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Introduction: Considering the significant role played by both intrinsic and
extrinsic electric fields in the growth and maturation of the central nervous
system, the impact of short exposure to external electric fields on the
development and differentiation of retinal organoids was investigated.

Methods: Retinal organoids derived from human embryonic stem cells were used at
day 80, a key stage in their differentiation. A single 60-minute exposure to a biphasic
electrical field was administered to assess its influence on retinal cell populations
and maturation markers. Immunohistochemistry, gPCR, and RNA sequencing were
employed to evaluate cell type development and gene expression changes.

Results: Electrical stimulation significantly enhanced neuronal development
and increased the population of photoreceptors within the organoids. RNA
sequencing data showed upregulated expression of genes related to rod
photoreceptors, Muller cells, horizontal cells, and amacrine cells, while genes
associated with retinal pigment epithelium and retinal ganglion cells were
downregulated. Variations in development and maturation were observed
depending on the specific parameters of the applied electric field.

Discussion: These findings highlight the significant impact of extrinsic electrical
fields on early retinal development and suggest that optimizing electrical field
parameters could effectively address certain limitations in retinal organoid
technology, potentially reducing the reliance on chemicals and small molecules.

KEYWORDS

retinal organoids, electrical stimulation, electrical field, photoreceptors, retinal
degeneration, stem cell differentiation

Introduction

Retinal organoids (ROs) recapitulate the spatial and temporal progression of in vivo
human retinal development. Cowan et al. (2020) found that the gene expression and cell types
of 38-week-old ROs closely resemble the newborn human retina. While ROs may imitate
certain stages of retinogenesis associated with the development of the neural retina, they do
not encompass the entirety of the ocular system and thus lack full representation of the whole
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human eye (Nakano et al., 2012). Furthermore, the retinal cells in
ROs exhibit a stratified structure and possess cell-cell connections
akin to those observed in the in vivo retina (Grigoryan, 2022).

The ROs are generated from pluripotent stem cells by treating
them with various cocktails of small molecules having composition
designed to mimic the cues received by cells throughout in vivo retinal
development (Bell et al., 2020). They initially develop into the optic
vesicle (OV) after embryoid body (EB) formation (Khan et al., 2016).
OV then undergo invagination, resulting in the creation of the optic
cup, with the inner layer becoming the neural retina (NR) and the
outer layer becoming the retinal pigmented epithelium (RPE),
respectively (Capowski et al., 2016). The neural retinal structures are
subsequently isolated and cultured in suspension as retinal organoids
(ROs), with the ROs initially developing retinal ganglion cells (RGCs).
Later they become stratified containing more photoreceptors, bipolar
cells, RGCs, horizontal cells, amacrine cells, and Miiller cells that are
aligned in multiple layers (Nakano et al., 2012; Afanasyeva et al., 2021).

As in the case of early eye development, during RO development,
the neural retina is formed by ventral progenitors, which later give rise
to all retinal neurons and glial cells. MiTE, FGF1, FGF11, FGF9,
FGF13, TGFf, Notch, retinoids, and Gasl are responsible for the
diversification and stabilization of the two major visual domains (RPE
and NR) in the eye development (Gamm et al., 2019; Falix et al, 2012).
Among these, Notch signaling pathway activation is necessary for
proper retinal development but not for neuronal differentiation (Mills
and Goldman, 2017). Starting around day 80, early progenitors of
cones and rods begin to appear in ROs (Afanasyeva et al.,, 2021). They
develop over months, reaching a maximal in vitro maturation state
around the age of 30 weeks with current methods (Cowan et al., 2020).

The different cell types in retinal organoids (ROs) has unique
properties. They are similar in composition and function to the native
retina, can self-organize, and allow multiple cell types to communicate
with each other. These advantages make organoids ideal for accurate
human disorder models and diagnostics. Retinal organoids (ROs) are
considered a promising source for photoreceptor replacement
therapies and also enable the isolation of retinal ganglion cells (RGCs)
and Miiller cells using cell surface markers for broader therapeutic
applications (Grigoryan, 2022). Our laboratory has conducted
transplantation experiments using RO sheets in rat disease models
showing survival and maturation of transplanted photoreceptors and
signs of visual improvements (Lin et al., 2020; Nair et al., 2021).

