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Abstract—In the era of big data, distributed graph processing
frameworks have become important in processing large-scale
graph datasets. Such distributed frameworks exhibit major
advantages with respect to scalability, and provide various ways
to speed up sequential graph algorithms. However, the literature
lacks an analysis on the fairness properties of such distributed
algorithms. In this work, we analyze several important dis-
tributed frameworks and graph analysis algorithms with respect
to their fairness properties. Across numerous real-world network
datasets, we demonstrate that distributed algorithms often exhibit
worse fairness performance as compared to their sequential
counterparts. Moreover, we observe that this phenomenon is often
strongly connected to the homophily of the graph dataset— the
tendency of nodes to connect to other nodes of the same class.

I. INTRODUCTION

Human social network data is used in many real-world
applications, including online advertising, credit scoring, and
recommendations [1], and so it is important to ensure that such
analysis is fair. While there is a flourishing body of literature
on fairness in machine learning, it is only recently that similar
efforts have examined the fairness of graph algorithms [17].
Existing related research covers community detection [6], link
prediction [17], and influence maximization [17].

Large graph data, such as Facebook’s three billion-user
dataset [3], is often studied utilizing distributed graph pro-
cessing methods, which divide computation across multiple
machines [4]. In this work, we examine how distributed
algorithms affect graph algorithm fairness. To our knowledge,
this is the first work on this topic. Distributed algorithms are
often evaluated on efficiency and accuracy, not fairness. How-
ever, distributing processing among machines may influence
graph analysis fairness. To reduce cross-machine communica-
tions, distributed algorithms often split a graph so that well-
connected nodes are on the same machine. In real-world social
networks, high homophily (the tendency to link with similar
nodes) may thus result in nodes segregated by attribute.

This research examines algorithms for two key graph ap-
plications: community detection (finding clusters of well-
connected nodes) [2] and centrality identification (quantifying
nodes based on their importance to the network structure)
[11]. In an unfair community detection algorithm, less well-
connected nodes may be assigned to smaller or fringe groups,
and so be given less importance [6]. In an unfair centrality
identification algorithm (such as PageRank), different groups
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may be allocated disproportionate total weights. Both appli-
cations are important in downstream analysis. For instance,
community detection is used in community-based link pre-
diction tasks [8], and so unfairness in such applications may
propagate; and various clustering algorithms rely on PageRank
centrality [7].

The main contributions of this paper are:

o« We extensively evaluate distributed graph algorithms
against sequential ones for unfairness. Three major se-
quential social network analysis algorithm— Louvain,
InfoMap, and PageRank— are examined, along with seven
comparable distributed algorithms.

« Using two fairness metrics, we demonstrate that in almost
all cases, the distributed algorithms exhibit worse fairness
performance than the sequential algorithms.

¢ We show that network homophily— the tendency of nodes
to connect to others like them—- increases distributed
algorithm unfairness. The type of application determines
whether homophily and unfairness are positively or neg-
atively correlated.

II. RELATED WORK

Our work is at the intersection of graph algorithms, dis-
tributed algorithms, and fairness. In this section, we discuss
works from these three subfields.

A. Algorithms for Social Network Analysis (SNA)

Community detection and centrality quantification are two
vital tasks in social network analysis, and our study focuses
on these two applications.

A community is typically described as a group of nodes
with greater internal connectivity than the rest of the network
[2]. The Louvain method is a prominent community detec-
tion algorithm for maximizing modularity [2]. This greedy
bottom-up approach merges nodes into bigger communities.
Another popular community detection algorithm is Informap,
which uses Huffman codes to group nodes found by random
walkers [2].

Social network analysis also involves finding key nodes.
PageRank is a popular centrality metric, originally used for
Google search rankings [9] and now used to identify influential
social network members [10].

B. Distributed Graph Processing Frameworks

Given the huge size of modern network data, many ana-
Iytical systems have shifted from shared, centralized to dis-
tributed, decentralized architectures. Scaling and distributing
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graph calculations is challenging due to data interdepen-
dencies [4]. Most distributed graph systems divide a graph
into numerous smaller graphs and assign them to separate
working models. Many distributed frameworks are good for
network analysis, such as Vite for Louvain [12], GossipMap
for Infomap [13], and GraphChi/Pregel-based PageRank [4].

