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ABSTRACT

Speaker anonymization aims to conceal cues to speaker iden-

tity while preserving linguistic content. Current machine

learning based approaches require substantial computational

resources, hindering real-time streaming applications. To

address these concerns, we propose a streaming model that

achieves speaker anonymization with low latency. The sys-

tem is trained in an end-to-end autoencoder fashion using a

lightweight content encoder that extracts HuBERT-like in-

formation, a pretrained speaker encoder that extract speaker

identity, and a variance encoder that injects pitch and en-

ergy information. These three disentangled representations

are fed to a decoder that re-synthesizes the speech signal.

We present evaluation results from two implementations of

our system, a full model that achieves a latency of 230ms,

and a lite version (0.1x in size) that further reduces latency

to 66ms while maintaining state-of-the-art performance in

naturalness, intelligibility, and privacy preservation.

Index Terms— speaker anonymization, voice conver-

sion, voice privacy, speech synthesis

1. INTRODUCTION

The task of speaker anonymization is to transform utter-

ances to hide the identity of the speaker (while preserving

their linguistic content). Speaker anonymization provides

privacy protection and confidentiality in a range of applica-

tions, including customer service interactions, voice-operated

virtual assistants, legal proceedings, and medical consulta-

tions. Moreover, speaker anonymization addresses ethical

and responsible use of speech data, aligning with privacy

regulations and safeguarding individuals’ rights.

Existing machine learning (ML) based approaches to

speaker anonymization follow a cascaded automatic speech

recognition (ASR) – text-to-speech (TTS) architecture [1, 2].

An ASR module produces a text transcription that is speaker

independent but eliminates emotional cues that may oth-

erwise be of use for downstream applications. Moreover,

existing systems for speaker anonymization are computation-

ally heavy, operate in a non-streaming fashion, and/or have

high latency on CPU devices as opposed to GPUs. For speech

anonymization to be used in the field, it must operate at real

time (or faster), exhibit low latency, require minimal future

context and be compatible with low-resource devices (e.g.,

smartphones).

To address these needs, we propose an end-to-end stream-

ing model suitable for low-latency speaker anonymization.

Our model draws inspiration from neural audio codecs [3, 4]

for audio compression in low-resource streaming settings.

Our key strategy that enables streaming is to replace tradi-

tional non-causal computationally intensive networks (e.g.,

ASR or self-supervised learning based models) for encod-

ing linguistic content with a lightweight convolutional neural

network (CNN) based architecture. Our proposed archi-

tecture consists of: (a) a streaming waveform encoder that

generates a speaker-independent content representation from

waveforms, (b) a pseudo-speaker generator that produces

an anonymized speaker representation (i.e., an embedding)

from the input speech, (c) a speaker/variance adapter that

adds speaker, pitch and energy information to the content

representation, and (d) a streaming decoder that consumes

the speaker/variance adapted linguistic representation and

the corresponding speaker embedding to generate the fi-

nal anonymized audio waveform. Our system is trained in

an auto-encoder fashion, which reconstructs the input condi-

tioned on the speaker embeddings generated using pre-trained

speaker encoders [5, 6]. During inference, a pseudo-speaker

generator produces a target speaker embedding with cosine

distance greater than 0.3 from the source embedding, ensur-

ing that the re-synthesized utterance sounds as if a different

(i.e., anonymized) speaker had produced it. Additionally, the

speaker/variance adapter is used to modulate pitch and energy

values to further enhance privacy and control the similarity of

the synthesized speech with the source audio. We show that

our lightweight convolutional neural network (CNN) based

architecture achieves similar performance as traditional con-

tent encoders.

We perform experiments on two versions of our model, a

Base version that can perform real-time streaming synthesis

with a latency of 230ms and a Lite version (having 0.1x the

number of parameters) that further reduces latency to 66ms

while maintaining state-of-the-art performance on natural-

ness, intelligibility, privacy and speaker identity transfer1.

1https://warisqr007.github.io/demos/stream-anonymization/
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2. RELATED WORK

2.1. Voice conversion

Speaker anonymization is closely related to voice conversion

(VC). However, whereas VC seeks to transform utterances

from a source speaker to match the identity of a (known)

target speaker, speaker anonymization only requires that the

transformed speech be sufficiently different from the source

speaker to conceal their identity.

