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Abstract: Binary semantic segmentation in computer vision is a fundamental problem. As
a model-based segmentation method, the graph-cut approach was one of the most successful
binary segmentation methods thanks to its global optimality guarantee of the solutions and its
practical polynomial-time complexity. Recently, many deep learning (DL) based methods have
been developed for this task and yielded remarkable performance, resulting in a paradigm shift in
this field. To combine the strengths of both approaches, we propose in this study to integrate
the graph-cut approach into a deep learning network for end-to-end learning. Unfortunately,
backward propagation through the graph-cut module in the DL network is challenging due to the
combinatorial nature of the graph-cut algorithm. To tackle this challenge, we propose a novel
residual graph-cut loss and a quasi-residual connection, enabling the backward propagation of
the gradients of the residual graph-cut loss for effective feature learning guided by the graph-cut
segmentation model. In the inference phase, globally optimal segmentation is achieved with
respect to the graph-cut energy defined on the optimized image features learned from DL networks.
Experiments on the public AZH chronic wound data set and the pancreas cancer data set from
the medical segmentation decathlon (MSD) demonstrated promising segmentation accuracy and
improved robustness against adversarial attacks.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Image semantic segmentation, which partitions images into multiple segments on the pixel level,
plays a fundamental role in computer vision applications [1], such as scene understanding, remote
sensing, autopilot, medical image analysis, robotic perception, video surveillance, augmented
reality, and image compression.

Prior to the revolutionary rise of deep learning, the graph-cut method [2—4] had been one
of the major image segmentation approaches [5—7]. It was proposed by Greig et al. [8] and
Boykov et al. [4] to formulate binary semantic segmentation as a minimum s-¢ cut problem in an
associated graph. The graph-cut method is ubiquitous in computer vision as a large variety of
computer vision problems can be formulated as a min-cut/max-flow problem [9]. It has shown
remarkable potential for solving challenging segmentation tasks [10], for exact or approximate
energy minimization in low-level vision with a practical polynomial-time complexity [4,9,11].
However, the graph-cut method heavily relies on a “good” cost function map [12] and purely
using low-level pixel intensity features [13] does not give a “good” representation of the cost
function in complicated image contexts.

With superior data representation learning capacity, deep learning (DL) methods are emerging
as a new generation of image segmentation alternatives with remarkably improved performance
over traditional image segmentation algorithms [1,14—18], resulting in a paradigm shift in the
field. However, DL segmentation algorithms often need extensive training data [1,19], which
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poses significant challenges, especially, for medical image segmentation due to patient privacy
and high cost. In addition, almost all widely used segmentation models, such as UNet [20],
FCNs [21], and DeepLab [22], are classification-based in nature and the output probability
maps are relatively unstructured, thus lacking the capability of capturing global structures of
the target objects. To characterize the long-range data dependency, transformer [23-25] has
been introduced for semantic image segmentation, such as TransUNet [26], SwinUNet [27],
DS-TransUNet [28], and nnFormer [29], which, however, substantially increases the inference
cost and memory complexity of the segmentation models. Recent research has demonstrated
that, compared to the segmentation CNNs alone, the integration of a graphical model such as
conditional random fields (CRFs) into CNNs enhances the robustness of the method to adversarial
perturbations [30-32].

Very recently, large data models for image segmentation like SAM [33] and MedSAM [34] have
been emerging quickly. However, their high demands on computation resources, e.g. 1600GB
GPU memory for training, heavily restrict their applications in general scientific research settings.
Building a small model, e.g. our proposed model, needs only 24GB GPU memory for training,
with textbook quality data [35] for a specific application is still a major and practical research
direction.

In this paper, we propose to seamlessly integrate the traditional graph-cut and deep learning
methods for binary image segmentation, unifying the strengths of both methods while alleviating
the drawbacks of each individual one. Our proposed framework makes use of deep learning
networks to learn a high-level feature cost map, and then apply the graph-cut method to achieve a
globally optimal segmentation while minimizing the graph-cut energy function defined on the
learned cost map. As feature learning and graph-cut optimization are unified in a single deep
learning network for end-to-end training, the learned features are tailored specifically for the
graph-cut segmentation model with backward propagation.

The challenge in this integration is how to incorporate graph-cut algorithms into deep learning
with effective backward propagation support for model training. The combinatorial nature of
graph-cut algorithms hampers their applications in deep learning networks due to ineffective
backward propagation, as min-cut module self is not differentiable. Some practical solutions
to those combinatorial optimization problems [36-38] are to utilize a good approximation by
leveraging the special structures in the problem [37,39]. With the approximation surrogate, a
fundamental quandary persists, that is, the gradient of the optimal solution with respect to the
(dynamic) input variables (e.g., the graph edge weights in the graph-cut problem) is frequently
zero, which is not helpful for backward propagation to optimize the network parameters [40].
Many methods for solving this zero gradient quandary have been explored. Poganci¢ et al.
proposed a differentiation of black box combinatorial solver [40], which, however, doubles the
computation burden because of invoking the combinatorial algorithm two times to obtain the
gradients. Elmachtoub and Grigas’ SPO (Smart "Predict, then Optimize") [41] directly leverages
the optimization problem structure — that is, its objective and constraints — for designing better
prediction models. Mensch et al. developed a differentiable dynamic programming method
[42-43] using a surrogate function for the operator of maximum, which is problem-specific.
Khalil et al. proposed learning combinatorial optimization algorithms on graphs by using neurons
to construct graphs dynamically, and heuristically exploring the optimal solution by reinforcement
learning mechanism [44]. Gasse et al. used graph convolutional neural networks [45] to
reformulate branch-and-bound as a Markov decision process for solving a mixed-integer linear
programming problem. Both Khalil et al.’s and Gasse et al.’s methods directly used networks to
“simulate”" graphs for combinatorial optimization, they yet lost the practical polynomial-time
complexity for solving the graph-cut problem [4,9,11].