C. Fairness in Social Network Analysis

Algorithmic fairness is often defined with respect to pro-
tected attributes or protected group membership of individuals,
like race or gender [6]. For a fair community structure, each
community should reflect the attribute distribution across the
graph [16]. Mehrabi et al. propose a fair clustering structure
should assign minor group users to primary communities,
rather than segregating them [6]. The fairness of centrality
algorithms has also gained attention. Pitoura et al. suggest a
minimum threshold value for the fraction of protected groups
in the top k percent of important nodes [14]. When assigning
node weights, a fair PageRank algorithm should give protected
groups of individuals centrality proportional to their group
size.

Our work is the first to combine these three subfields. This
research evaluates distributed graph processing framework
unfairness issues and investigates their causes. To the best of
our knowledge, existing distributed graph computation systems
focus on a variety of aspects such as scalability, efficiency,
accuracy and locality, but none of them pay attention to
fairness performance.

III. METHODOLOGY

In our work, we consider three important sequential graph
algorithms: the Louvain method for modularity maximization,
InfoMap, and PageRank. These algorithms were selected be-
cause they are important algorithms in themselves, and also
because there are well-known distributed implementations for
each. Below, we describe both the sequential and parallel
versions of these algorithms.

A. Graph Applications

1) Louvain and Vite: The Louvain community detection
algorithm clusters nodes by merging nodes so as to maximize
the modularity increment of the community [2]. Modularity
is a common community partitioning quality criterion. A
clustering is good (high modularity) if the number of edges
between nodes in the same community is higher than predicted
in a random network with the same degree distribution. Vite
is a distributed memory-based parallel Louvain algorithm that
stores portions of nodes and edges in graphs [12]. Vite’s
ghost node communications and graph reconstruction achieve
high quality (modularity) and efficiency. We consider three
implementations of Vite. The first is the original version. The
other two versions implement Vite using the fast Metis [4] and
PowerGraph [4] partitioning methods, two intelligent methods
for dividing a graph across multiple machines.
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2) InfoMap and GossipMap: InfoMap, another effective
clustering algorithm, employs a two-tier technique to link
community detection and information coding [2].

GossipMap, a distributed Infomap method, uses the
GraphLab PowerGraph framework [13]. Using a balanced p-
way vertex cut approach, PowerGraph optimizes graph pro-
cessing and task balance across machines [4]. Metis partition-
ing is employed in another distributed InfoMap implemen-
tation [4]. This provides a direct comparison to Metis-based
Louvain.

3) PageRank and Distributed PageRank: As discussed
earlier, PageRank is a classic algorithm for measuring the
centrality of each node. PageRank can be computed itera-
tively by first initializing each node’s score to 1/n, where
n is the number of nodes in the graph. After initialization,
PageRank repeatedly applies the following computation until
convergence [9]: PR(u) = (1—d)+d 3", c g, %&7’). Here,
d is a dampening factor (usually set to 0.85), B,, represents
the set of nodes linked to node u, and N, indicates the degree
of node v.

We examine two distributed PageRank frameworks:
GraphChi [4] and Pregel [4]. In GraphChi, a parallel sliding
window approach (PSW) saves graphs in auxiliary storage [4],
which updates several million calculations per second with
a few non-sequential storage reads and writes. Pregel uses
the bulk synchronous parallel computing model (BSP) [4] to
compute graphs in “superstep” iterations, where a pre-defined
function executes on each vertex in parallel.

B. Fairness Evaluation Metrics

Our goal in this work is to examine the comparative per-
formance of distributed and sequential graph algorithms with
respect to fairness properties. Accordingly, in Section III-B1,
we first describe several fairness metrics—including one that
is new to this paper— that allow us to compare sequential
and distributed versions of algorithms. Next, we describe the
benchmarking setup.

