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Abstract. We answer a question of Calderoni and Clay [4] by showing that the con-
jugation equivalence relation of left orderings of the Baumslag-Solitar groups BS(1, n)
is hyperfinite for any n. Our proof relies on a classification of BS(1,n)’s left-orderings
via its one-dimensional dynamical realizations. We furthermore use the effectiveness
of the dynamical realizations of BS(1,n) to study algorithmic properties of the left-
orderings on BS(1,n).

1 Introduction

A group G is left-orderable if there is a linear ordering < on the elements of G such that for
all f,g,h € G, g < h implies fg < fh. We refer to such a linear ordering as a left-ordering
of G. The study of (left-)orderable groups has a long tradition in mathematics starting with
the work of Dedekind and Hélder in the late 19th and early 20th century. Dedekind famously
characterized the real numbers as a complete bi-orderable Abelian group and Hoélder showed
that any Archimedean ordered group is isomorphic to an additive subgroup of the reals with
their standard ordering. These fundamental results led to an influx of interest in orderable
groups and established their theory as a cornerstone of group theory; see [18] for a treatment
of the classical theory.

While most studies of orderable groups employed algebraic methods, there is a strong
connection with one-dimensional dynamics. Indeed, a group is left-orderable if and only if
it acts faithfully on the real line by orientation preserving homeomorphisms [14] (see also
Section 2.1). Motivated by this observation, Navas [21] systematically applied dynamical
ideas to study orderable groups and give new proofs of results previously obtained by al-
gebraic methods, as well as new results. He gave a new dynamical proof of the fact that
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LO(F,), the space of left-orderings of the non-abelian free group of rank n, is homeomor-
phic to the Cantor set if n > 2 [21, Theorem A], and of the result of Linnell which states
that the number of left-orderings of a group is either finite or uncountable [21, Theorem
C]. Since then one-dimensional dynamics has become an important tool in orderable group
theory with many applications. Generalizing Navas’s approach, Rivas proved that for all
left-orderable groups G and H, the free-product G * H has no isolated left-orderings [24,
Theorem A]. In [19, Theorem 1.1] dynamics was used to find new examples of groups with
isolated left-orderings, and in [23,25] characterizations of left-orderings of various solvable
groups were obtained.

These developments have led to various natural questions about the space of left-
orderings of groups, LO(G). Of particular interest to this paper is a question by Deroin,
Navas, and Rivas [10, Question 2.2.11] that asks if the conjugation equivalence relation of
G on LO(G) is standard. This question has attracted the interest of Calderoni and Clay [3]
who initiated the study of the conjugation equivalence of orderings on a fixed group G in
the setting of descriptive set theory.

Among other groups, Calderoni and Clay studied the space of linear orders of solvable
Baumslag-Solitar groups [4]. Baumslag-Solitar groups are introduced in [1] as an example
of non-Hopfian groups, and have served as important examples and counterexamples in
group theory [2, Chapter 5]. In particular, the solvable Baumslag-Solitar groups admit nice
structural properties and thus provide useful test cases for theories and techniques.

The main contribution of our paper is in this context: We show that the conjugation
equivalence relation of the solvable Baumslag-Solitar group BS(1,n) is hyperfinite for every
n. This answers a question posed by Calderoni and Clay [4].

The algorithmic aspects of left-orderable groups have also seen attention in the past,
mainly focusing on the complexity of orderings of computable groups [12,16,8,9] and their
reverse mathematics [27,28]. In Section 4, we explore how a group’s dynamics can be used to
study algorithmic properties of its orderings, using BS(1,n) as an example. Our main result
shows that the index sets of orderings that are conjugates of a given ordering with irrational
base point is X9-complete. Our proof relies on the dynamical realizations of BS(1,n) and
the machinery developed in prior sections.

Before we prove the main results of this paper we review the main tools used in their
proofs and give the necessary definitions to formally state our results.