We proposed a novel residual graph-cut loss and a quasi-residual connection to seamlessly
unify a U-Net [20] for feature learning with a graph-cut module to achieve end-to-end training and
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optimization for binary semantic segmentation. The proposed method is termed as gcDLSeg. It
effectively utilizes the backward propagation from the downstream graph-cut optimization module
to guide feature learning, yielding statistically significant improved segmentation accuracy and
improved robustness against adversarial attacks. Experiments on public AZH chronic wound
[46] data set and pancreas cancer data set from MSD (medical segmentation decathlon [47])
demonstrated promising segmentation performance. To the best of our knowledge, this is the first
work to integrate graph-cut within deep learning for end-to-end training and inference in medical
image applications. This proposed method has the potential to be adapted for broader DL with
graph-cut applications.

2. Methods
2.1. Problem formulation

Greig et al. [8] and Boykov et al. [4] developed the graph-cut approach to formulate the problem
of binary semantic segmentation as a minimum s-¢ (source-sink) cut problem by minimizing an
energy function defined on a graph.

Let 7 denote the input image and N denote its neighboring setting. A labelingf : 7 +— {0,1}
is a segmentation of the image 7, where we should interpret O and 1 as standing for “background
(bkg)” and “foreground (obj)”, respectively. For each voxel p € I, we are given a data
consistency function a, : {0, 1} — R, where a,(0) (a,(1)) represents some pre-computed penalty
for assigning voxel p to the background (foreground). Thus, a,(f,) measures the fit of the label f
at each voxel p to the foreground (f, = 1) and background (f, = 0). Similarly, we are given for
each voxel pair (p, g) € N, a pairwise regularization function ,, : {0,1} x {0, 1} +— R, which
is the penalty for assigning labels f,, and f; to two neighboring voxels p and g. The purpose is to
penalize label differences for any two adjacent voxels. For binary segmentation, the Ising model
[48] is generally used to design the function 8,4, with B, (fy.f;) = ¥(p.q) - 6(f, = f;), where
¥ (p, q) is used to model appearance and smoothness between the pair of voxels p and g, and §(+)
is an identify function giving 1 if labels f,, and £, are the same and O otherwise. The segmentation
problem seeks to find an optimal labeling f such that the Markov Random Field (MRF) energy
function [49] &(f) is minimized, with

EN =D o) +y D vp.a) -5, =fy), (1)

pel .9 eN

where y>0 provides the relative weighting between the data consistency terms and the pairwise
regularization terms.

The graph-cut segmentation problem can be then readily formulated as a minimum s-¢ cut
problem in an edge-weighted graph [4]. First, a graph node p represents a voxel in the image 7
(to simplify the notation, we use p to denote both a voxel and its corresponding graph node),
and edges are added between each pair of nodes (p, g) corresponding to neighborhood voxels
with weight ¥ (p, g). These edges between neighbors are often referred to as “n-links.” Next, two
extra “terminal” nodes, s (the “obj” terminal) and ¢ (the “bkg” terminal) are added to the graph
and for each graph node p corresponding to a voxel in the image, two edges are added (often
called “z-links” for “terminal”): (s, p) and (p, ). The weight of each edge between ¢ and node p,
denoted by ¢;(p), is given by the background cost value for the associated voxel p: a,(f, = ‘bkg’),
which indicates the coherence between nodes p and ¢. The weight of each edge between node
p and “obj” terminal s, denoted by ¢4(p), is given by the object cost value for the associated
voxel p, that is, a,(f, = ‘obj’), which indicates the coherence between nodes p and s. When
determining the minimum s-¢ cut, ({s} U S, {t} U T), of this constructed graph, the set S of the
nodes remaining connected to the “obj” terminal s correspond to the voxels belonging to the
segmented object; while the nodes in 7 correspond to the voxels belonging to the background.
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Thus, the binary semantic segmentation problem, as illustrated in Fig. 1, is formulated to find an
s-tcut C = ({s} U S, {t} UT) in the constructed graph, whose capacity
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Fig. 1. The graph representation of a cut in a 4-neighbor graph system. Number 0,1,2,...,8
indicate pixel nodes p; in an image / where i = 0,1,2,...,8 for conciseness, nine pixel
nodes are connected by gray dash lines, and s and ¢ are virtual source and sink nodes. A red
dash line cuts all nodes into two node sets: source node-set S blue, and sink node-net T gray.
Green connections indicate all cut edges between S and 7. ¢; and ¢, express t-links, and ¢
expresses n-links. Other links that do not participate in current S — 7 computations are not
drawn on the figure for clarity.

To solve this binary semantic segmentation problem, the proposed gcDLSeg method first
learns the edge weights ¢4(p) and ¢,(p) of t-links and ¥ (p, ¢) of n-links in the constructed
graph via a U-Net model. Then, a max-flow algorithm [11] is used to find globally optimal
binary labeling for each node p at the current edge weight setting of the graph learned from
the network-in-training. The graph edge weight learning and the minimum s-f cut computation
are implemented in a unified network for an end-to-end gradient backward propagation through
a new residual graph-cut loss and a quasi-residual connection for better learning graph edge
weights, further improving segmentation accuracy.

2.2. Network architecture of gcDLSeg

The proposed semantic segmentation network, gcDLSeg, is based on a U-Net architecture
[20], as illustrated in Fig. 2, which consists of six convolution layers. This U-Net acts as a
feature-extracting module for the downstream graph-cut segmentation head. The network starts
with 48 feature maps in the first convolution layer. In each downsampling layer, a conv2d
module followed by a 2x2 max-pooling doubles the feature maps, and then a cascade of three
same conv2d modules with a standard residual connection [50]. The upsampling layers use one
symmetric structure as the downsampling layers but with bilinear upsample modules. As we
attempt to demonstrate the power of integrating the graph-cut segmentation method with deep
learning, the U-Net used in this work was not specifically optimized. One may also choose any
feature-extracting networks to replace the U-Net for specific applications.
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Fig. 2. The gcDLSeg combines U-Net with a graph-cut module for image semantic
segmentation. The graph-cut module, with input t-link and n-link edge weights from
the preceding feature learning network, solves the max-flow optimization problem for
segmentation, outputs optimal segmentation results, and supports the gradient backward
propagation of the graph-cut loss signal. ¢ indicates the number of channels for each layer.