1) Fairness Evaluation Metrics: Like in work in fair
machine learning, we assume the existence of a protected
attribute (race, gender, age, etc.) that defines protected groups.
Our work here applies to categorical attributes, though the
benchmarking can be conducted on graphs with numerical
attributes as long as an appropriate fairness metric is specified.

a) Evaluating Community Detection: A fair community
structure has balanced clusters with respect to a protected
attribute. We use weighted imbalance ratio (WIR) to assess
community structures’ fairness.

Before defining WIR, we first define the imbalance of
a community C'. Suppose there are two groups in a graph:
groupA and groupB. f4 is an index to indicate the fraction of
nodes from the whole network, and fg is the index describing
the fraction of nodes from community C' that belong to group
A. For balance evaluation on community C', we wish to com-
pare the gap between f4 and f§. imbalancec measures this
gap, which is defined with respect to a user-defined threshold
t (which may be 0). A community C' is said to be balanced
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if \fg — fal| < t. In this case, imbalancec = 0. Otherwise,
imbalancec = min(|f§ — (fa +t)|,|(fa —t) — f$))-

Once imbalance has been computed for each community,
the WIR of the set of communities is calculated by the
following equation:

# clusters

Z (imbalance) x

i=1

WIR — # nodes in cluster i

# nodes in graph
ey
To evaluate the unfairness caused by using the distributed
version of an algorithm, we compare the WIR of the dis-
tributed version to the WIR of the sequential algorithm, across
multiple thresholds.

b) Evaluating PageRank: As discussed in Section II-C,
a fair PageRank should assign weights without regard to
attributes. We define the PageRank gap using this idea. For
simplicity, assume two user groups: A (majority) and B
(minority). Let PR(A) and PR(B) be the PageRank sums
of groups A and B. Cumulative fair PageRank values should
match the sizes of the majority population A and minority
population B. PageRank fairness can be evaluated by the
difference between the proportion of a group of users and
the sum of their PageRank values: PageRankGap(PRG) =
|% — PR(A)|. In this equation, ‘%l represents the population
proportion of group A, and PR(A) represents the PageRank
algorithm’s weights for the group.

We assess result unfairness for non-binary attributes using
the max PRG among all group PRG values.To compare
sequential versus distributed PageRank algorithms, the PRG
for each can be compared. If distributed PageRank PRG is
higher, the distributed framework produces unfair results. For
binary attributes, both groups have identical PRG values.

C. Benchmark Setup

1) Data Set: Our first set of networks comes from the
Facebook100 collection and represents university Facebook
networks'. Nodes have major, matriculation year, and other
properties. The protected attribute is matriculation year. We
split the network into two groups before and after a threshold
year. Subfield networks from the DBLP co-authorship network
are used next. Subfields are obtained by considering papers
published in ‘“Top Tier’ conferences in various fields accord-
ing to the University of Alberta’s ranking.> The protected
attribute is gender, which is inferred from the first name using
https://genderize.io/. Table I gives basic statistics for these
datasets.

Note that because our goal is to compare sequential and
distributed algorithms, we cannot consider datasets that are
so large as to require distributed processing. However, these
graphs share important properties with larger graphs, such as
the presence of community structure.

Ihttps://archive.org/details/oxford-2005-facebook-matrix
Zhttps://www.aminer.org/citation
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#nodes #edges sensitive attribute
FaceBook100 Brown 8,600 384,526 Year
FaceBook100 Pennsylvania | 41,554 1,362,229 Year
FaceBook100 Brandeis 3,898 137,567 Year
FaceBook100 Cal 11,247 35,1358 Year
FaceBook100 MIT 6,440 251,252 Year
FaceBook100 Northeastern 13,882 38,1934 Year
FaceBook100 Rice 4,087 184,828 Year
FaceBook100 Temple 13,686 360,795 Year
FaceBook100 Bingham 10,004 362,683 Year
FaceBook100 Bucknell 3,826 158,864 Year
FaceBook100 Emory 7,460 330,014 Year
DBLP-Datamining 2,272 7,643 Gender
DBLP-Database 3,185 9,386 Gender
DBLP-Datamining 3,525 10,399 Gender
DBLP-Parallel 1,251 4,356 Gender
DBLP-Datamining 1,926 5,976 Gender
TABLE I

DATASET STATISTICS. MATRICULATION YEAR AND GENDER ARE USED AS
SENSITIVE ATTRIBUTES FOR FACEBOOK 100 AND DBLP DATASETS,
RESPECTIVELY, AS THESE TWO ATTRIBUTES PRODUCE VARYING LEVELS
OF HOMOPHILY.