Following the pioneering work by Nakano et al. (2012) and Meyer
etal. (2011), numerous protocols have been developed for generating
retinal organoids from human induced pluripotent stem cells (hPSCs)
(Bell et al., 2020). Investigators have employed techniques using
signaling factors/small molecules at various time points and
concentrations to augment the RO yield and increase the PR
population. Conditions have since been developed that promote
differentiation of retinal organoids with a more stereotypical
complement and robust population of photoreceptors (PRs), capable
of maturing several 100 days in culture (Bell et al., 2020). Modified
culture techniques have been used to accelerate differentiation in early
developmental cell populations (Wahlin et al., 2017; DiStefano et al.,
2018; Zerti et al,, 2020, 2021), to increase the number of PRs
(Mellough et al., 2015; Luo et al., 2018) to help earlier development of
outer segments (Ovando-Roche et al.,, 2018), to improve the ratio of
cone-to-rod PRs (Kim et al., 2019), and to enhance RGC migration
and maturation (Gao et al., 2016).
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Given its current importance, advancing RO technology is crucial
by ensuring uniformity among ROs within the same culture dish and
optimizing them to enrich for desired cell types, facilitating their use
in transplantation experiments and disease modeling. The impact of
external electrical fields (EFs) on central nervous system (CNS)
development and maturation has been extensively studied using in
vivo and in vitro models. It is well known that external electrical and
electromagnetic fields can influence the development and maturation
of CNS (Frohlich, 2014; Thompson et al., 2014; Kaplan et al., 2016;
Feng et al., 2017; George et al., 2017; O'Hara-Wright et al., 2022). Ina
recent optic nerve injury model, transcorneal electrical stimulation
was shown to improve the morphology and survival of retinal
ganglion cells (RGCs) (Stewart et al., 2015). In another study electrical
currents delivered to the eye were investigated in rat models of retinitis
pigmentosa (Hanif et al., 2016; Alekseichuk et al., 2019) showing
improved neuronal preservation and visual functional benefits
presumably by influencing pathways associated with neuronal
protection and apoptosis. Recently, we demonstrated the benefits of
extraocular electrical stimulation in activating the retinal neural
circuitries in vivo, leading to improved vision in retinal degenerate
RCS rats (Calle et al., 2023).

The above investigations suggest the possibility of modulating the
development and maturation of ROs through the application of
extrinsic electrical fields. Previously, in vitro studies have demonstrated
the influence of electrical field (EF) on stem cell differentiation and
maturation into organoids (Yu et al., 2022). Electrical stimulation-
induced human neural stem cells to #-III Tubulin (Tujl) expressing
neurons with clusters of neurons exhibiting longer neurites and greater
branching than unstimulated cultures (Phillips et al., 2014). Electrical
stimulation of human neural progenitor cells alters their transcriptome
including changes to the VEGF-A pathway and genes involved in cell
survival, inflammatory response, and synaptic remodeling (Henrich-
Noack et al., 2013). Studies conducted by Kondo et al. demonstrated
that electrical stimulation promotes the differentiation of embryonic
stem cells into a diverse range of neuronal cell types, whereas growth
factor-induced ES cells tend to differentiate into more limited neuronal
cell types (Yamada et al., 2007). Recent studies using isolated rat RGCs
demonstrated that a new class of asymmetric, charge-balanced
waveforms effectively direct RGC axon growth in vitro without
compromising cell viability (Gokoffski and Zhao, 2019; Peng et al.,
2023). These findings suggest the possibility of modulating the
development and maturation of ROs through the application of
extrinsic EFs.

The strength of the Asymmetric Charge Balanced (ACB)
waveform lies in its ability to combine the safety of the traditional
biphasic waveform with the efficacy of direct current (DC). This is
achieved through a longer working phase and a shorter charge-
balancing phase. A significant finding from the above study was that
phase width ratio of 1:4 between the charge-balancing and working
phases resulted in the highest migration rate of axons toward the
target direction. Increasing the asymmetry beyond this ratio had no
effect on the migration rate. To achieve a complete charge balance
with a phase width ratio of 1:4, an amplitude ratio of 4:1 between the
two phases was necessary. Another important outcome was the
determination of the threshold stimulation amplitude for promoting
electrotaxis, which was approximately 1V/cm. While higher
amplitudes increased the migration ratio toward the target, saturation
occurred at 2V/cm, which is the maximum ratio achieved using DC.
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In this new investigation using extrinsic EF, we aimed to modulate
the RO development with emphasis on photoreceptor maturation.
Based on the findings from our previous studies we selected two ACB
waveforms, utilizing a phase width ratio of 1 ms:4 ms and an amplitude
ratio of —4V:1V or—8V:2V for the cathodic and anodic phase,
respectively. The EF parameters chosen were aimed to maximize the
efficacy of the applied EFs while maintaining safety for the ROs. In the
present study, only D80 ROs were used. This is due to the specific
developmental timeline during which a diverse array of neuron
subpopulations, including RGCs, interneurons, and PRs, start
to coexist.