The first step in conventional VC architectures is to dis-

entangle the linguistic content of an utterance from speaker-

specific attributes. As an example, cascaded ASR-TTS archi-

tectures [7] use an ASR model to transcribe the input utter-

ance into text, followed by a TTS model that converts the text

back into speech –conditioned on a speaker embedding. Vari-

ants of this approach replace the ASR module with acous-

tic models that generate a more fine-grained representation

than text, such as phonetic posteriorgrams (PPGs) [8]. Recent

approaches have also used information bottlenecks to disen-

tangle linguistic content form speaker identity [9]. A major

drawbacks of the latter approach is that information bottle-

necks must be carefully designed and are sensitive to the di-

mension of latent space. Other techniques include instance

normalization [10], use of mutual information loss [11], vec-

tor quantization [11, 12], and adversarial training [13]. To

enable streaming, recent VC methods use a streaming ASR

to extract PPGs [14] or streaming ASR sub-encoders [15, 16]

to generate linguistic content, and then perform VC through

causal architectures that require limited future contexts.

2.2. Speaker anonymization

Speaker anonymization approaches can be broadly divided

into two categories: digital signal processing (DSP) and ma-

chine learning (ML) based. DSP methods include formant-

shifting using McAdams coefficients [17], frequency warping

[18], or a series of steps consisting of vocal tract length nor-

malization, McAdams transformation and modulation spec-

trum smoothing [19]. Additionally, modifications to pitch

[20] and speaking rate [21] are used. DSP models are sig-

nificantly smaller (i.e., fewer parameters) than ML models,

which results in efficient and speedy execution. However, the

types of global transforms used in DSP methods cannot fully

remove speaker-dependent cues, making them vulnerable to

ML-based speaker verification systems [1].

ML methods for speaker anonymization follow the con-

ventional VC framework of disentangling linguistic con-

tent from speaker identity, but then replace the latter with a

speaker embedding that is different (anonymized) from the

source. Various methods have been proposed to select this

anonymized speaker embedding. For example, Srivastava

et al. [22] generate anonymized embeddings by randomly

selecting N speaker vectors from a pool of speakers farthest

from the source, using e.g., cosine distance, whereas Perero-

Codosero et al. [23] use an autoencoder architecture with an

adversarial training module that removes speaker, gender, and

accent information. Other approaches use look-up tables [24]

or generative adversarial networks [1] to generate pseudo-

speakers. Our approach follows the latter: we combines

a GAN-based pseudo-speaker generator with a streaming

model to enable real-time speaker anonymization with low

latency.

3. METHOD

The proposed system is illustrated in Figure 1. Anonymiza-

tion takes place in two steps, (1) generating a fixed (i.e.,

off-line) anonymized speaker embedding personalized to the

source speaker and, (2) using this fixed anonymized speaker

embedding and the streaming speech synthesizer to synthe-

size anonymized speech that only preserves the linguistic

content of the source speech. To generate the anonymized

embedding, a reference waveform from the source speaker

is passed to the pre-trained speaker encoder, which then pro-

duces the source speaker embedding. The pseudo speaker

generator receives this source speaker embedding and gen-

erates the anonymized version (see Figure 1b). To synthe-

sise speech signals, the content encoder receives streaming

chunks of waveform and converts it into a hidden representa-

tion z that contains the linguistic content disentangled from

the speaker representation. The content information z and

the anonymized speaker embedding (generated in the pre-

vious step) is passed to the speaker/variance adapter. The

speaker/variance adapter, first, conditions the anonymized

speaker embedding on the content representation z and then

adds pitch and energy values. The decoder receives the output

of the speaker/variance adapter and the anonymized speaker

embedding to generate the final anonymized waveform.

We train two versions of our proposed system, a base and

a lite version. Below, we describe each component of our

system and the training procedure in detail.

