequentially,
with no interference from other threads, the rely and guarantee for it are ID and T.

The invariant I[a’] serves as the crash condition of other threads. Therefore, we require that
all I[a’] crash into the crash condition Q, of the recovery program. The crash-into relation (=)
amounts to implication after adding a crash: I =, Q;, &= V(A,s,p) € I.(Ag,s- 4,p) € Q;.

Lastly, after the execution of the recovery, the system is restored and ready to run, so the program
state after the recovery’s return needs to imply the invariant I[«’] of any thread «’.

The Core Proof Rule. According to these top-level rules, proofs of both the regular procedures and
the recovery boil down to proofs of hexads like R, G £, {P}C{Q}{Q; }. Among CLHL proof rules
for the hexad, the core proof rule for proving the durable linearizability is the Prim rule, which we
focus on in this section and refer readers to the TR for other proof rules, which are standard.

P=, 0, 0=, 0y Q; =4 Qy stable(R, P) stable(R, Q) G ra {P}B{Q} PRIM
R, G Fa {PYB{O}{Q;}
There are three groups of PrRim rule’s premises. Firstly, as crashes can happen at any point, the
pre-/post-condition and the crash condition should be able to crash into (=) the crash condition.
Then, as any rely-guarantee logic, the pre-/post-condition needs to be stable w.r.t. the rely R.

G ra {P}YB{Q} &= VA 5,p,N,s".((A,s,p) € PA(N,s") € [Bla(A,s) N vg) where p - p/ =
= (3p".(N,s",p") € QA (A5, p)G(N, s, p)) Ap > p) Jtp € (ME)*.p - tp ~oip p’
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Lastly, we need to prove the commit rule G +, {P}B{Q} for the primitive command B. It states that
after a step from a state in P made by the command B the new state will satisfy the post-condition Q
and the guarantee. This step may be the commitment point of some pending operations. To maintain
the invariant that s is durably linearizable to p, the commit rule allows an angelic linearization
update, p --> p’, where provers can append several response events to p and rewrite it according to
~»:p to obtain p’, a new possibility that s linearizes into. Moreover, since possibility updates are
recorded in G, its effect is visible to any other thread. Only a careful choice of possibility updates
will respect other threads’ relies and prove that this object is indeed durably linearizable.

Soundness. CLHL is justified by the following soundness theorem.

PROPOSITION 5.4 (SOUNDNESS). If+ M : (Vi, vE) — (v}, VF) is provable, and (v, vg) is a valid
crash-aware interface, and v} = vg; [M]gy, then (vl’g, vp) is a valid durable interface.

5.4 Examples Revisited

In this section, we present some high-level proof ideas of the FLiT example and demonstrate the
usage of the program logic. The FLiT object is built above the buffered memory cell BCell.

The Buffered Cell. The buffered memory cell’s concrete traces in vi, ., are crash-aware linearizable

to its specification vpce|;, which we can define through an interpretation function, mstate : vgce —
P (Val x Val), which computes the set of all possible combinations of the persisted value (the first
component) and the buffered value (the second component), as seen in §2.3.

Using mstate, the specification vgce is essentially defined as the set of traces that can step from
the initial state, the singleton set {(vo,v¢)}, to some non-empty state, with the step function below.
The sets on the two sides of the arrow are the value of mstate before and after appending the events

to the trace.
a:store(v)-a:ok a:flush-a:ok

S ———— {(9p,0) | (vp,vp) € S}U{(v,0)} S ———— {(vp,vp) | (vp,vp) € S}
a:load-a:0k
S 4 {(vp.0p) | (v, 0p) € S} § 1=k )|(0p,0) € S}

e When a store operation finishes, there are two possible outcomes: the value may have been
stored only to the buffered content, while the persisted content remains the same as before the
store; the value may be persisted, making the buffered content the same as the persisted one.

e When a flush operation finishes, the buffered value gets flushed into the persisted part. Since
after each store operation, the buffered content is uniquely determined (synchronized), after a
consequent flush operation, the content of mstate is uniquely determined.