Materials and methods

Culture of hESC-derived retinal organoids
(RO)

NIH-registered H9 human embryonic stem cells (hESCs),
genetically modified with a green fluorescent protein (GFP) tagged
to the CRX gene (CRX-GFP ESCs) obtained at USC through a
Material transfer agreement (MTA) with the University of Newcastle
(provided by Dr. Seiler lab University of California, Irvine) was used
for making the ROs. ROs were generated using a protocol previously
described with minor modifications (Zhong et al., 2014; Xue et al,,
2021). Briefly, CRX-GFP H9 cells were cultured in mTeSR 1 media
(STEMCELL Technologies, Vancouver, BC, Canada) and
maintained at 37°C in a humidified 5% CO, incubator (Nuaire,
Plymouth, MN, USA). Passaging was performed at 80% confluency
using ReLeSR (STEMCELL Technologies, Vancouver, BC, Canada).
Cell expansion was carried out on BD GFR Matrigel-coated plates.
For the differentiation of ROs, Accutase (Nacalai Inc., Kyoto, Japan)
was introduced to the confluent stem cell culture to generate a
single-cell suspension. Subsequently, the cells were transferred to an
800-pm micro-well EZSPHERE 6-well plate (Nacalai U.S.A., Inc.,
San Diego, CA, USA) and centrifuged at 100 g for 3min using a
plate centrifuge, initiating the formation of embryoid bodies (EB)
from day 1 to 7 in the EZSPHERE microwells by gradually replacing
neuronal induction medium. On day 8, EBs were seeded onto 1%
growth factor-reduced Matrigel (Corning, NY, USA) coated culture
dishes. Neural Induction Media (NIM) Dulbecco’s modified eagle
medium (DMEM)/F12 (1:1) (Gibco, Waltham, MA, USA), 1% N2
supplement (Gibco), 1x minimum essential media non-essential
amino acids (NEAA) (Gibco), 1x L-glutamine (Gibco), and 2 pg/mL
heparin (Sigma-Aldrich, St. Louis, MO, USA) were used from day
8 onwards, with media changes every 2 days. Embryoid bodies
attached to and spread across the culture dish, initiating
differentiation into eye field structures. From day 19 to 41, the
media transitioned to NIM containing DMEM/F12 (1:1)
supplemented with 2% B27 supplement (50X) (minus vitamin A,
Gibco), 1x NEAA, 1x L-glutamine, and 2 mg/mL heparin (Sigma,
Burlington, USA). Between days 40-50, retinal eye fields were
carefully cut out from the culture dish and transferred to ultra-low
attachment 24-well plates (Corning, NY, USA). From day 19 to 41,
the media transitioned to NIM containing DMEM/F12 (1:1)
supplemented with 2% B27 supplement (50X) (minus vitamin A,
Gibco, MT, USA), 1x NEAA, 1x L-glutamine, and 2 mg/mL heparin.
Starting day 42, the organoids were cultured with media containing
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DMEM/F12 (1:1) supplemented with 2% B27 Plus Supplement
(50X) (Gibco, MT, USA), 1x NEAA, 1x L-glutamine, 2 ug/ml
heparin, 100 pM taurine (Sigma, Burlington, USA), and 10% fetal
bovine serum (FBS; Gibco, Montana, USA). ROs were selected that
contained an outer transparent layer and had developed a hollow
spherical shape with a laminated structure, as observed under phase
contrast and dissection microscope (McLelland et al., 2018; Thomas
et al,, 2021). All possible efforts were taken to minimize variability
between experiments based on RO shape and size. For this, a strict
selection criterion based on microscopic evaluation of the ROs was
followed. ROs of different shape and sizes were equally distributed
across the different experimental groups.

RO stimulation using electrical field (EF)

ROs that contain multiple neuronal cell types, including
photoreceptors (PRs), retinal ganglion cells (RGCs), intermediate
neurons, and Miiller cells, can be influenced by external electrical field
(EF). We devised a new method to grow ROs in culture with concurrent
EF stimulation to promote photoreceptor differentiation. The EF
parameters were chosen based on the in vitro electrical stimulation
studies conducted using RGCs (Gokoffski and Zhao, 2019; Peng et al.,
2023) that are both effective and safe. Day 80 (Figure 1A) ROs were
placed inside 24 well tissue culture plates. Pre-cut Linbro plate sealer was
placed over the 24 well plates and attached to the chamber walls, serving
as the roof of the chamber. The dimensions of the chamber through
which the current was passed measured 16 mm (diameter) and 20mm
(height). Platinum (Pt) wire electrodes (0.25mm diameter; P1
Technologies, Boerne, TX), each 10 mm long, were placed at either end
of the circular chamber, separated by the chamber’s diameter. Because
the electrodes made direct contact with the media in which the ROs
were placed, platinum (Pt) was chosen as a biocompatible material to
minimize toxicity (Dymond et al., 1970; Stensaas and Stensaas, 1978).
Under proper sterile conditions, the ROs were exposed to 1-h EF
stimulation under one of the following three EF conditions: (1) BP-1
(— 8V for 1 millisecond, 2V for 4 milliseconds, 0 volts for 5 milli
seconds), (2) BP-2 (—4 volt for 1 millisecond, 1 volt for 4 milliseconds, 0
volts for 5 milli second), and (3) control (no electrical stimulation sham).
While the amplitudes exceed the water window of Pt microelectrodes
(Cogan, 2008), the biphasic nature of the waveform, along with the short
phase widths, ensures that conduction is primarily capacitive and that
toxic charge injection via faradaic conduction is minimized (Merrill and
Stecker, 2022). EF was applied using an Arbitrary Waveform Generator
(RIGOL DG 822 2-Channel AWG, Portland, OR, 97223). Two tungsten
needle electrodes were placed at either side of the organoid, 5mm apart,
to measure the voltage gradient across the organoid. These values were
recorded in MATLAB (MathWorks, Natick, MA) using a Keysight
DS0OX2014A oscilloscope. To ensure that our biphasic waveforms were
charge-balanced, total injected charge (area under the plot, Figure 1C)
was monitored throughout the experiment. The total charge of the
cathodic phase was divided by that of the anodic phase to give a charge
balance ratio. A voltage-controlled stimulation protocol ensured that the
charge transfer process was capacitor-coupled and charge balance could
be maintained as the working electrode discharges by shorting with the
counter electrode during the interpulse interval (Merrill, 2010). After
stimulation, the ROs were cultured for 7 days before subjected to various
morphological assessments and gene expression assays (Figures 1D-G).
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FIGURE 1

