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Abstract: This paper presents an innovative solution to the challenge of part obsolescence in mi-
croelectronics, focusing on the semantic segmentation of PCB X-ray images using deep learning.
Addressing the scarcity of annotated datasets, we developed a novel method to synthesize X-ray
images of PCBs, employing virtual images with predefined geometries and inherent labeling to
eliminate the need for manual annotation. Our approach involves creating realistic synthetic images
that mimic actual X-ray projections, enhanced by incorporating noise profiles derived from real X-ray
images. Two deep learning networks, based on the U-Net architecture with a VGG-16 backbone,
were trained exclusively on these synthetic datasets to segment PCB junctions and traces. The results
demonstrate the effectiveness of this synthetic data-driven approach, with the networks achieving
high Jaccard indices on real PCB X-ray images. This study not only offers a scalable and cost-effective
alternative for dataset generation in microelectronics but also highlights the potential of synthetic
data in training models for complex image analysis tasks, suggesting broad applications in various
domains where data scarcity is a concern.

Keywords: deep learning; semantic segmentation; synthetic datasets; printed circuit boards; X-ray
imaging; reverse engineering; automated image analysis

1. Introduction

The phenomenon of part obsolescence poses a significant challenge within the mi-
croelectronics supply chain, necessitating the development of effective strategies for its
mitigation. To fully express the level of criticality of this issue, consider the following
example: an aircraft still in production after several decades may require a part, like a PCB,
that is no longer manufactured because it is obsolete.

One strategy to address such situations is part remanufacturing, which could face
serious challenges if the original design of the board is no longer available, for various
reasons. In such cases, part remanufacturing can be significantly facilitated by reverse
engineering techniques. In the realm of printed circuit boards (PCBs), reverse engineering
can be executed using various methods, with the application of X-ray or X-ray computed
tomography (CT) being particularly effective for multi-layered boards. X-ray CT provides
a non-invasive means to visualize the complex internal structure of PCBs. A critical step
in deciphering the design of a PCB from X-ray CT images is image segmentation. This
process involves identifying and isolating different components within the PCB image to
facilitate further analysis [1]. Traditionally, this segmentation has been performed manually,
a method that is both time-consuming and prone to human error. Thus, automating
this process is crucial and achievable through image processing and machine learning
techniques, with deep learning proving to be particularly potent, often surpassing other
methods and sometimes even human performance.

Pasunuri et al. explored the challenges of accurate printed circuit board (PCB) image
segmentation and evaluate the suitability of several neural network techniques, including
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Unet, DilatedNet, DeepLab, LinkNet, and ICNet, for extracting the bill of materials from
optical images to ensure hardware assurance [2]. Li et al. proposed an automated recycling
system for printed circuit boards (PCBs) with a focus on accurately segmenting surface-
mounted devices (SMDs) into small devices and integrated circuits (Ics), using assembly
print-based and color distribution-based methods [3]. The work presented in [4] provided
a PCB semantic segmentation method using depth images and a random forest pixel
classifier to locate and identify components on a PCB. Ling et al. provided a deep Siamese
semantic segmentation network that combines similarity measurement with encoder–
decoder architecture to detect small and irregular PCB welding defects [5]. Makwana
et al. introduced PCBSegClassNet, a deep neural network designed for PCB component
classification and segmentation to aid in PCB recycling, featuring a two-branch architecture
that captures global context and spatial features, a texture enhancement module for precise
boundaries, and a combined loss function for segmentation [6]. Liu et al. proposed Mobile-
Deep, a PCB image segmentation model based on the DeepLabv3+ framework to address
the challenges of inaccurate edge segmentation, segmentation holes, and slow processing
speeds [7]. Qiao et al. proposed the DCNN-GC framework, combining deep convolutional
neural networks and graph cut models, to segment printed circuit board wires from CT
images, to overcome challenges like artifacts and complex surroundings [8].

Despite the great potential of deep learning networks for the automatic segmentation
of PCBs, their application is hindered by the need for extensive, annotated datasets, which
are typically rare and expensive to procure. In the context of PCB X-ray CT imaging, gather-
ing a diverse collection of samples demands significant effort and resources, and manually
labeling these images to generate reliable ground truth data requires considerable labor.

