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A B S T R A C T

Multiphase compressible flow systems can exhibit unsteady and fast-transient dynamics, marked by sharp
gradients and discontinuities, and material boundaries that interact with the evolving flow. The transient
nature of the dynamics presents challenges to employing artificial intelligence (AI) and data-driven models
for predicting flow behaviors. In this study, we explore the potential of physics-aware recurrent convolutional
neural networks (PARC) to model the spatiotemporal dynamics of multiphase flows in the presence of shocks
and reaction fronts. PARC is a neural network model that incorporates the generic form of the diffusion–
advection–reaction equation in its network architecture, which mimics the process of solving the governing
equations of fluid flows. In contrast to physics-informed machine learning approaches such as physics-informed
neural networks (PINNs) where models are trained to directly minimize the residual of governing equations,
PARC takes a dynamical systems viewpoint and does not seek to minimize potentially nonconvex and nonlinear
loss terms. To assess the ability of PARC to accurately learn and simulate the physics of multiphase flows, we
train and test PARC on various flow simulation problems, including the Burgers’ equation, fluid flow behind a
cylindrical cross-section, and unsteady shock interactions with a particle at varying Mach numbers. We analyze
PARC’s performance and examine sources of error in its prediction, in terms of differentiation and integration
schemes and different weighting strategies for the model update. Based on our observations, we discuss PARC’s
capabilities and limitations in multiphase flow applications and propose future research directions.
1. Introduction

In recent years, the computational physics community has wit-
nessed a surge in the adoption of machine-learning-based flow mod-
eling methodologies in the literature. These methodologies, broadly
known as physics-informed machine learning (PIML) (Karniadakis et al.,
2021), employ machine learning models to approximate the solution
space of the governing partial differential equations (PDEs) that de-
scribe the evolution of fields in the dynamics of continua.

A notable example of such data-driven physics modeling methods
is the family of physics-informed neural networks (PINNs) (Raissi et al.,
2019a). In a typical PINN framework, a general nonlinear dynamics
PDE is represented as 𝜕𝐱

𝜕𝑡 =  [𝐱; 𝜆] , 𝐫 ∈ 𝛺, 𝑡 ∈ [0, 𝑇 ], where 𝐱(𝐫, 𝑡) is the
time-evolving solution field,  [⋅; 𝜆] is a nonlinear operator parameter-
ized by 𝜆, and 𝛺 ⊂ R𝑑 is a spatial domain where the physics is defined.
INN approximates the solution field 𝐱 using an artificial neural net-
work 𝐱̂(𝐫, 𝑡; 𝜃) with network parameters 𝜃. The network parameters are
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trained to minimize both the prediction error 𝐿𝐱 = ‖𝐱− 𝐱̂‖ and the PDE
residual 𝐿𝑟 = ‖

𝜕𝐱
𝜕𝑡 − [𝐱; 𝜆] ‖ at sample locations {(𝐫𝑖, 𝑡𝑖) ∣ 𝑖 = 1,… , 𝑁}

in spacetime. During this process, the differential operators in  [𝐱; 𝜆]
are computed via the automatic differentiation (Baydin et al., 2018)
applied to the computational graph of the neural network 𝐱̂, as opposed
to calculation of discrete gradients on a computational mesh.

Especially in fluid mechanics, PINNs have been tested on a variety
of fluid conditions, such as wake flows (Cai et al., 2022), incom-
pressible (Jin et al., 2021) and compressible flows (Mao et al., 2020),
turbulent flows (Lucor et al., 2022), biomedical flows (Yin et al., 2021),
and others (Yang et al., 2019; Raissi et al., 2019b; Lou et al., 2021). For
these problems, PINNs have proved to be capable of approximating the
solution space of the Navier–Stokes equations, while satisfying initial
and boundary conditions, as well as other physical constraints.
vailable online 28 May 2024
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However, challenges arise when it comes to the application of
PINN and other PIML to multiphase flows. Multiphase flow systems
are highly dynamic, often featuring unsteady and fast-transient behav-
iors characterized by sharp gradients and discontinuous boundaries
that constantly interact with the evolving flow. The transient and
discontinuous dynamics poses significant challenges when it comes to
employing convolution neural networks for modeling and predicting
flow behaviors.

For instance, previous research has highlighted a significant chal-
lenge in the gradient descent training of PINNs, in which multiple PDE
residual loss terms may produce conflicting loss gradients hindering
the convergence of the PINN training (Wang et al., 2021a). This can
be particularly problematic for multiphase flow problems, where there
are usually many coupled PDEs and physics constraints and, hence, a
higher chance of producing conflicting loss terms.

Furthermore, PINNs are known to be biased towards low-frequency
components (Wang et al., 2022). From the multiphase flow modeling
standpoint, this means that PINNs are not adept at capturing high-
frequency features such as sharp, localized features, discontinuities,
unsteady oscillations, and other transient flow features, which are
typical attributes of multiphase compressible flow phenomena.

To address these challenges with PINNs, there have been several
remedies proposed. For example, adaptive weighting (Wang et al.,
2022) and Fourier features (Wang et al., 2021b) have been suggested
to mitigate spectral bias issues and enhance the convergence of PINN
training. For example, Liu et al. (2024) introduced a physics-dependent
weighting scheme that weighs PDE residuals differently based on the
divergence of the velocity field, to enhance the convergence of PINN
in discontinuous regions. Similarly, Mao et al. (2020) introduced
adaptive sampling, in which data points are more densely sampled near
discontinuities and sharp interfaces in the solution function of the Euler
equation. On the other hand, curriculum training (Krishnapriyan et al.,
2021), which involves initial training on simpler flow problems (with
smooth flow fields), followed by adaptation to more complex scenarios,
was also proven to be effective.

Here, we note that the vast majority of these previous works cir-
cumvent the issues regarding sharp features and discontinuities by
meticulously tweaking the loss function landscape of PINNs, or by mak-
ing significant modifications to the architecture or training algorithms
underlying the neural networks. For instance, adaptive weighting and
adaptive sampling essentially involve the process of manually balancing
the influences of smooth and sharp regions by manipulating weighting
formulae and sampling densities. Fourier features are also essentially
a type of advanced weighting scheme, in which weighting factors are
determined by local patterns of fluid fields. Curriculum training can
also be understood along the same line, where the influences of smooth
and sharp fluid features are varied across different stages of training.

