
Reducing Unfairness in Distributed Community

Detection

Hao Zhang†, Malith Jayaweera‡, Bin Ren§, Yanzhi Wang‡, Sucheta Soundarajan†

†Syracuse University {hzhang15, susounda}@syr.edu
‡Northeastern University {malithjayaweera.d, yanz.wang}@northeastern.edu

§William & Mary {bren}@wm.edu

Abstract—Big graph data mining and processing have emerged
as a crucial area of study. Distributed graph frameworks are
commonly employed to process such big graph data in various
applications. These frameworks have proven to be highly effective
in improving both the accuracy and efficiency of processing
large-scale graph data, but little attention has been paid to the
algorithmic fairness of such methods. In this paper, we pro-
pose a novel graph reweighting algorithm, Homophily-Based
Graph Reweighting (HBGR), which can be used with dif-
ferent distributed community detection frameworks. The find-
ings of our study demonstrate that HBGR can significantly
enhance the fairness of detected community results, without
altering the overall distributed community detection algorithm
workflow. Our analysis demonstrates that HBGR outperforms
traditional performance-based distributed graph data processing
frameworks in terms of fairness across 13 real social network
datasets. This enhancement enables us to achieve fairness levels
that are comparable, or even superior, to those achieved by
linear community detection algorithms while maintaining good
efficiency performance. Additionally, we examine the causes of
unfairness in distributed community detection algorithms and
conduct an interpretability analysis of HBGR’s improved fairness
performance. Finally, we provide a comprehensive evaluation
of the trade-offs between efficiency, accuracy, and fairness in
distributed community detection algorithms.

Index Terms—big graph data, community detection, big data
processing fairness

I. INTRODUCTION

As graph data sizes grow, distributed graph processing

algorithms, such as those for community detection, influence

maximization, PageRank, and node classification [1], [2], have

become popular. However, while such algorithms have made

significant improvements in accuracy and efficiency in recent

years [3], little attention has been paid to the algorithmic

fairness of such techniques [7].

In the field of algorithmic fairness, at a high level, an

algorithm is considered ‘fair’ when it does not demonstrate

bias against individuals on the basis of their membership in a

protected group [15]. In the context of community detection,

a fair community structure is one in which each protected

group is well represented in each community [12]. Our focus

is on community detection, because among the important

graph tasks, community detection has become one of the

most extensively studied in distributed large graph systems.

However, earlier work has shown that while current distributed

community structure mining frameworks perform very well

with respect to accuracy and efficiency, there is still consider-

able room for improvement in their fairness performance [5].

Recent research indicates that compared to sequential com-

munity detection algorithms, distributed community detection

frameworks exacerbate unfairness [5]. The reason for wors-

ened unfairness in distributed community detection systems

is the uneven allocation of nodes from different groups to

different machines by the distributed system, which leads to

higher unfairness in local computations, ultimately causing

greater unfairness in the final distributed clustering results [5].

It is important to note that such unfairness can occur even

if the algorithm has no knowledge of attributes. This occurs

because attributes can be partially reflected in the topology

and community structure of the graph, which can influence

partition decisions.

In this study, we quantify the causes of unfair com-

munity structure in distributed community detection frame-

works. Based on this analysis, we propose the novel

Homophily-Based Graph Reweighting (HBGR) al-

gorithm, which reweights graph edges to change the node

distribution across distributed computing machines in order

to improve the fairness of community detection. To the

best of our knowledge, this is the first graph algorithm

for distributed community detection frameworks to address

unfairness. Across thirteen datasets, HBGR shows excellent

performance with respect to fairness.

The main contributions of this paper are as follows:

• We quantify unfairness in distributed community detec-

tion algorithm. In particular, in homophillic graphs, graph

partitioning methods that improve computing efficiency

are more likely to place nodes from the same protected

group on the same machine (leading to higher ho-

mophily). We propose that distributed community detec-

tion techniques’ unfair community structures are caused

by this sparsity in connections between different groups.

