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Abstract—In the era of big data, distributed graph processing
frameworks have become important in processing large-scale
graph datasets. Such distributed frameworks exhibit major
advantages with respect to scalability, and provide various ways
to speed up sequential graph algorithms. However, the literature
lacks an analysis on the fairness properties of such distributed
algorithms. In this work, we analyze several important dis-
tributed frameworks and graph analysis algorithms with respect
to their fairness properties. Across numerous real-world network
datasets, we demonstrate that distributed algorithms often exhibit
worse fairness performance as compared to their sequential
counterparts. Moreover, we observe that this phenomenon is often
strongly connected to the homophily of the graph dataset– the
tendency of nodes to connect to other nodes of the same class.

I. INTRODUCTION

Human social network data is used in many real-world

applications, including online advertising, credit scoring, and

recommendations [1], and so it is important to ensure that such

analysis is fair. While there is a flourishing body of literature

on fairness in machine learning, it is only recently that similar

efforts have examined the fairness of graph algorithms [17].

Existing related research covers community detection [6], link

prediction [17], and influence maximization [17].

Large graph data, such as Facebook’s three billion-user

dataset [3], is often studied utilizing distributed graph pro-

cessing methods, which divide computation across multiple

machines [4]. In this work, we examine how distributed

algorithms affect graph algorithm fairness. To our knowledge,

this is the first work on this topic. Distributed algorithms are

often evaluated on efficiency and accuracy, not fairness. How-

ever, distributing processing among machines may influence

graph analysis fairness. To reduce cross-machine communica-

tions, distributed algorithms often split a graph so that well-

connected nodes are on the same machine. In real-world social

networks, high homophily (the tendency to link with similar

nodes) may thus result in nodes segregated by attribute.

This research examines algorithms for two key graph ap-

plications: community detection (finding clusters of well-

connected nodes) [2] and centrality identification (quantifying

nodes based on their importance to the network structure)

[11]. In an unfair community detection algorithm, less well-

connected nodes may be assigned to smaller or fringe groups,

and so be given less importance [6]. In an unfair centrality

identification algorithm (such as PageRank), different groups
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may be allocated disproportionate total weights. Both appli-

cations are important in downstream analysis. For instance,

community detection is used in community-based link pre-

diction tasks [8], and so unfairness in such applications may

propagate; and various clustering algorithms rely on PageRank

centrality [7].

The main contributions of this paper are:

• We extensively evaluate distributed graph algorithms

against sequential ones for unfairness. Three major se-

quential social network analysis algorithm– Louvain,

InfoMap, and PageRank– are examined, along with seven

comparable distributed algorithms.

• Using two fairness metrics, we demonstrate that in almost

all cases, the distributed algorithms exhibit worse fairness

performance than the sequential algorithms.

• We show that network homophily– the tendency of nodes

to connect to others like them—- increases distributed

algorithm unfairness. The type of application determines

whether homophily and unfairness are positively or neg-

atively correlated.

II. RELATED WORK

Our work is at the intersection of graph algorithms, dis-

tributed algorithms, and fairness. In this section, we discuss

works from these three subfields.

A. Algorithms for Social Network Analysis (SNA)

Community detection and centrality quantification are two

vital tasks in social network analysis, and our study focuses

on these two applications.

A community is typically described as a group of nodes

with greater internal connectivity than the rest of the network

[2]. The Louvain method is a prominent community detec-

tion algorithm for maximizing modularity [2]. This greedy

bottom-up approach merges nodes into bigger communities.

Another popular community detection algorithm is Informap,

which uses Huffman codes to group nodes found by random

walkers [2].

Social network analysis also involves finding key nodes.

PageRank is a popular centrality metric, originally used for

Google search rankings [9] and now used to identify influential

social network members [10].

B. Distributed Graph Processing Frameworks

Given the huge size of modern network data, many ana-

lytical systems have shifted from shared, centralized to dis-

tributed, decentralized architectures. Scaling and distributing
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graph calculations is challenging due to data interdepen-

dencies [4]. Most distributed graph systems divide a graph

into numerous smaller graphs and assign them to separate

working models. Many distributed frameworks are good for

network analysis, such as Vite for Louvain [12], GossipMap

for Infomap [13], and GraphChi/Pregel-based PageRank [4].