2 Left-orderable groups, their dynamical realizations, and E;,

A left ordering < on a group G induces a partition of G into disjoint subsets
Pt={geG|g~id},P~=(P") '={g€G|id> g} and {id}

where P is called the positive cone of the left-ordering <. Notice that the reverse order <*,
defined as g <* h if and only if h < g, is also a left-ordering of G with associated positive
cone P~. It is not hard to see that the positive cones on G are precisely the subsets P C G
satisfying

PNP =g, PPCPand PUP 'U{id} =G.

Moreover, every positive cone gives rise to an associated left-ordering <p via

g=<ph < g 'heP



and thus we get a bijection between positive cones and left-orderings on G.

The collection of all positive cones P of G forms a closed subspace, LO(G), via the
subspace topology of 2¢ and is thus a Polish space [26]. Given any positive cone P € LO(G)
and any element g € G, the set P9 = {p = g~'pg : p € P} defines a positive cone on G.
Consequently, the group G acts on LO(G) via conjugation simply by defining g(P) = ps!
for all ¢ € G and P € LO(G). It is not hard to see that the action of G on LO(G) is
continuous and, in fact, computable uniformly in G.

Remark 1. A countable group G is computable if its domain and group operation are com-
putable. We can assume that the domain of G is all of w and thus view positive cones P C G
as subsets of the natural numbers and 2¢ simply as 2. Then the above comment that the
action of G on LO(G) is computable uniformly in G means that there is a Turing operator
@ such that

&(G, P; g) = g(P) for all left-orderable groups G, positive cones P, and g € G.

2.1 Dynamical realizations

Although left-orderability is an algebraic concept, it has a deep connection to one-
dimensional dynamics. In particular, the left-orderable countable group can be characterized
in dynamical terms.

Theorem 1 ([14, Theorem 6.8]). Let G be a countable group. Then the following are
equivalent:

1. G is left-orderable.
2. G acts faithfully on the real line by orientation preserving homeomorphisms, i.e., there
is a faithful representation v : G — Homeo, (R).

Let us elaborate on Theorem 1. Given an embedding D of G into Homeo (R) and a dense
sequence (z1,...) in R, we can obtain a positive cone Pp = Pp(z1,...) as follows: we define
g € Pp if, for the least i such that D(g)(z;) is not a fixed point, D(g)(z;) > z,;. The proof
of the reverse implication that G is left-orderable implies that G embeds into Homeo, (R) is
effective. In particular, given a left-ordering on G, there is an associated group action of G on
the real line, called a dynamical realization of G, constructed as follows. Fix a left-ordering
< on G and, since G is countable, fix an enumeration of the elements of G = (go, g1,-- - )-
We define a map t : G — R that preserves <, namely,

t(g) <t(h) <= g=<h,

by defining ¢ : G — R inductively starting with #(go) = 0 and

max{t(go),...t(gi—1)} +1 if (Vj <i)g; < gi
t(g:) = { min{t(go), ... t(gi—1)} —1 if (Vj <i)gi < g;
Hanlttlon) if g € (gms gn), mon < i and (Vj < i)g; & (g, gn)

Then we can define an action of G on #(G) via g(t(g;)) = t(gg;) and extend this action
continuously to the closure ¢(G). Finally, we extend the action to R \ ¢(G) by affine maps
to obtain a faithful orientation-preserving action of G on R and a faithful representation
D : G — Homeo™ (R). By construction, this action




— has no global fixed point unless G is the trivial group, and
— the orbit of 0 is free; i.e., the stabilizer of 0 under this action is trivial.

These two properties characterize the dynamical realization up to topological semiconjugacy.
In particular, we have

Lemma 1 ([21, Lemma 2.8]). Let <1 be a left-ordering on a non-trivial countable group
G, and let D1 be a dynamical realization of <1. Let Dy be an action of G on R by orientation-
preserving homeomorphisms such that

— Dy has no global fixed point, and
— the orbit of O is free.

