2024 IEEE International Conference on Data Mining (ICDM) | 979-8-3315-0668-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICDM59182.2024.00121

2024 IEEE International Conference on Data Mining (ICDM)

Reducing Unfairness in Distributed Community
Detection

Hao Zhang', Malith Jayaweera®, Bin Ren%, Yanzhi Wang?, Sucheta Soundarajan’
TSyracuse University {hzhangl5, susounda} @syr.edu
INortheastern University {malithjayaweera.d, yanz.wang} @northeastern.edu
SWilliam & Mary {bren}@wm.edu

Abstract—Big graph data mining and processing have emerged
as a crucial area of study. Distributed graph frameworks are
commonly employed to process such big graph data in various
applications. These frameworks have proven to be highly effective
in improving both the accuracy and efficiency of processing
large-scale graph data, but little attention has been paid to the
algorithmic fairness of such methods. In this paper, we pro-
pose a novel graph reweighting algorithm, Homophily-Based
Graph Reweighting (HBGR), which can be used with dif-
ferent distributed community detection frameworks. The find-
ings of our study demonstrate that HBGR can significantly
enhance the fairness of detected community results, without
altering the overall distributed community detection algorithm
workflow. Our analysis demonstrates that HBGR outperforms
traditional performance-based distributed graph data processing
frameworks in terms of fairness across 13 real social network
datasets. This enhancement enables us to achieve fairness levels
that are comparable, or even superior, to those achieved by
linear community detection algorithms while maintaining good
efficiency performance. Additionally, we examine the causes of
unfairness in distributed community detection algorithms and
conduct an interpretability analysis of HBGR’s improved fairness
performance. Finally, we provide a comprehensive evaluation
of the trade-offs between efficiency, accuracy, and fairness in
distributed community detection algorithms.

Index Terms—big graph data, community detection, big data
processing fairness

I. INTRODUCTION

As graph data sizes grow, distributed graph processing
algorithms, such as those for community detection, influence
maximization, PageRank, and node classification [1], [2], have
become popular. However, while such algorithms have made
significant improvements in accuracy and efficiency in recent
years [3], little attention has been paid to the algorithmic
fairness of such techniques [7].

In the field of algorithmic fairness, at a high level, an
algorithm is considered ‘fair’ when it does not demonstrate
bias against individuals on the basis of their membership in a
protected group [15]. In the context of community detection,
a fair community structure is one in which each protected
group is well represented in each community [12]. Our focus
is on community detection, because among the important
graph tasks, community detection has become one of the
most extensively studied in distributed large graph systems.
However, earlier work has shown that while current distributed
community structure mining frameworks perform very well

with respect to accuracy and efficiency, there is still consider-
able room for improvement in their fairness performance [5].

Recent research indicates that compared to sequential com-
munity detection algorithms, distributed community detection
frameworks exacerbate unfairness [5]. The reason for wors-
ened unfairness in distributed community detection systems
is the uneven allocation of nodes from different groups to
different machines by the distributed system, which leads to
higher unfairness in local computations, ultimately causing
greater unfairness in the final distributed clustering results [5].
It is important to note that such unfairness can occur even
if the algorithm has no knowledge of attributes. This occurs
because attributes can be partially reflected in the topology
and community structure of the graph, which can influence
partition decisions.

In this study, we quantify the causes of unfair com-
munity structure in distributed community detection frame-
works. Based on this analysis, we propose the novel
Homophily-Based Graph Reweighting (HBGR) al-
gorithm, which reweights graph edges to change the node
distribution across distributed computing machines in order
to improve the fairness of community detection. To the
best of our knowledge, this is the first graph algorithm
for distributed community detection frameworks to address
unfairness. Across thirteen datasets, HBGR shows excellent
performance with respect to fairness.

The main contributions of this paper are as follows:

o We quantify unfairness in distributed community detec-
tion algorithm. In particular, in homophillic graphs, graph
partitioning methods that improve computing efficiency
are more likely to place nodes from the same protected
group on the same machine (leading to higher ho-
mophily). We propose that distributed community detec-
tion techniques’ unfair community structures are caused
by this sparsity in connections between different groups.

e« We introduce a novel graph reweighting algorithm:
Homophily-Based Graph Reweighting
(HBGR), which can be applied in different distributed
community detection frameworks. To the best of
our knowledge, HBGR is the first algorithm to address
unfairness in distributed community detection algorithms,
which improves fairness by approximately 30% on
average without compromising computational efficiency.