e When a crash 4 happens, the buffered content is lost, and after the crash, the buffered content
is overwritten by the persisted value, which may have various possibilities because a flush may
not have happened before the crash. As a result, the uniqueness of the buffered content no
longer holds after the crash and is un-synchronized. The non-determinism brought by store and
4 is the first challenge of the FLiT proof and the reason we define mstate in this way.

e When a load operation finishes, the actual buffered content is determined and all future load
will not observe other possibilities of the buffered content. As we will explain later, this behavior
makes the load operation an external linearization point of buffered operations before a crash.
The helping mechanism, especially helpings across crashes, is the second challenge of the FLiT
proof. The returned value must be consistent with at least one possible buffered content in S.
Otherwise, the post-state is an empty set and this trace will not be accepted in vgcel.

To use CLHL to verify the FLiT overlay, we need an invariant I that links the overlay and underlay
states and is maintained by any program step. Depending on the current buffered memory cell
state, we split the invariant into three cases. (1) When the buffered content v}, is synchronized
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and persisted (the Flushed state), then the overlay state fstate(p) should also be vy, i.e., the store
operation that writes this v}, is durably linearized. (2) When the buffered content v}, is synchronized
but not persisted (the Unflushed state), we use a ghost list B to buffer the pending overlay store(vp)
operations in order, so future operations can help linearize it when the value gets persisted. (3) When
a crash happens (the Unsynced state), the buffered content v}, is un-synchronized and corresponds
to some store(vp,) operation in the ghost list B, in case it has persisted, or is equal to the current
overlay state fstate(p), when none of the buffered operations persisted.

As aresult, the proof configuration now becomes (A, s, p, B) € ModStatex PosstI’g. According to
the OBJECT IMPL rule, we need to find rely and guarantee conditions verifying R[a], G[a], I[a] EL
M[«] for the load and store operations and I =R M[a] for an empty recovery procedure.

5.4.1 Regular Procedure Proofs. To prove regular procedures through the Locar ImpL rule, we must
find the pre-/post-conditions corresponding to each procedure and prove their Hoare quadruples.
For the FLiT implementation, we prove Hoare quadruple (1) and (2) for the load and store operations.

Rlal, Gla] Eq {invokey(load) o I}oad(){returned,(load) o I}{T} (1)
Rla], Gla] Es {invoke, (store) o I}store(){returned, (store) o I}{T} (2)

The invoke and returned relations are defined below. The invoke simply adds an invocation (by
clients of the overlay object) to the procedure f to the end of s and p. The returned asserts the
returned result recorded in A is consistent with the one linearized in p by the prover.

(A, s,p) € idleg A Ja.A' () = [arg — a]A
Vo' #a.N (&) =Na)As'=s-a:f Ap' =p-a:f
(A, s, p)returnedq (f) (A, s, p') & (N,s',p") = (A5, p) A Fo € ar(f).A(a) (ret) = v A last (74 (p)) = a0

(A, s, p)invokey () (A',s",p') &

These quadruples are proved by mainly using the Prim rule to step through primitive commands.
In most of the cases, the underlay load/store operations only add pending overlay operations to
the list B, and a consequent flush operation makes sure they are persisted and helps operations in
B linearize. The Counter object prevents unnecessary flushes in this process but is not the main
complexity of the FLiT object, and thus we refer readers to the TR for its treatment.

Figure 6 shows the proof outline for the load operation, which we use as an example for demon-
stration. The program contains two potential linearization points, line 2 and line 5, and we show
how to use the Prim rule to complete proofs and find linearizations at these points.

The underlay load operation at line 2 may execute from three different situations depending
on the object state (Flushed, Unflushed, Unsynced). We choose to perform three different updates
to the possibility p and the ghost list B and illustrate them through guarantee conditions below,
which record the effects of these updates on proof configurations.