Electrical stimulation of D80 retinal organoids (ROs) followed by 7 days in culture. Diagrammatic representation of the study summary. (A) Different RO
developmental stages, (B) electrical stimulation setup used (BP-1 and BP-2), (C) waveforms used for BP-1(blue continuous line) and BP-2 (red dotted
line). (D) RNA sequencing- total number of differentially expressed genes in two different electrical stimulation setups, (E) hematoxylin and Eosin (H&E)
images of organoids after stimulation (D87), (F) phase contrast images of organoids after stimulation (D87). (G) RNA sequencing- total number of
upregulated and downregulated genes in two different electrical stimulation setups.

Microscopic evaluation was conducted to select the ROs having
uniform shape and size for further analysis. Using a phase contrast
microscope, the organoids were screened based on the presence of
outer transparent layer with a hollow spherical shape and a laminated
structure. All the ROs were divided into 3 groups of equal numbers
based on the experimental condition (BP-1, BP-2 and Control). After
the initial screening, 30 ROs from 3 different batches were selected for
histological studies, and 135 ROs were used for molecular assays
(n =3, triplicates of 15 in each group).

Phase contrast imaging and histological
examination

Phase-contrast imaging of the ROs before and after the EF

exposure was conducted under 10X magnification. For detailed
histological examination, ROs were fixed in 4% paraformaldehyde for
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30min at room temperature. Sections that were cut using a microtome
(5pm) were deparaffinized prior to hematoxylin and eosin (H&E)
staining. H&E images were used for gross morphological assessments.

Immunostaining

Paraffin-embedded sections (5 pm) of the ROs were permeabilized
with 0.5% Triton X-100 (Catalog No.PI85111, Thermo Scientific™,
Waltham, Massachusetts) for 20min and blocked for 1h at room
temperature with 1% BSA and 0.5% Triton X-100 in PBS. Then,
sections were incubated in blocking buffer for 12h at 4°C with
primary antibodies. After this, the sections were washed and incubated
with secondary antibody for 1h. The primary and secondary
antibodies used in the study are given in Supplementary Table S2.
Sections were stained for 10 min with DAPI (Catalog No.ab228549,
abcam, USA) before imaging.
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Quantitative polymerase chain reaction
(gPCR)

Reverse Transcription: cDNA was generated from the extracted
RNA template using Invitrogen SuperScript IV First-Strand Synthesis
System. An RNA-negative control and RNA-positive control with the
absence of Reverse Transcriptase was used in RT and run in parallel
with experimental samples. QPCR was performed per Azenta Life
Sciences (South Plainfield, NJ, USA) SOP using PCR probes listed in
Supplementary Table S1. The samples were processed in technical
replicates of 3 per target. Data analysis was performed by Azenta Life
Sciences using QuantStudio™ Real-Time PCR Software.

Image quantification

Quantification of the recoverin, CRX and vimentin-positive cells
were done using Image]J software.! The number of positive stained cells
for each marker was analyzed and normalized to the number of DAPI
labeled cells in a given region. Up to 12 regions (1cm?) were analyzed
per organoid, and 6 organoids were analyzed per condition. The result
was further analyzed using Microsoft Excel and Graph-Pad
Prism 8.2.1.

RNA sequencing

RNA extraction, library preparation, sequencing, and analysis
were conducted at Azenta Life Sciences (South Plainfield, NJ, USA) as
follows: Total RNA was extracted from fresh frozen cell pellet samples
using Qiagen RNeasy Plus Universal mini kit following manufacturer’s
instructions (Qiagen, Hilden, Germany). Library Preparation with
PolyA selection and Illumina Sequencing.