« We demonstrate a trade-off between efficiency, accuracy,

2374-8486/24/$31.00 ©2024 IEEE 953
DOI 10.1109/ICDM59182.2024.00121
Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

and fairness when applying a distributed community
detection framework. Under the condition of sacrificing
an average of approximately 10% accuracy, HBGR can
improve fairness performance by an average of over
30%, while preserving the current level of computation
efficiency.

II. BACKGROUND AND RELATED WORK

Here, we first review state-of-the-art distributed community
detection frameworks. We then explain cutting-edge graph
partitioning methods used in distributed systems. Finally, we
define fairness in community structures.

A. Distributed Community Detection Frameworks

In this work, we consider two community detection al-
gorithms, Louvain [16] and InfoMap [17], and their corre-
sponding distributed frameworks: Vite [4] and RelaxMap [9].
Although there is no single optimal algorithm for community
detection (due to the diversity of graph data structures),
InfoMap and Louvain are widely recognized as the basis for
other approaches and remain highly popular [2].

1) Vite: Louvain groups nodes into distinct clusters in order
to optimize modularity, which quantifies the quality of the
community structure [16] and Vite performs a distributed
computing version of this method [4]. Vite involves two
main steps: Louvain iteration and graph reconstruction, which
respectively perform local community detection computations
as in the sequential Louvain and communicate community
structure information across distributed machines.

2) RelaxMap: InfoMap models a random walker to traverse
the graph, and then calculates the probability of each node
accessing different communities [17]. For distributed InfoMap
implementation, RelaxMap searches for new modules of ver-
tices using a lock-free parallel mechanism and the sparsity
assumption found in real-world networks to boost efficiency.
This approach distributes processor burden evenly across the
network [9].

B. Graph Partition Algorithms

Distributed graph applications use graph partitioning meth-
ods to split large graphs. For parallel computing, each sub-
graph is on a separate workstation. A graph partitioning that
balances local storage costs over machines and minimize com-
munication costs is known as a balanced graph partitioning.

METIS is a multi-level balanced graph partitioning al-
gorithm [11]. METIS is a fast and precise technique for
dividing graphs into partitions that makes the initial graph less
dense by merging nodes and edges, streamlines its structure,
and reduces its size [10]. METIS minimizes the number of
edges across partitions, a critical factor in optimizing the
efficiency of distributed graph processing. Balanced graph par-
tition approaches can improve distributed graph computation
frameworks. Therefore, in this study, we modify Vite [4] to
leverage the METIS graph partitioning technique for graph
data pre-processing.

C. Fairness in Community Detection

In general, an algorithm is considered fair if it does not
exhibit bias against individuals on the basis of membership in a
protected group, such as those based on attributes such as race
or gender [15]. This section discusses community detection
fairness using group-based terminology. Consider Red and
Blue nodes in a social network, reflecting real-world protected
groups. For convenience, we employ two groups, although the
discussion can be generalized to more than two.

Theoretically, a community structure is considered fair if
every protected group is evenly represented in each cluster [6],
[12]. The underlying concept of this definition is that every
detected cluster should accurately represent the data and
encompass its range of variations [12]. Recently, two metrics
have been developed to quantify fairness for community
structure: Balance-based Community Fairness (fyaiance) [8]
and Weighted Imbalance Ratio (WIR) [5].

