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1 Introduction

Uninterrupted power supply through robust power generation, transmission, and
distribution in electric power networks (EPNs) is crucial to keep society functioning
today. However, local power grids are prone to whims of weather events with
undeniable impacts, such as hurricanes, strong winds, tornados, wildfires, floods,
blizzards, or extreme cold. The profound impact of strong winds on power grids
often leads to widespread disruptions in the electricity supply caused by breaking
power lines, toppling utility poles, and damage to transmission towers [1, 2]; these
threats, coupled with flying debris, pose a significant threat to the structural integrity
of the grid. Extreme high or low temperatures are usually associated with higher
electricity demand that can potentially overload the grid, leading to equipment
failures and blackouts. For colder climates, extreme winter weather events such as
ice storms and heavy wet snowfall can build up on power lines, weighing them down
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and potentially causing them to snap. Heavy rainfall accompanying hurricanes and
organized thunderstorm systems, including derechos, can lead to riverine flood
events or more local flash flooding, impacting substations and underground grids
and weakening the foundation of poles and towers.

As climate change accelerates, its impact exacerbates the challenges faced by
power grids in the burden of extreme weather events. Rising global temperatures
may contribute to the intensification of hurricanes, increased frequency, and changes
in the timing and location of wildfires and tornadoes. Additionally, shifting climate
patterns may impact severe weather phenomena such as destructive winds brought
by derechos. The warming climate also contributes to the instability of polar
vortexes, escalating the likelihood of extreme cold spells. These climate-related
shifts can change the frequency and severity of weather events, underscore the
urgency of power grid infrastructure adaptation to the evolving challenges posed
by a changing climate, and integrate more reliable power resources in the long run
through effective climate change adaptation actions [3]. In the United States, 96% of
power outages in 2020 were caused by severe weather events [4]. The increased
intensity and frequency of natural hazards subsequently increased the consequences
of such events on electric power networks. The adverse economic, social, and
environmental impacts of power supply disruptions are significant. Preparing for
the effects of these weather-related events is paramount to ensuring the resilience of
power grids. Pre-emptive measures, such as reinforcing power lines and
implementing smart grid technologies, can be strategically employed based on the
insights provided by risk assessment. Moreover, the energy sector is essential to
climate change vulnerability and adaptation analyses. It is responsible for almost
two-thirds of greenhouse gas emissions and most power supply disruptions, causing
adverse economic, social, and environmental impacts. Figure 1 shows weather
events and their associated impacts on energy infrastructures [5].

Worldwide, the burden of global climate change and increasingly frequent
associated events have started to affect various infrastructures, as highlighted by
the UK Institution of Civil Engineers [6]. Much of climate change vulnerability, risk,
and adaptation efforts are devoted to better understanding and quantifying global
climate change impacts on the regional level, given the possibility of increasing the
intensity and frequency of extreme environmental events, including intense wind
events [7]. The investigation of the reliability of power networks is already chal-
lenging due to the numerous involved variables and their inherited uncertainties [8];
the estimation of climate change projections adds to the complexity of the process,
especially the regional variability of climate, climate change, and infrastructure
properties. Climate scientists use historical data and complex models to estimate
and predict future environmental conditions. This process is usually region-
dependent, as generalizing or adapting climate change adaptation strategies of
other locations might not be feasible or possible due to the different and complex
nature of climate change impacts and the critical infrastructure performance in each
region [9], such as The North American Regional Climate Change Assessment
Program (NARCCAP) [10], High-resolution regional climate change projections
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Fig. 1 Weather hazards and possible associated impacts on energy infrastructures

for the northeast USA developed using IPCC SRES emission scenarios by Hayhoe
et al. [11], and for the Midwest area by Wuebbles et al. [12]. Additionally, regional
projections have been developed in the UK (UK Climate Projection 2009
(UKCP09)) and KNMI climate change scenarios for the Netherlands 2006 following
the fourth International Panel on Climate Change (IPCC) [13].

Numerous researchers have studied the future temperature, precipitation, and
wind speed trends. Mideksa and Kallbekken investigated thermal power plants’
supply sensitivity to temperature changes due to the large geographical variability
[14]. Bloomfield et al. investigated the effects of the shifting climate on renewable
energy resources and the supply-demand balance in future power systems
[15]. Dobson et al. [16] addressed the power system blackouts and outages driven
by extreme weather events and their future projections. The increasing ambient
temperature associated with climate change and global warming compromises the
efficiency and maximum capacity lifetime of power transformers and power lines, as
they are vulnerable to high ambient air temperatures [17]. Global warming and,
subsequently, ocean warming impact the complex process of wind formation,
leading to changes in wind patterns and currents that can promote distribution
network failure by rupturing the poles and wire lines, damaging pole-mounted
equipment, or causing cascading outages [18]. Increasing participation intensity,
storm surge events, and rising sea levels at some locations jeopardize the power
transmission and distribution lines and substations to risk flooding [19-21].
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2 Climatic Parameters