The graph-cut segmentation head in the proposed gcDLSeg has two branches (Fig. 2). The
top t-link branch consists of a 1x1 conv2d and a soft-max module, which serves to learn the
two t-link edge weights: ¢4(p) of the source-to-node edge and ¢,(p) of the node-to-sink edge
for each node p. We set ¢,(p) to be the probability of each node p belonging to the source
set S and ¢,(p) to be the probability of p belonging to the sink set 7, with ¢4(p) + ¢.(p) = 1.0.
According to the normalized cut method [13], which demonstrated that image segmentation
based on low-level cues may not be able to produce a highly accurate segmentation, we compute
the similarity of neighbor nodes with abstract high-level features, instead of using the standard
Gaussian kernel over RGBXY low-level features [51,52]. Using the embedding similarity idea
[53], the bottom n-link branch in Fig. 2 computes the cosine similarity between the feature vectors
of two neighboring nodes (voxels), p and g, as follows:

<p, é>)
IBlNgl ™~

1
v(p.q) = 5(1.0+ 3

where p and g repersent the feature vectors of voxel nodes p and g, respectively.
Finally, the graph-cut module takes the input t-links and n-links to compute the minimum s-¢
cut Cpin = ({8} U Siin> {t} U Tonin), in which S,,;,, defines the target object of segmentation.

2.3. Quasi-residual connection

We designed a quasi-residual connection, as shown in Fig. 3, with a residual graph-cut loss to
solve the zero gradient quandary in our gcDLSeg model. The zero gradient quandary is, in some
sense, similar to the gradient vanishing problem in RNN [54], but it is more difficult to resolve
in practice. We consider a residual connection [50,55] to provide a pathway for gradients to
back-propagate to early layers of the network to avoid vanishing gradient [56] or zero gradients.
The graph-cut module exposes zero gradient to its weights input because of its essence of
combinatorial algorithm. However, our residual connection restores the gradient signal from the
downstream loss computation on the same weight input. We name it “quasi-residual connection”
as it is not exactly the same as the y = F(x) + x form of the vanilla identity residual connection
[50,55]. The key observation is that the internal of the graph-cut module does not need backward
gradient signals as there are no learning parameters within the module. However, the input
(t-links and n-links) to the graph-cut module does need those signals from the downstream loss
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for feature learning, which is backward propagated via the quasi-residual connection to update
the edge weights (Fig. 3) by bypassing the non-differentiable graph-cut module.

||Comin|

F Chin
MIRCUEL | Coi| = i |

a quasi-residual connection

g

ﬂi oL 8|Cmin||
ow; 0| Crinll Ow;

Fig. 3. Our proposed gcDLSeg makes use of the specialty of the graph structure and a
quasi-residual connection to solve the zero gradient problem in combinatorial algorithms for
deep learning. The minimum s-¢ cut algorithm outputs a minimum cut C,;,;,, which is used
in the following cut capacity computation. The w is a weight vector of all edges in the graph,
||Cininl| is the min-cut capacity, and L is the loss from its downstream module.

2.4. Loss functions

Directly leveraging the objective and constraints of the optimization problem, the graph-cut
algorithm module guarantees that, the capacity of the output minimum s- cut from the graph-cut
module, Cy,;,, is always less than or equal to the capacity of the ground truth cut, that is, the s-¢
cut in the constructed graph corresponds to the ground truth segmentation, denote by C,;,. We
proposed a novel residual graph-cut loss, which essentially converts the pixel-wise classification
problem into a regression of the difference between the capacities of C,;, and Cg;.

Without loss of generality, assuming the predicted s-t minimum cut C,,;, by the graph-cut
module is unique, we have

Chinll <11Cgll, where

1Cunll = Y 6+ D ) +y > wip.a),

PESmin PETpin I’E;min
q€Lmin
PN “

ICall = D" ap)+ Y. o) +y Y, w(p.9),

DESg: PETy: PESg:
q€Tg
PN

where (Smin, Timin) is the node partition of the predicted minimum s-f cut Cy,;,, While (Sg;, Tg/) is
the node partition of C,;. The residual graph-cut loss is defined, as follows:

1
Lige = ]70(||ng|| = [ICoinl 1), &)

where N, is a normalization constant which equals the number of graph nodes plus the mean of
the numbers of n-links in Cy,;; and Cg;. When L,g¢ = 0, the predicted min-cut Cy,;;, equals to the
ground truth cut Cy; otherwise, L,g¢>0.

The proposed L,c¢ loss unifies two different optimization goals: the graph-cut optimization
at the module level, and the ground truth-guided optimization over the whole network level.
That is, L,gc strives to guide the gcDLSeg network to output a minimum s-¢ cut C,,;, that is
the same as the ground truth cut C,. In this way, we convert the pixel-wise segmentation
(classification) problem into a regression of the difference between the capacities of Cy,;, and
Cy:. This regression conversion enables to reformulate the non-differentiable binary node
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labeling (“obj” or “bkg”) in the graph-cut module as a comparison of cut-capacities in the
continuous space, which makes the backward propagation feasible. The graph-cut module
has no learning parameters, so the backward gradients can bypass the graph-cut module to be used
for the updates of the input t-links and n-links for the module. With the help of the quasi-residual
connection, as in Fig. 3, the backward gradients of L,;¢ can be backward propagated to early
layers of gcDLSeg and guide the upstream network to learn improved t-link and n-link weights to
make a predicted minimum s- cut approaching to the ground truth cut. The effectiveness of the
proposed L,g¢ loss for backward propagation will be proved in Section 2.5.