., Fo.Flushed(s, B) A (v,0) € mstate(sgc s ) A0 = fstate(p)A
(5.9, B) Goaailal (5", p". B) = (Iin(p') =lin(p) -a:load -a:v AB’ =€ As’ =s - a:M.load - a:v) ®
Jo.Unflushed (s, B) A last(Bstore) = store(v)A ) @

X ’B ~ /, ’) B/ —
(5. B) Groac-ut ] (", . B) (B’ =B-a:load Ap’ =pAs’ =s-a:M.load - a:v

Jo, By, B2.Unsynced(s, B) A (v,0) € mstate(slgcs )A
(B=Bq - By Alast(By) = store(v)))

®)

; " p',B "=s-a:M.load - a:v A
(s, p, B) Gload-us[ @] (8", p',B") &= |s' =5 & oad - a:v ( v(fstate(p) = v A By = €)

lin(p") = merge(lin(p),B;) - a:load - a:o AB =€
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{invoke, (load) o I'}
1: load(){
{I A a:load € so A (Flushed v Unflushed vV Unsynced)} // Pioaq
2t v« M.load(); //load-f/load-uf/load-us
(Flushed A last(7g (p)) = v)V
{I " ((Unflushed A (3B'.B’ - a’:store(v) - a:load C BV last(n4(p)) = )))} /1 Qload
. : : C «(p v
3:  n« C.get();
(n=0Alast(my(p)) =0)V
In ((n #0A (EIB/.B' - a':store(v) - azload T BV last (74 (p)) = 0))
4:  if(n#0){
{I A (Flushed v Unflushed) A (3B".B’ - &':store(v) - a:load C B V last(n4(p)) = v)}
5: M flush(); // flush
{1 A last(rq (p)) = o}

) A (Flushed v Unflushed)}

6:  }

{I Alast(z(p)) = 0}
7: ret v
8: }

{returnedy (load) o I} {T}

Fig. 6. A Proof Snippet of the load operation of FLiT Memory Cell

Load from Flushed State. When the underlay memory cell is at the Flushed state, i.e., there are
no buffered operations and B = ¢, then, the current memory content fstate(p) is exactly the same
as the content in the underlay memory cell v. Therefore, we can simply extend the linearized prefix
lin(p) in p with a:load - @:0 by reordering the pending load to the place and add the response as (3).

Load from Unflushed State. When the underlay memory is at the Unflushed state, there are
different possible values for the persisted content. Although the underlay load will load the most
recently buffered value v, we do not know whether v has been persisted or not. If a crash happens
before returning from the current overlay load, this value may be lost from the memory and we
are not supposed to linearize a:load - a:v to lin(p). Therefore, instead of linearizing it at this point,
we choose to append the pending load to the buffered list B so that a subsequent flush operation
from either the current program or other threads can help linearize it as (4).

Load from Unsynced State. The most special case is when the load is executed after a crash
with some buffered store not flushed yet. As explained before, both the buffered and the persisted
contents may have various values depending on previously buffered stores. The load operation
will determine the actual content in the memory cell, which reveals and linearizes the operations
that are persisted before the crash, making it an external linearization point across crashes.

Figure 7 shows an example of this kind of load operation. After a buffered store(2) operation,
the persisted data has not been synchronized with the buffered value 2 since no flush has been
performed, and the system crashes at this moment, resulting in a state with unknown content of
the buffered cell. Just like (4), buffered store operations will be put into the list B instead of directly
linearized into p. If the result of the load operation following the recovery is 2, like in this example,
it implies that the buffered store operation has been persisted before the crash, and thus we can
linearize the store(2) cached in B followed by the current load operation. In the other case, where
the load after recovery gets 1, we know the buffered store operation failed to persist, and thus we
do not linearize the store(2) and instead remove it from the list B.

We follow this pattern and modify the proof configuration as (5). We maintain as an object
invariant that any persisted value in the underlay memory corresponds to some store in B or lin(p).
Based on the return value v of the underlay load, we decide how to handle buffered operations
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P B P B P B P B
s(1) ok s(1) ok s(2) s(1) ok s(2) s(1) ok
persist | buffer persist | buffer persist | buffer 5(2) ok
load() 2
1 1 1 2 1 1 .
> > persist | buffer
2 2 2 2
ty store(1)  ok() store(2) crash
ty: recover load() ok(2)

Fig. 7. External Linearization Point and Crash: the tables above the timeline show the content of the linearized
trace p and the ghost list B in the first two rows and the mstate content in the remaining rows. s(—) is a
shorthand for the store(—) operation.

in B. If v is the result of some store(v) in B, then we know this store(v) has persisted before the
crash, and we linearize all operations B; (by reordering them before the crash, adding responses to
invocations in B; and putting them after their corresponding invocations) in B preceding this store
into lin(p) along with the current load operation and discard what remains in B.