In contrast with PINN-type frameworks, relatively understudied are
the approaches based on the inductive design of neural network archi-
tectures. For instance, previous research by Nguyen et al. (2023a,b,
2024) introduced a PIML model called physics-aware recurrent convo-
lutional neural networks (PARC). In contrast to PINN, where a neural
network directly approximates the solution field 𝐱, PARC utilizes con-
volutional neural networks to learn the nonlinear operator  [𝐱; 𝜆]
and its time integration to solve for 𝐱, separately. Particularly, in the
most recent variant of PARC, called PARCv2 (Nguyen et al., 2024),
the network architecture was designed to model the generic form of
reaction–diffusion–advection equations 𝜕𝐱

𝜕𝑡 = 𝑘𝛥𝐱−(𝐮⋅∇)𝐱+𝐑 which is a
emplate for the transport equations solved in thermo-fluid mechanics.
n the training phase of PARC assimilates data as well as time-updates
f the data as it evolves as the solution of an advection–diffusion–
eaction problem. No separate physics-informed loss terms are used in
he training, although, in principle, PARC could be trained with PINN
oss terms in a supplementary fashion.
Here, the main hypothesis is that the formulation and architec-

ure of PARC could be more suitable for multiphase flow problems
ompared to other PIML approaches because of the following reasons.
2

First, PARC circumvents the issue of conflicting loss gradients, as
here are no PDE residual terms involved in its training. Instead, PARC
omplies with the physics principles inductively using its reaction–
iffusion–advection architecture. This is advantageous for multiphase
roblems, where there are typically a large number of PDEs and con-
traints involved in describing the physics.
Second, learning the nonlinear operator  and the time integration
= ∫𝑡  𝑑𝑡 separately, as in PARC, is arguably more advantageous

han the direct approximation of the solution function 𝐱 as in PINN.
s mentioned, the solution function 𝐱 in multiphase flows may include
harp gradients and discontinuous features, as well as transient features
hat evolve on short time scales. In our experiments, we empirically
bserve that learning the nonlinear operator  and integrating it
eparately preserves those sharp and transient features better. This is
ikely because the training of PARC inherently is a hybrid of the strong
orm (learning the nonlinear operator ) and the weak form (learning
he integral of ), in contrast to PINN, where only the strong form (PDE
esiduals) is considered (Liu et al., 2024). Therefore PARC is trained
sing the data, and spatial and temporal gradients of data.
Last, the fact that PARC flexibility does not require explicitly de-

ined PDE residual terms in the loss function makes it more practical
or real-world multiphase flow modeling and simulation workflows.
or example, compressible multiphase flow problems usually involve a
arge number of equations, with different material properties in each
hase, and mixture rules in two-phase regions. The precise physical
onstraints (such as equations of state) to apply will vary spatially.
hereas the dependent variables of primary interest to describe the
hysics of the system may be relatively few and smoothly varying
cross phases. With the PDE residual approach, one needs to model
ll variables in play with appropriate constraints depending on the
ocal phase, even if only a subset is of interest. Moreover, if there are
o equations available, PARC offers versatility in modeling the flow
ithin the general reaction–diffusion–advection framework, whereas
INNs may suffer from the lack of PDE residuals to inform the physics
rinciples.
Therefore, the objectives of this paper are as follows. Firstly, in

ection 2, we delineate the mathematical formulation of PARC and
ts computational implementation. We then conduct a comparative
nalysis between PARC and PINN on two standard benchmark prob-
ems, namely the Burgers’ equation (Section 3.1) and the Navier–Stokes
quations (Section 3.2). Subsequently, we elucidate PARC’s capabilities
nd limitations in modeling real-world multiphase flow phenomena by
esting it on unsteady shock calculations interacting with an embedded
ylindrical particle (Section 4). In the concluding section (Section 6),
we delve into the underlying causes of failure cases, offering insights
into potential areas for future research and development.

2. Methods

2.1. Problem formulation

The transport of fluids, including both incompressible and com-
pressible flows, and inert/reactive flows, can be characterized by the
following general form of the convection–diffusion–reaction equations:
𝜕𝐱
𝜕𝑡

= 𝑘(∇ ⋅ ∇)𝐱 − (𝐮 ⋅ ∇)𝐱 + 𝐑𝐱(𝐱,𝐮, 𝐜), (1)

𝜕𝐮
𝜕𝑡

= −(𝐮 ⋅ ∇)𝐮 + 𝐑𝐮(𝐱,𝐮, 𝐜). (2)

The state and velocity fields, 𝐱(𝐫, 𝑡) and 𝐮(𝐫, 𝑡) respectively, are defined
in Galilean spacetime, represented by a spatial position vector 𝐫 ∈ R𝑑 ,
and a time variable 𝑡. The function 𝐑𝐱(𝐱,𝐮, 𝐜) describes sources of
generation or consumption related to the state fields with 𝐜 serving
as constant parameters, and 𝐑𝐮(𝐱,𝐮, 𝐜) encapsulates forces (internal
and external) exerted on a unit volume element. 𝑘 is the diffusivity

coefficient. Velocity diffusion term can be included if necessary by
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Fig. 1. PARCv2 architecture for multiphase flow modeling.
w
passing the velocity variables to the diffusion layer, the same way as
the inclusion of diffusion of state variables, but we did not include it
in any of our experiments. Thus it was omitted from Eq. (2).

For an initial value problem, the above PDE system is subjected to
he following initial conditions:

𝐱|𝑡=0 = 𝐱0
𝐮|𝑡=0 = 𝐮0,

(3)

hich may be solved numerically using a forward update scheme:

𝐱𝑘+1 = 𝐱𝑘 + ∫ 𝑡𝑘+1
𝑡𝑘

𝜕𝐱
𝜕𝑡 𝑑𝑡

𝐮𝑘+1 = 𝐮𝑘 + ∫ 𝑡𝑘+1
𝑡𝑘

𝜕𝐮
𝜕𝑡 𝑑𝑡.

(4)

In PARCv2, the problem of learning the dynamics of flow is accom-
plished via a two-stage process, in which convolutional neural networks
𝐹𝐱 and 𝐹𝐮 learn to estimate the partial differential equations in (1) and
2), respectively, followed by integral solvers 𝛹𝐱 and 𝛹𝐮 computing the
ime integrals ∫ 𝐹𝐱𝑑𝑡 and ∫ 𝐹𝐮𝑑𝑡.

