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This paper discusses commonly used reverse engineering methods to illegally recreate printed circuit 
board (PCB) designs. A solution using transformative electronics is presented to prevent the discussed 
reverse engineering methods by obfuscating the design. The transformative electronics solution is 
employed in a specific application that results in a reverse engineered board to be incorrectly recreated, 
where the signals would be distorted due to added electromagnetic interference (EMI). The non-
conductive vias that are part of the obfuscation would allow the inclusion of EMI generators that would 
not affect the circuit in an original design but would prevent copied designs from working correctly. 
A machine learning algorithm is being designed to optimize the placement of the EMI sources in an 
original PCB. 

Keywords: PCB; obfuscate; reverse engineer; EMI; machine learning. 

1.   Introduction 

As the electronics industry continues its never-ending expansion, electronic hardware finds 
increasingly numerous applications that involve embedded circuit boards. With this 
expansion comes increased production, designs, and an unwanted growth of industrial 
espionage. Design theft has become a more significant concern with products that contain 
printed circuit boards (PCBs), with up to 90% of companies that use PCBs in their products 
experiencing some level of intellectual property infringement. This level of brutal design 
copying is due to easy reverse engineering. PCB designs can be taken apart, scanned  
and recreated in circuit design software, and produced en masse, effectively stealing the 
work from the original designers. As a result, different solutions have been sought out to 
protect a PCB from being reverse engineered. This paper seeks to prevent illegal reverse 
engineering through electromagnetic interference using transformable electronics. 
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2.   Reverse Engineering Methods 

There are several strategies that have been employed to reverse engineer a PCB. By simply 
acquiring an example of a product, one can deduce a substantial amount of information 
from the physical appearance of the board, the metal traces, and the component placement. 
However, this alone is often not enough to reverse engineer a PCB, due to the intermediate 
layers that contain additional trace connections between components. To examine these 
layers, an attacker may perform an x-ray scan of the PCB, taking pictures of each layer. 
This will allow them to map out every electrical connection in the board and create a 
complete circuit replication. By having images of each layer, advanced algorithms can be 
used that accurately recreate the circuit structure in a design. The board can be further 
probed at each node to understand its electrical characteristics and make design duplication 
that is more accurate to the original. This is considered a nondestructive form of reverse 
engineering. 

Another form of reverse engineering is delayering the PCB by physically scraping off 
the outer layers, exposing the internal electrical connections [1], which renders the PCB 
partially unusable. However, the end result is the same, where pictures can be taken of each 
layer throughout the removal process and an algorithm can be used to generate a model of 
the circuit. 

 

Fig. 1. Insertion of transformable and faux vias. 

3.   Obfuscation Strategy 

Both destructive and non-destructive reverse engineering methods are extremely easy to 
accomplish and difficult to prevent. However, by attempting to hide the circuit design 
through physical obfuscation, the chance of an attacker correctly reverse engineering a 
PCB design can be greatly reduced. This paper seeks to take on both previously described 
reverse engineering techniques with a common solution. To confuse algorithms that 
analyze circuit design from photos of each layer, the vertical connections between PCB 
layers, known as vias, can be inserted throughout the layers. Instead of typical vias, these 
will be of a non-conductive material. These vias will not interfere with the normal function 
of the circuit, as they do not conduct. However, they can be placed to appear as though 



 Obfuscation through Electromagnetic Interference 

2240003-3 

they are connecting traces between layers, making it much more difficult for an algorithm 
to distinguish which vias complete the true circuit and which ones are dummy connections. 
This significantly increases the possibility of circuit combinations and would require an 
unrealistic amount of processing resources to compute every possible layout. 

Most PCB vias use typical conductor material such as copper. These vias can be 
replaced with another conductive material, in this case magnesium. With a resistivity of 
44.7nΩꞏm [2], magnesium can provide similar conductive properties as copper; however, 
where it is unlike copper is its reactivity with other elements. In the event that an attacker 
attempts to destructively reverse engineer a PCB, the interior layers will suddenly be 
exposed to air, whereupon the magnesium will react to become magnesium oxide, which 
is not conductive. Therefore, by combining magnesium vias serving as the true connections 
with dummy vias made of magnesium oxide, the PCB can automatically protect itself from 
both forms of reverse engineering and obfuscate its true design. This solution is very easy 
to implement, with low overhead cost and a simple triggering mechanism that can provide 
vastly superior protection to a design than currently existing countermeasures [3]. 