3.1. Content encoder

The content encoder consumes the wav signal to predict

discrete speech units produced by discretizing the output

speech representation from a pretrained HuBERT model

[25] into one of N codewords or pseudo-labels [26]. Our

content encoder architecture follows that of HiFiGAN [27],

except all transposed convolutions in HiFiGAN are replaced

with strided causal convolutions to downsample the input

waveform. Additionally, to support streaming applications,

we replace all vanilla CNN layers in HiFiGAN with causal

CNNs so that the prediction only considers the past context

and does not rely on future audio frames. For both versions

of our model (base and lite), we use downsampling rates

of [2, 2, 4, 4, 5]. The residual blocks have kernel sizes as

[3, 7, 11] with dilation rates as [[[1, 1], [3, 1], [5, 1]]∗3] (please

IEEE Spoken Language Technology Workshop 2024 728
Authorized licensed use limited to: Texas A M University. Downloaded on September 25,2025 at 23:04:02 UTC from IEEE Xplore.  Restrictions apply. 



Source

Wav

Speaker 

Embedding

Speaker 
Encoder

Content

Encoder
Decoder

Speaker/

Variance 

Adapter

HuBERT + 

K-means
CE loss

F0/Energy

Extractor

Linear Layer

Z

Speaker 
Encoder

Content

Encoder
Decoder

Speaker/

Variance 

AdapterZ

Pseudo
Speaker

(a) Training

(b) Inference

Wav Wav

Anon

Wav

(c) Speaker/Variance Adapter

Pitch 

Predictor

Energy 

Predictor

Z to decoder

Conv1D

Conv1D

�

�

»
Instance 

Normalization

Speaker Adapter

Fig. 1. Block diagram of the proposed anonymization

system. (a) training workflow (b) inference workflow (c)

speaker/variance adapter.

refer [27] for details). The difference between base and the

lite version is the dimension of the hidden representation z

(the output of the encoder): 512 dimensions for the base

version and 128 dimensions for the lite version.

3.2. Speaker encoder and pseudo-speaker generator

Speaker verification or classification systems generally use

speaker embeddings to represent the characteristics or timbre

of a speaker’s voice. Widely used speaker encoders include

the GE2E model [28], X-vectors [6] and ECAPA-TDNN

[5]. Our system concatenates embeddings generated from X-

vectors and ECAPA-TDNN models, since these two models

have been shown to complement each other [1].

To perform speaker anonymization, we use a pseudo-

speaker generator that takes the original speaker embedding

as input and outputs an artificially generated speaker embed-

ding such that the generated anonymized speaker embedding

has a cosine distance greater than 0.3 as compared with the

original speaker embedding. Our pseudo-speaker generator

follows a GAN-based architecture [1] and is trained sepa-

rately. The generator is trained to receive a random vector

sampled from a standard normal distribution N(0, 1) as input

and output a vector of the same shape as the original speaker

embedding. The discriminator is trained to discriminate w.r.t

the quadratic Wasserstein distance and transport cost [29]

between the artificial and the original speaker embeddings.

3.3. Speaker/Variance adapter

The speaker/variance adapter aims to add speaker, pitch, and

energy (i.e., variance) information to the speaker-independent

content representation and provides a way to control them

[30]. The speaker/variance adapter consists of three modules:

(a) speaker adapter, (b) pitch predictor, and (c) energy predic-

tor (see Figure 1c).

The speaker adapter conditions the speaker embedding on

the content representation z, and passes it to the pitch and

energy predictors. The speaker adapter is based on adaptive

instance normalization (adaIN) [31] and feature-wise linear

modulation (FiLM) [32]. The conditioning goes as follows.

First, we apply instance normalization to the input feature rep-

resentation, and then transform it with scale and bias param-

eters learned through two 1D CNNs that take speaker embed-

dings as input. The use of instance normalization was moti-

vated by a prior work [10] that showed instance normalization

being helpful in removing residual speaker information.

Pitch and energy predictor estimate pitch and energy val-

ues based on speaker adapted content representation z. Dur-

ing training, we use the ground-truth pitch and energy values

to train the pitch and energy predictors. At inference, the out-

put of the pitch and energy predictor are added to the speaker

adapted z. The pitch and energy predictors have similar archi-

tecture consisting of a 2-layered 1D causal CNNs (kernal size

3) with ReLU activation, followed by layer normalization and

dropout layer and an additional 1D CNN (with kernel size 1)

to project pitch and energy values on the latent representation.