We mainly use WIR to conduct quantitative analysis on the
community structure fairness because it can better evaluate the
fairness of the entire community structure. To compute WIR,
first, the imbalance; of community C; is defined to reflect the
balance of different groups of members in the community and
it is computed as follows: if the gap between the fraction of
Red nodes in community C; (denoted as F}C{i) and the fraction
of Red nodes in entire graph (denoted as F'r) is smaller than a
user-defined threshold ¢, the imbalance; is set to 0. Otherwise,
imbalance; is the difference between the proportion of the
Red group in the community ¢ and the proportion of the Red
group in the entire graph, minus ¢, and can be calculated by
Formula (1) [5]:

imbalance; = min(|fg' — (fr +0)|,|(fr — 1) — fgi) (1)

Because there are multiple protected groups, imbalance;
is calculated for each group and the largest deviation is
assigned as the overall community imbalance. Formula (2) [5]
calculates the weighted imbalanced ratio (WIR) of the whole
community structure after computing imbalance; for each
community. A lower WIR score suggests better community
structure fairness.

clusters

Z (tmbalance) x

i=1

WIR = #mnodes in cluster i

#nodes in graph
2

III. PROPOSED METHOD: HOMOPHILY-BASED GRAPH
REWEIGHTING ALGORITHM (HBGR)

This section introduces the graph reweighting algorithm,
Homophily-Based Graph Reweighting (HBGR),
which can be applied in different distributed community
detection frameworks.

A. Motivation behind the HBGR Algorithm

Research indicates that when distributed computing frame-
works utilize graph partitioning algorithms to allocate nodes to
machines, in many cases, there is a tendency for similar nodes

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

(such as nodes belonging to the same protected groups) to be
placed on the same machine [5]. Critically, this occurs even
when the partitioning scheme is not aware of node attributes:
rather, the attributes are partly reflected in the topology of the
graph, which affects partitioning decisions.

This happens in particular on high homophily graphs: those
in which there is a strong tendency of nodes to connect to
similar nodes (for example, men to men, baseball fans to
baseball fans) [14]. Many real-world graphs are known to
be homophilic. Because graph partitioning algorithms try to
minimize cross-cut edges and a high fraction of edges are
between nodes with the same attribute, similar nodes tend to be
assigned to the same cluster. Community detection algorithms
that run locally over distributed machines follow community
detection task goals, such as finding high-density groups. Thus,
local clustering computations are more likely to produce unfair
results than sequential computations that can access global
information.

When nodes are not spread evenly among machines, lo-
cal community detection computations become biased. Local
clustering algorithms perceive the edge density between nodes
within the same protected group as higher than it actually is,
while the edge density between nodes of different protected
groups is lower than it actually is. Local computation struggles
to assign nodes from different protected groups to the same
community due to sparse edges, leading to increased unfair-
ness. Subsequent cross-machine communication can mitigate
but not fully resolve this issue.

Inspired by this observation, we design a method to reweight
graph edges so that edges between nodes of different protected
groups are prioritized. Balanced graph partitioning algorithms
aim to achieve equal edge weights within each subgraph and
minimize edge weights between subgraphs. Based on this idea,
by assigning higher weights to edges connecting nodes from
different groups and lower weights to edges connecting nodes
from the same group, we can protect the former from being
cut, as higher weights increase cutting costs and balanced
graph partitioning algorithms aim to minimize edge cuts,
thus encouraging the latter to be cut. Once the graph has
been reweighted, the existing graph partitioning method (for
weighted graphs) can be used. An overview of the HBGR
algorithm is described in Section III-C

B. Toy Example of HBGR

Fig. 1 displays the results of Vite-Louvain-based distributed
community detection using METIS and HBGR reweighting
plus METIS (HBGR-METIS). In the figure, ‘+’ indicates that
HBGR provides the most protection to that edge, ‘0’ represents
normal protection, and ‘—’ indicates a smaller weight from
HBGR, causing the partitioning method (METIS) to prioritize
cutting that edge. As seen in the illustration, METIS and
HBGR prioritize cutting different edges. Although METIS
preferentially cuts edges across protected groups, HBGR is
more balanced. Consequently, different processors have dis-
tinct node and edge distributions, resulting in varied local com-

putation outputs. The final community structure is different
because communication mechanism between machines limits
community structure correctness. Using the WIR community
fairness evaluation metric in Section II-C, HBGR-METIS and
HBGR-Vite outperform the original METIS and Vite in fairness
(lower WIR values under various thresholds).

C. HBGR Algorithm

The main idea behind HBGR is to produce a new graph with
weighted edges, where the magnitude and sign of the weights
depend on the attributes of the nodes connected by each edge.
Edges connecting nodes of different protected attributes are
upweighted, indicating a stronger desire to keep these nodes
on the same machine, while edges connecting nodes of the
same protected attributes have lower weights. Pseudocode for
HBGR is provided in Algorithm 1.