To tackle the issue of limited data availability and enhance the performance of machine
learning models, data augmentation is commonly utilized. This technique involves creating
new training examples by altering the existing dataset, such as by flipping, rotating, scaling,
and shifting images. While effective in expanding dataset size and reducing overfitting, the
scope of data augmentation is inherently limited. To bypass these constraints, data synthesis
methods have been suggested and implemented in various machine learning scenarios.

Several researchers have explored the use of synthetic datasets in their studies.
Wang et al. created synthetic X-ray scattering images for neural network training [9],
while Wong et al. used synthetic datasets for product identification in warehouses [10].
Anantrasirichai et al. developed synthetic interferograms for volcano deformation detection
from satellite imagery [11], and Kohalaka et al. applied synthetic datasets in dental implant
recognition from X-ray images [12]. Unberath et al. also advocated for simulated X-ray
images in training machine learning algorithms for diagnostic radiology [13]. Oesch et al.
developed a “virtual data fusion” framework for automated crack detection in X-ray CT
data [14]. Branikas et al. introduced a data augmentation technique using CycleGAN to
improve segmentation accuracy for defect detection in critical infrastructure by generating
realistic and under-represented crack images to enhance deep convolutional neural network
performance [15]. Gao et al. demonstrate that training AI models on realistically simulated
images from human models, a method called SyntheX, can effectively perform and even
surpass real-data-trained models in X-ray image analysis, offering a scalable and ethical
alternative for developing and testing AI in interventional image analysis [16]. The paper
by Fridman et al. introduced ChangeChip, an unsupervised learning-based system for
detecting defects in PCBs using computer vision, addressing the limitations of traditional
image processing and deep learning methods by comparing images of a reference PCB
with the inspected PCB, and included creation of CD-PCB, a synthetic labeled dataset for
evaluating defect detection algorithms [17].

In this paper, we propose a novel data synthesis approach to address the scarcity of
training data in PCB design extraction. Our method involves generating virtual images of
objects with pre-defined geometries. This technique allows for the creation of an unlimited
number of images without cost or effort constraints and provides inherent labeling based
on known geometries, eliminating the need for manual post-processing.
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There are multiple ways to generate synthetic X-ray CT image data. Physical phantoms
with known geometries can be imaged using an actual X-ray CT machine [18], but this can
be both time-consuming and expensive. An alternative is the use of physics-based Monte
Carlo simulation algorithms like SIMIND [19] and MCNP [20] to produce realistic 2D X-ray
projections [21–23], which are then reconstructed to create 3D object images. However, this
approach can be computationally demanding.

Another method is ray tracing [24] for creating 2D X-ray projections of synthetic
geometries, with tools like gVirtualXRay [25] facilitating this process. While less computa-
tionally intensive than Monte Carlo simulations, ray tracing does not replicate the realistic
noise typically present in X-ray images. Introducing synthetic noise to the images can
partially address this, but another challenge is the potential time investment required to
generate numerous CAD models for the simulations.

Our research adopts an alternative approach for image synthesis, simulating the
formation of X-ray images by directly drawing them, an approach that inherently lacks the
real noise found in actual X-ray images due to effects like beam scattering. We counter this
by introducing noise into the images. Our methods enable the scalable generation of large
and diverse datasets for training deep learning networks.

Our findings demonstrate that a deep learning network, trained on synthetic data, is
highly effective in performing a semantic segmentation of real X-ray CT images of PCBs.
This success highlights the potential of our approach to address data scarcity issues and
advance the field of design extraction in microelectronics. Moreover, our approach holds
promise for application in other domains and applications.

2. Materials and Methods

Our methodology for automated semantic segmentation of PCB X-ray images com-
prises two primary components: (1) the generation of synthetic images with corresponding
segmentation masks that closely mimic real X-ray projections, and (2) the training of a ma-
chine learning model to accurately associate these synthetic images with their respective
segmentation masks.