2) System Setup: For our evaluation, we use machines
with Intel(R) Xeon(R) CPU E5-2690 v3 (2.60GHz) running
on CentOS Linux 7.9.2009. Each node contains 24 CPU
cores (each core has 2 hardware threads). The compilation is
performed using gcc/9.2.0 with the -O3 optimization flag. To
achieve intra-node parallelism (thread level) we use OpenMP
version 201511 and for distributed inter-node computations we
use OpenMPI version 2.0.4.

IV. EVALUATION

In this section, we show the performance of the two commu-
nity detection algorithms and PageRank, comparing sequential
vs. distributed implementations with respect to fairness. We
first give examples on specific datasets, then in Section IV-C
give an overview of results across networks.

A. Community Detection Fairness Evaluation

Pennsylvania Dataset

—— Vite Louvain
—— Metis Louvain
—— Sequential Louvain

Emory Dataset

0.35
0.30
0.25
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Fig. 1. Fairness comparison between sequential, Vite, and Metis Louvain on
multiple FaceBook100 data sets (using attribute threshold matriculation year
of 2008), based on WIR, our community detection fairness evaluation metric.
A community structure is fairer if it has a lower WIR. In most cases, the
distributed version of Louvain frameworks exhibits greater unfairness than
the sequential implementations.

1) Fairness comparison between Louvain, Vite Louvain,
and Metis Louvain: We compare the unfairness performance
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of distributed Vite and Metis Louvain implementations (see
Section III-A1) to sequential Louvain on various FaceBook100
data sets. This experiment divided students by matriculation
year into two groups: those who enrolled before a specific year
and those who enrolled after. Different matriculation years
allow us to divide protected groups using the same network
topology. We quantify fairness by using WIR, which measures
the fraction of communities for which one protected group is
disproportionately represented (beyond some threshold). Fig.
1 demonstrates that Vite Louvain has a greater WIR value
across thresholds than sequential Louvain, implying more
unfair community structure results. According to Fig. 1, Metis
Louvain performs worse in fairness than sequential Louvain.

For accuracy comparison, we see that both the sequential
and distributed algorithms tend to produce communities with
similar modularity. A subset of modularity-based evaluation is
presented in Table II, but this quality-based analysis has been
extensively studied in prior work and is not the focus here, so
we do not discuss it further.

Sequential Louvain  Distributed Louvain (Metis)
FB Brown 0.439436 0.3653209
FB Brandeis 0.444683 0.334783
FB Cal 0.438212 0.301145
FB MIT 0.393959 0.299715
FB Northeastern 0.480072 0.397105
FB Rice 0.437955 0.375263
FB Temple 0.507463 0.351491
FB Bingham 0.456214 0.313782
FB Bucknell 0.478536 0.391646

TABLE II

MODULARITY COMPARISON ON LOUVAIN AND METIS LOUVAIN OVER
MULTIPLE DATA SETS. LARGER MODULARITY INDICATES BETTER
COMMUNITY STRUCTURE.

2) Fairness comparison between Infomap and Gossipmap:
We next compare the distributed InfoMap algorithm Gos-
sipMap to sequential InfoMap. Table III shows results with
respect to the WIR gap of Metis-based Infomap and Gos-
sipmap for multiple FaceBook100 and DBLP data sets.

B. PageRank Fairness Evaluation

We compare GraphChi PageRank and Pregel PageRank to
sequential PageRank using the PRG metric to assess PageRank
fairness. Recall that this statistic measures PageRank score
proportionality to group size. After calculating the PRG for
sequential PageRank and the two distributed algorithms, we
divide the difference between each algorithm’s PRG by se-
quential PageRank’s PRG. Positive values mean distributed
PageRank performs worse than sequential.

We calculate this ratio for GraphChi and Pregel PageR-
ank on protected groups. Fig. 2 displays data from multiple
Facebook networks for various year thresholds. This figure
shows that Pregel and GraphChi PageRank perform worse than
sequential PageRank in fairness (PRG ratio is positive).