.2. Architecture design

Fig. 1 presents the architecture of PARCv2 for multiphase flow mod-
ling. The network consists of two main components: the differentiator
purple box) and the integrator (orange box). At each step, the state
ariables 𝐱𝑖 and velocity variables 𝐮𝑖 at current time 𝑡𝑖 are input to
he differentiator, which calculates the time derivatives 𝜕𝐱

𝜕𝑡 and
𝜕𝐮
𝜕𝑡 . The

differentiator first computes the gradients of each component of the
state and velocity fields, denoted as ∇𝐱(𝑖) and ∇𝐮(𝑖), respectively. These
gradients are then used to compute the advection terms (𝐮 ⋅ ∇)𝐱 and
(𝐮 ⋅ ∇)𝐮, as well as the diffusion term (∇ ⋅ ∇)𝐱. The reaction terms 𝐑𝑥
and 𝐑𝑢 are computed from the input state 𝐱 and velocity 𝐮 variables
using U-Net (Ronneberger et al., 2015). These reaction terms are then
concatenated with the advection and diffusion terms channel-wise to
derive the time derivatives of state and velocity fields 𝜕𝐱

𝜕𝑡 and 𝜕𝐮
𝜕𝑡 .

inally, the integrator (orange box) integrates these time derivatives to
redict the state and velocity fields of the next time step. The process
s recursively applied for a fixed number of time steps.

.3. Learning objective

The training of PARCv2 is cast as an optimization problem where
he following loss function is minimized for each simulation instance
𝐱𝑘,𝐮𝑘, 𝑡𝑘}:

(𝜃𝐱 , 𝜃𝐮) ∶=
∑

𝑡𝑘

‖𝐱𝑘+1 − 𝐱𝑘 − 𝛹𝐱
[

𝐹𝑥(𝐱𝑘|𝜃𝐱)
]

‖1

+
∑

‖𝐮𝑘+1 − 𝐮𝑘 − 𝛹𝐮
[

𝐹𝑢(𝐮𝑘|𝜃𝐮)
]

‖1

(5)
3

𝑡𝑘
here 𝜃𝐱 and 𝜃𝐮 denotes the network parameters of 𝐹𝐱 and 𝐹𝐮, re-
spectively. The total training loss is averaged over multiple simulation
instances.

We employ the Adam solver (Kingma and Ba, 2017), a gradient-
based optimizer, to solve the above optimization problem. The nec-
essary gradient ∇∕𝜃𝐮 and ∇∕𝜃𝐱 are computed by differentiating
through the integration operation in the forward pass.

3. Advection–diffusion modeling and subsonic incompressible
flows

In this section, we evaluate the performance of PARCv2 on
advection-diffusion modeling and subsonic incompressible flow prob-
lems to establish a baseline before expanding it to supersonic com-
pressible flows. For this purpose, we also compare the performance of
PARCv2 against other benchmark PIML models including PINN (Phy-
CRNet (Ren et al., 2022)), and Fourier Neural Operators (Li et al., 2020)
(FNO, including both physics-informed and physics-naïve variants). We
refer readers interested in the comparison of PARCv2 versus the orig-
inal PARC to Nguyen et al. (2024), as huge improvements of PARCv2
was already covered in details in that work. For all experiments below,
we used the PARCv2 architecture and training strategy used in the
original work of Nguyen et al. (2024). Similarly, for other benchmark
models, we also borrowed the same architecture and protocols as
implemented in the original works, except for minor modifications to
interface models with specific configurations of the experiment. In all
of our experiments, pressure, density and temperature are treated as
state variables.

In the analyses below, we focus on major attributes that are of in-
terest to the multiphase flow community: sharp gradients, e.g. shocks,
where the flow velocity field exhibits rapid changes in a small region
spatially or temporally, unsteady flow conditions, e.g. where the flow
field shows signs coherent vortical structure or interfacial deforma-
tion, and conservation constraints where certain property of the flow
field should remain invariant with time as indicated in the governing
equation.

3.1. 2D Burgers’ equation

We first test the capability of PARCv2 for solving Burgers’ equation
describing the formation and decay of a shock wave, where a sharp gra-
dient is generated from a relatively smooth flow field and subsequent
decays due to the viscosity of the flow. We consider the following two-

dimensional (2D) Burgers’ equation problem with initial and boundary
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Fig. 2. Comparison of various ML models on 2D Burgers’ equation.

conditions:
𝜕𝐮
𝜕𝑡 = −(𝐮 ⋅ ∇)𝐮 + 1

𝑅𝑒 (∇ ⋅ ∇)𝐮

𝐮0(𝐫, 𝑡; 𝑎,𝑤) =
⎡

⎢

⎢

⎣

𝑎 ⋅ exp(−‖𝐫‖22∕𝑤)

𝑎 ⋅ exp(−‖𝐫‖22∕𝑤)

⎤

⎥

⎥

⎦

𝛺 = [−3.0, 3.0] × [−3.0, 3.0]

𝐮0(𝐫, 𝑡) = 0 ∀𝐫 ∈ 𝜕𝛺

(6)

To produce ground truth data, the above problem was resolved on
64 × 64 square grids, with a total simulation length of 2 s resolved in
1,500 time steps. The original simulations were then downsampled to
100 evenly distributed time steps. No change to the spatial resolution
was applied.

For the training dataset, the fluid parameters – the amplitude
𝑎 (cm∕s), width 𝑤 (cm) of the initial velocity distribution and the
Reynolds number 𝑅𝑒 (cm2∕s) – were chosen from the combinations of
𝑎 = {0.5, 0.6, 0.7, 0.8, 0.9}, 𝑤 = {0.7, 0.8, 0.9, 1.0}, and 𝑅𝑒 = {1000,
2500, 5000, 7500, 10000}. For the test dataset, the fluid parameters
were chosen from 𝑎 = {0.35, 0.40, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95,
1.00}, 𝑤 = {0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 1.05}, and 𝑅𝑒 = {100,
00, 3000, 6500, 12500, 15000}. These fluid parameters in the test set
ere chosen such that they could ascertain the models’ capabilities in
oth interpolation and extrapolation.
Fig. 2 displays the predicted evolution of flow speed ‖𝐮‖ in compari-