If <5 is a left-ordering on G defined by
g =2 h < Ds(g)(0) < D2(h)(0),

then the two left-orderings <1 and <o coincide if and only if Dy is topologically semicon-
jugate to Dy relative to 0. That is, there exists a continuous non-decreasing surjective map
¢ : R — R such that Di(g) o ¢ = ¢ 0 Da(g) for all g € G and that p(0) =0 *.

Remark 2. Topological semiconjugacy is not an equivalence relation as ¢ could collapse
some intervals to points. The lemma above says that among all actions satisfying the two
conditions, the dynamical realization is “minimal”.

It follows that a different choice of enumeration of G yields a different action that is
topologically semiconjugate to D. Therefore, we may speak of the dynamical realization
of a left-ordering on G without referencing the enumeration of G. From the dynamical
realization, we can also recover the original positive cone P on G and its conjugate.

Proposition 1. Suppose that D is a dynamical realization of a left-ordering P of G. Let
t: G — R be the order-preserving map used in the construction of D. Then for any h € G,
we have

"={geG:D(g)(t(h™")) > t(h™")}.
Proof. When h = id, we have
P ={g€G:D(g)(t(id)) > t(id)}
since t is an order-preserving map. In general, we have
h={h"'gh:ge P}
= {h7'gh: D(g)(t(id)) > t(id)}
={f € G: D(hfh™)(t(id)) > t(id)}
={f € G:D(f)(t(h™")) > t(h™")}.
O

An application of the dynamical realization that is useful for this paper is an effec-
tive classification of the left-orderings on the solvable Baumslag—Solitar group BS(1,n) [23,
Theorem 4.2]. We will review this classification in Section 3.

* The condition that ¢ fixes the origin was not stated in [21], but was used in the proof as pointed
out in [20, Lemma 3.7]



2.2 Descriptive set theory and E,

For a fixed group G, the conjugation action of G on LO(G) defines an orbit equivalence
relation, denoted EZGO , where

PESQe3geG,g(P)=Q.

When G is countable, every equivalence class of ES (or just Ej, if G is clear from context)
is countable.

Equivalence relations where each equivalence class is countable are called countable equiv-
alence relations and are a major topic in descriptive set theory, where the complexity of
equivalence relations is measured using Borel reducibility <p. The structure of the quasi-
order of countable Borel equivalence relations under Borel reducibility is complicated and
its investigation is an active research area, see [17] for an overview of developments. Let us
mention three benchmark equivalence relations:

1. The identity relation on 2¢, id?", is the least complicated equivalence relation among
countable equivalence relations on uncountable spaces. The equivalence relations re-
ducible to id?*” are called smooth.

2. The equivalence relation of eventual equality on 2%,

z Eyy < Im(¥n>m)x(n) =y(n)

is the archetypical non-smooth hyperfinite equivalence relation (i.e., an increasing union
of equivalence relations having only finite classes). By [15] every hyperfinite equivalence
relation is either bi-reducible with Ey or smooth.

3. The orbit equivalence relation S of the shift action of Fy on 272 is universal for countable
Borel equivalence relations, i.e., every other countable Borel equivalence relation is Borel
reducible to it.

While the interval (id?”, Ey) is trivial, the interval between Fy and S is known to be ex-
tremely complicated.

A fundamental result due to Feldman and Moore [13] shows that the countable equiv-
alence relations are precisely the orbit equivalence relations of Borel actions of countable
groups. One major conjecture in the area, known as Weiss’s conjecture, aims to shed light
on which groups cannot have complicated orbit equivalence relations. It states that every
Borel action of an amenable group has a hyperfinite orbit equivalence relation. So far this
conjecture has not been fully confirmed and only partial results are known with the latest
advance made in [7].