C. Fairness in Social Network Analysis

Algorithmic fairness is often defined with respect to pro-

tected attributes or protected group membership of individuals,

like race or gender [6]. For a fair community structure, each

community should reflect the attribute distribution across the

graph [16]. Mehrabi et al. propose a fair clustering structure

should assign minor group users to primary communities,

rather than segregating them [6]. The fairness of centrality

algorithms has also gained attention. Pitoura et al. suggest a

minimum threshold value for the fraction of protected groups

in the top k percent of important nodes [14]. When assigning

node weights, a fair PageRank algorithm should give protected

groups of individuals centrality proportional to their group

size.

Our work is the first to combine these three subfields. This

research evaluates distributed graph processing framework

unfairness issues and investigates their causes. To the best of

our knowledge, existing distributed graph computation systems

focus on a variety of aspects such as scalability, efficiency,

accuracy and locality, but none of them pay attention to

fairness performance.

III. METHODOLOGY

In our work, we consider three important sequential graph

algorithms: the Louvain method for modularity maximization,

InfoMap, and PageRank. These algorithms were selected be-

cause they are important algorithms in themselves, and also

because there are well-known distributed implementations for

each. Below, we describe both the sequential and parallel

versions of these algorithms.

A. Graph Applications

1) Louvain and Vite: The Louvain community detection

algorithm clusters nodes by merging nodes so as to maximize

the modularity increment of the community [2]. Modularity

is a common community partitioning quality criterion. A

clustering is good (high modularity) if the number of edges

between nodes in the same community is higher than predicted

in a random network with the same degree distribution. Vite

is a distributed memory-based parallel Louvain algorithm that

stores portions of nodes and edges in graphs [12]. Vite’s

ghost node communications and graph reconstruction achieve

high quality (modularity) and efficiency. We consider three

implementations of Vite. The first is the original version. The

other two versions implement Vite using the fast Metis [4] and

PowerGraph [4] partitioning methods, two intelligent methods

for dividing a graph across multiple machines.

2) InfoMap and GossipMap: InfoMap, another effective

clustering algorithm, employs a two-tier technique to link

community detection and information coding [2].

GossipMap, a distributed Infomap method, uses the

GraphLab PowerGraph framework [13]. Using a balanced p-

way vertex cut approach, PowerGraph optimizes graph pro-

cessing and task balance across machines [4]. Metis partition-

ing is employed in another distributed InfoMap implemen-

tation [4]. This provides a direct comparison to Metis-based

Louvain.

3) PageRank and Distributed PageRank: As discussed

earlier, PageRank is a classic algorithm for measuring the

centrality of each node. PageRank can be computed itera-

tively by first initializing each node’s score to 1/n, where

n is the number of nodes in the graph. After initialization,

PageRank repeatedly applies the following computation until

convergence [9]: PR(u) = (1− d)+ d
∑

v∈B(u)
PR(v)
Nv

. Here,

d is a dampening factor (usually set to 0.85), Bu represents

the set of nodes linked to node u, and Nv indicates the degree

of node v.

We examine two distributed PageRank frameworks:

GraphChi [4] and Pregel [4]. In GraphChi, a parallel sliding

window approach (PSW) saves graphs in auxiliary storage [4],

which updates several million calculations per second with

a few non-sequential storage reads and writes. Pregel uses

the bulk synchronous parallel computing model (BSP) [4] to

compute graphs in ”superstep” iterations, where a pre-defined

function executes on each vertex in parallel.

B. Fairness Evaluation Metrics

Our goal in this work is to examine the comparative per-

formance of distributed and sequential graph algorithms with

respect to fairness properties. Accordingly, in Section III-B1,

we first describe several fairness metrics–including one that

is new to this paper– that allow us to compare sequential

and distributed versions of algorithms. Next, we describe the

benchmarking setup.