C. Evaluation Summary

Table III shows comprehensive fairness evaluations for
various distributed graph computation frameworks across data
sets. For FaceBook100 networks, we divide students by 2008

Brown Dataset

Bingham Dataset

. Pregel
mm GraphChi

. Pregel
= GraphChi

PRG Ratio
PRG Ratio

02 03 04 05 06 07 08 ) 02 03 04 05 06 07 08
Year Attribute Year Attribute

Brandeis Dataset

. Pregel
mm GraphChi

Rice Dataset

. Pregel
= GraphChi

PRG Ratio
PRG Ratio

02 03 04 05 06 07 08 02 03 04 05 06 07 08
Year Attribute Year Attribute

Fig. 2. Fairness evaluation results on PageRank in multiple FaceBook100
data sets. A higher ratio of PRG indicates more unbalanced weights that one
distributed PageRank framework assigns.

matriculation. We report the average WIR gaps (distributed
version WIR minus sequential algorithm WIR) for community
detection algorithms and their distributed frameworks (Vite
Louvain, Metis Louvain, and GossipMap column) for each
WIR threshold selection (1% to 30%). All WIR gaps for
distinct data sets are averaged in the three columns. As in
Section IV-B, we compare distributed and sequential PageR-
ank using the PRG ratio. A positive PRG ratio means the
distributed algorithm is less fair than the sequential algorithm.

In this table, negative values indicate that the sequential
algorithm is less fair and positive values indicate that the
distributed algorithm is less fair. We see that in almost all
cases, distributed graph frameworks lead to higher unfairness
as compared to sequential algorithms.

V. ANALYSIS

We find that distributed implementations of popular graph
algorithms are generally more unfair than sequential coun-
terparts. Homophily, a common social network phenomena,
may explain this. Homophily is the tendency for individuals to
connect to others with whom they share attributes: i.e., ‘birds
of a feather flock together’ [S]. A social network’s homophily
can be measured by its assortativity, which is the extent to
which nodes with similar attributes connect to each other
more often than nodes with dissimilar attributes, compared
to a random graph with the same degree distribution [15].

Distributed algorithms on high-homophily graphs may place
similar nodes on the same machine. Distribution limits cross-
machine communication, hence partitioning reduces process
communications between node groups, which may increase
unfairness.

We use the Facebook100 networks from earlier to examine
homophily and the unfairness gap between distributed and
sequential algorithms. These datasets allow for subpartition-
ing of the same network architecture by different attribute
groupings, resulting in varied homophily values. We separate
these networks by matriculation year, i.e., those who started
studying before or after a certain year. We can easily compare
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WIR gap on distributed WIR Gap on distributed | PRG Ratio for distributed
Louvain applications InfoMap applications PageRank Frameworks
Vite Metis  PowerGraph Metis PowerGraph | GraphChi Pregel
Brown 0.0528  0.0278 0.2324 0.0189 0.0315 0.1319 0.0003
Pennsylvania 0.0179  0.0299 0.1452 0.0011 -0.0075 0.1743 0.1435
Brandeis 0.0451  0.0437 0.1035 0.0631 0.0513 0.4462 0.1133
Cal 0.0001  0.0040 0.0113 -0.0030 0.0054 0.0739 0.1004
MIT 0.0071  0.0270 0.1769 0.0033 0.0201 0.0948 0.0772
Northeastern 0.0631  0.0637 0.0598 0.0284 0.0793 0.1179 0.0735
Rice 0.0522  0.0337 0.0927 0.0206 0.0198 0.4974 0.0853
Temple 0.0005  0.0295 0.1035 0.0264 -0.0139 0.3319 0.0474
Bingham 0.0402  0.0574 0.0781 0.0018 0.0097 0.4462 0.1412
Bucknell 0.0697  0.0401 0.0319 0.0177 -0.0591 0.1131 0.1331
Emory 0.0298  0.0416 0.0789 0.0093 0.0174 0.0796 0.0328
DBLP-Datamining | 0.0014  0.0095 0.0185 0.0034 0.0072 0.0535 0.0377
DBLP-Database 0.0207  0.0152 0.0173 0.0073 0.0249 0.3779 0.1265
DBLP-Security 0.0097  0.0201 0.0097 -0.0078 0.0004 0.2771 0.1944
DBLP-Parallel 0.0339  0.0283 0.0513 0.0171 0.0452 0.0556 0.0571
DBLP-Graphics 0.0328  0.0544 0.0443 0.0143 0.0089 0.0237 0.0241
TABLE III