2.1. Dataset Creation
2.1.1. Image Generation

To generate images resembling X-ray projections, we employed a straightforward
technique of sketching images on a digital canvas. For simulating PCB X-ray images, we
created 2D representations using basic shapes: disks and lines to mimic junctions and traces
on PCBs. This involved assembling composite geometries with hollow circles of various
sizes, randomly positioned to represent PCB junctions, and lines interconnecting these
circles, symbolizing PCB traces. Each geometry was converted into a synthetic image by
assigning intensity values, chosen randomly from a predefined range, to both the circles
and lines. Figure 1 illustrates several examples of these generated images before any
noise addition.
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2.1.2. Noise Addition
Our method provides a rapid alternative to Monte Carlo simulations for creating X-

ray-like images. However, a key limitation is the absence of real-world noise, characteristic
of actual X-ray images. To address this, we introduced artificial noise to the synthesized
images to enhance their realism. This was achieved by extracting a noise profile from actual
X-ray images. The process involved capturing multiple consecutive air-only X-ray images
under the same settings. By calculating the differences between these images and dividing
the result by two, we generated various noise profiles of the imaging system. Each noise
profile was larger than the size of the input images for the deep learning network, allowing
us to select different subsections of noise to add to our synthetic images. The chosen
noise subsection was randomly scaled with multipliers before being added to the synthetic
images. Figure 2 displays two air images and their differences, which were used to generate
the noise profile. The noise profile was normalized to improve contrast. While the air
images exhibit a vignetting effect, the noise profile itself maintains a consistent texture.
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It should be noted that while many factors can contribute to noise, the proposed
method effectively incorporates real noise—which results from a combination of several
factors—into the synthetic images. This approach ensures that the effects of all contributing
factors are accounted for collectively, eliminating the need to consider them separately.

An important step we took regarding noise addition was to increase the range of cases
that can be covered. We implemented two main approaches. First, we doubled the range of
the noise magnitude compared to what was observed in the real images. This was done to
capture all possible cases, including normal imaging conditions as well as those involving
poor-quality X-ray images, machine malfunctions, and inexperienced operators. In fact,
we significantly stretched the noise range. Additionally, we incorporated two other noise
types: blurring and contrast stretching. This further expanded the range of cases that our
machine learning system can capture and cover.

2.2. Deep Learning Network Training
The copper traces and junctions together form the necessary components for retrieving

the PCB design. It is critical to separate the junctions from the traces because the junctions
serve as the vertices of the graph that define the PCB layout, while the traces are the edges
of the graph. In this phase of our study, we directed our efforts towards the training
of two deep learning networks using the synthetic dataset of PCB X-ray images we had
generated. The primary objective of these networks was twofold: the first network aimed
to segment the copper parts, encompassing both the junctions and the traces on the PCBs;
the second network was specifically tailored to segment the junctions. By subtracting
the two, the traces are then obtained. Both networks were designed based on the U-Net
architecture [26,27], a choice influenced by its proven efficacy in similar image segmentation
tasks and particularly due to its symmetric encoder–decoder structure, which allows for
precise localization and context understanding. The encoder part of the U-Net consists of
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several convolutional layers with ReLU activation, followed by max-pooling layers that
progressively reduce the spatial dimensions and capture high-level features. The decoder
part mirrors the encoder, using transposed convolutions to upsample the feature maps and
recover spatial resolution, culminating in a final output layer with a sigmoid activation
function for pixel-wise classification.

To further enhance their performance, we incorporated a pre-trained VGG-16 [28,29]
backbone into the network structures. VGG-16, known for its deep and simple architecture,
comprises 13 convolutional layers followed by three fully connected layers. By using this
pre-trained network, we leveraged its ability to extract rich feature representations from the
input images, thus improving the segmentation accuracy. The weights of the VGG-16 were
initialized from models pre-trained on the ImageNet dataset, providing a strong starting
point for learning specific features of PCB X-ray images.

As the optimizer, we employed stochastic gradient descent with momentum, which
helps accelerate convergence and escape local minima by considering the past gradients,
and weight decay to prevent overfitting by penalizing large weights. We used a decaying
learning rate to fine-tune the learning process, starting with a higher learning rate that
gradually decreases, allowing for more precise updates to the weights as training progresses.
Also, we utilized binary cross-entropy with logits loss as the loss function, which is well-
suited for binary segmentation tasks and helps in effectively distinguishing the junctions
and traces in the PCB X-ray images. The training of both networks was carried out using
synthetic datasets.

It is important to note that the training process was conducted exclusively using
synthetically generated datasets. This approach was chosen to assess the effectiveness
of synthetic data in training deep learning models for real-world tasks, such as semantic
segmentation in PCB X-ray imaging. For both networks, the input is a 448 → 448 gray-
scale image. The output is a 448 → 448 black-and-white (BW) image that serves as the
predicted label for the input image. Note that a 448 → 448 image may not be sufficient
to capture the entire area of a PCB layer. For example, regarding the size of the images
corresponding to one of the examples provided in the results section, we are looking at an
area of approximately 13.5 mm → 13.5 mm. With a pixel size of about 14 µm, we need an
image size of approximately 960 → 960 pixels to capture this area.