on with the ground truth. The columns in the figure show the predicted
olutions at different instants of time (noted above the panels); the rows
orrespond to the different prediction techniques. The first row shows
he ground truth, second PARCv2 predictions, third FNO, fourth Phy-
RNet, and last physics informed FNO (PI-FNO). From visual inspection
f the figure, PARCv2 appears to be capable of predicting the formation
f the sharp gradient features on the shock front, as well as the decay
n the tail end, to a high degree of accuracy, whereas other models
end to predict blurred and smeared fronts. In particular, the sharp
radient regions are most smeared out for the FNO-based models, likely
ue to the Fourier mode cutoff. This observation can be quantitatively
onfirmed by the root mean squared errors (RMSEs) reported in the
irst column of Table 1, in which PARCv2 yielded RMSE about half of
4

hose of the other models.
Table 1
Prediction accuracy and solution quality of PARCv2 and the
other baseline models on the Burgers’ equation. The prediction
accuracy was evaluated with root mean squared error (RMSE)
between the prediction and ground truth simulations in the test
set. The solution quality was evaluated with the residual of the
Burgers’ equation. RMSE and PDE residual were calculated on
the testing set, which uses the following combination of fluid
parameters: 𝑎 = {0.35, 0.40, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95,
1.00}, 𝑤 = {0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 1.05}, and 𝑅𝑒 =
{100, 500, 3000, 6500, 12500, 15000}.
Model RMSE ||𝑓𝐮||

(cm∕s) (cm∕s2)

DNS (Ground truth) – 0.1241

FNO 0.0289 0.1537
PhyCRNet 0.0588 0.0560
PI-FNO 0.0338 0.1058
PARCv2 0.0129 0.1292

Fig. 3. Prediction accuracy and solution quality of various ML models on 2D Burgers’
equation with different Reynolds numbers.

However, the solution quality reported in the second column of
Table 1, as measured by the norm of the residual of the Burgers’
equation calculated from the predicted flow fields, yields a different
picture. As expected, the physics-informed models, namely PhyCRNet
and PI-FNO, show the best solution quality, because these two physics-
informed models were explicitly trained to minimize the PDE residual.
On the contrary, PARCv2 shows a relatively larger deviation from the
Burgers’ Equation. However, considering that the ground truth data
from DNS exhibits a similar solution quality, it is difficult to conclude
that the problem is inherent to PARCv2. I.e. PARCv2 learned from the
ground truth solution and assimilated the level of solution error present
in the ground truth, whereas the PINN approaches additionally ‘‘cor-
rected’’ the ground truth solution to better satisfy the PDE constraint.
Therefore, while the velocity field solution produced by PARCv2 more
closely emulated the ground truth it carried along the solution error at
the same level as ground truth.

Furthermore, Fig. 3 compares the prediction accuracy and solution
quality across various Reynolds numbers. In general, all models ex-
hibited good generalizability outside the Reynolds numbers for which
they had been trained. The relative performances of the models were
consistent across the range, except for PI-FNO whose PDE residual
spiked in the high Reynolds number regime. Visual examination of
those predicted sequences shows a degradation of performance at the
sharp gradient shock front, producing noticeable artifacts and is likely
due to the effect of Fourier frequency cutoff in the PI-FNO approach.

3.2. Navier–Stokes equations

A frequently used test problem in the subsonic incompressible
regime is the flow around an obstacle with a cylindrical cross-section.
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Fig. 4. Evolution of the velocity field of a flow near an embedded cylindrical
cross-section predicted by the PIML models.

For this problem, we solve the following form of incompressible
Navier–Stokes equations with uniform viscosity:

𝜕𝐮
𝜕𝑡 + (𝐮 ⋅ ∇)𝐮 = − 1

𝜌∇𝑝 + 𝜈(∇ ⋅ ∇)𝐮

∇ ⋅ 𝐮 = 0
(7)

We assume a constant flux of fluid flowing into the domain from the
left to right horizontally, with fixed viscosity of 𝜈 = 1 m2∕s and velocity
of 𝑢0 = 1 m∕s. The flow collides with a cylinder with a 0.25 m diameter
at 0.5 m from the left entrance point. The simulation is resolved on a
rectangular region 2 m in width and 1 m in height.

For the training and test datasets, direct numerical simulations with
eynolds numbers ranging from 30 to 1,000 were generated. For the
raining set, the following Reynolds numbers were chosen 𝑅𝑒 ={100,
50, 200, 250, 300, 400, 450, 500, 600, 650, 700, 800}. For the testing
et, the following Reynolds numbers were chosen 𝑅𝑒 ={20, 60, 80, 140,
50, 550, 750, 850, 900, 950, 1000}. In this particular experiment, we
im to investigate the capability of various ML models to predict the
nsteady flow and their ability to adhere to conservation laws in the
overning equations.
The finite volume method in the ANSYS Fluent package (Ansys Inc.,

023) was used to generate all simulation data. We rasterized each
utput frame from the solver to a 128 × 256 image, such that a unit
ixel represents 0.0078125 m × 0.0078125 m area. The total flow time is
s, and the simulations were downsampled across 38 evenly spaced
ime steps.
Fig. 4 illustrates the evolution of the velocity field predicted by the

ifferent PIML models (arranged in rows) on a set-aside test case (Re
550). As shown in the ground truth, presented in the top row, the
ain challenge here is to capture the unsteady flow field and the vortex
hedding in the wake of the cylinder. Most of the PIML models were
apable of capturing the vortices to a certain degree. However, PI-FNO
id not produce the vortices at all. On the other hand, FNO, while it was
apable of producing vorticity patterns, exhibited noticeable artifacts in
oth the irrotational part of the flow field and in the vortical patterns.
his is likely an indication that both models suffer from the effect of
he Fourier frequency cutoff. Moreover, PI-FNO appears to have failed
o converge to an accurate solution due to a strong overregularization
y the PDE residuals. The RMSE and solution quality values for PI-
NO, reported in Table 2, indeed support this argument, where the PDE
5

esidual for PI-FNO was noticeable lower than all other PIML models.
Table 2
Prediction accuracy and solution quality of PARCv2 and the other base-
line models on the Navier–Stokes equations experiment. The prediction
accuracy was evaluated with root mean squared error (RMSE) between
the prediction and ground truth simulations in the test set. The solution
quality was evaluated with the residual of the Navier–Stokes equations
and the violation of the divergence-free condition.
Model RMSE ||𝑓𝐮|| 𝜀𝑑𝑖𝑣

(cm∕s2) (m∕s2) (1∕s)

DNS (Ground truth) – 2.2339 0.0198

FNO 0.2411 3.2804 1.0471
PhyCRNet 0.2324 2.6994 0.0597
PI-FNO 0.2230 1.4488 0.0307
PARCv2 0.1556 3.0402 0.3655

Similar to the Burgers’ equation study, there was a noticeable
tradeoff between the RMSE and the solution quality as well. In this ex-
periment, we measured the residuals of the momentum equation ‖𝑓𝐮‖
and the continuity equation 𝜀𝑑𝑖𝑣. As expected, the physics-informed
models (PhyCRNet and PI-FNO) produced the smallest values of the
PDE residuals, and the models without an explicit physics-informed loss
term (FNO and PARCv2) exhibited the largest PDE residuals.