RNA samples were quantified using Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA), and RNA integrity was checked
using Agilent TapeStation 4,200 (Agilent Technologies, Palo Alto, CA,
USA). RNA sequencing libraries were prepared using the NEBNext
Ultra RNA Library Prep Kit for Illumina using the manufacturer’s
instructions (NEB, Ipswich, MA, USA). Briefly, mRNAs were initially
enriched with Oligod (T) beads. Enriched mRNAs were fragmented
for 15min at 94°C. First-strand and second-strand cDNA were
subsequently synthesized. cDNA fragments were end-repaired and
adenylated at 3%ends, and universal adapters were ligated to cDNA
fragments, followed by index addition and library enrichment by PCR
with limited cycles. The sequencing library was validated on the
Agilent TapeStation (Agilent Technologies, Palo Alto, CA, USA), and
quantified by using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA)
as well as by quantitative PCR (KAPA Biosystems, Wilmington, MA,
USA). The sequencing libraries were clustered on a flowcell. After
clustering, the flowcell was loaded on the Illumina instrument (4,000
or equivalent) according to the manufacturer’s instructions. The
samples were sequenced using a 2x150bp Paired-End (PE)
configuration. Image analysis and base calling were conducted by the
Control software. Raw sequence data (.bcl files) generated the

1 https://imagej.Nih.gov/ij/
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sequencer were converted into fastq files and de-multiplexed using
Mlumina’s bel2fastq 2.17 software. One mismatch was allowed for
index sequence identification. After investigating the quality of the
raw data, sequence reads were trimmed to remove possible adapter
sequences and nucleotides with poor quality. The trimmed reads were
mapped to the reference genome available on ENSEMBL using the
STAR aligner v.2.5.2b. The STAR aligner is a splice aligner that detects
splice junctions and incorporates them to help align the entire read
sequences. BAM files were generated because of this step. Unique gene
hit counts were calculated by using feature counts from the subread
package v.1.5.2. Only unique reads that fell within exon regions
were counted.

After the extraction of gene hit counts, the gene hit count table
was used for downstream differential expression analysis. Using
DESeq2, a comparison of gene expression between the groups of
samples was performed. The Wald test was used to generate p-values
and Log?2 fold changes. Genes with adjusted p-values <0.05 and
absolute log2 fold changes >1 were called as differentially expressed
genes for each comparison. A Gene Ontology (GO) analysis was
performed on the statistically significant set of genes by implementing
the software GeneSCE The mgi GO list was used to cluster the set of
genes based on their biological process and determine their statistical
significance. A PCA analysis was performed using the “plotPCA”
function within the DESeq2 R package. Plot that shows the samples
in a 2D plane spanned by their first two principal components were
created. The top 500 genes, selected by highest row variance, were
used to generate the plot.

Results

Acceleration of RO development after
electrical stimulation

Microscopic evaluation of the ROs after stimulation was
performed using phase contrast microscope (Figure 1F) suggested
absence of apparent alteration in the RO structure after EF stimulation.
H&E images suggested RO enrichment based on an increased
concentration of cells exhibiting deeply stained nuclei in the core
region of the RO (Figure 1E). Immunohistochemistry (Figure 2A)
revealed substantial modification in the level of photoreceptor and
Miiller cell marker expressions in EF-stimulated ROs (EF ROs)
compared to the unstimulated age-matched control ROs. EF ROs
exhibited considerable increase in the expression of the general
photoreceptor marker, recoverin. Recoverin is a calcium-binding
protein present mainly in retinal rods, cones, and cone bipolar cells.
In addition, increased expression of photoreceptor marker, cone-rod
homeobox (CRX), and Miiller cell marker vimentin was also noticed
in EF ROs. CRX is a photoreceptor-specific transcription factor that
plays a role in the differentiation of photoreceptor cells.

EF-induced changes in the expression of
key RO developmental genes

Quantitative polymerase chain reaction (QPCR) gene analysis was

used to compare expression patterns between day 80 electrically
stimulated ROs (EF ROs) and age-matched non-stimulated ROs
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types such as recoverin CRX, vimentin and synaptophysin staining. Blue color, DAPI- nuclear stain. 60 X magnification, Scale bar 100 um. (B) Total
number of cells that expressed different photoreceptor markers in the control group (black) and electrically stimulated RO group (BP-1, red, BP-2,
green). (C) gPCR analysis of gene expression in D87 retinal organoids in BP-1 and BP-2 electrical stimulation groups and control (non-stimulated)
group. Photoreceptor markers (CRX, recoverin, SAG), synaptic marker (vGLUT1) after 1h of electrical stimulation at D80 followed by 7 days in culture
(D87). Gene expression was normalized to GAPDH and was compared to two different electrical stimulation setups. Error bars represent SEM.*p < 0.05.

(Figure 2C). There was a significant increase in the expression of
general photoreceptor markers SAG, Recoverin, CRX, and synaptic
marker vGLUT1. No significant cell proliferation was observed based
on Ki 67 expression (Figure 2C).