3.4. Decoder

The decoder follows the same design and training procedure

as HiFiGAN [27] and can be seen as a mirror-image of the

content encoder. Similar to the content encoder, all vanilla

CNNs are replaced with causal CNNs. The decoder receives

speaker/variance adapted latent representation along with

speaker embedding and directly generates waveform signal

without any intermediate mel-spectrogram generation. We

additionally adapt the output of each residual block of the

decoder to the speaker embedding. In our experiments, we

observed that doing so gave better speaker transfer perfor-

mance. For both versions of base and lite version of our

model, we use upsampling rates of [5, 4, 4, 2, 2]. The residual

blocks have kernel sizes as [3, 7, 11] with dilation rates as

[[[1, 1], [3, 1], [5, 1]] ∗ 3].

3.5. Training

The training workflow is described in Figure 1a. The pro-

posed system is trained end-to-end similar to an autoencoder,

reconstucting the same waveform at output that fed as input.

The content encoder is trained to predict the pseudo-labels

generated through a HuBERT/Kmean module using cross-

entropy loss. The pitch and energy predictor in the variance
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adapter apply mean-squared error loss for pitch and energy

prediction. At the output of the decoder, Following the HiFi-

GAN architecture [27], we apply a combination of adversar-

ial losses at the output of the decoder, including feature loss,

multi-period discriminator loss, multi-scale discriminator

loss, multi-resolution STFT loss [33] and mel-spectrogram

reconstruction loss. These discriminators have similar archi-

tecture as those in HiFiGAN, including weighting schemes

to compute the total decoder loss. The final training loss is

the summation of content loss, pitch/energy error loss and

decoder losses. We apply a stop-gradient operation to prevent

gradient flow (i.e., back-propagation) from the decoder to the

encoder, to ensure that the speaker information is not leaked

via the content representation. This operation effectively de-

couples it from the rest of the system; in other words, the

encoder and the rest of the system can potentially be trained

sequentially as two independent modules.

4. EXPERIMENTAL SETUP

We trained our system on the LibriTTS corpus [34] follow-

ing guidelines for the Voice Privacy Challenge 2022 (VPC22)

[35]. All our experimental results are presented on the Lib-

riTTS dev and test set, which were not part of the training.

We use a pretrained HuBERT-base2 and extract the the out-

put from its 9th layer. We set the number of cluster cen-

troids to 200. For all our experiments, we use a sampling

rate of 16 kHz and batch size of 16 with the AdamW opti-

mizer with a learning rate of 2 ∗ 10−4 annealed down to 10−5

by exponential scheduling. The encoder is first pretrained

for 300k steps (for training stability), and then trained to-

gether with the decoder for an additional 800k steps. The pre-

trained speaker encoders were taken from speechbrain [36].

The pseudo speaker embedding generator follows the train-

ing procedure described in [1] and trained on VoxCeleb 1 and

2 [37, 38]. All our models are trained using two NVIDIA

Tesla V100 GPUs for approximately two weeks.

5. RESULTS

We evaluated our system on a series of subjective and ob-

jective measures of synthesis latency, synthesis quality, pri-

vacy as well as speaker transfer ability. We compare our re-

sults against five baselines: three state-of-the-art VC mod-

els (VQMIVC3 [11], QuickVC4 [39], and DiffVC5 [40]) and

two speaker anonymization models6, a DSP-based model [17]

(baseline B2 from VPC22) and a ML-based model (to which

we refer as B3) that uses a transformer-based ASR and a

2https://github.com/facebookresearch/fairseq
3https://github.com/Wendison/VQMIVC
4https://github.com/quickvc/QuickVC-VoiceConversion
5https://github.com/huawei-noah/Speech-Backbones/tree/main/DiffVC
6https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-

2024

Fastspeech2-based TTS with a WGAN-based anonymizer [1].

The five baseline models are trained on the same dataset as

our proposed system, and we use their pretrained checkpoints

obtained from their corresponding github repositories. We

could not find any open-source streaming speech synthesis

model and hence were unable to include them as baselines.

We evaluate our model using the same Libri-TTS evaluation

split as VPC22. For the VC baselines we randomly select

a speaker from the CMU Arctic corpus [41] as the target

speaker.