Comparing across different Reynold numbers (as presented in Fig. 5),
we noticed that while most models would produce increasing RMSE
with larger Reynold numbers, PARCv2 exhibit a different behavior. An
increase in prediction error at both the large and small ends of the
Reynold numbers was observed within the coverage of the training
set. RMSE of simulations with Reynold numbers not covered by the
training set report similar values with the Reynold numbers on the
edge of the training set coverage, indicating good generalization of
PARCv2. PDE residual shows a similar trend: larger PDE residual with
increasing Reynold number. This trend remains consistent regardless
of the ML model and continues outside the coverage of training set.
Divergent-free error remains roughly constant with Reynold number,
and this trend applies to all models compared here.

4. Supersonic compressible flow

We now extend PARCv2 to a supersonic compressible flow problem
with an embedded cylindrical obstacle. The high-speed, compressible
flow will create many numerical challenges such as sharp gradients
and discontinuities formed by the compressible fluid, as well as the
overall instabilities leading to vortices in the fast-evolving fields. To test
the capabilities and limitations of PARCv2 itself, we do not introduce
any ad-hoc remedies for these numerical challenges, such as adaptive
weighting (Liu et al., 2024) and sampling (Mao et al., 2020) near
iscontinuities, or smooth-to-sharp training curriculum (Krishnapriyan
t al., 2021). Instead, we test the inherent behavior of PARCv2, in the
ame configuration as in the subsonic incompressible flow problems,
n this more challenging multiphase flow problem and probe its limits.
The data used to train PARC for supersonic flow modeling was

erived from direct numerical simulation where we solved a system of
yperbolic conservation laws as mentioned in Das et al. (2017), Turner
t al. (2024), De Palma et al. (2006), Awasthi et al. (2022), Takahashi
et al. (2014). The compressible supersonic flow has been modeled by
olving the following set of equations:

𝜕𝐔
𝜕𝑡 + 𝜕𝐅

𝜕𝑥 + 𝜕𝐆
𝜕𝑦 = 0
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(8)

where 𝑢 and 𝑣 are the fluid velocities in the 𝑥 and 𝑦 direction, 𝜌 is the

density of fluid, 𝑝 is the pressure, and 𝐸 is the total specific energy.
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Fig. 5. A comparison of prediction accuracy (RMSE with the ground truth), solution quality (PDE residual of the predicted sequence) and divergence of the predicted flow field.
Fig. 6. The absolute (left panel) and relative (right panel) RMSE loss of density (top), pressure (middle) and velocity (bottom) as a function of Mach number of the initial condition
f the simulations for RK4 integrator (solid line) and RK5 integrator (dashed line). Gray shaded region indicates the range of Mach number with training set coverage.
t can be given as 𝐸 = 𝑒 + 1
2 (𝑢

2 + 𝑣2), where 𝑒 is the specific internal
energy. For the closure of the above set of equations, the equation of
state for the ideal gas is used: 𝑝 = 𝜌𝑒(𝛾 −1). Atmospheric conditions are
used as reference values.

We consider a domain that has a cylindrical obstacle with diameter
𝐷 and spans 0 ≤ 𝑋∕𝐷 ≤ 15 in the streamwise direction and 0 ≤
𝑌 ∕𝐷 ≤ 10 in the transverse direction. The cylindrical obstacle was
positioned at 𝑥 = 5D and 𝑦 = 5D. We have performed the simulations
over the range of supersonic shock Mach numbers from 1.1 to 5.0 with
a step of size 𝛥𝑀𝑠 = 0.1 to generate a comprehensive training set.
The simulations are advanced in time based on the CFL number of
0.5. The Neumann boundary condition was used for the outlet and the
channel walls. A Dirichlet boundary condition based on the shock Mach
number (obtained from the Rankine–Hugoniot equations (Anderson,
6

2003)) was enforced at the inlet. The initial condition in the domain
is set to atmospheric conditions (𝑃∞ = 101325 Pa, 𝑇∞ = 298 K, 𝜌∞ =
1.23 kg∕m3, 𝑈 = (0, 0)). The simulations are run for twice the time
taken by the moving shock to cross the complete domain. A fifth-order
WENO-LLF scheme is used for spatial discretization of the conserved
variables. A third-order TVD Runge–Kutta explicit scheme is used for
the temporal integration of the governing equations. A mesh resolution
of 1500 × 1000 is considered. After the completion of each simulation,
40 snapshots with 176 × 112 cells are collected at equal time and
spatial intervals to train the model.

We selected simulations with varying Mach numbers between 1.6 ≤
𝑀𝑠 ≤ 4.4 as the training set, except for Mach numbers 2.0, 2.5, 3.0,
3.5, and 4.0 which were left out as the testing set. These left-out test

samples are used to assess the capability of PARC in interpolating
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Fig. 7. Ground truth and predicted simulation of Mach number 2.0. While PARCv2 predicted the beginning of the simulation and the formation of bow shock very accurately,
he prediction of the evolution of the wake flow at the end of the simulation shows a significant difference.
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luid behaviors for Mach numbers not encountered during training:
he objective is to evaluate PARC’s ability to predict fluid behaviors in
n unseen speed regime based on its exposure to previously observed
luid speed conditions. Additionally, simulations with Mach number
𝑠 < 1.6 or 𝑀𝑠 > 4.4 were reserved for testing how well PARC can

extrapolate the results to unseen Mach numbers outside of the training
set range.

We treated density and pressure as state variables (i.e. components
of 𝐱 in Eq. (1) and Eq. (2)), and the two velocity components as
uch, i.e. components of 𝐮 in Eq. (1) and Eq. (2). The differentiator
was constructed to explicitly include advection and diffusion terms of
density, only advection terms for pressure and velocity components,
and reaction terms. We trained the differentiator for 1,250 epochs at
a constant learning rate of 10−5, with RK4 integrator and MSE loss
function. No data-driven integrator was used in this experiment, as
our attempts show that data-driven integration does not result in any
significant changes in the prediction quality.