• We introduce a novel graph reweighting algorithm:

Homophily-Based Graph Reweighting

(HBGR), which can be applied in different distributed

community detection frameworks. To the best of

our knowledge, HBGR is the first algorithm to address

unfairness in distributed community detection algorithms,

which improves fairness by approximately 30% on

average without compromising computational efficiency.

• We demonstrate a trade-off between efficiency, accuracy,

953

2024 IEEE International Conference on Data Mining (ICDM)

2374-8486/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDM59182.2024.00121

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(IC
DM

) |
 9

79
-8

-3
31

5-
06

68
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

DM
59

18
2.

20
24

.0
01

21

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

and fairness when applying a distributed community

detection framework. Under the condition of sacrificing

an average of approximately 10% accuracy, HBGR can

improve fairness performance by an average of over

30%, while preserving the current level of computation

efficiency.

II. BACKGROUND AND RELATED WORK

Here, we first review state-of-the-art distributed community

detection frameworks. We then explain cutting-edge graph

partitioning methods used in distributed systems. Finally, we

define fairness in community structures.

A. Distributed Community Detection Frameworks

In this work, we consider two community detection al-

gorithms, Louvain [16] and InfoMap [17], and their corre-

sponding distributed frameworks: Vite [4] and RelaxMap [9].

Although there is no single optimal algorithm for community

detection (due to the diversity of graph data structures),

InfoMap and Louvain are widely recognized as the basis for

other approaches and remain highly popular [2].

1) Vite: Louvain groups nodes into distinct clusters in order

to optimize modularity, which quantifies the quality of the

community structure [16] and Vite performs a distributed

computing version of this method [4]. Vite involves two

main steps: Louvain iteration and graph reconstruction, which

respectively perform local community detection computations

as in the sequential Louvain and communicate community

structure information across distributed machines.

2) RelaxMap: InfoMap models a random walker to traverse

the graph, and then calculates the probability of each node

accessing different communities [17]. For distributed InfoMap

implementation, RelaxMap searches for new modules of ver-

tices using a lock-free parallel mechanism and the sparsity

assumption found in real-world networks to boost efficiency.

This approach distributes processor burden evenly across the

network [9].

B. Graph Partition Algorithms

Distributed graph applications use graph partitioning meth-

ods to split large graphs. For parallel computing, each sub-

graph is on a separate workstation. A graph partitioning that

balances local storage costs over machines and minimize com-

munication costs is known as a balanced graph partitioning.

METIS is a multi-level balanced graph partitioning al-

gorithm [11]. METIS is a fast and precise technique for

dividing graphs into partitions that makes the initial graph less

dense by merging nodes and edges, streamlines its structure,

and reduces its size [10]. METIS minimizes the number of

edges across partitions, a critical factor in optimizing the

efficiency of distributed graph processing. Balanced graph par-

tition approaches can improve distributed graph computation

frameworks. Therefore, in this study, we modify Vite [4] to

leverage the METIS graph partitioning technique for graph

data pre-processing.

C. Fairness in Community Detection

In general, an algorithm is considered fair if it does not

exhibit bias against individuals on the basis of membership in a

protected group, such as those based on attributes such as race

or gender [15]. This section discusses community detection

fairness using group-based terminology. Consider Red and

Blue nodes in a social network, reflecting real-world protected

groups. For convenience, we employ two groups, although the

discussion can be generalized to more than two.

Theoretically, a community structure is considered fair if

every protected group is evenly represented in each cluster [6],

[12]. The underlying concept of this definition is that every

detected cluster should accurately represent the data and

encompass its range of variations [12]. Recently, two metrics

have been developed to quantify fairness for community

structure: Balance-based Community Fairness (fbalance) [8]

and Weighted Imbalance Ratio (WIR) [5].