4.   Protection Solution Application  

The usage of transformative via materials can be applied to a specific protection solution. 
Adding additional isolated traces in proximity to functional traces of the design can be 
combined with transformative vias to further obfuscate circuit operation. These additional 
traces would be connected to the circuit through the nonconductive MgO vias and have no 
effect on the functionality of an original design. However, if a PCB is recreated using 
images obtained through nondestructive reverse engineering, then the copied design will 
include these additional traces. Because the MgO vias would confuse the attackers by 
appearing as standard conductive vias, this copied design would recreate the circuit 
incorrectly, and have pairs of generator and receptor traces that would introduce electro-
magnetic interference (EMI) to the trace. Distortion on key traces of a circuit can hide 
signals that are critical to operation, or signals that may contain sensitive information in 
the event of a communication hack, rendering the copied design useless and preventing 
successful distribution. 

A generic generator/receptor model (see Fig. 2) can be derived to determine the near-
end voltage as 
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which result on the receiving trace. Experimentation using this solution has already been 
conducted using multiple original signal frequencies, with results showing that adjacent 
trace pairs, when configured where one will receive noise from another, can distort signals 
up to 43.6 percent from its original shape. 
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Fig. 2. Depiction of pairing a generator and receptor trace to create crosstalk. 

5.   Optimization of Solution Application 

Generator traces can be an effective application for obfuscation using transformable 
electronics. The adjacent generator traces must be optimized to be at the most vulnerable 
circuit locations to cause the largest amount of EMI distortion possible. This optimal 
placement of generators can be solved using machine learning to determine parameter 
values. Algorithms can be designed to take in circuit properties and resulting distortion on 
traces, and use the data to build a model that places traces for maximum EMI. 

With multiple parameters to consider, and with each of those having a varying amount 
of influence on the EMI, a machine learning algorithm employing multivariate polynomial 
regression is selected, taking the form 

yi	= β0 + β1x	+ β2x2+ ...	+ βnxn (3)

where the parameter data is represented in an X matrix with the y vector being the resulting 
EMI distortion. Multidimensional polynomial regression can often have difficult solutions 
to determine and can be negatively impacted by parameter selection. To improve the curve 
fitting, several estimation tools will be tested, such as ridge regression due to the potential 
for parameters to be correlated in many circuit designs. 

The significance of using a machine learning algorithm to maximize generator place-
ment is that a variety of design parameters can be the basis for an optimal design. The 
objective function used in machine learning is an approximation that attempts to mathe-
matically relate parameters that may otherwise not have a described connection in a 
contextualized application. By being able to rationalize a large enough data set, a general 
pattern for the output can be determined based on the input parameters. This can further 
allow one to determine which parameter settings will result in a desired output using the 
discovered relationship. By determining a relationship between multiple design parameters 
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and the resulting EMI distortion, this work alters those parameters to achieve distortion for 
obfuscation. 

A machine learning model is built using a selection of parameters that are known to 
have a plausible connection to potential distortion, and are often taken into consideration 
when PCB designers are normally attempting to limit EMI in their circuits. These 
parameters include, but may in the future not be limited to, the frequency range experienced 
at a trace, the number of connections to the nodes of a trace and the length of the trace. 
Included in these parameters is an additional parameter that will be investigated, that being 
the length of the generator trace paired with the design. The related result of these 
parameters would yield a distortion level. Furthermore, if a considered trace is connected 
to an IC chip, which is known to be a potential source of EMI, a baseline distortion level 
is added to the result. 