4.1. Mach number within training set coverage

We first examined the performance of the models on Mach numbers
that are within the domain of the training set, namely test cases with
Mach numbers 1.5 < 𝑀𝑠 < 4.5. From the shaded regions in Fig. 6, we
notice that RMSE loss increases with a larger Mach number regardless
of the integrator, but the relative RMSE value does not show such a
trend. This is an indication that the increase in RMSE can be entirely
attributed to the larger density, pressure, and velocity values at higher
Mach numbers, and the models are capable of producing consistently
satisfactory results across a wide range of Mach numbers.
7

P

Comparing the model using the RK4 integrator against the one
using the RK5 integrator, it is evident that the model with the RK4
integrator produces smaller RMSEs regardless of the physical quan-
tity being predicted or the Mach number. While one would expect
a higher-order integrator to produce a smaller error, a higher-order
integrator also requires calling the differentiator more times, poten-
tially introducing more difficulties, such as vanishing gradients during
backpropagation in the training process. Therefore, the expected less
numerical error in integration might be canceled out by the increased
error in differentiator.

Interestingly, we noticed that the predicted Mach 2 sequence has the
highest relative RMSE velocity, especially for RK4 integrator, and the
trend of increasing RMSE continues down to lower Mach number cases.
Visual inspection of Mach 2.0 prediction and ground truth simulation
reveals that while PARCv2 predicted the beginning of the simulation
and the formation of the bow shock accurately, the evolution of the
wake flow at the end of the simulation (last row of Fig. 7) shows a
significant difference between the ground truth simulation, where the
flow is smooth and steady, and the PARC prediction, where the flow is
unsteady, leading to instabilities and formation of spurious vorticity.

Visual inspection of Mach 3 (Fig. 8) and 4 (Fig. 9) does not reveal
he same phenomenon, but provides additional insights into the be-
avior at Mach 2. We noticed that vortex formation and shedding, a
henomenon that only occurs when the Mach number is greater than
.1 in the ground truth simulation, is predicted to occur at Mach 2.
onsidering that a change in the physics regime happens at Mach 2.1,
ith a bifurcation from steady to unsteady flows, we conclude that

ARCv2 learned the dynamics in high Mach numbers to a high degree
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Fig. 8. Ground truth and predicted simulation of Mach number 3.0. The predicted bow shock is visually indistinguishable from ground truth. While the predicted wake flow is
less sharp than that from ground truth, the overall shape as well as vortex formation and shedding is present.
of accuracy but may have failed to learn the dynamics in lower Mach
numbers. Examination of lower Mach numbers beyond the coverage of
the training set is likely to produce more insight, which will be covered
in subsequent subsections.

Meanwhile, one physical phenomenon that is vital in this exper-
iment is the creation and subsequent evolution of a bow shock. In
dimensionless time, the incoming flow impinges on the cylinder at 𝑡∗ =
1∕5 (the 8th frame of simulation) regardless of the speed of the flow,
and the bow shock is formed at that instance. However, for low Mach
numbers, the bow shock is reflected by the cylinder and propagates
in the direction of the incoming flow, while in the high Mach number
cases (𝑀𝑠 > 2.1) the bow shock achieves a steady standoff distance
from the cylinder. Therefore, we traced the position of the shock front
from its formation and plotted the dimensionless distance of the shock
front to the center of the cylinder with dimensionless time in Fig. 10.
verall, the predicted simulations show similar bow shock evolution to
hose in the corresponding ground truth over the entire Mach number
ange. As established before, predictions at Mach 2 exhibit the largest
eviation from the ground truth. Furthermore, it is noticeable that
ARCv2 models consistently over-predict the distance of the bow shock
y a small amount, even at the time of shock formation. The effect of
he integrator on the evolution of the bow shock is not prominent, as
an be seen by the largely overlapped dashed (RK4) and dotted (RK5)
ines regardless of Mach number. Previous application of PARCv2 for
rediction of shock dynamics in porous energetic materials reveals that
he model tends to under-predict sharp changes (Nguyen et al., 2023a,
8

2024), and we suspect the same phenomenon is also present here.
4.2. Extrapolation to higher mach numbers

We further examine the ability of PARCv2 to predict flows at higher
Mach number cases (𝑀𝑠 > 4.5), where we no longer have any training
set coverage. We noticed a sharp increase in both absolute and relative
RMSE in Fig. 6 to the right of the shaded area (training set coverage).
This indicates the model struggles in predicting unseen flow speed
scenarios more in the high Mach number regime. Nevertheless, for
PARCv2 with RK4 integrator, the RMSE is small enough to produce
visually indistinguishable and numerically stable simulations as shown
in Fig. 11 for Mach 4.5 and Fig. 12 for Mach 5. We do notice that the
predicted vortex in the later stages of the simulation at Mach 5 (last
column of Fig. 12) is stronger and very similar to Mach 4 and Mach
4.5, providing potential evidence that the model tends to deviate from
the governing physics when extrapolated farther enough into unseen
territories.

Comparison between the two integrators provides further support to
the previously discussed disadvantage of using higher-order integrators
with PARCv2. RK5 model shows a much larger increase in RMSE than
RK4 model, as can be seen in Fig. 6 where the dashed lines are still
above the solid lines on the right side of the shaded area. Furthermore,
a visual inspection of the RK5 model shows numerical instability in
the later stages of the simulation. While, in principle, higher-order
integrators are more numerically resilient to error accumulation, the
added number of calls to differentiator per integration step and subse-
quent increased difficulty in training due to this increased number of
recursions likely offsets the advantage of RK5 versus RK4.

This numerical instability can also be seen in Fig. 10, where the RK5

prediction at Mach 5 (yellow dotted line) starts to decrease while both
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Fig. 9. Ground truth and predicted simulation of Mach number 4.0. Compared to Mach number 3.0, PARCv2 predicted simulation is even closer to the ground truth.
Fig. 10. Dimensionless distance of the shock front from the center of the cylinder as
a function of dimensionless time at given Mach numbers. The color indicates the Mach
number and the line style stands for the ground truth (solid), the PARCv2 model with
the RK4 integrator (dashed), and the model with the RK5 integrator (dotted). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the ground truth (yellow solid line) and the RK4 prediction (yellow
dashed line) stabilizes at around a value of 15.