Algorithm 1: Homophily-Based Graph Reweighting
Algorithm, HBGR
Input : Graph G, a negative weight probability p
Output: Reweighted Graph G/
1 for each edge e in G.edges do
2 /I Get two node attributes connected by the edge
nodel, node2 < e.getNodes()
attributel < nodel.getAttribute()
attribute2 < node2.getAttribute()
/I TIf the attributes are different, reweight the edge
with a higher weight
if attributel != attribute? then

|Ai] | Ay [Eay—a,l
x (1— Ay _ [Bar—asl
[N (\N\) |E]

e.weight < 2 x

else
/I If the attribute is the same, reweight the edge
with a lower weight .
eweight < (‘I?Vll‘)2or(‘II?\’ZI‘)2 — 14,4, AllE‘A2‘
if random[0,1] > p then
| e.weight < —e.weight
else
| e.weight < e.weight

B G?.addedge(e.weight)
3 return (G/)

1) Edge Traversal: HBGR traverses each edge in the graph
to assign it a new weight. This process depends only
on the attributes of the connected nodes, with no inter-
dependence between the computations assigned to each
edge. Accordingly, a parallel graph traversal algorithm
can be used to improve efficiency. For example, using a
single NVIDIA GPU to perform parallel BFS (Breadth-
First Search) can traverse over 3.3 billion edges in one
second [18].

2) Cross-group Edge Reweighting: For edges connecting
nodes from different protected groups, HBGR assigns a

greater weight: 2 x |‘ANl‘| x (1 — “’?Vl‘l) - % This

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

(Vite: Input original graph)

(METIS: Graph partition)

(Distributed Louvain)

community green [community orange ‘
T

Fariness Comparison

— Vite
HBGR-Vite

o
N
]

°
N
S

METIS: Graph partition

[HBGR—Vite: Input reweighting]

graph

°
1

WIR (lower is better)
o

0.05

25 50 75 100 125 150 175

Thresholds

community orange

(Distributed Louvain)

Fig. 1. A toy graph example demonstrating how HBGR protects edges connecting nodes with different attributes, and how the graph processed by HBGR-METIS
graph partitioning results in fairer community detection outcome as compared to the METIS graph partition: Blue nodes are more likely to be contained in
all communities, and HBGR-METIS Vite achieves better performance in terms of WIR.

reflects the homophily of the graph: the difference be-
tween the actual number of edges connecting two group
nodes and their expected number of edges. The greater
this difference, the more meaningful the connection, and
so the higher the weight HBGR assigns to that edge. For
weighted graphs, HBGR multiplies the original weight by
e.weight to apply various protection to different edges.
Same-group Edge Reweighting: For edges con-
necting same group nodes, HBGR assigns weight:
(l"?\}‘l)2or(l"?\?‘l)2 — % This is the difference
between the observed number of edges linking nodes
within the same group and their expected number of
edges. The greater the homophily value, meaning the
more tightly connection between the vertices with the
same protected group, the smaller the weight.
Negative Weight Edge Selection: To further encourage
nodes from the same protected group to appear on differ-
ent machines, HBGR randomly assigns some inter-group
edges to have a negative weight. In our experiments, this
was done with a probability of 0.5, which yielded good
results across datasets.

Output: Output a copy G’ of graph GG, where each edge
is assigned its new weight.

3)

5)

Overall, HBGR generates a weighted graph based on node
attributes distribution and graph homophily. This weighted
graph can be applied to many distributed community discovery
algorithms. Experimental results are provided in Section IV.

IV. EXPERIMENTS

This section describes the dataset, experiment setup, evalu-
ation methodologies, and experimental findings. Experiments
demonstrate that HBGR improves fairness without significantly
compromising accuracy or efficiency on selected datasets.

956

A. Datasets

We use the FaceBookl00,! PokeC,2 Twitch Gamers’
and GitHub Social Network* for experimental evaluation.
When there are missing attributes in datasets, we use
networkx-nodeclassification’ to predict the missing node traits.
networkx-nodeclassfication is considered one of the best mod-
els for attribute prediction with regard to the prediction accu-
racy [19]. Detailed information of the dataset is in the table I.