In addition to the proposed residual graph-cut loss L,Gc, we utilize a binary cross entropy loss
L. and a generalized Dice loss Lp;.. [57], as follows, to guide the learning of graph edge weights:

I - Zp{gp In ¢s(p) +(1- gp) In ¢t(p)}
ce = N s

(6)

where g, is the ground truth probability that node p belongs to the foreground, and N is the
number of total graph nodes.

ws 2pl8p®s()} + wi 2, {(1 - g,)¢:(p)}
ws Xp{gp + &)} +wi Zp{(1 = gp) + ¢:(p)}

where the coefficients w; and w, are used to provide invariance to foreground and background set
properties, respectively, with wy = 1.0/(%,, gp)2 and w, = 1.0/(2, (1 - gp))z.

To find a good set of weights for multiple loss terms in our loss function design, we use the
coefficient of variations (relative standard deviation) [58] of component losses as the weight
for each loss term. Considering the idea that a loss term is satisfied when its relative standard
variance is decreased towards zero [58], we define the loss term weight ag) for loss term i at time
step A, as follows. Here the time step A indicates the iterative step for optimizing the network
loss. For a sequence {by, by, ..., b}, we use o (b,) and u(b,) to denote the standard deviation

and the mean of the sequence. Let LE{) be the observed value of the i-th loss term (i = 1,2, 3) at
@

Lpice =1.0-2.0

(N

the time step 4. We define the loss ratio rf{) = L(ﬁ) . Then,
By )
(@)
ow_ 17 (r/‘ )
(I/l I () )
w oy (r/l )

o (1) v

()

Note that z, is a normalizing constant independent of the number of loss terms to ensure that

where 2,

i cyf{) = 1.0, which is important to decouple the loss term weights from the learning rate [58].
The total loss Ly, at time step A for this binary semantic segmentation network is defined, as
follows:

1 2 3
Liotar = afl )Lce + a; )LDice + afl )LrGC~ )

2.5. Effectiveness of the residual graph-cut loss

This section shows the effectiveness of the proposed residual graph-cut loss on the gcDLSeg model
training by backward propagation. We prove that the minimum s-¢ cut capacity is differentiable
almost everywhere over the graph edge weights. With the differentiability of the min-cut capacity,
the backward gradient of the proposed residual graph-cut loss can be effectively used to update
the edge weights in the graph to facilitate the predicted minimum s-¢ cut gradually converging
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to the ground truth cut during the model training. For the convenience of presentation, in this
section, rather than using a node partition ({s} U S, {t} U T) to represent an s- cut C, we use the
set of edges (u,v) with u € {s} USand v € {¢t} U T to represent C.

Theorem 1 (The derivatives of the min-cut capacity) Given an s-t graph G = ({s,t} UV, E)
with total |V|+2 nodes and |E| edges, let w € R'E! be the edge weight vector, where each edge
weight w; > 0, and Cp, be the set of edges in a minimum s-t cut.

(1) The derivative of the min-cut capacity ||Cyin|| with respect to any edge weight w; is, as
follows:

(10)

a“CminH — ], Vi € Cmins
Ow; 0, Vi¢ Cuin,

when the min-cut capacity ||Cuinl| is strictly smaller than the cut capacity of any other ones,
which is guaranteed by the graph-cut algorithm.

(2) The min-cut capacity ||Cuin|| is differentiable over the vector w almost everywhere (except
the minimum s-t cut Cy,;, is not unique) in RIEI.

Proof. We first consider the case where the min-cut capacny [|Cininl| is strictly less than the cut
capacity of any other cuts. Consider every possible weight w + 5, where 5 € RIE! and ||6 |, <€
with >0 being a small constant. When € is small enough, under every such welght w+ 6 the set
of original min-cut edges C,;y, under w will remain the set of min-cut edges under w + 5. This is
because under the new weight w + 5, the cut capacity for C,;, will at most increase by \/_ E|e (by
Cauchy-Schwarz inequality), while the cut capacity for any other cut will at most decrease by
\/E €. As long as 2\/@6 is smaller than the cut-capacity gap between the capacity of any other
cut under w and the min-cut capacity under w, C,,;,, will remain the min-cut edge set under w + 5.

Then, the new min-cut capacity under the edge weights w + 5 is Cinll = Xiec,,, Wi + 6:). So
we can get the derivative of the min-cut capacity with regard to any edge weight w;, as follows:

AN Coinll _ (. AllCoull _ {um(s,.ﬁo% = 1.Vi € Coun, 0
ow; 6i—0 0; lims,—0 5= 0,Vi ¢ Chin,

where A||Cin|| expresses the change of min-cut capacity under perturbation 5.
Now let us consider the case where the min-cut capacity is not strictly less than the capacity

of any other cuts. Suppose that there exist two different s-z cuts C(]) and C’(jl)n with the same

min-cut capacity, namely ||C( ) || = ||C(2) ||. For some edge w; where i € cW nigc? w

mm min min mm’
consider a small perturbation & such that only d; is non-zero. Then, we have

(2) (2)
hméi—>0+ Al I((;/.nin ‘ I — Hcmm | ‘ Hcmm Il — O’ (12)
1
(1) (1)
liméi—ﬂ)* Allf;tin” — Hcmmngl HCmm” =1.
i 1

It shows that at some edge w; where i € Ci;l.)n ANig C}(qi.)n, the derivative of the min-cut capacity
with respect to w; is undefined. We thus have the conclusion that the derivatives of the minimum
s-t cut capacity are undefined for the weights of some edges when multiple cuts achieve the
same min-cut capacity (when more than two s-f cuts achieve the same min-cut capacity, similar
arguments apply by considering an edge belonging to some cuts achieving the min-cut capacity,
but not belonging to the other cuts achieving the same min-cut capacity).