4.3. Extrapolation to lower mach numbers

While the test cases with training set coverage and extrapolation
to higher Mach number cases produce predicted sequences that are
9

close to the ground truth simulations with the same initial condition,
we discovered that the PARCv2 model struggles with extrapolation in
lower Mach number cases𝑀𝑠 < 1.5. From the comparison of RMSE loss
in Fig. 6, increases are seen in both the absolute and relative RMSE to
the left of the shaded area where the low Mach number extrapolation
cases are depicted. As mentioned in Section 4.1, quantitative and visual
differences between the ground truth and predicted sequences have
already shown up in the Mach 2 test case. This trend in deteriorating
performance is confirmed by further inspection of Mach 1.2 (Fig. 14)
and Mach 1.5 (Fig. 13) which reveals almost a complete failure of
PARCv2 in the prediction of low Mach number extrapolation regimes.
While PARCv2 is still capable of handling the simple case of traveling
of the fluid inflow at the earliest stages of the simulation (first column
of Figs. 13 and 14), it is incapable of reproducing the formation and
evolution of bow shock (second, third and fourth column of Figs. 13
and 14) or the stable wake flow behind the cylinder at later stages of
the simulation (last row of Figs. 13 and 14). One can also observe that
the Mach 1.2 case shows the worst predicted sequence by either the
highest RMSE loss, especially relative value in Fig. 6, or the lack of any
expected patterns in the predicted sequence in Fig. 14. As such, tracing
of the bow shock front becomes impossible in these low Mach number
cases and thus these cases are not present in Fig. 10.

We surmise three possible reasons for such a failure. First, the values
of density, pressure, and velocity at lower Mach number cases are
smaller, thus incurring a smaller penalty in the loss function. As neural
networks tend to capture the most prominent patterns first and more
details and smaller deviations from ground truth later during training,
it is likely that capturing the patterns in lower Mach number cases
would take considerably longer epochs with very little decrease in the
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Fig. 11. Ground truth and predicted simulation at Mach 4.5. PARCv2 predicted simulation still captures the bow shock, its evolution with time and the vortex behind the cylinder.
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average loss value. As such, the stopping criteria will be triggered long
before convergence at lower Mach number cases. Second, there are
more simulations beyond Mach 2.1 in our training set, and since each
simulation was seen by the model only once per epoch, the model is
biased towards high Mach number cases during training. As the training
cases are equally spaced in Mach number, we have 5 training cases with
Mach 2.1 and lower, and more than 15 cases above. Third, there is a
distinct bifurcation of the overall dynamics of the system at Mach 2.1;
the flow patterns at the lower and higher Mach number cases are quite
different. Mach 2.1 marks the point of transition in post-shock flow
from subsonic to supersonic. As such, the dynamics of the flow changes
from acoustic signals propagating upstream to only the shock waves
propagating upstream. There the low Mach number cases, especially in
the upstream part of the domain, consist of substantially more complex
flow dynamics. A close examination of ground truth simulation shows
two major differences. At the lower Mach numbers, the transient bow
shock travels far upstream, eventually exiting the simulation domain
and the wake flow behind the cylinder is smooth and steady with no
vortical patterns in the wake. On the other hand, higher Mach number
cases are markedly different, with the bow shock reaching a stable
distance from the cylinder, and the flow behind the cylinder develops
unsteady vortical patterns. It is likely that the neural network only
learned one regime but failed to learn another. This is supported by the
results of Mach 2 (Fig. 7), where as previously mentioned the predicted
sequence shows signs of vortical flow while the ground truth does not.
We propose that an intentional bias towards lower Mach number cases
10

by either increasing the number of such simulations in the training set
through generating more training samples or training on such cases
more than once within each epoch or finetuning the model on only
the lower Mach number cases after training on the entire training set
might mitigate this issue. This is being explored in current work.

4.4. Extrapolation in time

To examine the performance of PARCv2 in extrapolation in time,
we selected 3 cases—Mach numbers 2, 3.5 and 5, and predicted the
flow evolution through 𝑡∗ = 2, which is double the simulation duration
f the training data. These 3 specific Mach number cases were selected
ecause they cover a wide range of initial conditions, both within and
utside the coverage of the training set. No cases with Mach numbers
𝑠 < 2 were chosen since PARCv2 already struggled with 0 < 𝑡∗ < 1.
In Fig. 18, RMSE as a function of simulation time is presented. We

oticed that both Mach 3.5 and Mach 5 cases do not show any signif-
cant increase in RMSE during the extrapolation. Visual examination
f predicted simulation snapshots in Figs. 15 and 16 confirmed this
finding, as the predictions remain close to the ground truth. PARCv2
successfully predicted the oscillatory vorticity pattern in the wake flow.
We also noticed that the vorticity becomes less extreme and closer to
the ground truth simulation as time goes on in the Mach 5 case. One
interesting phenomenon is that there are significant decreases in RMSE
regardless of variables at 𝑡∗ = 0.5 for Mach 2 and Mach 3.5 cases.
After checking the snapshots, we discovered that this is also the exact
time where the shock waves exit the simulation domain. Therefore, we

hypothesize that PARCv2 tends to have a larger prediction error when
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Fig. 12. Ground truth and predicted simulation at Mach 5. PARCv2 predicted simulation still captures the bow shock, its evolution with time and the vortex behind the cylinder,
ut the predicted vortex is more extreme and similar to those lower Mach number cases.
redicting sharp features, a phenomenon observed in the energetic
aterial experiment in Nguyen et al. (2024).
As expected, the Mach 2 case shows significantly worse performance

uring extrapolation in time (see Figs. 17 and 18). Instead of RMSE
stabilizing around a certain value, the RMSE values continue their
upward trends into the extrapolation in time and reach a higher value
than the case of Mach 3.5, despite the latter case having larger values
in density, pressure, and velocity. After the bow shock exits in the
simulation domain in the direction of the inflow, PARCv2 prediction
becomes unstable and starts to show large-scale artifacts.

5. Discussion

Here we provided a comparison of prediction time per simulation
between PARCv2, other models and DNS solver in the three exper-
iments presented in this work (see Table 3). Compared to the DNS
solver, PARCv2 is several orders of magnitude faster during prediction
across all three experiments. Compared to other ML/PIML models,
PARCvs exhibits clear advantage in prediction time of more complex
problems (e.g. Navier–Stokes), while in simpler problems (e.g. Burger’s)
its prediction time is comparable to FNO and PIFNO. Note that FNO and
PIFNO have the same architecture thus the same prediction time.