We mainly use WIR to conduct quantitative analysis on the

community structure fairness because it can better evaluate the

fairness of the entire community structure. To compute WIR,

first, the imbalancei of community Ci is defined to reflect the

balance of different groups of members in the community and

it is computed as follows: if the gap between the fraction of

Red nodes in community Ci (denoted as FCi

R
) and the fraction

of Red nodes in entire graph (denoted as FR) is smaller than a

user-defined threshold t, the imbalancei is set to 0. Otherwise,

imbalancei is the difference between the proportion of the

Red group in the community i and the proportion of the Red

group in the entire graph, minus t, and can be calculated by

Formula (1) [5]:

imbalancei = min(|fCi

R
− (fR + t)|, |(fR − t)− fCi

R
|) (1)

Because there are multiple protected groups, imbalancei
is calculated for each group and the largest deviation is

assigned as the overall community imbalance. Formula (2) [5]

calculates the weighted imbalanced ratio (WIR) of the whole

community structure after computing imbalancei for each

community. A lower WIR score suggests better community

structure fairness.

WIR =

clusters∑

i=1

(imbalance)×
#nodes in cluster i

#nodes in graph
.

(2)

III. PROPOSED METHOD: HOMOPHILY-BASED GRAPH

REWEIGHTING ALGORITHM (HBGR)

This section introduces the graph reweighting algorithm,

Homophily-Based Graph Reweighting (HBGR),

which can be applied in different distributed community

detection frameworks.

A. Motivation behind the HBGR Algorithm

Research indicates that when distributed computing frame-

works utilize graph partitioning algorithms to allocate nodes to

machines, in many cases, there is a tendency for similar nodes

954

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

(such as nodes belonging to the same protected groups) to be

placed on the same machine [5]. Critically, this occurs even

when the partitioning scheme is not aware of node attributes:

rather, the attributes are partly reflected in the topology of the

graph, which affects partitioning decisions.

This happens in particular on high homophily graphs: those

in which there is a strong tendency of nodes to connect to

similar nodes (for example, men to men, baseball fans to

baseball fans) [14]. Many real-world graphs are known to

be homophilic. Because graph partitioning algorithms try to

minimize cross-cut edges and a high fraction of edges are

between nodes with the same attribute, similar nodes tend to be

assigned to the same cluster. Community detection algorithms

that run locally over distributed machines follow community

detection task goals, such as finding high-density groups. Thus,

local clustering computations are more likely to produce unfair

results than sequential computations that can access global

information.

When nodes are not spread evenly among machines, lo-

cal community detection computations become biased. Local

clustering algorithms perceive the edge density between nodes

within the same protected group as higher than it actually is,

while the edge density between nodes of different protected

groups is lower than it actually is. Local computation struggles

to assign nodes from different protected groups to the same

community due to sparse edges, leading to increased unfair-

ness. Subsequent cross-machine communication can mitigate

but not fully resolve this issue.

Inspired by this observation, we design a method to reweight

graph edges so that edges between nodes of different protected

groups are prioritized. Balanced graph partitioning algorithms

aim to achieve equal edge weights within each subgraph and

minimize edge weights between subgraphs. Based on this idea,

by assigning higher weights to edges connecting nodes from

different groups and lower weights to edges connecting nodes

from the same group, we can protect the former from being

cut, as higher weights increase cutting costs and balanced

graph partitioning algorithms aim to minimize edge cuts,

thus encouraging the latter to be cut. Once the graph has

been reweighted, the existing graph partitioning method (for

weighted graphs) can be used. An overview of the HBGR

algorithm is described in Section III-C

.

B. Toy Example of HBGR

Fig. 1 displays the results of Vite-Louvain-based distributed

community detection using METIS and HBGR reweighting

plus METIS (HBGR-METIS). In the figure, ‘+’ indicates that

HBGR provides the most protection to that edge, ‘o’ represents

normal protection, and ‘−’ indicates a smaller weight from

HBGR, causing the partitioning method (METIS) to prioritize

cutting that edge. As seen in the illustration, METIS and

HBGR prioritize cutting different edges. Although METIS

preferentially cuts edges across protected groups, HBGR is

more balanced. Consequently, different processors have dis-

tinct node and edge distributions, resulting in varied local com-

putation outputs. The final community structure is different

because communication mechanism between machines limits

community structure correctness. Using the WIR community

fairness evaluation metric in Section II-C, HBGR-METIS and

HBGR-Vite outperform the original METIS and Vite in fairness

(lower WIR values under various thresholds).