However, if ||C(1) I| = ||C(2) ||, we have . ecl) Wi = 2;cc® wi. Because the two sets C( )

min min
min

and C? are distinct, this equation defines a hyperplane in the high-dimension space R/F!. All

min
hyperplanes have Lebesgue measure zero [59], and for an absolutely continuous distribution, the

probability of hitting a set of zero Lebesgue measure is zero [60,61]. (The Lebesgue measure
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being zero means that ||C(1.) | =]IC 2) || is an improbable event, such that one can ignore this
nun min

event for “most practical purposes” in the high-dimension space R'?!. For example, the probability
of choosing a specific value x, 0 < x < 1, from a uniform distribution [0,1] is zero, that is, it is
an unlikely event. There are at most 2!/ cuts for this graph and at most 22!V such equations (a
finite number of hyperplanes) defining two cut capacities being equal. So the set of edge weights
such that two cut-capacities are equal is of Lebesgue measure zero.

Therefore, we claim that the min-cut capacity is differentiable over the vector w almost
everywhere (except when there exist two s- cuts achieving the same min-cut capacity) in RIEl. [

Theorem 2 (The effectiveness of the residual graph-cut loss L,g¢) The backward gradients
of the residual graph-cut loss L,gc facilitate the weight decrease of cut edges unique in the
ground truth cut and the weight increase of those edges unique in the predicted minimum s-t
cut, simultaneously. It promotes the predicted min-cut in the next training iteration to gradually
approach the ground truth cut.

Proof. Using the quasi-residual connection, the gradient of the residual graph-cut loss L,g¢
can be backward propagated to update the graph edge weights in the next training iteration.
Recall that the residual graph-cut loss in formula (5), L,g¢c = ]%(||Cgt|| — ||Cpinll), where Cg
is the ground truth cut and Cy;, is the predicted minimum s- cut, and N, is a normalization
constant N,>0. After canceling the common edges between Cg; and Cyin, LyGc can be further
expressed, as follows:

1
Lige =
o

ot ]
W=, (13)
iECgI/\lECmin igcgl/\iecmin

where, for clearer presentation, wfgt) denotes the weight of a cut edge unique in C,; and ngin)
denotes the weight of a cut edge unique in C,;;,.
Using Theorem 1 (the derivatives of the min-cut capacity), we can get the backward gradient

formulas, as follows:
dLge 1 . )
= —VieCyNié¢ Cyuin;
W(g[) N, gt min

:

dL,Gc 1 Vig ConicC (14
— = ——Vi i in.

W(mm) N, gt min

1

Using a standard gradient descent method, the edge weights are updated, as follows:

w(gt) _ aaLrGC

: ngt>

[07 . ;
_ ngt) _ 1707\/, € Co N i & Ciins
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where a>0 is the learning rate during training, and N,>0. The edge weight update formulas
indicate that the backward gradient of the residual graph-cut loss L,gc facilitates the decrease of
the weight of cut edges unique in the ground truth cut, and promotes the increase of the weight of
cut edges unique in the predicted minimum s- cut, simultaneously. These updated edge weights
decrease ||C|| while increasing ||Cpin||, which leads to ||Cyin|| converging to ||C,||. In other
words, the predicted minimum s-f cut in the next iteration during training gradually approaches
the ground truth cut. When [|Cy|| = ||Cpinll, Lrcc = 0, which implies the predicted minimum
s-t cut overlaps with the ground truth cut. [J



Research Article Vol. 16, No. 5/1 May 2025/ Biomedical Optics Express 2008 |

Biomedical Optics EXPRESS A

3. Experiments

The proposed method was validated on two public data sets: the Advancing Zenith of Healthcare
(AZH) chronic wound dataset [46] from the AZH Wound and Vascular Center, Milwaukee,
Wisconsin, USA, and the pancreas cancer dataset from the medical segmentation decathlon
(MSD) [47]. The irregular shapes, sizes, and inconsistent textures of chronic wounds make
this segmentation extremely challenging. Segmenting pancreas cancer is the most challenging
segmentation task among various MSD data sets.

The PyTorch version 1.12 [62] on Ubuntu Linux 20.04 was used for the experiments of the
proposed method gcDLSeg. We chose GridCut [11] as the implementation of the minimum s-¢
cut algorithm [9]. To evaluate the segmentation performance, we followed the measurements
of the compared methods, in which precision, recall, and Dice coefficient were adopted as
the evaluation metrics [1]. In order to further demonstrate the performance of our proposed
method, we also added the surface-based metrics: average surface distance (ASD), Hausdorff
Distance (HD), and 95%HD. Similar to HD, the 95%HD is based on the calculation of the
95th percentile of the distances between boundary points in prediction and ground truth, whose
purpose is to eliminate the impact of a very small subset of the outliers. For the purpose of
the ablation study, we removed the graph-cut module from the proposed gcDLSeg network and
trained the segmentation model with the loss of L., and Lp;... The resulting model is termed as
“NoGraph-Cut.”

The experiments showed that our proposed gcDLSeg method outperformed the state-of-the-art
methods in both metrics of Dice coefficient and recall, and all three surface-based metrics. The
proposed gcDLSeg also demonstrated improved robustness against adversarial attacks.

3.1.  AZH chronic wound segmentation

The AZH chronic wound data set [46] consists of 831 training images and 278 test images,
each of which is of size 224 x 224 pixels with zero-padding. With various backgrounds, the
raw images were taken by Canon SX 620 HS digital camera and iPad Pro under uncontrolled
illumination conditions [46].

In our experiments, we randomly divided the 831 training images into training (706, 85%) and
validation (125, 15%) sets and kept the original test set (278) untouched. We used 64 channels
in the segmentation head, a batch size of 4, and an Adam optimizer with an initial learning
rate of 0.0001 without weight decay. We used data augmentation on the fly, including random
blurring/sharpening, color space transform, histogram equalization, color cast, white balance,
flip, scale, rotation, and translation.