Based on the region, climate change can increase the imposed hazard on power
distribution networks through increasing extreme wind speeds each year, hence
making the grid assets more prone to failure, increasing temperature that expedites
the decay rate of wooden poles and increases their vulnerability with time. However,
annual rainfall reduction can slow the decay rate of wooden poles [22]. Therefore,
assessing the impact of climate change on power distribution networks requires
detailed modeling to capture the contrasting region-dependent effects of climatic
changes and their differing extents. To visibly measure the effect of projected
regional climate change on EPNs’ performance, the baseline vulnerability status of
a network needs to be established first. Hence, a case study of four cities in lowa in
the USA, namely, Muscatine, Algona, Pella, and Cedar Falls, is presented.

The WRF 3.4.1 model is a numerical weather prediction system designed to serve
atmospheric research and operational forecasting needs, therefore assessing the
infrastructure resilience from multiple aspects [23]. This study uses a higher resolu-
tion 4 km cell grid than is typically used operationally to give a more accurate
projection for frequency and intensity of wind speed, precipitation (flooding), and
freezing rain over the 13-year simulation period considering climate change. The
resolution used herein is much finer compared to the 18 km resolution used in earlier
models, including the UK flooding model (UKCP 18), global reanalysis (ERAS),
Global-to-Regional Integrated Forecast System (GRIST), China Merged Precipita-
tion Analysis (CMPA), and Integrated Multi-Satellite Retrievals for the Global
Precipitation Measurement (IMERG) [24, 25]. The simulation period is based on a
reference control period spanning from October 1, 2000, to September 30, 2013,
with 6 hours and 0.7 °C and a sensitivity model considering the effects of climate
change using the PWG approach (“Physics-WGNE” (Working Group on Numerical
Experimentation)), with ten perturbed physical fields to account for uncertainties
climate system mechanism. The future climate simulation extends from October
1, 2086, to September 30, 2099.

2.1 Maximum Wind Speed

The behavior of the wind speed shows oscillation around a mean value. Still, given
the turbulent characteristic of wind, the maximum wind speed can peak away from
the mean value [26]. The wind speed dataset contains maximum wind speeds
10 meters above ground level. Structural analysis showed that poles start to fail
near the 15 m/s wind speed threshold, considering that the model values are averaged
over the 4 x 4 km box and peak winds usually are very localized. In addition, models
typically are deficient in bringing momentum to the ground. Accordingly, the pro-
jections of wind speed over 20 m/s were calculated along with their frequencies in
the control and future models.
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2.2 Wind Speed Simulation Results

The following Fig. 2 shows the high winds of the four study areas during the
reference and projected years. There is a noticeable variety in high wind speeds
across the four regions. At the same time, some areas experience higher wind speeds,
indicating natural weather pattern fluctuation that can be attributed to terrains and
other landscape features. For example, Muscatine generally has higher wind speeds
over the years, and occasional years, such as 2090 and 2091, show significant
increases in peak wind speeds. Compared to earlier years, Algona shows increased
peak wind speeds in certain future years, such as 2087 and 2092, and Pella shows
increased peak wind speeds in certain years, such as 2090 and 2093. Cedar Falls has
less wind speed fluctuation across the study years. Hence, specific years exhibit
extremely high wind speeds compared to the average, indicating the possibility of
intermittent extreme weather events, and there seems to be a trend of stronger winds
toward the later years of the dataset.
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3 Maximum Wind Speeds and Electric Power Network
Reliability

3.1 System Fragility Curve Development

The radial configuration of local power distribution networks leads to service outage
downstream from any interruption point, i.e., network component failure. Hence, it
is crucial to investigate the reliability of the network components in correspondence
to various environmental event intensities. In this study, which focuses on the
wooden power distribution poles, the capacity of those poles is influenced by their
class, geometry, age, and the environmental conditions that expedite their deterio-
ration. After analyzing the wind demand on the poles in the network and their
capacity, it is essential to use a limit state function to describe the system’s vulner-
ability by establishing the pole’s conditional failure probability in response to
increasing wind speed.

3.2  Wind Demand on EPN Components

The poles and wires of EPNs are directly exposed to wind and flying debris. Hence,
they are considered highly vulnerable. To evaluate the exerted wind loads, the
following relationships provided by ASCE/SEI 7-22 can be used [27]:

F=0.613K,K, Kq K. GCf Ay V*(N) (1)

G is the gust-effect factor, Cf is the force coefficient, A; is the pole or wire area
projected normal to the wind direction. Kz is the velocity pressure exposure coeffi-
cient, K, is a topographic factor, and K is the wind directionality. K. is the ground
elevation factor. V is the basic 3-sec gust wind speed. The distributions and coeffi-
cient of variations (CoV) of the mentioned random variables related to poles and
wires are summarized by Ellingwood and Tekie [28].