Then by merging these three branches into one Hoare quadruple through the disjunction rule
and weakening the post-condition to the stable Qo,4, We prove the Hoare quadruple

R[a]: g[a] |=0! {Pload}v — M-load(){Qload}{T}

at line 2 in Figure 6. According to the Prim rule, the quadruple is provable because we can prove
G Fa {Pioad v < M.load(){Qioad} by our reasoning in previous paragraphs, i.e., any update obeys
the rewrite relation ~+r, and other entailments and stability checks are all true.

The post-condition Qo.q indicates that either the current load is linearized and it is obvious that
the returned value v is equal to the linearized value v, or the state is unflushed and the current load
is buffered in B. In the second case, the proof that remains to be done for the rest of commands is
still non-trivial. Specifically, the current load may be linearized by some external operations, or it
will be linearized when the flush at line 5 takes place and we need to prove it is a valid linearization
step. The proof of either case will follow the outline in Figure 6 and we can prove (1). We can also
prove (2) and we refer readers to the TR for its detailed proof.

5.4.2  Recovery Procedure Proof. The FLiT object has no recovery procedure, and therefore we use
the empty recovery signature Ry := {ry} with the recovery program, M[a]™ :=r() { ret ok }.
According to the REcover ImpL rule, we need to prove the hexad ID, T ko {I}M[a]2{I}{I} for rp,
which reduces to the idempotence of the invariant w.r.t. crashes, i.e, I =, I.

As we have shown R[a], G[a],I[a] EL M[a] and I ER M[a] for any & € Y, according to the
OsjECT IMPL rule, we prove F MeLit & (Vicoy ® Veounter VBCell ® Vounter) — (Vi i VFLIT), i-€., the
FLiT memory cell is durably linearizable. Based on the FLiT memory cell, we implement a durable
version of the one-shot write-snapshot object [6], a famous interval-sequential [7] concurrent
object. We prove its linearizability using the logic in Oliveira Vale et al. [31] and use the FLiT
correctness theorem 1.1 to derive its durable linearizability.

We also prove the transactional file system to be crash-aware linearizable with the crash-aware
linearizability variant of CLHL. It demonstrates CLHL’s ability to verify non-trivial recoveries,
and to decompose complicated systems into multiple layers with simpler proofs and then easily
compose these proofs to obtain the originally challenging proof of the entire system.
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6 Related Works

Game Semantics. Our game semantics model is directly based on that of Ghica and Murawski
[16], Oliveira Vale et al. [31], and our use of object-based game semantics traces back to Oliveira Vale
etal. [30], Reddy [36, 37]. To develop our crash-aware model, we indirectly made use of insights from
Mellies [28]. In its goal of describing systems written in imperative languages, our game semantics
is related to some of the work by Ghica and Tzevelekos [17], Koenig and Shao [25]. It is important
to note that crashes are not accurately modeled as a separate computational agent responsible for
issuing crashes: crashes are instantaneous and pervasive, synchronous across components, are not
invoked, and are unimplemented. Because of this, our crash-aware model is rather unorthodox in
that it breaks the tradition of having only two players (Opponent and Proponent) by adding an extra
player for crash events. It models crash events differently from usual moves in traditional game
models by having crash events happen instantaneously and synchronously across all components,
while typically, a move belongs to a single component and happens mostly asynchronously. As
far as we are aware, this is the first game semantics of its kind. Because of this, while we build on
the model from Oliveira Vale et al. [31] and benefit significantly from the theory there, our model
needs to address the intrusive effects of properly modeling crashes.