The proposed gcDLSeg method was compared to various deep learning segmentation models,
as presented in Ref. [46]. In addition, we also compared to Zheng et al.’s method [10] termed
as “GraphCutsLoss", in which the graph-cut energy function is used as part of the loss to
boost model segmentation accuracy. However, their method does not explicitly integrate the
graph-cut segmentation model into the network for model training and inference. Table 1 shows
the performance of all compared methods. The proposed gcDLSeg method outperformed all
compared methods with respect to the metrics of recall and Dice coeflicient and ranked second
with respect to the metric of precision (Table 1). Our proposed gcDLSeg method also exhibits
explicit improvement on the surface position error compared with the NoGraph-Cut method, as
in Table 2. The visual segmentation results from the AZH test set are shown in Fig. 4.

Our gcDLSeg model network also demonstrated improved robustness against adversarial
attacks. We used untargeted white-box adversarial attacks to test this capability. Goodfellow et
al.’s fast gradient sign method [64] was used to generate adversarial noise, as follows:

. dL
Ligy=1+¢€- szgn(ﬁ), (16)
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where [ is the original normalized input images, 1,4, is the generated adversarial samples, and L
is the network loss. The perturbation scale € changes from 0.0 to 0.1 with step size 0.02. The
precision, recall, and Dice coeflicient evaluated on the AZH test set using different methods at

Raw Gray GT NoGraph-Cut
— -, 7z — - -

gcDLSeg
Y

Fig. 4. Segmentation samples of seven cases from the AZH chronic wound test dataset.
The red arrows indicate segmentation errors. The white arrows show that the results of our
proposed gcDLSeg method are also not perfect.
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Table 1. Our proposed gcDLSeg method outperformed all

other compared methods in the metrics of recall and Dice

coefficient on the AZH test set. The best and second-best
results are marked in bold red and black.?

Methods Precision (%) | Recall (%) | Dice (%)
VGGI16 [46] 83.91 78.35 81.03
SegNet [46] 83.66 86.49 85.05
U-Net [46] 89.04 91.29 90.15
Mask-RCNN [46] 94.30 86.40 90.20
MobileNetV2 [46] 90.86 89.76 90.30
MobileNetV2+CCL [46] 91.01 89.97 90.47
GraphCutsLoss [10] 91.45 90.24 90.84
gcDLSeg 91.65 91.99 91.82

“Notes: in medical disease measurement, recall is far more important than
precision [63].

Table 2. Our proposed gcDLSeg method achieved reduced
boundary errors, compared with the GraphCutsLoss method,
in all three surface-based metrics on the AZH test set. The
smaller the value, the better.

Methods ASD (pixel) | HD (pixel) | 95%HD (pixel)
GraphCutsLoss [10] 1.38 7.76 4.88
gcDLSeg 1.30 6.56 4.00
Improvement Rate 5.8% 15.5% 18.0%

Biomedical Optics EXPRESS A

different adversarial perturbations (€) are shown in Table 3, and the dice decreasing curve is
illustrated in Fig. 5. Their visual results are illustrated in Fig. 6.
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Fig. 5. The robustness performance of the proposed gcDLSeg method against adversarial
attacks on the AZH test set. All Dice coefficients decrease with bigger-scale (€) adversarial
attacks. However, our proposed method shows a smaller decreasing slope.
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Raw Perturbation Adversary  Adv.Gray GT NoGraph-Cut gcDLSeg

Fig. 6. Segmentation samples of five cases from the AZH test set using untargeted white-box
adversarial attacks with € = 0.1. The adversarial samples (the 3rd column) were generated
by adding 0.01 - perturbation images (the 2nd column) to the original images (the first
column) for the NoGraph-Cut method. For the proposed gcDLSeg method, we used its own
training loss Ly, (Eq. (9)) to generate the adversarial perturbations to maximize its attacks.

3.2. Pancreas tumor segmentation

The pancreas cancer data set from the medical segmentation decathlon (MSD) [47] consists of 281
3D volumes of abdominal CT images each with 512 x 512 pixels per slice and its corresponding



Research Article Vol. 16, No. 5/1 May 2025/ Biomedical Optics Express 2012 |

Biomedical Optics EXPRESS A

Table 3. Our proposed gcDLSeg model shows improved robustness against
adversarial attacks. The precision, recall, and Dice coefficient were computed for the
proposed gcDLSeg and the NoGraph-Cut methods applied on the AZH test set at
different adversarial attack scales (¢).

Epsilon NoGraph-Cut gcDLSeg
(e) Precision (%)  Recall(%) Dice (%) | Precision (%) Recall (%) Dice (%)
0.00 90.11 90.51 90.31 91.65 91.99 91.82
0.02 75.20 80.28 77.65 77.20 83.75 80.34
0.04 64.69 78.45 70.91 72.39 82.52 77.13
0.06 54.54 79.30 64.63 67.11 83.34 74.35
0.08 47.717 79.44 59.66 62.16 83.06 71.11
0.10 42.46 78.39 55.08 58.40 83.00 68.56

Table 4. The proposed gcDLSeg method outperformed
all other compared methods in all metrics on the pancreas
cancer data set from MSD. The best results are marked in
bold red. Blanks mean that the original literature didn’t
report the corresponding measurements.

Methods Precision (%) | Recall (%) | Dice (%)
nnU-Net 3D [65]¢ 52.74
K.A.V.athlon 3D? 43.00
nnU-Net 2D [65] 35.01
GraphCutsLoss [10] 40.74 39.52 40.12
gcDLSeg 52.78 57.59 55.08

“Top 1 method in MSD Grand Challenge 2018
bTop 2 method in MSD Grand Challenge 2018

ground truth labels. Segmenting pancreas cancer is the most challenging segmentation task
among various MSD data sets. Figure 7 shows some challenging examples visually. We randomly
divided the 281 volumes into three data sets (training, validation, and test) and deleted all slices
without the pancreas region. Then we got the training set (1304 slices), the validation set (597
slices), and the test set (634 slices). We used 2D slices as input to our networks and predicted the
2D segmentation for each slice.

We used 64 channels in the segmentation head, a batch size of 4, and an Adam optimizer with
an initial learning rate of 0.0001 without weight decay. Data augmentation on the fly was used,
including random blurring/sharpening, slight rotation ([—29°,29°]), salt and pepper noise, and
speckle noise.