The guiding philosophy of PARCv2 entails the emulation of its
network architecture to mirror the governing PDEs. Specifically, in this
paper, PARCv2 replicated the general transport physics PDEs, encom-
passing both incompressible and compressible variants, characterized
11

by unsteady convection–diffusion–reaction formulations. Note that no
Table 3
A comparison of prediction time for one simulation between PARCv2,
other PIML models and DNS solver. Measurements of ML model predic-
tion time were performed on one Nvidia A100 GPU, and are provided
in unit of seconds in the table. Measurements of DNS running time were
performed on computing clusters with 2.6 GHz AMD 7H12 Rome, and
are provided in unit of CPU core hours in the table.
Prediction time
per simulation

Burger N-S Supersonic

PhyCRNet (sec) 0.264 0.713 –
FNO (sec) 0.433 0.939 –
PIFNO (sec) 0.433 0.939 –
PARCv2 (sec) 0.445 0.278 11.0 (s)
DNS (core hours) 0.14 ∼ 12 ∼ 512

changes to the PARCv2 architecture or training/loss modalities were
made for any of the cases simulated in the paper. This is a departure
from the conventional approach of embedding physics PDEs directly
into loss functions and offers distinct advantages, as can be evidenced
from the results in this paper.

For example, one of the discoveries from our experiments was
the tension between prediction accuracy (RMSE) and solution quality
(PDE residuals). This raises an intriguing question about the contrast-
ing learning philosophies between PARC and PINNs. While physics-

informed regularization in PINNs can be seen as a soft constraint
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Fig. 13. Ground truth and predicted simulation at Mach 1.5. PARCv2 failed to predict a reasonable sequence and large-scale differences can be visually identified even without
any quantitative comparison.
guiding the network towards specific regions in the search space,
PARC’s inductive bias approach imposes a hard constraint on the
solution function’s topology in the search space. Moreover, as physics
constraints are integrated into the architecture design, training PARC
becomes a single-objective optimization problem, unlike the multi-
objective optimization problem presented by PINN. This complexity
may make the loss landscape of PINN challenging to navigate, with
a vast search space (the ‘space of all functions’) and conflicting objec-
tives (Krishnapriyan et al., 2021). In contrast, PARC operates within
smaller search space due to architectural constraints on function

opology, eliminating the risk of conflicting objectives and facilitating
onvergence.
The performance of PINN tends to be sensitive to the selection of

ampling methods and the weighting of loss terms. In fact, one may
rgue that the comparisons in this present work are not entirely fair
ince the sampling methods and weighting strategies for PhyCRNet and
I-FNO were not meticulously tailored to optimize the predictions for
ach specific problem. While it is true that with different sampling
ethods and weighting schemes, the performance of PhyCRNet and PI-
NO could have been improved, this underscores an issue of the need to
xperiment with various hyperparameters and ad-hoc processes during
INN training. In contrast, PARC requires less tuning of settings to be
ffective across different dynamics regimes.
Furthermore, the primary challenge in data-driven modeling resides

n determining the pertinent variables for learning. In solving different
ystems governed by different sets of governing equations, such as
he Burgers’ and Navier–Stokes equations, the selection of variables is
12
straightforward due to the limited number of equations and variables.
However, in instances where the number of equations and variables
expand significantly, discerning the variables to be learned becomes
imperative. This problem is frequently encountered in reactive mul-
tiphase flow simulations yet PARC has the inherent adaptability to
accommodate incompressible and compressible flow regimes without
necessitating structural alterations, manipulation of the weighting of
loss terms, and adaptive sampling mitigates this issue. In addition,
PARC exhibits versatility even in scenarios where PDEs are elusive by
solely functioning on available data.

6. Conclusion and future work

We presented an inductive bias physics-aware deep learning
method, PARCv2, capable of simulating compressible multiphase flows.
PARCv2 features high prediction accuracy and acceptable physics
awareness when compared to other state-of-the-art PIML models on
subsonic flow problems. Additionally, experiments on supersonic com-
pressible flow demonstrated that PARCv2 can capture the bow shock
and vortical flow in supersonic flows, with a caveat that it may quickly
deteriorate in the low Mach number regime.

For future research, different loss functions and weighting schemes
may be worthwhile to explore. What we find intriguing from the
supersonic flow experiment in Section 4 was the fact that, while capable
of modeling sharp gradients with large values in the high Mach number
regime, PARC struggled in modeling low Mach number flows, rendering
an opposite behavior to other physics-informed models. We suspect that
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Fig. 14. Ground truth and predicted simulation at Mach 1.2. PARCv2 failed to predict a reasonable sequence and large-scale differences can be visually identified even without
any quantitative comparison.
the current loss function design is inherently biased toward data points
with large values (e.g., high Mach number flows). To this end, gradient-
based loss weighting (Liu et al., 2024) or feature-based weighting (Lu
et al., 2023) may be introduced to augment PARC training.

Furthermore, an adaptive resolution might be implemented in PARC
to resolve sharp and discontinuous features more effectively. We are
currently exploring techniques such as continuous convolution (Shocher
et al., 2020) as the means to attain adaptive resolution in PARC. The
key idea here is that, instead of learning filters on a fixed grid of pixels,
we may define convolution operations as continuous functions, so that
they can be resolved in different resolutions across the domain.
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Fig. 15. Ground truth and predicted simulation at Mach 3.5 beyond 𝑡∗ = 1. Visual inspection did not reveal any decline in prediction accuracy when extrapolating in time beyond
the coverage of the training set. Oscillatory wake flow patterns were reproduced by PARCv2.

Fig. 16. Ground truth and predicted simulation at Mach 5.0 beyond 𝑡∗ = 1. While the predicted simulation shows more extreme vorticity at the beginning, it gradually dies down
during the extrapolation.
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Fig. 17. Ground truth and predicted simulation at Mach 2.0 beyond 𝑡∗ = 1. A gradual deterioration in PARCv2 performance can be observed when extrapolating in time beyond
training set coverage at low mach number cases, especially after the bow shock exited the domain.
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Fig. 18. RMSE as a function of non-dimensionalized time for Mach 2, 3.5, and 5 cases.
he starting point of extrapolation in time is indicated with a dashed line.
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