COMPLETE EVALUATION RESULTS ACROSS NETWORKS. POSITIVE VALUES INDICATE THAT THE SPECIFIC DISTRIBUTED GRAPH PROCESSING
FRAMEWORK PERFORMS WORSE THAN THE CORRESPONDING SEQUENTIAL ALGORITHM. HIGHER VALUES INDICATE WORSE FAIRNESS PERFORMANCE.
FOR FACEBOOK 100 NETWORKS, THE ATTRIBUTE YEAR OF 2008 WAS USED TO DIVIDE NODES INTO GROUPS.

the unfairness gap across homophily values because different
threshold values of this property have distinct homophily
values.

Note that for the community detection algorithms, the
correlation between homophily and unfairness gap is positive—
the higher the homophily of the network, the less fair the
results obtained from distributed algorithms—while for PageR-
ank, the correlation is negative, indicating that if a network
has low homophily, the unfairness of distributed results is
higher. These differences occur because generally, a distributed
algorithm prioritizes communication between nodes on the
same machine, and if a network exhibits homophily, then there
is likely to be a relationship between machine assignment and
node attribute.

A. Community Detection

Fairness in community detection is achieved when nodes
are placed in the same community regardless of their pro-
tected group membership. Intuitively, fairness is improved
when nodes from different protected groups are processed
together by the algorithm. For distributed community detection
algorithms, groupings between nodes on the same machine
are considered before groupings between nodes on different
machines. This introduces a bias in terms of how nodes are
clustered together in the output: even though the distributed
algorithm later attempts to correct accuracy-lowering decisions
made in this way, it does not prioritize correcting fairness-
lowering decisions made in this way. Thus, if the network
has high homophily, so nodes on the same machine are
disproportionately likely to belong to the same protected group
(biased group nodes are unevenly distributed across machines),
distributing the computation process magnifies separation be-
tween protected groups, thus worsening unfairness.

For instance, see the toy graph in Fig. 3. On this graph,
sequential Louvain generates three communities with a modu-
larity of 0.3571428, while distributed Metis-Louvain generates
two communities with 0.3469387. Here, distributed Metis-
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Louvain local computation results in node 5 on machine 1
not receiving information from nodes 6 and 8 in machine 2.
Local computation on machine 1 combines nodes [1, 2,3, 4, 5]
in the first iteration. Node 5 loses the potential to establish a
community with node 6 since adding node 6 to the community
[1,2,3,4,5] cannot increase the graph’s modularity. On this
graph, Metis-based distributed Louvain has a worse average
WIR value (0.5) than sequential Louvain (0.4) when the
threshold is set between 1% and 30%.

| Metis Graph Partition Cutting line I

4[]

Sequential Louvain Community Structure
[1.2,3,4] [5,6] [7,8,9,10]

Distributed Louvain Community Structure
[1.2,3,4,5][6,7,8,9,10]

Fig. 3. Toy example in wihch sequential Louvain and distributed Metis-
based Louvain generate different community structures. There are two groups
of nodes in this graph: RED ([1, 2, 3,4, 5]) and BLUE ([6, 7, 8,9, 10]).

Table IV shows results for all considered distributed com-
munity detection algorithms across several networks. Values in
this table represent the correlation between the unfairness gap
between the distributed algorithm and the sequential algorithm
vs. the homophily of the network as the attribute is varied.
Values closer to 1 indicate that the higher the homophily, the
greater the unfairness gap between the distributed algorithm
and the sequential algorithm (distributed being worse).