Among all comparison methods, our proposed gcDLSeg method improved more than 3% in
Dice coefficient over the previous state-of-the-art nnU-Net method, as shown in Table 4. Our
proposed gcDLSeg method also exhibits explicit improvement on the surface position error
compared with the NoGraph-cut and GraphCutsLoss methods, as in Table 5. Their visual example
segmentations from the pancreas test set are demonstrated in Fig. 7.

Our proposed min-cut model network exhibits better robustness against adversarial attacks.
The pixel accuracy, IoU, precision, recall and Dice coefficient were evaluated on the pancreas
cancer test set using different methods at different adversarial attack scales (€), as illustrated in
Table 6, and Fig. 8.
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Raw GT NoGraph-Cut GraphCutLoss gcDLSeg

Fig. 7. Segmentation samples of four cases in the MSD pancreas cancer test dataset. The
tumor boundary in both GT and predictions are drawn by a one-pixel boundary line. The
GraphCutsLoss method has explicit un-smooth boundary phenomena, even it is drawn by
the same one-pixel boundary. Please use the PDF magnifying glass tool to get a better view
effect. We keep the full slice view, instead of the view of a region of interest (ROI), in
order to show readers that segmenting tiny tumors in a messy abdominal background is very
challenging.

Table 5. Our proposed gcDLSeg method achieved reduced
boundary errors, comparing with GraphCutsLoss methods, in
all three surface-based metrics on the pancreas cancer data
set from MSD. The smaller the value, the better.

Methods ASD (pixel) | HD (pixel) | 95%HD (pixel)
GraphCutsLoss [10] 16.78 33.12 29.03
gcDLSeg 12.30 23.21 21.96
Improvement Rate 26.7% 29.9% 24.4%
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Fig. 8. Our proposed min-cut method exhibits better robustness against adversarial attacks,
even though all Dice coefficients decrease along bigger-scale (€) adversarial attacks in the
pancreas cancer test set.

Table 6. Our proposed min-cut model network exhibits better robustness against adversarial
attacks. The pixel accuracy, loU, precision, recall and Dice coefficient were evaluated on the
pancreas cancer test set using different methods at different adversarial attack scales (¢).

Epsilon U-Net+CELoss Proposed:U-Net+Mincut+CE-DiceLoss+mincutLoss
(€) PixelAccuracy (%) IoU (%) Precision (%) Recall (%) Dice (%) | PixelAccuracy (%) IoU (%) Precision (%) Recall (%) Dice (%)
0.00 99.81 33.74 49.35 47.84 48.58 99.80 38.67 49.61 58.45 53.67
0.02 99.62 10.61 16.71 24.57 19.89 99.64 14.54 22.15 30.45 25.64
0.04 99.56 07.29 10.74 20.83 14.17 99.60 10.16 15.85 24.29 19.18
0.06 99.53 06.13 08.67 19.50 12.00 99.58 08.43 13.10 21.81 16.37
0.08 99.52 05.51 07.58 18.67 10.79 99.57 07.50 11.50 20.36 14.70
0.10 99.51 05.16 06.97 18.13 10.06 99.56 07.02 10.65 19.49 13.77
0.12 99.51 04.94 06.59 17.70 09.60 99.56 06.69 10.08 18.82 13.12
0.14 99.50 04.78 06.32 17.29 09.26 99.56 06.45 09.66 18.23 12.63
0.16 99.51 04.66 06.14 16.92 09.01 99.57 06.30 09.43 17.77 1232
0.18 99.51 04.56 06.00 16.55 08.81 99.57 06.17 09.24 17.33 12.05
0.20 99.52 04.48 05.89 16.18 08.64 99.57 06.05 09.08 16.82 11.79

3.3. Ablation study

For the purpose of the ablation study, the NoGraph-Cut model by removing the graph-cut module
from the proposed gcDLSeg network architecture was trained with the loss of L., and Lp;... We
also applied the graph-cut segmentation method as post-processing on the probability map output
from the NoGraph-Cut model to investigate its performance. The ablation experiments were
conducted on both the chronic wound [46] and the pancreas cancer [47]) data sets.

The performance of all three methods on both datasets is shown in Table 7 and Table 8§,
respectively. The segmentation results demonstrated that the proposed graph-cut module
supported by backward propagation with the residual graph-cut loss within the deep learning
network was able to significantly improve segmentation performance with respect to all metrics
used, compared to the other two methods. For the method using graph-cut as postprocessing,
the segmentation performance was comparable to its baseline method of NoGraph-Cut. In this
scheme, feature learning by the NoGraph-Cut network is, in fact, disconnected from the graph-cut
model; the learned features thus may not be truly appropriated for the graph-cut model. However,
in the framework of our proposed gcDLSeg method, the graph-cut model is used to guide the
feature learning directly with U-Net. We also performed experiments, which demonstrated that
the graph-cut module with backward propagation in fine-tuning training can further improve
probability maps. After pre-training of U-Net, the graph-cut module was added for network
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fine-tuning. The binary cross-entropy loss, which measures the distance between the predicted
and ground truth probability distributions, was further reduced. It implies that the backward
propagation of the residual graph-cut loss further improved the probability map. See (Table 9)
and (Table 10).

Table 7. Ablation experiments showed the proposed graph-cut
module integrated with U-Net for end-to-end training improved
segmentation performance on the AZH test set. The best results
are marked in bold red.

Ablation Experiments Precision (%) | Recall (%) | Dice (%)
NoGraph-Cut 90.11 90.51 90.31
Graph-cut as post-processing 91.23 89.70 90.46
gcDLSeg 91.65 91.99 91.82

Table 8. Ablation experiments showed the proposed graph-cut

module integrated with U-Net for end-to-end training improved

segmentation performance on pancreas cancer data set from
MSD. The best results are marked in bold red.