The plan for data collection requires gathering and extracting these parameters from 
PCB designs, with the circuits discretized as a netlist. This is made possible by SPICE 
software, where frequency/switching frequency analysis of circuits can be accomplished. 
The quantity of node connections and trace lengths can be collected from PCB board design 
files that specify the physical characteristics and appearance of a PCB. Additional work 
will be needed to calculate the trace length directly from the dimensions of each trace 
segment provided in the design file. 

While not an ever present component throughout an entire PCB design, IC chips are a 
noteworthy source of interference. This is due to their switching noise and high frequency 
internal signals. An estimation relationship is based on [4], which describes an IC as a 
Norton Equivalent model (see Fig. 3) for the overall voltage, current and impedance as 
observed from points in the PCB. The methods provided in [4] can be supplied with values 
extracted from SPICE simulations of the circuit, provided an equivalent IC model is present 
in the library. The resulting noise source signal Vs can be calculated as a baseline addition 
to any distortion contributed on PCB traces for locations in the circuit directly connected 
to an IC pin. The presence of an IC connection at a trace will contribute to determining the 
optimization of EMI generation in the machine learning model. 

 

Fig. 3. Norton equivalent representation of integrated circuit voltage noise source. 
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Because the EMI distortion is an output parameter that the algorithm would be able to 
determine given a set of parameter data, it must be calculated by alternate means in order 
to build the algorithm. Using the methods described in (1) and (2), a basic model that ties 
generator pairs and distortion together can be used to provide a baseline for datasets. This 
parameter information can also be obtained through board files, SPICE simulations and 
PCB design properties, such as the resistivity of the traces. 

To perform a prediction on a circuit design, the training data from a master data file is 
used to construct the regression model and its coefficients. This is currently performed 
using the Scikit-Learn module available in Python. Data from a new PCB design is pulled 
to show how the data in the master training data file was and is then stored in a matrix to 
sequentially hold all traces as data points. This will be used as a validation data set. Each 
data point is then cycled through the regression model, where a prediction for the EMI 
distortion is made. Using this prediction, a maximization is then performed using the data 
point parameter values and model coefficients to sweep a generator trace length value up 
to the maximum length of the trace. The optimized value of the generator is then inserted 
with the rest of the parameter data into the matrix, which can then be output for review. 

6.    Algorithm Testing 

Using mathematically generated EMI distortion data has a challenging issue. Because it is 
already related to the generator length, the results of creating a machine learning model 
would heavily favor the influence of values selected as the generator trace lengths. This is 
a display of high correlation (which due to the existence of mathematical relationships 
could even allow these parameters to be considered linearly dependent), which must be 
rectified to legitimize the model. 

To address the potentially large coefficients that would dominate the computation, L1 
Lasso (Least Absolute Shrinkage and Selection Operator) Regression can be implemented 
[5]. This type of model regularization takes the form 

RSSLASSO	(w,b) ൌ ∑ ሺ𝑦𝑖 െ ሺ𝑤 ൈ 𝑥𝑖 ൅ 𝑏ሻሻଶே
௜ୀଵ +α∑ ห𝑤௝ห

௣
௝ୀଵ  (4)

and can help to linearly reduce extremely large model coefficients while allowing the 
smaller coefficients to have a greater influence on the model. This is handled by the tuning 
parameter α, where a value of 0 results in no coefficient reduction, while increased values 
contribute more to the model penalty. Care must be taken to find an appropriate value for 
α. Multivariate polynomial regression models will contain many coefficients, where a large 
amount can be acceptably reduced to zero by LASSO regression to prevent too much 
variance and to help limit dominating coefficients. However, α must not be too large to 
further overbias the model by reducing too many coefficients that have a medium impact 
to zero. Future testing will involve a selection process for a suitable α value based on the 
nature of the coefficients generated by training data. 

It is necessary that when using a machine learning algorithm to optimize data points, 
the quality of the model is tested. This is to assure that the model can be applied as a reliable 
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solution to the problem it is attempting to solve. To assess the quality of the machine 
learning algorithm, a form of cross-validation will be performed on the training data list. 
The data will be divided into evenly sized partitions, where one of the partitions will be 
chosen to be the validation data set (the data that is input as a new PCB design to be 
optimized). This data set will then be run through the algorithm using the remaining 
partitions as the training sets. The results of the optimization will be computed as a loss 
quantity relative to the actual EMI distortion output data associated with the values in the 
validation set. If the loss is consistently low, the model is considered reliable. This process 
is repeated using every partition as the validation set at least once. An overall loss of the 
model can then be computed. 