Differential expression of genes and
pathways in electrically stimulated ROs
(EF ROs)

RNA sequencing studies using EF-stimulated ROs (ROs
exposed to EF followed by 7 days culture under normal conditions)
were performed. Significant changes in the gene expression were
estimated based on differential expression (DE) analysis. Initial DE
analysis data indicated the presence of 492 DE genes in the BP-1
EF group and 603 DE genes in the BP-2 EF group (p-value <0.05
and absolute log2 fold change >1, Figures 1D,G). We employed
three different analysis techniques to correlate the data based on
DE genes with RO development and maturation. This included
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DESeq (Differential gene expression analysis based on the negative
binomial distribution), IPA (Ingenuity Pathway Analysis), and GO
(Gene Ontology) analysis. GO biological category analysis of DEGs
showed that genes related to retinal development and function
remained top on the list in both BP-1 and BP-2 groups (Figure 3).
Interestingly, the highest level of differences was observed in genes
related to visual perception; that was more apparent in BP-1 group
(Figure 3). Differences between BP-1 and BP-2 groups were also
noticed in the clusters of genes belonging to the various functional
groups (Supplementary Figure S1). IPA investigated significantly
involved pathways and cellular functions in ROs after EF (Figure 4,
Supplementary Figure S2). In the BP-1 group, among the top in the
list included the visual phototransduction pathway and various
4A,
Ingenuity Pathway Analysis of the visual

neuronal signaling pathways
S2A).

phototransduction pathway in BP-1 group is presented in

(Figure Supplementary

Figure
Supplementary Figure S3. There was no expression of the above

pathway in the BP-2 stimulation group (Figure 4B). This suggests
major differences between the two EF paradigms in influencing the
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FIGURE 3
Gene ontology (GO) analysis data. Top 10 GO biological category annotations for the differentially expressed genes (DEGs) identified based on the
RNA-seq data for control vs. electrically stimulated retinal organoid samples (BP-1 vs. control, BP-2 vs. control). Each GO group that is significantly

overexpressed (p < 0.05) is included in this list.

A B
Retinal lineage development

Neuronal development and maturation

C D RGC and intermediate neuron
Photoreceptor development RPE development development
and function maturation and functionalitv }

apRa

}

ThAPA
PROX1
vaxt
™Y
GRKI
st
TFAPD

61
s
TeRt
scims

RpEss SLetAs
Semasa

BP1
BP2

Control

FIGURE 4
Ingenuity Pathway Analysis (IPA) data. IPA data of differentially expressed retinal organoid genes showed as a graphical summary representing networks
of the major pathways identified as the most significant in the differential transcriptomics data (p < 0.05). (A) BP-1 vs Control, (B) BP2-vs Control.
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RO development and maturation (also see, Supplementary
Figures S2 A,B).

Based on DESeq analysis for differentially expressed genes,
genes that are associated with early retinal development and
maturation showed significant differences between BP-1 and BP-2
(Figure 5, Supplementary Figure S4, Supplementary Tables S3a-n).
Interestingly several gene expression pathways that are involved
in early eye development showed significant downregulation or
remained unaffected (Figure 5). On the other hand, significant
upregulation of key genes directly related to photoreceptor
5C,
Supplementary Tables S3e,f). Upregulation of genes related to

development and function was noticed (Figure
photoreceptor development and function predominantly belonged
to the rod pathway. Interestingly, this increase in expression was
the BP-1 group 5B,

Supplementary Tables S3e,f), suggesting a profound influence of

mostly limited to (Figure
stimulation parameters on retinal developmental pathways. Other
major changes observed were in the downregulation of genes
associated to RPE development and its maintenance (Figure 5D,
Supplementary Tables S3m,n). While RGC genes showed
downregulation, genes associated with the development and
maturation of bipolar, horizontal, amacrine, and retinal ganglion

cells were mostly upregulated (both in BP-1 and BP-2, Figure 5E).

10.3389/fnins.2024.1438903

Other major changes associated with EF stimulation included an
increase in the gene expression pattern of Miiller cells (Figure 5E).

Discussion

In mammals, retinal development involves several key steps:
initially, the proper proportions of seven key retinal cell types are
established, with ganglion cells being the only type regulated by cell
death. Following this, cells migrate to their designated locations,
neurons form synaptic connections, and synaptic refinement occurs to
create the mature retinal circuitry. Notably, the development includes
the emergence of RGC:s first, followed by amacrine cells, Miiller cells,
bipolar cells, and horizontal cells, with photoreceptors finalizing the
top layers. Additionally, during development, intermediate circuits are
formed and restructured, generating spontaneous retinal waves
through transient networks of electrical and chemical signaling. Also
electric fields arise from ion channels and pumps, membrane potential
differences, extracellular matrix and cell-cell interactions. Such
endogenous electrical activities guide cell migration, polarity, and
organization to ensure proper retinal formation and function (Ford
and Feller, 1995). This suggests that extrinsic electrical fields can have
a profound influence on mammalian retinal development.