C. HBGR Algorithm

The main idea behind HBGR is to produce a new graph with

weighted edges, where the magnitude and sign of the weights

depend on the attributes of the nodes connected by each edge.

Edges connecting nodes of different protected attributes are

upweighted, indicating a stronger desire to keep these nodes

on the same machine, while edges connecting nodes of the

same protected attributes have lower weights. Pseudocode for

HBGR is provided in Algorithm 1.

Algorithm 1: Homophily-Based Graph Reweighting

Algorithm, HBGR

Input : Graph G, a negative weight probability p

Output: Reweighted Graph G′
1 for each edge e in G.edges do

2 // Get two node attributes connected by the edge

node1, node2 ← e.getNodes()

attribute1 ← node1.getAttribute()

attribute2 ← node2.getAttribute()

// If the attributes are different, reweight the edge

with a higher weight

if attribute1 != attribute2 then

e.weight← 2× |A1|
|N | × (1− |A1|

|N |)−
|EA1−A2

|

|E|

else
// If the attribute is the same, reweight the edge

with a lower weight

e.weight← (|A1|
|N |)

2or(|A2|
|N |)

2 −
|EA1−A2

|

|E|

if random[0, 1] > p then
e.weight← −e.weight

else
e.weight← e.weight

G′.addedge(e.weight)

3 return (G′)

1) Edge Traversal: HBGR traverses each edge in the graph

to assign it a new weight. This process depends only

on the attributes of the connected nodes, with no inter-

dependence between the computations assigned to each

edge. Accordingly, a parallel graph traversal algorithm

can be used to improve efficiency. For example, using a

single NVIDIA GPU to perform parallel BFS (Breadth-

First Search) can traverse over 3.3 billion edges in one

second [18].

2) Cross-group Edge Reweighting: For edges connecting

nodes from different protected groups, HBGR assigns a

greater weight: 2× |A1|
|N | × (1− |A1|

|N |) −
|EA1−A2

|

|E| . This

955

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A toy graph example demonstrating how HBGR protects edges connecting nodes with different attributes, and how the graph processed by HBGR-METIS
graph partitioning results in fairer community detection outcome as compared to the METIS graph partition: Blue nodes are more likely to be contained in
all communities, and HBGR-METIS Vite achieves better performance in terms of WIR.

reflects the homophily of the graph: the difference be-

tween the actual number of edges connecting two group

nodes and their expected number of edges. The greater

this difference, the more meaningful the connection, and

so the higher the weight HBGR assigns to that edge. For

weighted graphs, HBGR multiplies the original weight by

e.weight to apply various protection to different edges.

3) Same-group Edge Reweighting: For edges con-

necting same group nodes, HBGR assigns weight:

(|A1|
|N |)

2or(|A2|
|N |)

2 −
|EA1−A2

|

|E| . This is the difference

between the observed number of edges linking nodes

within the same group and their expected number of

edges. The greater the homophily value, meaning the

more tightly connection between the vertices with the

same protected group, the smaller the weight.

4) Negative Weight Edge Selection: To further encourage

nodes from the same protected group to appear on differ-

ent machines, HBGR randomly assigns some inter-group

edges to have a negative weight. In our experiments, this

was done with a probability of 0.5, which yielded good

results across datasets.

5) Output: Output a copy G′ of graph G, where each edge

is assigned its new weight.

Overall, HBGR generates a weighted graph based on node

attributes distribution and graph homophily. This weighted

graph can be applied to many distributed community discovery

algorithms. Experimental results are provided in Section IV.

IV. EXPERIMENTS

This section describes the dataset, experiment setup, evalu-

ation methodologies, and experimental findings. Experiments

demonstrate that HBGR improves fairness without significantly

compromising accuracy or efficiency on selected datasets.

A. Datasets

We use the FaceBook100,1 PokeC,2 Twitch Gamers3

and GitHub Social Network4 for experimental evaluation.