1) Fairness Evaluation Metrics: Like in work in fair

machine learning, we assume the existence of a protected

attribute (race, gender, age, etc.) that defines protected groups.

Our work here applies to categorical attributes, though the

benchmarking can be conducted on graphs with numerical

attributes as long as an appropriate fairness metric is specified.

a) Evaluating Community Detection: A fair community

structure has balanced clusters with respect to a protected

attribute. We use weighted imbalance ratio (WIR) to assess

community structures’ fairness.

Before defining WIR, we first define the imbalance of

a community C. Suppose there are two groups in a graph:

groupA and groupB. fA is an index to indicate the fraction of

nodes from the whole network, and fC
A

is the index describing

the fraction of nodes from community C that belong to group

A. For balance evaluation on community C, we wish to com-

pare the gap between fA and fC
A

. imbalanceC measures this

gap, which is defined with respect to a user-defined threshold

t (which may be 0). A community C is said to be balanced
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if |fC
A

− fA| ≤ t. In this case, imbalanceC = 0. Otherwise,

imbalanceC = min(|fC
A

− (fA + t)|, |(fA − t)− fC
A
|).

Once imbalance has been computed for each community,

the WIR of the set of communities is calculated by the

following equation:

WIR =

# clusters∑

i=1

(imbalance)×
#nodes in cluster i

#nodes in graph
.

(1)

To evaluate the unfairness caused by using the distributed

version of an algorithm, we compare the WIR of the dis-

tributed version to the WIR of the sequential algorithm, across

multiple thresholds.

b) Evaluating PageRank: As discussed in Section II-C,

a fair PageRank should assign weights without regard to

attributes. We define the PageRank gap using this idea. For

simplicity, assume two user groups: A (majority) and B
(minority). Let PR(A) and PR(B) be the PageRank sums

of groups A and B. Cumulative fair PageRank values should

match the sizes of the majority population A and minority

population B. PageRank fairness can be evaluated by the

difference between the proportion of a group of users and

the sum of their PageRank values: PageRankGap(PRG) =

| |A|
n

−PR(A)|. In this equation,
|A|
n

represents the population

proportion of group A, and PR(A) represents the PageRank

algorithm’s weights for the group.

We assess result unfairness for non-binary attributes using

the max PRG among all group PRG values.To compare

sequential versus distributed PageRank algorithms, the PRG
for each can be compared. If distributed PageRank PRG is

higher, the distributed framework produces unfair results. For

binary attributes, both groups have identical PRG values.

C. Benchmark Setup

1) Data Set: Our first set of networks comes from the

Facebook100 collection and represents university Facebook

networks1. Nodes have major, matriculation year, and other

properties. The protected attribute is matriculation year. We

split the network into two groups before and after a threshold

year. Subfield networks from the DBLP co-authorship network

are used next. Subfields are obtained by considering papers

published in ‘Top Tier’ conferences in various fields accord-

ing to the University of Alberta’s ranking.2 The protected

attribute is gender, which is inferred from the first name using

https://genderize.io/. Table I gives basic statistics for these

datasets.

Note that because our goal is to compare sequential and

distributed algorithms, we cannot consider datasets that are

so large as to require distributed processing. However, these

graphs share important properties with larger graphs, such as

the presence of community structure.

1https://archive.org/details/oxford-2005-facebook-matrix
2https://www.aminer.org/citation

#nodes #edges sensitive attribute

FaceBook100 Brown 8,600 384,526 Year
FaceBook100 Pennsylvania 41,554 1,362,229 Year

FaceBook100 Brandeis 3,898 137,567 Year
FaceBook100 Cal 11,247 35,1358 Year
FaceBook100 MIT 6,440 251,252 Year

FaceBook100 Northeastern 13,882 38,1934 Year
FaceBook100 Rice 4,087 184,828 Year

FaceBook100 Temple 13,686 360,795 Year
FaceBook100 Bingham 10,004 362,683 Year
FaceBook100 Bucknell 3,826 158,864 Year
FaceBook100 Emory 7,460 330,014 Year

DBLP-Datamining 2,272 7,643 Gender
DBLP-Database 3,185 9,386 Gender

DBLP-Datamining 3,525 10,399 Gender
DBLP-Parallel 1,251 4,356 Gender

DBLP-Datamining 1,926 5,976 Gender

TABLE I
DATASET STATISTICS. MATRICULATION YEAR AND GENDER ARE USED AS

SENSITIVE ATTRIBUTES FOR FACEBOOK100 AND DBLP DATASETS,
RESPECTIVELY, AS THESE TWO ATTRIBUTES PRODUCE VARYING LEVELS

OF HOMOPHILY.