The flowchart below (Figure 3) summarizes the described process.
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3. Results and Discussion

The research detailed in this paper sought to automate the segmentation of PCB X-ray
images through deep learning techniques. Two distinct datasets were created to train
separate neural networks, one for segmenting junctions and another for traces in PCB
X-ray images. The process involved generating synthetic geometries on a digital canvas to
simulate PCB X-ray images, followed by the addition of real noise at varying levels and
patterns. More specifically, the generation of synthetic images involved multiple steps. First,
a graph was generated in a random fashion by populating a corresponding connectivity
matrix. The number of vertices (indicating the number of junctions) was chosen randomly
from a set range of plausible values. A square matrix with the number of columns equal to
the number of junctions was then created. All diagonal values of the matrix were set to
zero, as there are no self-connectivities for vertices. Each off-diagonal element in the upper
triangle of the matrix was randomly assigned a value of zero or one. These values were
mirrored in the lower triangle to ensure symmetry. For each vertex, a random location
within a specified XY range was selected on the plane, and a random diameter for that
junction was chosen from a set range of values. For each edge of the graph associated
with a trace on the PCB, the number of breaking points was randomly selected from a set
of plausible integer values. The locations of these breaking points were then randomly
determined, and the edges (traces) were created with random thicknesses, again selected
from a specified range. Once the image was created, noise was added. This noise included
that derived from real X-ray images by subtracting air images, as well as two additional
types of noise in the form of contrast stretching and blurring. Each type of noise had a 50%
chance of being applied to the image. When noise was applied, a coefficient, randomly
selected from a set range of values, was multiplied by the noise profile before being applied.

Figure 4 showcases examples of these synthesized images.
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Figure 4. Synthetic images post contrast variation and addition of real noise.

The synthetic nature of these images ensured that their corresponding segmentation
masks were readily available. Figure 5 presents these masks, one representing the combined
traces and junctions, and the other exclusively for the junctions.

We created (5
2) = 10 noise profiles using five air images (1024 → 1024 resolution), From

each noise profile, multiple sub-profiles of 448 → 448 pixels can be extracted. This number
equals (1024 ↑ 448 + 1)2. With the 10 noise profiles, described earlier, this leads to over
3 million possible 448 → 448 noise subprofiles. By randomly selecting and scaling these
subprofiles, we introduced noise to the synthetic images. We generated 20,000 synthetic
images (448 → 448 pixels) with corresponding masks. These images, which did not include
noise initially, each underwent a noise addition process, resulting in 20,000 noisy images.
For each image, one of the over 3 million noise profiles was selected randomly. These
images trained two U-net models with a pre-trained VGG-16 backbone, details of which are
listed in Table 1, aimed at detecting PCB junctions and traces in X-ray images. The dataset
split was 85% for training and 15% for evaluation. After 100 epochs, the board content
segmentation network reached a validation loss of 0.00968, and the junction segmentation
network reached 0.00580. Figure 6 presents the segmentation outputs for the synthetic
images from Figure 4.
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Table 1. Details of the used network structure.

Step Description

Data Preparation Generated synthetic PCB X-ray images with segmentation masks, including noise, blurring, and contrast variations.

Network Initialization Initialized U-Net encoder with pre-trained VGG-16 weights from ImageNet.

Training Configuration

- Optimizer Used SGD with momentum (0.9) for faster convergence.

- Learning Rate Started at 0.01 and decayed by a factor of 0.1 over every 30 epochs.

- Weight Decay Applied 0.0005 to prevent overfitting.

- Loss Function Binary cross-entropy with logit loss for effective binary classification.

Training Process

- Batch Size Set to 16 for memory efficiency and stochastic gradient descent.

- Epochs Trained for 100 epochs with model evaluation after each epoch.

- Validation Monitored validation loss and metrics to prevent overfitting.

Model Checkpointing Saved best-performing models based on lowest validation loss.

Evaluation Assessed final model using Jaccard index on real PCB X-ray images, achieving high accuracy (>0.9).