5.1. Synthesis Latency

Our pretrained HuBERT model produces speech frames at

50Hz, so the smallest chunk size that our model can process

is 20ms. In this section, we present the synthesis latency and

the real-time factors (RTF) for the base and lite versions for

our model, for various chunk sizes between 20ms and 140ms

on both CPU and GPU devices. Latency is defined as the sum

of the chunk size and the average time the model takes to syn-

thesize that chunk. RTF is the ratio of the system’s average

processing time to the chunk size. For a system to be real-

time, the latency should be less than twice the chunk size,

meaning RTF should be less than 1. Results are summarized

in Table 1. On GPU, our base version can operate in real-time

for the chunk size of 40ms with a latency of 64ms, while on

CPU the base model can be real-time for chunk size of 120ms

with a latency of 230ms. In case of the lite version, the model

is real-time for chunk size of 20ms with a latency of 38ms

on GPU and can operate in real-time for 40ms with latency of

66ms on the CPU. For our test set of experiments we set the

chunk size of 120ms and 40ms for the base and lite versions

respectively.

5.2. Synthesis Quality

We use DNSMOS [42] as an objective measure of natu-

ralness for our experiments. DNSMOS provides three rat-

ings for quality of speech (SIG), noise (BAK), and overall

(OVRL). Additionally, we assess the intelligibility of synthe-

sized speech through Word Error Rate (WER). We calculated

WER using an ASR consisting of a CRDNN based acoustic

model and a transformer-based language model that uses CTC

and attention decoders. Table 2, summarizes results for the

five baselines and the proposed systems. In terms of DNS-

MOS, our models achieve comparable ratings as Diff-VC,

QuickVC, and B3 across the three measures, and comparable

or better than the source speech. In terms of intelligibility, our

systems achieve comparable WER to that of B3, and superior

to the rest, even though our models operate in a causal fashion

with far more limited context.

We verified the synthesis quality of our two models

through listening tests on Amazon Mechanical Turk (AMT).

Namely, participants (N=20) were asked to rate the acoustic

quality of utterances using a standard 5-point scale mean
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Table 1. Synthesis latency and real-time factors (RTF) on CPU and GPU devices.

Chunk Size CPU (ms) GPU (ms)

(ms) base lite base lite

latency RTF latency RTF latency RTF latency RTF

20 83.82 3.19 43.01 1.15 44.61 1.23 38.36 0.92

40 115.23 1.88 66.27 0.66 64.38 0.61 58.70 0.47

60 170.93 1.85 88.03 0.47 84.03 0.40 79.55 0.33

100 230.23 1.30 136.60 0.37 124.19 0.24 118.92 0.19

120 229.75 0.91 159.22 0.33 144.16 0.20 139.41 0.16

140 249.38 0.78 173.49 0.24 163.90 0.17 158.90 0.14

Table 2. DNS MOS, Word Error Rates (WER) and speaker

similarity scores (SSS) for baselines and the proposed model.

SIG BAK OVRL WER SSS

VQMIVC 3.35 3.78 2.98 26.88 0.72

Quick-VC 3.55 4.06 3.28 6.30 0.68

Diff-VC 3.62 4.17 3.40 7.64 0.82

VPC22 B2 2.85 3.44 2.50 12.02 -

B3 3.57 4.03 3.28 4.65 -

base 3.53 3.99 3.31 5.12 0.85

lite 3.48 3.93 3.22 6.47 0.81

Source 3.58 3.99 3.26 2.98 0.89

Table 3. Subjective MOS for naturalness.

Source base lite

MOS 3.54 ± 0.56 3.57 ± 0.59 3.47 ± 0.62

opinion score (MOS) [rating, speech quality, level of distor-

tion]: [5, excellent, imperceptible] — [4, good, just percep-

tible but not annoying] — [3, fair, perceptible but slightly

annoying] — [2, poor, annoying but not objectionable ] — [1,

bad, very annoying and objectionable]. Each listener rated ut-

terances synthesized using the base and lite models, as well as

original utterances (20 for each). Results are shown in Table

3. Both systems (base and lite) obtained comparable ratings

of MOS as the original utterances. We see a difference of

0.1 between the MOS score of base and lite versions, but we

didn’t find them to be significant. It is noteworthy that while

the lite version has 0.1x number of parameters, it achieves

nearly the same synthesis quality as the base version.