2) System Setup: For our evaluation, we use machines

with Intel(R) Xeon(R) CPU E5-2690 v3 (2.60GHz) running

on CentOS Linux 7.9.2009. Each node contains 24 CPU

cores (each core has 2 hardware threads). The compilation is

performed using gcc/9.2.0 with the -O3 optimization flag. To

achieve intra-node parallelism (thread level) we use OpenMP

version 201511 and for distributed inter-node computations we

use OpenMPI version 2.0.4.

IV. EVALUATION

In this section, we show the performance of the two commu-

nity detection algorithms and PageRank, comparing sequential

vs. distributed implementations with respect to fairness. We

first give examples on specific datasets, then in Section IV-C

give an overview of results across networks.

A. Community Detection Fairness Evaluation

Fig. 1. Fairness comparison between sequential, Vite, and Metis Louvain on
multiple FaceBook100 data sets (using attribute threshold matriculation year
of 2008), based on WIR, our community detection fairness evaluation metric.
A community structure is fairer if it has a lower WIR. In most cases, the
distributed version of Louvain frameworks exhibits greater unfairness than
the sequential implementations.

1) Fairness comparison between Louvain, Vite Louvain,

and Metis Louvain: We compare the unfairness performance
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of distributed Vite and Metis Louvain implementations (see

Section III-A1) to sequential Louvain on various FaceBook100

data sets. This experiment divided students by matriculation

year into two groups: those who enrolled before a specific year

and those who enrolled after. Different matriculation years

allow us to divide protected groups using the same network

topology. We quantify fairness by using WIR, which measures

the fraction of communities for which one protected group is

disproportionately represented (beyond some threshold). Fig.

1 demonstrates that Vite Louvain has a greater WIR value

across thresholds than sequential Louvain, implying more

unfair community structure results. According to Fig. 1, Metis

Louvain performs worse in fairness than sequential Louvain.

For accuracy comparison, we see that both the sequential

and distributed algorithms tend to produce communities with

similar modularity. A subset of modularity-based evaluation is

presented in Table II, but this quality-based analysis has been

extensively studied in prior work and is not the focus here, so

we do not discuss it further.

Sequential Louvain Distributed Louvain (Metis)

FB Brown 0.4394360.4394360.439436 0.3653209
FB Brandeis 0.4446830.4446830.444683 0.334783

FB Cal 0.4382120.4382120.438212 0.301145
FB MIT 0.3939590.3939590.393959 0.299715

FB Northeastern 0.4800720.4800720.480072 0.397105
FB Rice 0.4379550.4379550.437955 0.375263

FB Temple 0.5074630.5074630.507463 0.351491
FB Bingham 0.4562140.4562140.456214 0.313782
FB Bucknell 0.4785360.4785360.478536 0.391646

TABLE II
MODULARITY COMPARISON ON LOUVAIN AND METIS LOUVAIN OVER

MULTIPLE DATA SETS. LARGER MODULARITY INDICATES BETTER

COMMUNITY STRUCTURE.

2) Fairness comparison between Infomap and Gossipmap:

We next compare the distributed InfoMap algorithm Gos-

sipMap to sequential InfoMap. Table III shows results with

respect to the WIR gap of Metis-based Infomap and Gos-

sipmap for multiple FaceBook100 and DBLP data sets.