Ablation Experiments Precision (%) | Recall (%) | Dice (%)
NoGraph-Cut 45.53 52.32 48.69
Graph-cut as post-processing 46.08 51.10 48.46
gcDLSeg 52.78 57.59 55.08

Table 9. Ablation experiments showed the proposed graph-cut
module integrated with U-Net for end-to-end training reduced
boundary error on the AZH test set. The smaller the value, the better.

Methods ASD (pixel) | HD (pixel) | 95%HD (pixel)
NoGraph-Cut 1.44 7.98 5.20
Graph-cut as post-processing 1.39 7.76 5.14
gcDLSeg 1.30 6.56 4.00

Table 10. Ablation experiments showed the proposed graph-cut
module integrated with U-Net for end-to-end training reduced
boundary error on the pancreas cancer data set from MSD. The

smaller the value, the better.

Methods ASD (pixel) | HD (pixel) | 95%HD (pixel)
NoGraph-Cut 14.71 25.54 24.00
Graph-cut as post-processing 14.46 27.20 25.76
gcDLSeg 12.30 23.21 21.96

4. Discussion and conclusion

In this study, we developed a novel DL framework for binary semantic image segmentation, which
leverages a new residual graph-cut loss and a quasi-residual connection to seamlessly integrate
the graph-cut segmentation model with the U-Net segmentation network for end-to-end learning.
The residual graph-cut loss essentially enables reformulating the pixel-wise classification problem
as a regression problem for capturing the difference between the capacities of the min-cut and
the ground truth cut. We theoretically proved the derivativity of the min-cut capacity and
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the effectiveness of the proposed residual graph-cut loss for feature learning via backward
propagation. The quasi-residual connection provides a pathway bypassing the combinatorial
and non-differentiable graph-cut optimization module for the backward propagation of gradients
to earlier layers of gcDLSeg. The global optimality ensured by the minimum s-¢ algorithm
facilitates better feature learning efficiently during network training. In the inference phase,
globally optimal segmentation is achieved with respect to the graph-cut segmentation model
defined on the optimized image features from gcDLSeg.

Our proposed gcDLSeg method enhanced boundary refinement. While deep learning models
excel at extracting high-level features for segmentation, they can sometimes struggle with precise
boundary delineation, especially in medical images with fuzzy or low-contrast borders. Medical
images often require domain-specific priors (e.g., shape, smoothness, and/or connection). Graph
cuts can easily incorporate such constraints into the segmentation process, making them an
ideal complement to deep learning. The proposed gcDLSeg approach seamlessly integrates
graph-cut optimization with deep learning that leverages the global optimization capabilities of
graph cuts with the powerful feature extraction of deep learning, enhancing accuracy in complex
medical image segmentation tasks. We have validated gcDLSeg on two segmentation tasks: one
is relatively easy and the other is highly challenging.

* For the easy segmentation task: AZH chronic wound segmentation, where object boundaries
are well-defined, gcDLSeg shows only marginal improvement over other methods. Since
deep learning models already perform well in such cases, further gains are naturally limited,
as shown in Table 1 and 2.

* For the challenging segmentation task: pancreas tumor segmentation, where the target
objects are small and the boundaries are weak and difficult to delineate, gcDLSeg
demonstrates significant improvements. Specifically, it achieves much lower Hausdorff
Distance (HD) and 95% HD, reflecting superior boundary precision and reduced extreme
errors compared to other approaches, as show in Table 4 and 5.

Our proposed gcDLSeg method also enhanced robustness for Hausdorff Distance and adversarial
attacks. A critical advantage of gcDLSeg is the robustness in both standard and adversarial
settings:

* Lower both HD and 95% HD: Compared to baseline methods, gcDLSeg achieves signifi-
cantly lower HD and 95% HD in pancreas cancer segmentation, indicating better structural
integrity in segmented regions, as shown in Table 2 and 5.

* Resilience to adversarial attacks: Our experiments show that gcDLSeg is more robust to
adversarial perturbations than other deep learning models. This is likely due to the explicit
graph-cut optimization, which enforces a strong structural prior and makes the model less
susceptible to minor input variations, as shown in Fig. 5 and 8.

Our proposed gcDLSeg method also demonstrated key advantages over GraphCutsLoss method.
While GraphCutsLoss integrates graph-cut constraints into the loss function, gcDLSeg seamlessly
incorporates graph-cut optimization into deep learning framework, which enforces the graph-cut
model in both training and inference, leading to:

* More effective feature learning during training: gcDLSeg forces the deep learning model to
learn features that align well with the graph-cut model, while GraphCutsLoss may require
more iterations to achieve similar performance.

* Stronger boundary adherence during inference: Unlike GraphCutsLoss, which primarily
influences training, gcDLSeg continues to enforce graph-cut principles during inference,
leading to more stable and precise segmentations.
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These strengths confirm that gcDLSeg is not just an incremental improvement but a method
with distinct advantages in robustness and boundary precision.

The major drawback of our proposed method is its training efficiency. During the network
training, it is computationally intensive to run the minimum s-¢ cut algorithm to compute the
optimal solutions with large training datasets and training epochs. The minimum s-f cut algorithm
used in our current implementation is GridCut [11], which is an augmenting path algorithm and
is challenging to parallelize in GPU. Further improvement includes using a parallel push-relabel
min-cut algorithm implemented in GPU to improve training and inference efficiency. Another
way is, during the early stages of training, to compute approximations to the minimum s-7 cuts,
and then refine the network with optimal s-7 cuts in the final stages of training.

The proposed method was validated on the public AZH chronic wound data set [46] and the
pancreas cancer data set from MSD [47]). Our experiments showed that the proposed gcDLSeg
method outperformed the state-of-the-art methods in Dice, recall, and surface position error. Our
proposed method also demonstrated improved robustness against adversarial attacks. We expect
the developed gcDLSeg method would find broader applications in computer vision, which are
involved in the minimum s-7 cut algorithm. The techniques of integrating graph-cut into the deep
learning networks can also be extendable for other combinatorial optimization methods.
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