A

Anaiysis: AG-1 v8 Cont - 2023-12-06 09:57 AM
2acoe 20

BP-1 vs Control

G Proten Coupped Receptor Sgraing | |
Sgnaing by TGF beta Receptor Complex. |l
RHOA Sanaing |

Irterieukn 4 and inereukn 13 sgraing |
Serotonin Receptor Sgnaing I
Sonaing oy Ao Famsy GTPases. |

‘Roguiaton of Actn based Mosiey by Ao |

Sraing by POG . I

NCAM sgnaing for neuste ot row I
Neurophs degranuiason. I

©2000-2023 QUAGEN. Allights reserved.

FIGURE 5

Significantly involved pathways and cellular functions after electrical stimulation
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Heat map showing the differentially expressed genes representing the major retinal organoid developmental pathways. Transcriptional profiling was
performed and heatmaps were generated to compare differentially expressed genes (DEGs) between BP-1, BP-2, and control retinal organoids at D87.
(A) Neuronal development and maturation, (B) Retinal lineage development, (C) Photoreceptor development and function, (D) RPE development
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Retinal organoids (ROs) are a unique in vitro model system due
to their ability to self-organize into distinct layers that closely mimic
the human retina’s structure and function. This includes the formation
of photoreceptors, ganglion cells, bipolar cells, Miiller glia, and other
retinal cell types while also capable of exhibiting electrical signaling
patterns similar to those in vivo, such as synaptic activity (Bell et al.,
2020). In our study, 8 day old (D80) ROs were analyzed 7 days after a
single 60-min exposure to a specific electrical stimulation paradigm.
Exposure to the electrical field (EF) resulted in significant increase in
the number of photoreceptors, Miiller cells, and several
non-photoreceptor retinal neural cell types along with improved
synaptic activities. RNA sequencing (RNA-seq) data has proven to
be highly informative in elucidating the impact of EF stimulation on
diverse retinal cell populations, as well as the alterations observed in
their developmental trajectory.

Although the transcription factors such as PAX6, SFRP2,
CDH2, MAP2, RAX, SIX3, LHX2, SIX6, NR2F2, and OTX2 that
regulate the early genesis of the eye (Mathers et al., 1997; Chow
et al., 1999; Phillips et al., 2014; O’'Hara-Wright and Gonzalez-
Cordero, 2020) were not affected by EF, other critical pathways
involved in retinal development and maturation were differentially
expressed in ROs after exposed to the EE. Vsx2, FGF1, FGF11,
FGF9, FGF13, TGFp, retinoids, and Gasl genes that are
fundamental genes involved in the diversification and stabilization
of the two major visual domains (RPE and NR) (Gamm et al., 2019)
were mostly affected (Figure 5B). The VSX2 gene is identified as
having a critical role in the maintenance of neural retina (NR) fate
during early retinogenesis (Grigoryan, 2022; Gamm et al., 2019).
Interestingly, the developmental homeobox genes that are hallmarks
of the eye field in early development (CDH1, Wnt2, BMP7, Pitx1,
Pitx2) (Gamm et al., 2019; Berber et al., 2022) were all significantly
downregulated (Figures 5B,E) suggesting a direct involvement of
VSX2 gene for promoting the neural developmental by repressing
the early retinal developmental pathways. Fourteen genes that are
associated with RPE development and functionality (Figure 5D)
including the key RPE functionality gene, the RPE65 expression was
significantly downregulated in EF ROs (BP-1). Importantly,
RPE-specific genes such as TTR and MFSD2A that regulate the RPE
functionality in the embryonic eye (Gupta et al., 2023; Wong et al.,
2016), were also downregulated (BP-2) suggesting a role for VSX2
for its repressive activity in RPE differentiation (Kruczek and
Swaroop, 2020).

According to Cowan et al. (2020), the temporal pattern in the
appearance of neural retinal cells is RGCs, photoreceptor precursors,
horizontal cells, amacrine cells, bipolar cells, and Miiller cells. All the
above neuronal development pathways displayed enhanced activities
in EF ROs based on DEG analysis, Gen ontology (GO) analysis, and
Ingenuity Pathway Analysis (IPA). This transcriptomics data was
supported by immunostaining and qPCR assays. In ROs, at around
D80-D120, early progenitors of cones and rods start to emerge
(Afanasyeva et al., 2021; Bellapianta et al., 2022) under the influence
of a set of signaling pathways comprising of Wnt, transforming growth
factor beta (TGF-f), bone morphogenic proteins (BMPs), and
fibroblast growth factor (FGF) (Bell et al., 2020). In addition, Visual
System Homeobox genes (VSX1 and VSX2) play a crucial role in the
early differentiation of photoreceptors (Afanasyeva et al, 2021;
Bellapianta et al., 2022). All the above pathways exhibited differential
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expression in the ROs after a single exposure to EF (Figure 4),
suggesting the contribution of Wnt, TGF-f, and BMP signaling
pathways to the various changes observed in the EF ROs.