When there are missing attributes in datasets, we use

networkx-nodeclassification5 to predict the missing node traits.

networkx-nodeclassfication is considered one of the best mod-

els for attribute prediction with regard to the prediction accu-

racy [19]. Detailed information of the dataset is in the table I.

#nodes #edges Prot. Attr.

FaceBook100 Brown 8,600 384,526 Year
FaceBook100 Pennsylvania 41,554 1,362,229 Year

FaceBook100 Brandeis 3,898 137,567 Year
FaceBook100 Cal 11,247 35,1358 Year
FaceBook100 MIT 6,440 251,252 Year

FaceBook100 Northeastern 13,882 38,1934 Year
FaceBook100 Rice 4,087 184,828 Year

FaceBook100 Emory 7,460 330,014 Year
FaceBook100 Rutgers 24,580 784,602 Year

FaceBook100 Princeton 6596 293,320 Year
PokeC 1,632,803 36,022,564 gender

Twitch Gamers 168,144 6,797,557 maturity

GitHub Social Network 37,700 289,003 research areas

TABLE I
DATASET STATISTICS.

B. System Setup

We use Intel(R) Xeon(R) CPU E5-2690 v3 (2.60GHz, 30

MB Smart Cache) machines running Ubuntu Linux 22.04.2

ARM64 for our evaluation. GCC version 11.4.0 (Ubuntu

11.4.0-1ubuntu1 22.04) is used for the compilation. Our MPI

implementation is based on OpenMPI version 4.1.2. In all

distributed trials, 16 processors computed the Pokec dataset

1https://archive.org/details/oxford-2005-facebook-matrix
2https://snap.stanford.edu/data/soc-Pokec.html
3https://snap.stanford.edu/data/twitch gamers.html
4https://snap.stanford.edu/data/github-social.html
5https://networkx.org/documentation/stable/reference/algorithms/index.html

956

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

and 8 tested the other datasets. All shown experimental results

are the average of three tests.

C. Evaluation Metrics

In this section, we describe the accuracy, fairness, and

efficiency metrics used to evaluate community detection al-

gorithms.

1) Accuracy Evaluation: We use modularity to evaluate

community accuracy. Modularity is the difference between the

ratio of the total number of edges within communities and the

total number of edges in the network, and an expected value

is the size of the ratio when the network is set to a random

network formed by the same community [13]. Positive and

larger modularity values indicate better community structure.

2) Fairness Evaluation: As discussed in Section II-C, lower

WIR values indicate better fairness performance. In our trade-

off analysis across accuracy, fairness, and efficiency, we use a

new measurement standard: WIRsum, to evaluate the over-

all fairness performance of an algorithm across thresholds.

WIRsum is the integral of the WIR curve within the region of

thresholds ranging from 1% to 30%, estimated by calculating

WIR at 1% intervals.

3) Efficiency Evaluation: To evaluate efficiency, we use the

concept of speed-up to quantify the acceleration of distributed

systems compared to sequential algorithms. The speed-up

achieved by a distributed method is determined by comparing

the time it takes for the best sequential approach to solve a

task and it can be calculated by: speedup = TS

TD
, where TS

and TD represent the computation time by using sequential

algorithm and distributed framework respectively. The larger

this value, the greater the efficiency improvement.

D. Results

Fig. 2 shows examples of the fairness performance of

METIS-based Louvain (Vite) and HBGR-based Louvain on

four FaceBook100 datasets (Brown, Northeastern, Brandeis,

and Penn). As seen in the figure, HBGR-METIS-based Lou-

vain has a lower WIR value across thresholds than METIS-

distributed Louvain, indicating a more fairn community struc-

ture.

Table II contains full results of the accuracy, fairness, and

efficiency of the considered algorithms. We test performance

with these Louvain and InfoMap’s corresponding sequential al-

gorithms and the original distributed algorithms. Section IV-C

introduces relevant metrics: higher modularity indicates better

accuracy, lower WIR shows better fairness, and higher speedup

indicates superior efficiency.