B. PageRank Fairness Evaluation

We compare GraphChi PageRank and Pregel PageRank to

sequential PageRank using the PRG metric to assess PageRank

fairness. Recall that this statistic measures PageRank score

proportionality to group size. After calculating the PRG for

sequential PageRank and the two distributed algorithms, we

divide the difference between each algorithm’s PRG by se-

quential PageRank’s PRG. Positive values mean distributed

PageRank performs worse than sequential.

We calculate this ratio for GraphChi and Pregel PageR-

ank on protected groups. Fig. 2 displays data from multiple

Facebook networks for various year thresholds. This figure

shows that Pregel and GraphChi PageRank perform worse than

sequential PageRank in fairness (PRG ratio is positive).

C. Evaluation Summary

Table III shows comprehensive fairness evaluations for

various distributed graph computation frameworks across data

sets. For FaceBook100 networks, we divide students by 2008

Fig. 2. Fairness evaluation results on PageRank in multiple FaceBook100
data sets. A higher ratio of PRG indicates more unbalanced weights that one
distributed PageRank framework assigns.

matriculation. We report the average WIR gaps (distributed

version WIR minus sequential algorithm WIR) for community

detection algorithms and their distributed frameworks (Vite

Louvain, Metis Louvain, and GossipMap column) for each

WIR threshold selection (1% to 30%). All WIR gaps for

distinct data sets are averaged in the three columns. As in

Section IV-B, we compare distributed and sequential PageR-

ank using the PRG ratio. A positive PRG ratio means the

distributed algorithm is less fair than the sequential algorithm.

In this table, negative values indicate that the sequential

algorithm is less fair and positive values indicate that the

distributed algorithm is less fair. We see that in almost all

cases, distributed graph frameworks lead to higher unfairness

as compared to sequential algorithms.

V. ANALYSIS

We find that distributed implementations of popular graph

algorithms are generally more unfair than sequential coun-

terparts. Homophily, a common social network phenomena,

may explain this. Homophily is the tendency for individuals to

connect to others with whom they share attributes: i.e., ‘birds

of a feather flock together’ [5]. A social network’s homophily

can be measured by its assortativity, which is the extent to

which nodes with similar attributes connect to each other

more often than nodes with dissimilar attributes, compared

to a random graph with the same degree distribution [15].

Distributed algorithms on high-homophily graphs may place

similar nodes on the same machine. Distribution limits cross-

machine communication, hence partitioning reduces process

communications between node groups, which may increase

unfairness.

We use the Facebook100 networks from earlier to examine

homophily and the unfairness gap between distributed and

sequential algorithms. These datasets allow for subpartition-

ing of the same network architecture by different attribute

groupings, resulting in varied homophily values. We separate

these networks by matriculation year, i.e., those who started

studying before or after a certain year. We can easily compare
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WIR gap on distributed
Louvain applications

WIR Gap on distributed
InfoMap applications

PRG Ratio for distributed
PageRank Frameworks

Vite Metis PowerGraph Metis PowerGraph GraphChi Pregel

Brown 0.0528 0.0278 0.2324 0.0189 0.0315 0.1319 0.0003
Pennsylvania 0.0179 0.0299 0.1452 0.0011 -0.0075 0.1743 0.1435

Brandeis 0.0451 0.0437 0.1035 0.0631 0.0513 0.4462 0.1133
Cal 0.0001 0.0040 0.0113 -0.0030 0.0054 0.0739 0.1004
MIT 0.0071 0.0270 0.1769 0.0033 0.0201 0.0948 0.0772

Northeastern 0.0631 0.0637 0.0598 0.0284 0.0793 0.1179 0.0735
Rice 0.0522 0.0337 0.0927 0.0206 0.0198 0.4974 0.0853

Temple 0.0005 0.0295 0.1035 0.0264 -0.0139 0.3319 0.0474
Bingham 0.0402 0.0574 0.0781 0.0018 0.0097 0.4462 0.1412
Bucknell 0.0697 0.0401 0.0319 0.0177 -0.0591 0.1131 0.1331
Emory 0.0298 0.0416 0.0789 0.0093 0.0174 0.0796 0.0328