#nodes #edges Prot. Attr.
FaceBook100 Brown 8,600 384,526 Year
FaceBook100 Pennsylvania 41,554 1,362,229 Year
FaceBook100 Brandeis 3,898 137,567 Year
FaceBook100 Cal 11,247 35,1358 Year
FaceBook100 MIT 6,440 251,252 Year
FaceBook100 Northeastern 13,882 38,1934 Year
FaceBook100 Rice 4,087 184,828 Year
FaceBook100 Emory 7,460 330,014 Year
FaceBook100 Rutgers 24,580 784,602 Year
FaceBook100 Princeton 6596 293,320 Year
PokeC 1,632,803 36,022,564 gender
Twitch Gamers 168,144 6,797,557 maturity
GitHub Social Network 37,700 289,003 research areas
TABLE I

DATASET STATISTICS.

B. System Setup

We use Intel(R) Xeon(R) CPU E5-2690 v3 (2.60GHz, 30
MB Smart Cache) machines running Ubuntu Linux 22.04.2
ARMO64 for our evaluation. GCC version 11.4.0 (Ubuntu
11.4.0-1ubuntul 22.04) is used for the compilation. Our MPI
implementation is based on OpenMPI version 4.1.2. In all
distributed trials, 16 processors computed the Pokec dataset

Uhttps://archive.org/details/oxford-2005-facebook-matrix
Zhttps://snap.stanford.edu/data/soc-Pokec.html
3https://snap.stanford.edu/data/twitch_gamers.html
“https://snap.stanford.edu/data/github-social.html
Shttps://networkx.org/documentation/stable/reference/algorithms/index.html

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

and 8 tested the other datasets. All shown experimental results
are the average of three tests.

C. Evaluation Metrics

In this section, we describe the accuracy, fairness, and
efficiency metrics used to evaluate community detection al-
gorithms.

1) Accuracy Evaluation: We use modularity to evaluate
community accuracy. Modularity is the difference between the
ratio of the total number of edges within communities and the
total number of edges in the network, and an expected value
is the size of the ratio when the network is set to a random
network formed by the same community [13]. Positive and
larger modularity values indicate better community structure.

2) Fairness Evaluation: As discussed in Section II-C, lower
WIR values indicate better fairness performance. In our trade-
off analysis across accuracy, fairness, and efficiency, we use a
new measurement standard: W IR,,,, to evaluate the over-
all fairness performance of an algorithm across thresholds.
WIRgym is the integral of the WIR curve within the region of
thresholds ranging from 1% to 30%, estimated by calculating
WIR at 1% intervals.

3) Efficiency Evaluation: To evaluate efficiency, we use the
concept of speed-up to quantify the acceleration of distributed
systems compared to sequential algorithms. The speed-up
achieved by a distributed method is determined by comparing
the time it takes for the best sequential approach to solve a
task and it can be calculated by: speedup = %, where T
and Tp represent the computation time by using sequential
algorithm and distributed framework respectively. The larger
this value, the greater the efficiency improvement.

D. Results

Fig. 2 shows examples of the fairness performance of
METIS-based Louvain (Vite) and HBGR-based Louvain on
four FaceBook100 datasets (Brown, Northeastern, Brandeis,
and Penn). As seen in the figure, HBGR-METIS-based Lou-
vain has a lower WIR value across thresholds than METIS-
distributed Louvain, indicating a more fairn community struc-
ture.

Table II contains full results of the accuracy, fairness, and
efficiency of the considered algorithms. We test performance
with these Louvain and InfoMap’s corresponding sequential al-
gorithms and the original distributed algorithms. Section IV-C
introduces relevant metrics: higher modularity indicates better
accuracy, lower WIR shows better fairness, and higher speedup
indicates superior efficiency.

The data in Table II shows that using the HBGR-METIS al-
gorithm in distributed community detection frameworks results
in generally superior fairness performance, while maintaining
efficiency levels and with only a small reduction in accuracy.
In Section V, we analyze the trade-off between correctness,
fairness, and efficiency in this setting.