Deroin, Navas, and Rivas [10] asked if LO(G) modulo the action of G is standard, which
is equivalent to asking if ElGO is smooth. Calderoni and Clay generalized this to studying the
complexity of equivalence relations Eg under Borel reductions [3,4,5]. They showed that Ej,
is universal for free products of countable left-orderable groups and not smooth for many
groups, including the Baumslag—Solitar group BS(1,n) and the Thompson’s group F. They

also showed that El]i 5(1:2) 44 hyperfinite. It is still open if there is a group G with EIGO being
intermediate, namely, strictly between Fy and S. There are also other closely related orbit
equivalence relations, including the action of Aut(G) on the Archimedean ordering of Z" or
Q™. In [6, Theorem 1.1], it was shown that the orbit equivalence relation of Aut(Q?) on the
space of Archimedean orderings of Q? is not smooth. Extending this result, Poulin showed

that the action of Aut(Q™) on LO(Q™) is not hyperfinite when n > 3 [22, Corollary 1.3].



In the next section, we use the affine action of BS(1,7) on R to show that the ElB;S(l’n) is

hyperfinite for every n (Theorem 3), answering a question of Calderoni and Clay [5, Question
4.2]. While this result does follow from Weiss’s conjecture, the conjecture has not been
confirmed for BS(1,n), n > 2. In any case, we believe that our proof is of interest as it is quite
elementary compared to known proofs of parts of Weiss’s conjecture. Furthermore, the result
determines exactly the complexity of the conjugation action of BS(1,n) on LO(BS(1,n))
which is of interest from the orderable group theory perspective.

3 EBsStn)

lo

is hyperfinite

The solvable Baumslag—Solitar group BS(1,n), given by the presentation
{a,b:b"tab = a™),

is an important example in group theory. The normal closure ({(a)) of a is abstractly iso-
morphic to Z[1/n], the subgroup of Q generated by 1/n,1/n?,1/n3, ..., via an isomorphism
sending a to 1 and b*ab=* to 1/n* for every k € Z. Abusing notation, we will write elements
of ((a)) as a” where r € Z[1/n]. The quotient of BS(1,n) by the normal closure of a is the
infinite cyclic group generated by the image of b. Therefore, BS(1,n) fits into a (split) short
exact sequence

0 — Z[1/n] - BS(1,n) - Z — 0,

and admits the semidirect product structure BS(1,n) = ({(a)) x (b). The elements of G
have the normal forms a”"b® where r € Z[1/n] and s € Z. As a warm-up, we first recall a
well-known construction of left-orderings using a short exact sequence.

Proposition 2. Let K and H be left-orderable groups equipped with positive cones Py C K
and Py C H. Consider the following short exact sequence of groups:

1-K—-G5H—1
The set Pg :={g € G | n(g) € Py} U Pg defines a positive cone of G.

To order BS(1,n), we observe that there are exactly two orderings on Z[1/n] and Z: the
ordering coming from the standard ordering on R and its reversal. Applying Proposition 2,
we get four left-orderings on BS(1,n). The positive cones of these four left-orderings are:

— Pt ={a"b®:s>0V(
— P ={a"b*:s>0V(
— Pt ={a"b*:s<0V(
— P ={a"b*:s<0V(

s=0AT>0)},
s=0ATr<0)},

s=0AT>0)},

s=0AT<0)},

We note that all four left-orderings above are conjugation invariant. In other words, they
are all bi-orderings on BS(1,n) and the action of BS(1,n) on LO(BS(1,n)) fixes these four
bi-orderings. However, BS(1,n) admits other left-orderings not coming from Proposition
2. To study Eis(l’n)7 we will review the classification of all left-orderings on BS(1,n) for
any integer n > 2 due to Rivas [23, Theorem 4.2]. Note that although Rivas stated the
classification of left-orderings only for BS(1,2), his proof works without modification for
any positive integer n. The proof for arbitrary positive integers n is also presented in [10].



A different source of left-orderings on BS(1,n) comes from the affine action of BS(1,n)
on R. Consider the action of BS(1,n) on R given by p: BS(1,n) — AffT(R) where

pla)(z)=xz+1 and p(b)(z)=z/n.
It is a straightforward computation that this action is faithful.