DBLP-Datamining 0.0014 0.0095 0.0185 0.0034 0.0072 0.0535 0.0377
DBLP-Database 0.0207 0.0152 0.0173 0.0073 0.0249 0.3779 0.1265
DBLP-Security 0.0097 0.0201 0.0097 -0.0078 0.0004 0.2771 0.1944
DBLP-Parallel 0.0339 0.0283 0.0513 0.0171 0.0452 0.0556 0.0571

DBLP-Graphics 0.0328 0.0544 0.0443 0.0143 0.0089 0.0237 0.0241

TABLE III
COMPLETE EVALUATION RESULTS ACROSS NETWORKS. POSITIVE VALUES INDICATE THAT THE SPECIFIC DISTRIBUTED GRAPH PROCESSING

FRAMEWORK PERFORMS WORSE THAN THE CORRESPONDING SEQUENTIAL ALGORITHM. HIGHER VALUES INDICATE WORSE FAIRNESS PERFORMANCE.
FOR FACEBOOK100 NETWORKS, THE ATTRIBUTE YEAR OF 2008 WAS USED TO DIVIDE NODES INTO GROUPS.

the unfairness gap across homophily values because different

threshold values of this property have distinct homophily

values.

Note that for the community detection algorithms, the

correlation between homophily and unfairness gap is positive–

the higher the homophily of the network, the less fair the

results obtained from distributed algorithms–while for PageR-

ank, the correlation is negative, indicating that if a network

has low homophily, the unfairness of distributed results is

higher. These differences occur because generally, a distributed

algorithm prioritizes communication between nodes on the

same machine, and if a network exhibits homophily, then there

is likely to be a relationship between machine assignment and

node attribute.

A. Community Detection

Fairness in community detection is achieved when nodes

are placed in the same community regardless of their pro-

tected group membership. Intuitively, fairness is improved

when nodes from different protected groups are processed

together by the algorithm. For distributed community detection

algorithms, groupings between nodes on the same machine

are considered before groupings between nodes on different

machines. This introduces a bias in terms of how nodes are

clustered together in the output: even though the distributed

algorithm later attempts to correct accuracy-lowering decisions

made in this way, it does not prioritize correcting fairness-

lowering decisions made in this way. Thus, if the network

has high homophily, so nodes on the same machine are

disproportionately likely to belong to the same protected group

(biased group nodes are unevenly distributed across machines),

distributing the computation process magnifies separation be-

tween protected groups, thus worsening unfairness.

For instance, see the toy graph in Fig. 3. On this graph,

sequential Louvain generates three communities with a modu-

larity of 0.3571428, while distributed Metis-Louvain generates

two communities with 0.3469387. Here, distributed Metis-

Louvain local computation results in node 5 on machine 1

not receiving information from nodes 6 and 8 in machine 2.

Local computation on machine 1 combines nodes [1, 2, 3, 4, 5]
in the first iteration. Node 5 loses the potential to establish a

community with node 6 since adding node 6 to the community

[1, 2, 3, 4, 5] cannot increase the graph’s modularity. On this

graph, Metis-based distributed Louvain has a worse average

WIR value (0.5) than sequential Louvain (0.4) when the

threshold is set between 1% and 30%.

Fig. 3. Toy example in wihch sequential Louvain and distributed Metis-
based Louvain generate different community structures. There are two groups
of nodes in this graph: RED ([1, 2, 3, 4, 5]) and BLUE ([6, 7, 8, 9, 10]).

Table IV shows results for all considered distributed com-

munity detection algorithms across several networks. Values in

this table represent the correlation between the unfairness gap

between the distributed algorithm and the sequential algorithm

vs. the homophily of the network as the attribute is varied.

Values closer to 1 indicate that the higher the homophily, the

greater the unfairness gap between the distributed algorithm

and the sequential algorithm (distributed being worse).