The data in Table II shows that using the HBGR-METIS al-

gorithm in distributed community detection frameworks results

in generally superior fairness performance, while maintaining

efficiency levels and with only a small reduction in accuracy.

In Section V, we analyze the trade-off between correctness,

fairness, and efficiency in this setting.

V. DISCUSSION

As can be seen in Table II (percentage improvement or

losing), there is not a significant fairness-efficiency tradeoff:

Fig. 2. Fairness comparison between sequential Louvain, METIS distributed
Louvain, and HBGR-METIS distributed Louvain on multiple FaceBook100
data sets (using attribute threshold matriculation year of 2007), based on WIR.
A community structure is fairer if it has a lower WIR.

indeed, in many cases, efficiency improves when using HBGR-

METIS vs. standard METIS. Over half of the results showed

that HBGR could produce a small improvement in efficiency

(ranging from 1% to 31%), and in the remaining half of

experiments where there was an efficiency loss, the loss

typically did not exceed 10% (with the only exceptions being

the Cal dataset: HBGR-distributed Louvain had a loss of

36.24%, and HBGR-RelaxMap had a loss of 25.79%).

There is a tradeoff between fairness and accuracy– as is

common in many fair algorithms– but we see that HBGR

achieves more than a 30% (and in many cases more than

a 50%) improvement in fairness with, typically, no more

than a 15% loss in accuracy. Additionally, we discover that

when HBGR loses more accuracy compared to the standard

method in a specific distributed clustering framework, fair-

ness can be greatly improved, as shown in datasets Face-

book100 Penn (+68.96%), Facebook100 Brown (+71.61%),

and Facebook100 Princeton (+68.53%) for distributed Lou-

vain. When the accuracy performance of HBGR is similar to

that of the standard method, the improvement in fairness is

smaller, but still significant, as seen on the Facebook100 Bran-

deis (+23.61%), Facebook100 Rice(+23.64%), and PokeC

(+17.00%) datasets with distributed Louvain.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Homophily-Based

Graph Reweighting (HBGR) algorithm that can be ap-

plied to different distributed community detection frameworks.

Evaluation on thirteen datasets demonstrated better fairness

performance as compared to the standard distributed clustering

approaches. To the best of our knowledge, this is the first graph

algorithm aimed at reducing fairness issues of distributed

community detection systems. Through a trade-off analysis

of accuracy, fairness, and efficiency, we demonstrated that

HBGR achieves better fairness performance while maintaining

957

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

Accuracy comparison

based on modularity

Fairness comparison

based on WIR

Efficiency

comparison

based on speed up

Sequential
Standard

Distributed

HBGR

Distributed
Sequential

Standard

Distributed

HBGR

Distributed

Standard

Distributed

HBGR

Distributed

Louvain

Brown 0.3522 0.3937 0.3713 (-5.11%) 4.0445 4.9555 1.4071 (+71.61%) 1.58x 1.65x (+4.43%)

Penn 0.4243 0.4438 0.3846 (-13.34%) 2.1285 2.4033 0.7459 (+68.96%) 3.34x 3.12x (-6.59%)

Brandeis 0.3832 0.4087 0.4056 (-0.76%) 5.3131 5.2442 4.0058 (+23.61%) 3.85x 4.39x (+14.03%)

Cal 0.4311 0.3070 0.3218 (+4.82%) 3.1030 2.3876 1.9582 (+17.98%) 4.69x 2.99x (-36.24%)

MIT 0.3183 0.3498 0.3519 (+0.60%) 2.4858 3.0519 2.7306 (+10.53%) 3.24x 3.18x (-1.86%)

Northeastern 0.4358 0.4347 0.3850 (-11.43%) 2.7712 3.0612 2.0940 (+31.59%) 2.77x 3.15x (+13.72%)

Rice 0.42201 0.3944 0.3741 (-5.14%) 0.6968 1.1764 0.8982 (+23.64%) 3.64x 4.18x (+14.83%)

Emory 0.4733 0.4802 0.3824 (-20.37%) 3.6648 4.2050 1.1276 (+73.18%) 1.91x 1.95x (+2.09%)