Lemma 2. [23, page 10] Let z € R. If v € Q, then the stabilizer Stab,(x) = Z. If x is not
in Q, then the stabilizer Stab,(x) is trivial.

Proof. First, we observe that the stabilizer of any point must be either trivial or isomorphic
to Z. Under p, the normal closure of a acts by translation and has no fixed points. Therefore,
if the stabilizer of some point on R is nontrivial, it must be mapped injectively into the
quotient BS(1,n)/({a)) = Z. Since p is a faithful representation, the nontrivial stabilizer
must be isomorphic to Z.

For any r € Z[1/n] and s € Z, we have

p(a"b®)(z) =n" xz +r.

If s # 0, then the affine map above has a fixed point which must be rational. Now suppose
that x = p/q € Q. We want to find r € Z[1/n] and s € Z such that

ns£+T:£

q q

np n s
n—+nr=— or (n°—-1)==-nr
o (n* 1)
Since n and ¢ are relatively prime, ¢’ is in the (multiplicative) group of units of Z/nZ, so
we can find s € N'\ {0} such that ¢’ divides n® — 1. Now we set

-1y
qg n

Z[1/n]

T =

since p’ € Z. Therefore p(a”b~*) fixes p/q. O

It follows that if ¢ € R\ Q, then each of the following subsets defines a positive cone on
BS(1,n):

— P ={g:plg)(e) > ¢},
- P ={g9:p(9)(e) <e}

When ¢ € QQ, we define the following four positive cones.

— QX ={g:(p(9)(e) > €) V (p(g)(¢) =€ Ap(g)(e + 1) > e+ 1)}
= QI ={g: (p(9)(e) > €) V (p(g)(c) =€ Ap(g)(e + 1) <e+ 1)}
= Q" ={g: (p(9)(e) <€)V (p(g9)(c) =€ Aplg)(e +1) > e+ 1)}

= Q-7 ={g:(p(9)(e) <) V(p(g9)(e) =eAplg)(e +1) <e+1)}

Theorem 2 ([23, Theorem 4.2], [10]). P and P- fore € R\ Q, Q++, QY , Q-

€

and Q2= for e € Q, and the 4 positive cones PLT, P+_ Pt and P~ corresponding to

bi-orderings are all distinct and contain all the left—ordermgs on BS(1, n)



Recall that for a left-orderable group G, a faithful action D : G — Homeo, (R) and a dense
sequence x1, - - - € R one can recover an ordering Pp(z1,...) as mentioned after Theorem 1.
Theorem 2 tells us that by using the action p of BS(1,n) on R, one can classify all the
bi-orderings by considering the first elements € = x1 of dense sequences in R. Thus, given a
positive cone P of the form P, P, PS, or Q2 where o € {++, ——,+—, —+} we refer to
€ as the base point of P and PT, P~, P°, and Q° as its type.

We observe that given some g € BS(1,n), ¢ € R, and o € {+, —, ++,+—, —+,——}, we
have T? = (Tgo(e))gfl, where T € {P,Q}. In particular, € is rational if and only if g(e) is
rational and Q is a countable BS(1, n)-invariant subset. Thus, the conjugation equivalence
of the positive cones is Borel equivalent to the orbit equivalence relation of BS(1,n) ~ R.

Theorem 3. The orbit equivalence relation E generated by the affine action BS(1,n) =
{a,b| b tab=a") ~ R via a(x) =z + 1 and b(z) = nx is hyperfinite.

Proof. We will reduce E to E;, the tail equivalence relation, defined on n* by AE,B if
Ip, q¥k A(p + k) = B(q + k). This suffices as the tail equivalence relation is hyperfinite by
[11, Section 8].