To quantitatively evaluate the networks’ accuracy on real PCB X-ray images, we
computed the mean Jaccard index for 20 real images. The Jaccard Index, also known as the
Jaccard similarity coefficient, is a statistic used to measure the similarity and diversity of
sample sets. It is calculated as the size of the intersection divided by the size of the union of
two sets. For example, if we have two sets A and B, the Jaccard Index (J) can be calculated
using the following formula: J (A, B) = |A↓B|/|A↔B|.

Here, |A↓B| represents the number of elements common to both sets, and |A↔B|
represents the total number of unique elements across both sets. The result is a value
between zero and one, where zero means no similarity (no shared elements) and one means
complete similarity (all elements are shared).

This approach provides a clear metric for assessing how accurately the network
identifies and classifies different components in the images, reflecting both the precision
and recall of the model. Values closer to one indicate higher accuracies, as they show
a strong match between the automated and manual segmentations.

The networks achieved Jaccard indices of 0.924 for traces and 0.937 for junctions. With
the Jaccard index values obtained herein being greater than 0.9, we can conclude a high
accuracy for the segmentation effort. Figure 7 illustrates a real PCB X-ray image alongside
its fused segmentation output, displaying effective segmentation by both networks.
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For larger PCB X-ray images, we divided them into 448 → 448 segments with 50%
overlap. After network prediction, we combined these into a normalized inference matrix.
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Figure 8 shows the fused segmentation result for these larger boards, highlighting the effec-
tive segmentation by the deep-learning networks. Post-processing involved thresholding,
erosion, connected component analysis, small component elimination, and dilation.
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Figure 8. Fused segmentation results for larger PCBs. The left images are real X-ray images of PCB
samples, and the right images depict the results of the trained network’s semantic segmentation. In
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the right images, the predicted labels—which are outputs from the network—are overlayed onto the
original X-ray images. These fused images clearly demonstrate the network’s success in precisely
predicting the correct labels for each pixel, resulting in highly accurate semantic segmentation.

Our approach eliminates the need for costly image acquisition and manual labeling for
training segmentation algorithms. By training on a synthetic dataset that represents various
PCB variations, our solution offers a generic approach suitable for diverse scenarios and
samples. Further, the proposed approach is scalable and can accommodate more complex
segmentation tasks with a one-time additional computational cost for generating more
diverse synthetic images. It must be noted that a key factor in the success of the proposed
data synthesis method is to ensure that the synthetic data capture the range of variations
observed in real-world data. This balance involves using detailed yet computationally
feasible synthetic models and might require a few real images for system noise calibration.
If real images are unavailable for calibration, expanding the diversity of synthetic data to
cover more noise profiles may incur additional computational costs for both data synthesis
and training. The synthetic data presented in Figure 4 that are created with the described
approach may appear simple. However, when the network is exposed to numerous such
patterns, it is successful in semantically segmenting a wide range of metal trace patterns, as
showcased in the example results.

3.1. Discussion of Tradeoff between Synthetic Image Realism and Computational Complexity
Images can be synthesized with varying degrees of realism. They can either

1. Closely resemble real images through physics-based simulations of X-ray images.
This can be achieved via a Monte Carlo simulation for highly realistic images or ray
tracing followed by noise addition. The work presented in [30] provides an example
where real and synthetic images are indistinguishable.

2. Be simpler, capturing only the essential features needed for training the machine
learning algorithm.

There is a trade-off between the level of detail in the image and the computational
complexity of generating synthetic images. Our findings indicate that using disks and
lines with added noise strikes an effective balance, providing sufficient detail for training
ML algorithms for the automatic segmentation of PCB X-ray images while remaining
computationally affordable. Notably, even though the synthetic images are not intentionally
highly realistic, they effectively fulfill the training requirements of the ML algorithms.

3.2. Scope of Application
The use of the proposed data synthesis approach is multifaceted. In this paper, we

primarily focused on utilizing synthetic data to train machine learning algorithms for
semantic segmentation aimed at the automated reverse engineering of PCBs from X-ray
images. However, this approach also holds the potential for the automated detection of
possible root causes of failures. The use of synthetic data for the automatic identification
of defects in X-ray images by machine learning algorithms has been explored in [30],
addressing data scarcity from defective parts and identification of diverse defects, such as
missing bond wires in ICs, delamination effects, cracks, etc.