7.   Experimental Results 

Ultimately the most valuable data that can be used to construct the model is the data 
generated by actually testing the distortion effects of generator-receptor pairings in a PCB 
design. The results from the previously discussed generator receptor testing contain the 
determined distortion percentage of a protected sine wave. The parameter information from 
the PCB design and test results can be used as a basis for the rest of the data in the model. 

 

Fig. 4. 4-Fold partition cross validation. 

PCB design files containing the architecture for the tested traces were used to extract 
the generator and protected trace dimensions. This is critical to mathematically calculate 
their lengths. The differing design between the protected traces and the generator-receptor 
pairs is not fully accounted for yet, but the generators being substantially longer than the 
protected traces in a range of physical designs would allow length to be a contributing 
factor. This data would still be a valid consideration for building the model. 

Other parameter information is easily obtainable from the test. The tested frequency 
range was 3MHz-15MHz, providing a constant range parameter value. Number of node 
connections and IC signal distortion is irrelevant for this design, causing this data to be 
primarily influenced by the generator pair and trace lengths. This will lead to a larger than 
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expected sparsity in the machine learning coefficients due to the data having a stronger 
linear relationship. This would be an opportune condition to use LASSO regression to 
assist with limiting the dominant coefficients. 

The data was input into Python code and used to generate a multivariate polynomial 
regression model of degree 4. The discussed parameters were entered into the data matrix, 
with the lengths pulled from the design files converted to millimeters. The resulting  
distortion amounts from the test data were converted from percentages to a decibel repre-
sentation of signal reduction. The resulting machine learning model contained 125 coeffi-
cients, 68 of which were zero, making the model with the current data 54.4 percent sparse. 

To do a preliminary confirmation on the model coefficients, the first trace design values 
were used as a test point. The polynomial model was able to correctly provide the 
associated EMI distortion signal reduction value that the data was initially provided with. 
The data can be found in Table 1. 

Table 1. Data and testing. 

 Node 
Connections 

Frequency 
Range 

Trace  
Length 

Generator 
Length 

EMI  
Distortion 

x1 1.00e+00 1.20e+07 3.75e+01 1.28e+03 -2.45dB 
x2 1.00e+00 1.20e+07 2.55e+01 7.37e+03 -1.75dB 
x3 1.00e+00 1.20e+07 3.77e+01 2.60e+03 -1.01dB 
x4 1.00e+00 1.20e+07 4.00e+01 2.31e+03 -2.49dB 
Test 1.00e+00 1.20e+07 3.75e+01 1.28e+03 -2.45dB 

To continue improving the model, more data must be obtained to build the training data 
set. Data from previous test results is very useful to start with, however having PCB designs 
that can test the other parameters would be needed to incorporate the model parameters in 
a more meaningful way. The test does not use traces in an actual design, so no information 
can be gained about the number of node connections and how it relates to EMI distortion. 
More data can be pulled from additional PCB designs and be simulated for electrical 
property information, but this still relies on calculating a predicted EMI. The ideal way to 
obtain more training data would be to include EMI test results using a completed PCB 
design, requiring that each probed location have its original signal be compared to the 
resulting signal when the generator traces are activated. This would take more resources to 
obtain, but would significantly improve the quality of the data. 

8.   Conclusion 

A method to protect PCB designs from being reverse engineered is developed, following 
principles of circuit obfuscation. This method will utilize the placement of transformative 
and nonconductive material vias incorporated into the circuit design to provide automatic 
and effective protection through apparent circuit possibility complexity. A particular 
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application of this via placement has been tested using augmented generator traces to inflict 
EMI into functional signals. Future testing will use machine learning to optimize the 
placement and characteristics of generator pairs. 
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