B. PageRank

Unlike community detection, fair PageRank results are

obtained when nodes from various protected groups have

similar scores. Fairness is determined by aggregating node-

level scores, unlike community detection, which uses cluster-

level scores (nodes should be in clusters with nodes from

various protected groups).
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Algorithm Louvain Infomap

Graph Partitions Vite Metis PowerGraph Metis GossipMap

Brown 0.316 0.725 0.685 0.846 0.776
NE 0.697 0.742 0.618 0.746 0.471

Penn 0.535 0.823 0.736 0.887 0.585
Rutgers 0.324 0.690 0.859 0.834 0.678

Rice 0.775 0.853 0.579 0.540 0.631
Brandeis 0.547 0.734 0.984 0.449 0.775

MIT 0.421 0.798 0.997 0.849 0.339
Temple 0.539 0.535 0.826 0.781 0.642

Bingham 0.676 0.443 0.896 0.752 0.683
Bucknell 0.892 0.904 0.887 0.722 0.739

TABLE IV
CORRELATION BETWEEN WIR GAP (DISTRIBUTED VS. SEQUENTIAL

ALGORITHM) AND HOMOPHILY FOR FIVE DISTRIBUTED COMMUNITY

DETECTION ALGORITHMS ACROSS FACEBOOK DATASETS. VALUES TEND

TO BE HIGH AND POSITIVE, INDICATING THAT IN CASES WHERE THE

NETWORK EXHIBITS HIGHER HOMOPHILY, THE FAIRNESS OF THE

DISTRIBUTED ALGORITHM TENDS TO BE WORSE AS COMPARED TO THAT

OF THE SEQUENTIAL ALGORITHM.

Consider a network where nodes from protected group

A have lower PageRank scores than those from protected

group B. Suppose that the network has high homophily. As

with distributed community detection algorithms, a distributed

PageRank algorithm will tend to distribute nodes across ma-

chines so that nodes from the same protected group are more

likely to share a machine than nodes from other protected

groups. Initial computations, performed on the same machine,

primarily compare members of group A to other members of

group A, and then compare members of group B to other

members of group B. Lower-centrality group A members

compete intra-group rather than against higher-centrality group

B members from the start. Although results are merged at a

later state, some effect of this initial bias remains. TableV

indicates that strong homophily networks typically have a

reduced unfairness gap between distributed and sequential

algorithms (usually shown by a negative correlation between

PageRank Gap and Homophily).

Pregel PageRank GraphChi PageRank

Brown -0.316 -0.617
NE -0.212 -0.541

Penn -0.279 -0.577
Rutgers -0.013 -0.681

Rice -0.371 -0.515
Brandeis -0.201 -0.508

MIT -0.003 -0.541
Temple -0.198 -0.451

Bingham -0.017 -0.397
Bucknell -0.173 -0.456

TABLE V
CORRELATION BETWEEN PAGERANK GAP AND HOMOPHILY FOR TWO

DISTRIBUTED PAGERANK FRAMEWORKS (PREGEL PAGERANK AND

GRAPHCHI PAGERANK) ACROSS FACEBOOK DATASETS. VALUES

INDICATE THE CORRELATION BETWEEN HOMOPHILY AND THE PAGERANK

GAP (BETWEEN DISTRIBUTED AND SEQUENTIAL ALGORITHMS). VALUES

TEND TO BE NEGATIVE, INDICATING THAT IN CASES WHERE THE

NETWORK EXHIBITS LOWER HOMOPHILY, THE FAIRNESS GAP BETWEEN

THE DISTRIBUTED AND SEQUENTIAL PAGERANK TENDS TO BE HIGHER.

VI. CONCLUSION AND RECOMMENDATIONS

We used two evaluation measures (WIR, PRG) to examine

if distributed graph frameworks induce unfairness for com-

munity detection and PageRank. Based on our findings, we

recommend:

• Distributed techniques for Louvain and Infomap commu-

nity detection can increase unfairness, and should be used

cautiously. As network homophily increases beyond, this

is especially true.

• Where a distributed approach is needed, Infomap’s dis-

tributed GossipMap may be produce better fairness than

Louvain.

• Use Distributed PageRank cautiously, and this method is

safest when the graph has high homophily. If the graph

is big and each group has numerous members, the PRG

difference across groups may not be substantial, but its

unfairness impact cannot be ignored.
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