Linearizability with Crashes. We already discussed some of the history of linearizability criteria
with crashes throughout the paper [2, 4, 19, 22]. In our paper, we address strict linearizability (in
the context of full-system crashes) and durable linearizability. We generalize both of them by not
requiring the linearized specifications to be atomic and by allowing for blocking objects. This
makes our variations of these linearizability criteria closer to interval-sequential linearizability [7].
We formulate these criteria in the style of compositional linearizability [31], which is novel. This
allows us to give simple proofs of locality, develop a compositional verification framework around
these criteria, give the first proof of observational refinement properties for these two criteria, and
provide a counterpart to the analogous result proved for Herlihy-Wing linearizability [14] and
for compositional linearizability [31]. We also discover that the inherent notion of linearizability
to crash-aware objects is the linearizability criterion we called crash-aware linearizability (§4)
satisfying locality and observational refinement. Although related to strict linearizability, it does not
appear elsewhere. We note that while crash-aware linearizability is the compositional linearizability
[31] one gets from our model Crash, our formulations of strict and durable linearizability impose
new challenges and new structures, in particular, because they relate two distinct models of
computation (concurrency with and without crashes). We conjecture that this different structure
can be reconciled with that from compositional linearizability through a weakening of the notion
of a Grothendieck fibration, following ideas from functorial refinement [29].

Verification with Crashes. There are approaches for verifying systems with crashes that do not
involve linearizability. Much of the work on this line has been done in the context of file system
verification. A perhaps notable start is the development of Crash Hoare Logic [11], later refined
into recovery refinement [8], and generalized to handle concurrent systems [9, 10]. Of these, only
Chajed et al. [8], which only handles sequential systems, formally proves a refinement theorem that
enables building large systems. The later variants that handle concurrency lack such a contextual
refinement theorem. These works, different from ours, have been mechanized.

Another important work is Khyzha and Lahav [24], which proves a contextual refinement
theorem for programs with crashes. Quite interesting is the fact that their approach is reminiscent
of that used by Oliveira Vale et al. [31] and by us, in that they define a notion of refinement by
composition with a “Most General Client”. This most general client seems to be a special case
of the copycat strategies that appear in our game models. Since they do this using operational
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semantics, we believe their work is further evidence of the practicality of our approach. Moreover,
their programming language features a buffered memory interface with global flushes, which our
example does not. Despite the similarities, they only address linearizability by providing a few
examples where linearizability specifications can be encoded in their framework, but they do not
describe a generic framework to do so, nor prove a formal connection with linearizability. Modeling
a memory model with global flushes in our model is straightforward: its specification is almost the
same as our buffered memory cell arrays, but with a requirement of proving a memory separation
property, like they had to do. We do not do this here as it was not required for our examples.

A recent line of work proves linearizability specifications, but only for a single component [13],
and focuses on data structures implemented on top of NVM only. It is quite impressive in that it
assumes a weak memory model, which requires handling weak consistency models, which we do
not. Despite that, they do not provide a program logic and are closer to axiomatic approaches, which
could hinder scalability. It is unlikely that their framework could be generalized to a compositional
verification methodology without significant effort.

Concurrently to our work Bodenmiiller et al. [5] verified the FLiT library and have a mechanized
proof of correctness. Part of their simulation-based technique is reminiscent of our use of refinement
and dur(—), which they define as a specific transformation of a state-transition system into another
and do not note its relationship to the structure of some compositional model (which they do not
develop). Their technique is restricted to durable linearizability w.r.t. atomic specifications and
is specialized in verifying persistency libraries over NVM. Our work is, therefore, significantly
more general in scope. Our FLiT correctness theorem shows that linearizable objects in the sense of
Oliveira Vale et al. [31] are transformed into durable linearizable libraries in our sense, and therefore
applies even to non-atomic and blocking objects, proving a stronger correctness theorem for FLiT
(in fact, stronger than the FLiT author’s informal claim of correctness, for the same reasons).

Our program logic is the first to verify a linearizability criterion with crashes. It is based on Khyzha
et al. 23], Oliveira Vale et al. [31], and takes inspiration from Crash Hoare Logic and Argosy [8]. It
differs from the aforementioned works in that it proves durable, and crash-aware linearizability
specifications. The compositional framework, which we directly connect with our program logic, is
the only one that simultaneously provides refinement, linearizability specifications, and vertical
and horizontal composition. Our theory allows us to state the correctness of systems like FLiT [39].
We also show we can verify a simplified variant of a file system interface. Note that previous file
system interfaces are not verified against linearizability specifications, which are deemed as more
intuitive than the kind of specifications one gets from HOCAP style specifications [12, 38].
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