Rutgers 0.4716 0.4389 0.4298 (-2.07%) 1.073 2.6641 1.7012 (+36.14%) 4.38x 4.48x (+2.28%)

Princeton 0.4535 0.4529 0.3529 (-22.08%) 8.3336 8.7014 2.7381 (+68.53%) 4.04x 4.10x (+1.49%)

PokeC 0.7134 0.6812 0.6599 (-3.13%) 4.6587 4.9455 4.1048 (+17.00%) 6.15x 5.57x (-9.43%)

Twitch Gamers 0.4138 0.4253 0.3831 (-9.92%) 3.1547 3.8438 3.2217 (+16.18%) 4.29x 4.36x (+1.63%)

GitHub 0.4539 0.4653 0.4247 (-8.72%) 2.5714 3.9555 2.4071 (+39.15%) 3.74x 4.27x (+14.17%)

InfoMap

Brown 0.3347 0.3341 0.2142 (-35.89%) 4.7724 4.9018 2.3012 (+53.05%) 1.66x 1.85x (+11.44%)

Penn 0.3895 0.3479 0.3002 (-13.73%) 2.7611 3.1960 2.2393 (+29.93%) 1.75x 1.77x (+1.14%)

Brandeis 0.1857 0.1953 0.1423 (-27.14%) 2.2779 2.3462 1.6902 (+27.96%) 1.25x 1.39x (+10.07%)

Cal 0.3373 0.3365 0.2768 (-17.74%) 2.7218 3.5334 2.9264 (+17.18%) 2.21x 1.64x (-25.79%)

MIT 0.2501 0.2259 0.2577 (+14.07%) 2.3698 2.6243 1.9429 (+25.97%) 1.31x 1.18x (-9.92%)

Northeastern 0.3636 0.3258 0.2574 (-20.99%) 3.3736 3.6633 2.5207 (+31.19%) 1.49x 1.37x (-8.05%)

Rice 0.3819 0.1040 0.3732 (+258%) 1.5923 2.6471 1.1095 (+58.08%) 2.02x 2.51x (+24.26%)

Emory 0.3646 0.3554 0.3384 (-4.78%) 2.5134 3.2670 2.5820 (+20.97%) 1.13x 1.44x (+21.53%)

Rutgers 0.3766 0.3265 0.2835 (-13.17%) 2.9806 3.9005 2.4911 (+36.13%) 1.76x 2.30x (+30.68%)

Princeton 0.3763 0.2764 0.2589 (-6.33%) 5.0165 4.9549 2.5322 (+48.90%) 3.05x 3.15x (+3.28%)

PokeC 0.6076 0.5302 0.4876 (-8.03%) 4.1732 4.1169 3.3545 (+18.53%) 4.37x 4.98x (+13.96%)

Twitch Gamers 0.2471 0.2219 0.1973 (-11.09%) 2.8441 3.8185 2.8874 (+24.38%) 1.80x 1.71x (-5.00%)

GitHub 0.2918 0.1999 0.1753 (-12.31%) 2.8038 3.0397 2.1865 (+28.07%) 3.15x 2.87x (-8.89%)

TABLE II
COMPLETE EVALUATION RESULTS OF TWO ALGORITHMS (LOUVAIN AND INFOMAP) WITH THREE VERSIONS: SEQUENTIAL ALGORITHM, STANDARD

DISTRIBUTED FRAMEWORKS, AND HBGR-BASED DISTRIBUTED APPROACH. IN THE ACCURACY COMPARISON, A LARGER MODULARITY VALUE

INDICATES A BETTER COMMUNITY STRUCTURE. IN THE FAIRNESS COMPARISON, A SMALLER WIR VALUE REPRESENTS BETTER FAIRNESS

PERFORMANCE. IN THE EFFICIENCY COMPARISON, A LARGER SPEED-UP VALUE SUGGESTS A BETTER RUNNING TIME ENHANCEMENT. THE BOLDED