5.3. Speaker Anonymization

To assess speaker-anonymization performance, we report

Equal Error Rate (EER) on the speaker verification model

(ASV) in the VoicePrivacy 2024 Challenge github (see sec-

tion 4). ASV tests are conducted for the following two

Table 4. Equal Error Rate (EER) as a privacy metric. The

higher the better.

VPC22 B2 B3 base lite

O-A M 25.10 44.24 43.83 42.57

F 37.42 47.78 46.87 45.31

A-A M 11.03 42.63 41.43 39.20

F 15.03 43.23 42.03 41.16

scenarios, (a) ignorant, where we only anonymize the trial

data (O-A), or (b) lazy-informed, where we anonymize both

enrollment and trial data but use different target speakers

(A-A). Results are shown in Table 4. For both the ignorant

and lazy-informed scenario, our models achieves similar per-

formance as B3 and outperforms VPC22 B2. Although our

base model performs slightly worse than B3, the differences

are not significantly different between them (p = 0.13).

To corroborate these results, we conducted an AB listen-

ing test on AMT. Participants were presented with two audio

samples, one from a speaker in the enrollment set, and the

second sample from one of three options: (a) a different utter-

ance from the same speaker from the trial set, (b) an utterance

from a different speaker from the trial set, or (c) another ut-

terance of the same speaker from the trial set but anonymized

through our lite version of the system. Then, participants had

to decide if both samples were from the same speaker, and

rate the confidence in their decision using a 7-point scale (7:

extremely confident; 5: quite a bit confident; 3: somewhat

confident; 1: not confident at all). Each listener rated 20 AB

pairs per scenario. Results are summarized in Table 5. In

settings (a) and (b), listeners could easily identify whether

the recording were from the same or different speakers (81

% ) with high confidence (5.71). In setting (c), however, the

anonymized trial data obtained obtained similar rating as in

(b), indicating that proposed system was able to anonymize

the trial recordings.

IEEE Spoken Language Technology Workshop 2024 731
Authorized licensed use limited to: Texas A M University. Downloaded on September 25,2025 at 23:04:02 UTC from IEEE Xplore.  Restrictions apply. 



Table 5. Subjective speaker verifiability scores for the pro-

posed model.

speaker anon Verifiability Confidence Rating

same no 81.5% 5.71

different no 17.75% 2.50

same yes 14.5% 2.37

5.4. Speaker Identity transfer

In a final step, we evaluated our models’ ability to capture the

voice of a target speaker. For this purpose, we used an objec-

tive score of speaker similarity based on the cosine similar-

ity between speaker embeddings of the target and the synthe-

sized utterances obtained from a ASV system7. We compare

our model against the three VC baselines (VQMIVC [11],

QuickVC [39], DiffVC [40]) using the same settings as those

in section 5.2) to generate VC samples. Results are summa-

rized in the rightmost column of Table 2 (SSS). As a guide-

line, pairing two utterances from the same speaker yields an

average cosine similarity of 0.89. As shown, our base model

outperforms the three baselines, achieving cosine similarity

that is close to the average within-speaker similarity of 0.89.

6. DISCUSSION

Most existing speaker anonymization methods do not op-

erate in low-latency streaming mode, preventing their use

in field operations. In this paper, we present an end-to-end

streaming model that operates with low latency and achieves

anonymization by mapping speaker embedding into an artifi-

cially generated pseudo speaker in a causal fashion (i.e., no

future context). The pseudo-speaker generator can produce

speaker embeddings that are very close to a real person in the

corpus. Although we train the pseudo-speaker generator on

a different corpus than the speech anonymization system to

guard against this possibility, we could also test if a pseudo-

speaker is too close to one on the corpus or outside the space

of speakers in the training corpus, and generate new ones

until a valid one is generated. While there exists a quality-

latency tradeoff, our system can achieve latency as low as

66ms while maintaining state-of-the-art naturalness, intelli-

gibility and privacy preservation. Our lite version is roughly

10MB and can potentially be deployed on mobile devices to

support real-time field applications. Accent can carry speaker

related cues [43] and in future work, we aim to add accent

conversion to this pipeline. Other research direction is to add

the control of emotion while synthesizing speech signals.
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