The reduction f : R — n®“ is given by sending = € R to the base n expansion of
the fractional part {x} of z. To show this is a reduction, let x,y € R. Assume first that
T EIBOS(L”) y, so there is some g € BS(1,n) such that g(x) = y. Assuming g = a"b® such
that r € Z[1/n] and s € Z, we have y = g(z) = a"b°(x) = n~*z +r. As r € Z[1/n], we can
multiply the equation by a power of n to get nPy = n%x + ¢, where p,q € N and ¢t € Z. Since
t is an integer, we have {nPy} = {n%z}. However, in base n, {n%x} can be obtained from
{z} by truncating the first ¢ digits and shifting the decimal point by ¢ places, and similarly
for {y} and {nPy}. Thus, {nPy} = {n%z} implies that {z} E; {y}.

Conversely, assume {z} E; {y} in base n. Then there are some ¢,p € N such that for
every k, the (¢ + k)-th decimal place of {z} is the same as the (p + k)-th decimal place of
{y}. Thus, we have {n%z} = {nPy}, namely, there is some t € Z with nPy = n9z + ¢, or
equivalently y = n9 Pz + t/nP. This means y = g(x) with g = a'/""b*~9, so x E y. This
shows that f is indeed a reduction. a

S

BS(1,n)
lo

BS(1,n)

o is not smooth.

It follows that E is hyperfinite, and [5] showed that E

BS(1,n)

Corollary 1. E, B Eo.

4 Computability of dynamical realizations

Given a left-ordering of G, it is straightforward to see that the left-ordering (considered as a
relation on G) and the corresponding positive cone (considered as a subset of G) are Turing
equivalent. It is thus natural to ask if this equivalence extends to the dynamical realization
of the left-ordering. We will soon see that this is the case for BS(1,n).

Towards this fix an enumeration of the dyadic rational numbers Q5 and recall that a real
number r € R is left-c.e. if its left cut is c.e., i.e., the set {g < r : ¢ € Qa} is computably
enumerable. If both its left cut and right cut are c.e., then we say that it is computable.

Proposition 3. Let P be a left-ordering of BS(1,n), then P is Turing equivalent to its base
point. Furthermore, the reductions are uniform in the type.



Proof. We non-uniformly fix the type of P. We will assume that the type is Pt with the
construction easily adaptable to work for other types. We enumerate a right cut of its base
point €. For every g € Q2 we enumerate P and whenever we see g = a"b® € P such that
p(9)(q) = n"*q+1r > q we enumerate ¢ into C. Say n™*z +r > x, then x > —=", and so
p(g)(e) > ¢ if and only if for every ¢ > ¢, p(g)(q) > ¢. Thus, Cj, is a right cut of . Similarly,
we can enumerate a left cut.

Similarly, say we can compute a left cut L and right cut R of € and are given a type T
We will give a proof assuming that 7 = PT. The proof can be easily adapted to work for
other types. For ¢ € @2, we can compute whether g € T;. By the affineness of p we have
that

g€ Pl <= (3q€ R)p(9)(q) > q <= (Vg€ R)p(9)(q) = q-

Hence, we can compute P from its right cut. a

For G a left-orderable computable group and P a computable positive cone of G the
following canonical index sets appear.

I(G) = {e: W, is a positive cone}
I(P,G) = {e: W, E, P}

By definition the set I(G) € II9 as membership in a c.e. set is X¥. Similarly, it can be seen
that I(P,G) € X9.

Proposition 4. Let G be an infinite computable group with a computable left-ordering.
Then 1(G) is I19-complete.

Proof. We reduce Inf to I(G). Fix a computable positive cone P and an index e so that
W, = P. Given n, we build a total computable function f so that Wy, = P if and only if
n € Inf. To do this, we enumerate W, in stages W, 5, and, whenever W, 541 # W, s with
k= [Wiwmy,s41l, we define Wiy o411 = We k. The resulting set Wy, is clearly c.e. and
n € Inf if and only if Wy(,,) = W, = P. O

Theorem 4. 1. I(P2,BS(1,n)) is I19-complete for every o € {++, ——,+—, —+}.
2. I(P2,BS(1,n)) is X9-complete for every computable e € R\ Q and o € {+,—}.