DATA IN THE FIGURE INDICATES WHICH OF THE TWO–THE STANDARD DISTRIBUTED ALGORITHM OR THE HBGR DISTRIBUTED ALGORITHM– IS

SUPERIOR IN TERMS OF ACCURACY, FAIRNESS, OR EFFICIENCY. THE PERCENTAGES IN PARENTHESES REFLECT THE DEGREE OF IMPROVEMENT OR

DECLINE OF THE HBGR DISTRIBUTED ALGORITHM RELATIVE TO THE STANDARD DISTRIBUTED ALGORITHM IN THESE THREE METRICS.

the current operational efficiency and not sacrificing much

accuracy. We leave the application of HBGR to other distributed

graph algorithms to achieve more fair results for future work.

REFERENCES

[1] Aggarwal, C.C., 2011. An introduction to social network data analytics
(pp. 1-15). Springer US.

[2] Fortunato, S., 2010. Community detection in graphs. Physics reports,
486(3-5), pp.75-174.

[3] McCune, R.R., Weninger, T. and Madey, G., 2015. Thinking like a
vertex: A survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Computing Surveys (CSUR), 48(2), pp.1-39.

[4] Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H.,
Chavarria-Miranda, D., Khan, A. and Gebremedhin, A., 2018, May.
Distributed louvain algorithm for graph community detection. IEEE
IPDPS 2018.

[5] Zhang, H., Jayaweera, M., Ren, B., Wang, Y., Soundarajan, S. (2023,
December). Unfairness in distributed graph frameworks. In 2023 IEEE
International Conference on Data Mining (ICDM) (pp. 1529-1534).
IEEE.

[6] Saxena, A., Fletcher, G. and Pechenizkiy, M., 2024. Fairsna: Algorithmic
fairness in social network analysis. ACM Computing Surveys, 56(8),
pp.1-45.

[7] Kang, J., He, J., Maciejewski, R. and Tong, H., 2020, August. Inform: In-
dividual fairness on graph mining. In Proceedings 26th ACM SIGKDD.

[8] Manolis, K. and Pitoura, E., 2023, November. Modularity-Based Fair-
ness in Community Detection. In Proceedings of ASONAM 2023.

[9] Bae, S.H., Halperin, D., West, J.D., Rosvall, M. and Howe, B., 2017.
Scalable and efficient flow-based community detection for large-scale

graph analysis. ACM Transactions on Knowledge Discovery from Data
(TKDD), 11(3), pp.1-30.

[10] Stanton, I. and Kliot, G., 2012, August. Streaming graph partitioning
for large distributed graphs. In Proceedings of the 18th ACM SIGKDD.

[11] Karypis, G. and Kumar, V., 1997. METIS: A software package for
partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices.

[12] Chierichetti, Flavio, et al. 2017. Fair clustering through fairlets. Ad-
vances in neural information processing systems, 30.

[13] Newman, M.E., 2006. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 103(23), pp.8577-
8582.

[14] McPherson, M., Smith-Lovin, L. and Cook, J.M., 2001. Birds of a
feather: Homophily in social networks. Annual review of sociology,
27(1), pp.415-444.

[15] Kleinberg, J., Ludwig, J., Mullainathan, S. and Rambachan, A., 2018,
May. Algorithmic fairness. In Aea papers and proceedings (Vol. 108,
pp. 22-27). 2014 Broadway, Suite 305, Nashville, TN 37203: American
Economic Association.

[16] Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E., 2008.
Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10), p.P10008.

[17] Rosvall, M. and Bergstrom, C.T., 2008. Maps of random walks on com-
plex networks reveal community structure. Proceedings of the national
academy of sciences, 105(4), pp.1118-1123.

[18] Merrill, D., Garland, M. and Grimshaw, A., 2012. Scalable GPU graph
traversal. ACM Sigplan Notices, 47(8), pp.117-128.

[19] Zhu, X., Ghahramani, Z. and Lafferty, J.D., 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings
of ICML-03.

958

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on September 25,2025 at 21:02:21 UTC from IEEE Xplore. Restrictions apply.