3.3. Comparison with Other Methods
Table 2 provides a comparison between different categories of methods that can be

used for the segmentation of PCB images.
On one hand, traditional manual segmentation involves high labor costs and a slow

process, as it depends on how many individuals work in parallel to perform the segmenta-
tion. This method is also subject to human error, and although it can have a wide scope of
application, it is limited to cases familiar to human vision. Traditional image processing
methods, such as adaptive thresholding, may separate the copper content from the rest
in PCBs. However, the performance of these methods in correctly segmenting the images
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depends largely on the parameters of the thresholding method. Furthermore, these meth-
ods are not capable of semantic segmentation to distinguish junctions. Rule-based image
processing techniques can potentially address this to some extent if rules are applied to
the segmented images from the thresholding methods. These techniques may be used
for detecting disks as junctions, but they are not easily generalizable to complex shapes.
Machine learning offers a promising alternative. However, the conventional use of manu-
ally annotated data in machine learning-based semantic segmentation has two significant
issues: high instrument cost for image acquisition and high labor cost for labeling efforts
to prepare training data. However, using inherently labeled synthetic data for training
addresses these issues effectively, as these methods require minimal image acquisition for
calibration and zero labor for data labeling.

Table 2. Comparison of proposed method with other methods.

Method
Cost

(Labor/Instrument)
Efficiency

Reliability and

Effectiveness
Universality

Manual Semantic
Segmentation High labor cost

Slow process
(dependent on how
many individuals work
in parallel to perform
the segmentation)

Subject to human error

Wide scope of
application, although
limited to cases that are
familiar to
human vision

Thresholding-Based
Segmentation Low cost Fast

Not capable of
semantic segmentation
(a follow-up semantic
segmentation process
is required)

Very case-specific.
Thresholding
parameters need to be
adjusted per each type
of image

Rule-Based
Segmentation

Computational cost
increases with the
complexity of images
or components that
need to be segmented

Fast

Potential errors due to
unforeseen scenarios
that cannot be
addressed by the
set rules

Requires extremely
complex algorithms to
cover a wide range of
possible cases

Machine-Learning-
Based Semantic
Segmentation Using
Manually Annotated
Data for Training

High instrument cost
for image acquisition
and high labor cost for
labeling efforts to
prepare training data

Fast Highly reliable when
sufficiently trained

Can cover a wide range
of cases when
sufficiently trained

Machine-Learning-
Based Semantic
Segmentation Using
Inherently Labeled
Synthetic Data
for Training

Minimal image
acquisition (for
calibration) and
zero labor

Fast Highly reliable when
sufficiently trained

Can cover a wide range
of cases when
sufficiently trained

4. Conclusions

This paper has presented a comprehensive study on the use of synthetic data for the
training of deep learning networks in the context of semantic segmentation of PCB X-ray
images. Our research has demonstrated that synthetic data generation is not only feasible
but also highly effective in overcoming the challenges associated with limited real-world
data availability in the domain of microelectronics.

We successfully developed and implemented a novel method for creating synthetic X-
ray images of PCBs, incorporating noise profiles derived from real X-ray images to enhance
realism. The use of this approach allowed us to bypass the limitations of traditional
methods like physical phantoms or computationally intensive Monte Carlo simulations,
providing a scalable and cost-effective alternative for data generation. Training two U-net
models with a pre-trained VGG-16 backbone exclusively on these synthetic datasets yielded
impressive results. The networks achieved high Jaccard indices in segmenting both traces
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and junctions of real PCB X-ray images, underscoring the potential of synthetic data to
effectively train deep learning models for complex, real-world tasks.

Moreover, our approach has significant implications for the broader field of image
segmentation and analysis. The scalability and adaptability of this method suggest its
applicability to other domains where data scarcity is a concern. By generating diverse
synthetic datasets tailored to specific requirements, researchers and practitioners can train
robust models without the extensive costs and efforts typically associated with real data
collection and labeling.

One limitation of the proposed approach is that it relies on the noise profile of the
instrument used for sample imaging to enhance the realism of the synthetic images. In
future work, we plan to replace this device-specific noise profile with a generic one.

In conclusion, our study validates the effectiveness of synthetic data in training deep
learning networks for semantic segmentation tasks in microelectronics, offering a promis-
ing direction for future research and application in various fields requiring advanced
image analysis.
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