B. PageRank

Unlike community detection, fair PageRank results are
obtained when nodes from various protected groups have
similar scores. Fairness is determined by aggregating node-
level scores, unlike community detection, which uses cluster-
level scores (nodes should be in clusters with nodes from
various protected groups).
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Algorithm Louvain Infomap
Graph Partitions Vite  Metis  PowerGraph | Metis  GossipMap
Brown 0316  0.725 0.685 0.846 0.776
NE 0.697  0.742 0.618 0.746 0.471
Penn 0.535  0.823 0.736 0.887 0.585
Rutgers 0324 0.690 0.859 0.834 0.678
Rice 0.775  0.853 0.579 0.540 0.631
Brandeis 0.547  0.734 0.984 0.449 0.775
MIT 0.421  0.798 0.997 0.849 0.339
Temple 0.539  0.535 0.826 0.781 0.642
Bingham 0.676  0.443 0.896 0.752 0.683
Bucknell 0.892  0.904 0.887 0.722 0.739
TABLE IV

CORRELATION BETWEEN WIR GAP (DISTRIBUTED VS. SEQUENTIAL
ALGORITHM) AND HOMOPHILY FOR FIVE DISTRIBUTED COMMUNITY
DETECTION ALGORITHMS ACROSS FACEBOOK DATASETS. VALUES TEND
TO BE HIGH AND POSITIVE, INDICATING THAT IN CASES WHERE THE
NETWORK EXHIBITS HIGHER HOMOPHILY, THE FAIRNESS OF THE
DISTRIBUTED ALGORITHM TENDS TO BE WORSE AS COMPARED TO THAT
OF THE SEQUENTIAL ALGORITHM.

Consider a network where nodes from protected group
A have lower PageRank scores than those from protected
group B. Suppose that the network has high homophily. As
with distributed community detection algorithms, a distributed
PageRank algorithm will tend to distribute nodes across ma-
chines so that nodes from the same protected group are more
likely to share a machine than nodes from other protected
groups. Initial computations, performed on the same machine,
primarily compare members of group A to other members of
group A, and then compare members of group B to other
members of group B. Lower-centrality group A members
compete intra-group rather than against higher-centrality group
B members from the start. Although results are merged at a
later state, some effect of this initial bias remains. TableV
indicates that strong homophily networks typically have a
reduced unfairness gap between distributed and sequential
algorithms (usually shown by a negative correlation between
PageRank Gap and Homophily).

Pregel PageRank  GraphChi PageRank
Brown -0.316 -0.617
NE -0.212 -0.541
Penn -0.279 -0.577
Rutgers -0.013 -0.681
Rice -0.371 -0.515
Brandeis -0.201 -0.508
MIT -0.003 -0.541
Temple -0.198 -0.451
Bingham -0.017 -0.397
Bucknell -0.173 -0.456
TABLE V

CORRELATION BETWEEN PAGERANK GAP AND HOMOPHILY FOR TWO
DISTRIBUTED PAGERANK FRAMEWORKS (PREGEL PAGERANK AND
GRAPHCHI PAGERANK) ACROSS FACEBOOK DATASETS. VALUES
INDICATE THE CORRELATION BETWEEN HOMOPHILY AND THE PAGERANK
GAP (BETWEEN DISTRIBUTED AND SEQUENTIAL ALGORITHMS). VALUES
TEND TO BE NEGATIVE, INDICATING THAT IN CASES WHERE THE
NETWORK EXHIBITS LOWER HOMOPHILY, THE FAIRNESS GAP BETWEEN
THE DISTRIBUTED AND SEQUENTIAL PAGERANK TENDS TO BE HIGHER.

VI. CONCLUSION AND RECOMMENDATIONS

We used two evaluation measures (WIR, PRG) to examine
if distributed graph frameworks induce unfairness for com-

munity detection and PageRank. Based on our findings, we
recommend:
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Distributed techniques for Louvain and Infomap commu-
nity detection can increase unfairness, and should be used
cautiously. As network homophily increases beyond, this
is especially true.

Where a distributed approach is needed, Infomap’s dis-
tributed GossipMap may be produce better fairness than
Louvain.

Use Distributed PageRank cautiously, and this method is
safest when the graph has high homophily. If the graph
is big and each group has numerous members, the PRG
difference across groups may not be substantial, but its
unfairness impact cannot be ignored.
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