3.3 EPN Components Capacity and Case Study

The vast majority of US power distribution poles are wooden due to the availability,
serviceability, and lower wood cost than other pole materials [29]. The American
National Standards Institute published in (ANSI-O5.1) classified wooden poles into
15 classes designed to have approximately the same load-carrying capacity regard-
less of their species [30]. In the four locations where the wind speed projections were
analyzed, the main wood pole is the Class 3 Southern pine pole. Hence, a fragility
function for a 40-year-old Class 3 pole with an average height of 13 meters and an
average wire span of 100 meters is chosen as an example.
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3.4 Limit State Function

The wind loads acting on the poles and wires of EPNs translate into bending moment
in the pole and tensile stress in the wires; hence, the structural demand is directly
proportional to wind speed and duration. On the other hand, the EPNs can be
structurally analyzed to determine the structural capacity of their components in
response to various weather events and external stresses. The following relationship
can generally describe the limit state function, G(x):

G(x)=C(x.,d.) — D(xg,dy) (2)

Where C is the structural capacity as a function of random and deterministic vari-
ables x. and d_, respectively. D is the structural demand on the system as a function
of random and deterministic variables x; and d,, respectively. The system fails
whenever the demand exceeds the system capacity and results in the limit state
function being negative. The Latin hypercube sampling method (LHS) is used to
generate ten thousand random samples for wind speeds, which are used in accor-
dance with the provisions of ASCE/SEI 7-22 to calculate wind load on the poles and
connected wires. Subsequently, the failure probability at each wind speed.

3.5 Fragility Function Development

After structurally analyzing the ten thousand realizations and determining their
failure or survival based on the limit state function for three modes of failure, i.e.,
pole rupture, foundation failure, and wires breakage, The pole rupture turned out to
be the predominant mode of failure within the range of wind speeds in this study.
Afterward, the log-normal distribution was chosen to describe the relationship
between wind speed and the fragility of the poles. The distribution parameters can
be obtained using the maximum likelihood estimation (MLE) method [31, 32]. The
following fragility function shows an increasing failure probability of the pole with
increasing wind speeds. Considering the generally projected increase in wind
speed in some regions in the coming years, accompanied by the degradation of
wooden poles and strength decay, accounting for climate change impacts becomes
necessary (Fig. 3).

3.6 The Annual Probability of Failure

The annual probability of failure is obtained by performing a mathematical convo-
lution of the fragility and hazard curve; the last describes the instantaneous proba-
bility of failure at a given wind speed. The wind speed occurrence frequency is
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Fig. 4 (a) Fragility and hazard curves, (b) fragility and hazard functions convolution curve

presented through a probability density function (PDF) that models the available
location-related wind data based on the data provided by Vickery et al. [33] in
Fig. 4a. Convolution principally combines the fragility and hazard functions to show
the overall likelihood of failure at different wind speeds throughout the year. The
annual probability of failure, Py, at maximum wind speed, V., can be expressed as:

p= [ pviswav (3)

where p(V) is the fragility curve, representing the probability of failure at wind speed
V, and f(V) represents the PDF of wind speed V, obtained from the hazard curve.
Hence, the annual probability of failure, Py, is the area under the curve in Fig. 4b up
to the maximum wind speed, Vax-

Considering the prevailing wind conditions, the change in the annual probability
of failure of the pole between the reference year and the projected year offers further
insight into the changing risk of failure associated with climate change, as depicted
in Fig. 5. Despite the shown fluctuations and lack of a clear linear trend between the
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change in annual failure probability over the years, there were substantial increases,
such as 275% in 2090 for Muscatine, and other decreases, such as —8% in 2092 for
Algona. It can be noticed that those percentages correspond to the projected change
in maximum wind speed displayed in Fig. 2 as increasing wind speed increases the
wind load demand and, subsequently, the component failure probability.

4 Results and Conclusions

As the intensity and frequency of some weather events increase, it further stresses the
power supply chain integrity. Distribution networks are the most vulnerable to
extreme weather events as they can cause widespread power outages, overload the
grid, and potentially lead to equipment failure. Fragility models are essential to
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estimate the likelihood of component failure and risk assessment, enabling informed
decision-making for predictive maintenance and risk mitigation procedures. This
research reviewed the impacts of the ongoing climate change on power distribution
networks by estimating the projected maximum wind speeds, evaluating their effect
on the components of the power distribution network, and establishing the vulner-
ability of the EPN as a function of wind speed through statistical analysis. The
presented research discusses weather phenomena, their association with climate
change, and their projected impacts. The numerical weather prediction model
WREF 3.4.1 with a 4 km resolution cell grid gives a more accurate projection of the
frequency and intensity of high winds. The percent change in the predicted annual
probability of failure is associated with the percent increase or decrease of the high
wind speed, therefore calling for adaptive and continuous risk assessment of the
network to ensure its reliability.
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