V. DISCUSSION

As can be seen in Table II (percentage improvement or
losing), there is not a significant fairness-efficiency tradeoft:

Brown Dataset Northeastern Dataset

0.25
. —— Sequential Louvain —— Sequential Louvain

=025 N METIS distributed Louvain METIS distributed Louvain
@ —= RecEMENS dRibite Lovain]| “T0i00) 1 —— HBGR-METIS distributed Louvain
£
=1 I
go20 g
. @015
= =
g o
Zo10 2 0.10
o -4
£oos S 0.05

0.00 600

0.00 0.05 010 0.5 020 0.25 7000 005 010 015 020 025
Threshold Threshold
Brandeis Dataset Penn Dataset

030] —— Sequential Louvain 0.175 — Sequential Louvain
= METIS distributed Louvain s METIS distributed Louvain
o R —.— HBGR-METIS distributed Louvain 5 0.150 —— HBGR-METIS distributed Louvain
£025 5
e N 3 0125
o Qo
£ 0.20 0 0.100
]]
g Loors
£01s5 H
= = 0.050
 0.10 <
= = 0.025

0.05 0.000 =

000 005 010 015 020 0.25
Threshold

0.00 005 010 015 020 0.25
Threshold

Fig. 2. Fairness comparison between sequential Louvain, METIS distributed
Louvain, and HBGR-METIS distributed Louvain on multiple FaceBook100
data sets (using attribute threshold matriculation year of 2007), based on WIR.
A community structure is fairer if it has a lower WIR.

indeed, in many cases, efficiency improves when using HBGR-
METIS vs. standard METIS. Over half of the results showed
that HBGR could produce a small improvement in efficiency
(ranging from 1% to 31%), and in the remaining half of
experiments where there was an efficiency loss, the loss
typically did not exceed 10% (with the only exceptions being
the Cal dataset: HBGR-distributed Louvain had a loss of
36.24%, and HBGR-RelaxMap had a loss of 25.79%).

There is a tradeoff between fairness and accuracy— as is
common in many fair algorithms— but we see that HBGR
achieves more than a 30% (and in many cases more than
a 50%) improvement in fairness with, typically, no more
than a 15% loss in accuracy. Additionally, we discover that
when HBGR loses more accuracy compared to the standard
method in a specific distributed clustering framework, fair-
ness can be greatly improved, as shown in datasets Face-
book100 Penn (4-68.96%), Facebook100 Brown (4-71.61%),
and Facebook100 Princeton (468.53%) for distributed Lou-
vain. When the accuracy performance of HBGR is similar to
that of the standard method, the improvement in fairness is
smaller, but still significant, as seen on the Facebook100 Bran-
deis (+23.61%), Facebookl00 Rice(+23.64%), and PokeC
(+17.00%) datasets with distributed Louvain.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Homophily-Based
Graph Reweighting (HBGR) algorithm that can be ap-
plied to different distributed community detection frameworks.
Evaluation on thirteen datasets demonstrated better fairness
performance as compared to the standard distributed clustering
approaches. To the best of our knowledge, this is the first graph
algorithm aimed at reducing fairness issues of distributed
community detection systems. Through a trade-off analysis
of accuracy, fairness, and efficiency, we demonstrated that
HBGR achieves better fairness performance while maintaining