Proof. The proof for Item 1 is analogous to the proof of Proposition 4.

We prove the X9-hardness of I(P2,BS(1,n)) for a fixed computable ¢ € R\ Q. That
I(P?2,BS(1,n)) € X9 follows easily from the definition. Given a X9 set S we may assume
that there is a computable function ¢ : w? — w such that

ne€sS < YWy, € Inf.

We may also assume that for every k € w there are infinitely many y with [Wy, )| > k.

Given n, we will define a left cut Cy(,,) in stages as follows. We let C’}) .y = 0 and at every
stage s we choose some y < s and extend C]i ) with the goal to make Cy(,,) a left cut of a
real number §,. Furthermore, every y will define natural numbers k, and I, when it acts at
a stage s. Every d, will differ from € at only finitely many digits in their base n expansions
and &g = € with kg = lp = 0. The construction is a classical finite injury construction where
higher priority “requirements” (i.e., smaller y) will initialize the work of larger y. At the
start of the construction, all y are initialized.



Assume we are at stage s + 1 and that yg is least with Wy, y0) s+1 7 Wy y0),s- Let 1
be the y that acted at stage s. If yy has been initialized since it last acted or has never acted
before, do the following:

Set ky, = ky, +1 = (p,q). By induction we can assume that {n"d,, } = {n"e} for some
r € w. If p # ¢, then since ¢ is irrational n?d,, # nie. Hence, there must be some least
i > r such that the (p + i)-th bit of {d,, } is not equal to the (¢ + 7)th bit of e. We declare
8y, = 0y, and I, = max{l,,,p+i}.

Now, if p = ¢, then we consider the least r > max{p,l,,} such that d,, —n™" €
(max C} ), dy,) and the r-th decimal place of 4, is nonzero, let d,, = d,, —n~" and
set Iy, = r. Note that the first 7 — 1 decimal digits of J,, and d,, are the same.

At last, no matter if yo was initialized at the start of this stage or not, let

+1 _
Citwy = Ciom Y lai}
where ¢; € Q2 is least in an enumeration of Qo with ¢; < d,, and initialize all lower priority
requirements. This finishes the construction.
Let Cy(,) = limg C;(n)' We claim that this is a left cut. Indeed, if ¢ € Cy(,) at some

stage so, then we have d,[s] > max(C} ) > ¢ for y € w and s > s0.° As infinitely often some
y will act, any ¢’ < g will eventually be enumerated into Cy(,), making it a left cut.

Ifn €S, let yo be the least such that Wy, ) € Inf. Then there is a stage so such that
Yo is never initialized again. As every y > yo defines §,[s] < d,, at every s > s¢ and yo acts
infinitely often 6 = d,, has left cut Cy(,). Furthermore, as mentioned in the construction,
{n"dy, } = {n"e} for some r € w. From Proposition 3 we get a positive cone Py and as can

be seen in the proof of Theorem 3, Py ElBOS(L") P?.

On the other hand, suppose n ¢ S, so that all Wy, . are finite. Given y, let s, be the
stage after which y is never initialized again. Then, by the construction Cp,) is the left cut
for § = lim,, d,[s,] and {k,[s,] : ¥ € w} = w. Thus, there cannot be p, ¢ such that n?¢ = ne.
This is the case because if ky[s,] = (p, q), then it is ensured at stage s, that n”¢ # n?e since

Syl = S s, | and already this finite part witnessed that n ne. Hence,
0} I'ylsy dylsyl} Tlylsy d already this fini i d th P§ £ nle. H
{6} B {e} and for the positive cone Py we get from Proposition 3, Py EZBOS(L") P?. O

Question 1. What is the complexity of I(Q2,BS(1,n)) fore € Qand o € {++, ——, +—, —+}7
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