Based on RNA sequencing data, SAG (S-antigen visual arrestin),
a major photoreceptor marker gene, exhibited significantly higher
expression in both BP-1 and BP-2. Interestingly, most of the other
upregulated photoreceptor-related genes belonged to the rod
photoreceptor pathway, a trend that was more pronounced in the BP-1
group. RNA sequencing assay (log” Fold Change 1.43, p <07, DESeq),
Gene Ontology analysis, and QIAGEN Ingenuity® Pathway Analysis
(QIAGEN IPA) also supported the above observation (Figures 4, 5).
Our study that demonstrates upregulation of genes specific for rod
photoreceptors suggests potential application of EF to enhance PR
differentiation in ROs.

The RGC gene suppression effects on RO development caused by
EF were substantiated by qPCR and immunostaining data. Several key
genes including TBR1 gene which is directly involved in RGC
maintenance in the retina (Liu et al., 2018) showed downregulation.
Although RGC development in ROs generally declines after D80, the
increased downregulation of genes related to RGC development in EF
ROs suggests that extrinsic electrical fields can influence RGC
development in ROs.

Increase in neuronal development and maturation in EF ROs was
evidenced by the upregulation of genes and pathways associated with
bipolar cell development, maturation, and functionality (GRIK1,
VSX1, VSX2). Sema5B gene expression was significantly upregulated
in both EF RO groups (BP-1 and BP-2). Sema5B expressed in the outer
neuroblastic layer provides repulsive guidance signals to extending
neurites from amacrine cell and RGC subtypes, the guidance events
that are critical for retinal neural circuit formation (Matsuoka et al.,
2011). GRIK1 is an established marker for bipolar cells and TFAP2A
is a marker for amacrine cells (Cowan et al., 2020) both were
upregulated in BP-1 and BP-2. Upregulation of genes directly
associated with amacrine cell development (TFAP2A and TFAP2B)
was also observed in EF ROs. The ISL1 gene that has been implicated
arole in the development of on-bipolar cells and cholinergic amacrine
cells (Galli-Resta et al., 1997; Elshatory et al., 2007) also showed
increased expression in EF ROs. Most gene expression patterns linked
to non-photoreceptor neuronal development were more similar
between the BP-1 and BP-2 groups, indicating that EF likely has a
broad impact on enhancing neuronal differentiation.

Miiller glia in the mammalian eye exhibit neurogenic potential,
with stem cell/progenitor characteristics thereby it give rise to neuronal
populations of the retina (Eastlake et al, 2021). The Miiller cell
development originate along with retinal neurons from retinal
progenitor cells (RPCs) (Ning et al., 2022). In EF ROs, the core area was
more densely packed with cells that were predominantly Miiller cells
and photoreceptors (Figure 2). Apparent changes in the arrangement
of cells in the core region of the EF-stimulated ROs can be considered
as the reflection of increased differentiation of the above RO cell types.
The upregulation of Miiller cell development in EF ROs is demonstrated
by immunostaining (Figure 2A) and RNA expression assays
(Figure 5E). JAG1, a multipotent RPC marker representing gliogenesis
(Mao et al.,, 2019; Berber et al., 2022) was also upregulated in EF ROs.
Miiller glial specific genes such as aquaporin 4 (Aqp4) and VSX2
(Roesch et al., 2008) were also highly expressed in the EF ROs. In
addition, VIM, SLC1A3, ADM (BP-1 only), and GPR37 (BP-1 only) the
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other major Miiller cell-related genes (Roesch et al., 2008; Ning et al.,
2022), were significantly upregulated, suggesting a direct involvement
of EF in increased Miiller cell differentiation. Data obtained from this
study suggest potential applications of EF in enhancing Miiller cell
populations for cell harvesting and therapeutic testing.

Present study demonstrated that EF can be a useful approach to
modulate RO differentiation and maturation. Unlike using chemical
molecules, the EF can be a more desirable approach for controlled
enrichment of specific retinal organoid cell types. Since ROs are
considered as an excellent source for photoreceptors (Lin et al., 20205
Nair et al., 2021; Thomas et al., 2021; Xue et al., 2021; Nair and Thomas,
2022a, 2022b), the enrichment of photoreceptors and synapsis can
be beneficial for replacement therapies. Our study demonstrated that
EF exposure can increase the population of photoreceptors and other
retinal neuronal cell types in ROs by EE While this study presents
promising findings on the impact of extrinsic electric fields on retinal
organoid development, further investigation is needed to examine the
long-term effects of electrical stimulation in the maturation of different
cell types of ROs and ensure the safety and efficacy of this approach.
Investigators can fine-tune the various EF parameters and exposure
time based on the degree of stimulation and the age of the ROs to
determine the pathways that need to have interfered culminating in the
enrichment of specific cell types that can provide the opportunity for
researchers to harvest cells for conducting in vivo and in vitro assays.
In summary, information obtained from this study suggests that several
existing limitations in RO technology can be overcome by using
suitable EF parameters without applying chemicals and small molecules.
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