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

. . . Efficiency
Accuracy comparison Fairness comparison comparison
based on modularity based on WIR
based on speed up
Sequential Standard HBGR Sequential Standard HBGR Standard HBGR
Distributed Distributed Distributed Distributed Distributed Distributed
Brown 0.3522 0.3937 0.3713 (-5.11%) 4.0445 4.9555 1.4071 (+71.61%) 1.58x 1.65x (+4.43%)
Penn 0.4243 0.4438 0.3846 (-13.34%) 2.1285 2.4033 0.7459 (+68.96%) 3.34x 3.12x (-6.59%)
Brandeis 0.3832 0.4087 0.4056 (-0.76%) 5.3131 5.2442 4.0058 (+23.61%) 3.85x 4.39x (+14.03%)
Cal 0.4311 0.3070 0.3218 (+4.82%) 3.1030 2.3876 1.9582 (+17.98%) 4.69x 2.99x (-36.24%)
MIT 0.3183 0.3498 0.3519 (+0.60%) 2.4858 3.0519 2.7306 (+10.53%) 3.24x 3.18x (-1.86%)
Northeastern 0.4358 0.4347 0.3850 (-11.43%) 2.7712 3.0612 2.0940 (+31.59%) 2.77x 3.15x (+13.72%)
Louvain Rice 0.42201 0.3944 0.3741 (-5.14%) 0.6968 1.1764 0.8982 (+23.64%) 3.64x 4.18x (+14.83%)
Emory 0.4733 0.4802 0.3824 (-20.37%) 3.6648 4.2050 1.1276 (+73.18%) 1.91x 1.95x (+2.09%)
Rutgers 0.4716 0.4389 0.4298 (-2.07%) 1.073 2.6641 1.7012 (+36.14%) 4.38x 4.48x (+2.28%)
Princeton 0.4535 0.4529 0.3529 (-22.08%) 8.3336 8.7014 2.7381 (+68.53%) 4.04x 4.10x (+1.49%)
PokeC 0.7134 0.6812 0.6599 (-3.13%) 4.6587 4.9455 4.1048 (+17.00%) 6.15x 5.57x (-9.43%)
Twitch Gamers 0.4138 0.4253 0.3831 (-9.92%) 3.1547 3.8438 3.2217 (+16.18%) 4.29x 4.36x (+1.63%)
GitHub 0.4539 0.4653 0.4247 (-8.72%) 2.5714 3.9555 2.4071 (+39.15%) 3.74x 4.27x (+14.17%)
Brown 0.3347 0.3341 0.2142 (-35.89%) 4.7724 4.9018 2.3012 (+53.05%) 1.66x 1.85x (+11.44%)
Penn 0.3895 0.3479 0.3002 (-13.73%) 2.7611 3.1960 2.2393 (+29.93%) 1.75x 1.77x (+1.14%)
Brandeis 0.1857 0.1953 0.1423 (-27.14%) 22779 2.3462 1.6902 (+27.96%) 1.25x 1.39x (+10.07%)
Cal 0.3373 0.3365 0.2768 (-17.74%) 2.7218 3.5334 2.9264 (+17.18%) 2.21x 1.64x (-25.79%)
MIT 0.2501 0.2259 0.2577 (+14.07%) 2.3698 2.6243 1.9429 (+25.97%) 1.31x 1.18x (-9.92%)
Northeastern 0.3636 0.3258 0.2574 (-20.99%) 3.3736 3.6633 2.5207 (+31.19%) 1.49x 1.37x (-8.05%)
InfoMap Rice 0.3819 0.1040 0.3732 (+258%) 1.5923 2.6471 1.1095 (+58.08%) 2.02x 2.51x (+24.26%)
Emory 0.3646 0.3554 0.3384 (-4.78%) 2.5134 3.2670 2.5820 (+20.97%) 1.13x 1.44x (+21.53%)
Rutgers 0.3766 0.3265 0.2835 (-13.17%) 2.9806 3.9005 2.4911 (+36.13%) 1.76x 2.30x (+30.68%)
Princeton 0.3763 0.2764 0.2589 (-6.33%) 5.0165 4.9549 2.5322 (+48.90%) 3.05x 3.15x (+3.28%)
PokeC 0.6076 0.5302 0.4876 (-8.03%) 4.1732 4.1169 3.3545 (+18.53%) 4.37x 4.98x (+13.96%)
Twitch Gamers 0.2471 0.2219 0.1973 (-11.09%) 2.8441 3.8185 2.8874 (+24.38%) 1.80x 1.71x (-5.00%)
GitHub 0.2918 0.1999 0.1753 (-12.31%) 2.8038 3.0397 2.1865 (+28.07%) 3.15x 2.87x (-8.89%)
TABLE 11

COMPLETE EVALUATION RESULTS OF TWO ALGORITHMS (LOUVAIN AND INFOMAP) WITH THREE VERSIONS: SEQUENTIAL ALGORITHM, STANDARD

DISTRIBUTED FRAMEWORKS, AND HBGR-BASED DISTRIBUTED APPROACH. IN THE ACCURACY COMPARISON, A LARGER MODULARITY VALUE
INDICATES A BETTER COMMUNITY STRUCTURE. IN THE FAIRNESS COMPARISON, A SMALLER WIR VALUE REPRESENTS BETTER FAIRNESS

PERFORMANCE. IN THE EFFICIENCY COMPARISON, A LARGER SPEED-UP VALUE SUGGESTS A BETTER RUNNING TIME ENHANCEMENT. THE BOLDED

DATA IN THE FIGURE INDICATES WHICH OF THE TWO—THE STANDARD DISTRIBUTED ALGORITHM OR THE HBGR DISTRIBUTED ALGORITHM- IS

SUPERIOR IN TERMS OF ACCURACY, FAIRNESS, OR EFFICIENCY. THE PERCENTAGES IN PARENTHESES REFLECT THE DEGREE OF IMPROVEMENT OR
DECLINE OF THE HBGR DISTRIBUTED ALGORITHM RELATIVE TO THE STANDARD DISTRIBUTED ALGORITHM IN THESE THREE METRICS.

the current operational efficiency and not sacrificing much
accuracy. We leave the application of HBGR to other distributed
graph algorithms to achieve more fair results for future work.

(11
(2]
(31

(51

(61

REFERENCES

Aggarwal, C.C., 2011. An introduction to social network data analytics
(pp. 1-15). Springer US.

Fortunato, S., 2010. Community detection in graphs. Physics reports,
486(3-5), pp.75-174.

McCune, R.R., Weninger, T. and Madey, G., 2015. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Computing Surveys (CSUR), 48(2), pp.1-39.
Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H.,
Chavarria-Miranda, D., Khan, A. and Gebremedhin, A., 2018, May.
Distributed louvain algorithm for graph community detection. IEEE
IPDPS 2018.

Zhang, H., Jayaweera, M., Ren, B., Wang, Y., Soundarajan, S. (2023,
December). Unfairness in distributed graph frameworks. In 2023 IEEE
International Conference on Data Mining (ICDM) (pp. 1529-1534).
IEEE.

Saxena, A., Fletcher, G. and Pechenizkiy, M., 2024. Fairsna: Algorithmic
fairness in social network analysis. ACM Computing Surveys, 56(8),
pp.-1-45.

Kang, J., He, J., Maciejewski, R. and Tong, H., 2020, August. Inform: In-
dividual fairness on graph mining. In Proceedings 26th ACM SIGKDD.
Manolis, K. and Pitoura, E., 2023, November. Modularity-Based Fair-
ness in Community Detection. In Proceedings of ASONAM 2023.
Bae, S.H., Halperin, D., West, J.D., Rosvall, M. and Howe, B., 2017.
Scalable and efficient flow-based community detection for large-scale

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

958

graph analysis. ACM Transactions on Knowledge Discovery from Data
(TKDD), 11(3), pp.1-30.

Stanton, I. and Kliot, G., 2012, August. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th ACM SIGKDD.
Karypis, G. and Kumar, V., 1997. METIS: A software package for
partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices.

Chierichetti, Flavio, et al. 2017. Fair clustering through fairlets. Ad-
vances in neural information processing systems, 30.

Newman, M.E., 2006. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 103(23), pp.8577-
8582.

McPherson, M., Smith-Lovin, L. and Cook, J.M., 2001. Birds of a
feather: Homophily in social networks. Annual review of sociology,
27(1), pp.415-444.

Kleinberg, J., Ludwig, J., Mullainathan, S. and Rambachan, A., 2018,
May. Algorithmic fairness. In Aea papers and proceedings (Vol. 108,
pp- 22-27). 2014 Broadway, Suite 305, Nashville, TN 37203: American
Economic Association.

Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E., 2008.
Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10), p.P10008.

Rosvall, M. and Bergstrom, C.T., 2008. Maps of random walks on com-
plex networks reveal community structure. Proceedings of the national
academy of sciences, 105(4), pp.1118-1123.

Merrill, D., Garland, M. and Grimshaw, A., 2012. Scalable GPU graph
traversal. ACM Sigplan Notices, 47(8), pp.117-128.

Zhu, X., Ghahramani, Z. and Lafferty, J.D., 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings
of ICML-03.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

