

Synthesis of alpha-Gal C-disaccharides

Alex Ann, Steven Truong, Jiwani Peters, David R. Mootoo ^{*}

Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States

ARTICLE INFO

Keywords:
Glycomimetic
C-glycoside
Boronate
Crotylation
Alpha-Gal

ABSTRACT

The synthesis of C-disaccharides of α -D-galactopyranosyl-(1 \rightarrow 3)-D-galactopyranose (α -Gal), potential tools for studying the biology of α -Gal glycans, is described. The synthetic strategy, centers on the reaction of two easily available precursors 1,2-O-isopropylidene-D-glyceraldehyde and an α -C-galactosyl-E-crotylboronate, which affords a mixture of two diastereomeric anti-crotylation products. The stereoselectivity of this reaction was controlled with (R)- and (S)-TRIP catalysts, and the appropriate diastereomer was transformed to C-linked disaccharides of α -Gal, in which the aglycone segment comprised O-, C- and S-glycoside entities that can enable glycoconjugate synthesis.

1. Introduction

The α -galactopyranosyl (α -Gal) motif commonly occurs in mammals and certain pathogens but generally not in humans and Old-World monkeys.¹ As α -Gal glycans are present on organs and tissue of pigs they are an obstacle to xenotransplantation to humans and monkeys as they elicit hyperacute immune rejection.^{2,3} In contrast, the binding of anti- α -Gal antibodies to α -Gal containing glycans has been explored as an immunotherapeutic strategy, most notably against cancer and viral infection.^{4–10} Relatedly, due to stimulation of α -Gal containing enterobacteria, humans contain varying levels of anti- α -Gal antibodies, which may have a protective role against pathogens with α -Gal glycans on their surface, with SARS and SARS CoV-2, being examples that have attracted recent attention.^{11–15} Against this backdrop, there is interest in α -Gal mimetics for use as biomechanistic probes and therapeutic applications. Disaccharide and higher order saccharides (as opposed to simpler monosaccharides) have been targeted because of their higher affinity to α -Gal Abs and for interrogation of specific pathways, with analogues of 1 being popular (Fig. 1).^{16–20} Herein we describe the synthesis of C-disaccharides of the α -Galp-(1,3)-Galp subunit of 1.^{21,22} The hydrolytic stability of such C-glycosides compared to their O-linked parents can mitigate stability issues that may hinder therapeutic applications of alpha-Gal, and together with their conformational properties, are relevant to their use as tools for studying alpha-Gal recognition.^{23–27}

While several methods exist for the synthesis of C-glycosides with aryl or simple alkyl aglycone segments, these are generally not applicable to anomeric sp^3 - sp^3 C-linked glycosides, in particular to the complex methylene linked disaccharide frameworks represented by

2.^{23,24,28–39} Towards this end, strategies involving the union of pre-formed “glycone” and “aglycone” subunits have been described, but the synthesis of precursors, and coupling procedures, yields and stereoselectivity can be problematic.^{23,24,36,40–45} Approaches in which the glycone or aglycone residue is created in a *de novo* fashion may address these issues.^{46–50} In this context, we have been developing a methodology that centers on the reaction of C-glycosyl crotylating agents and aldehydes, and elaboration of the products to stereochemically complex C-glycosides (Fig. 2).^{51,52} Attributes of this strategy are the relatively easy access to the crotylation partners and the synthetic versatility of the crotylation products. Accordingly, we envisaged a synthesis of C-disaccharides like 2 starting from the crotylation reaction of the C-galactosyl-E-crotylboronate 5 and 1,2-O-isopropylidene-D-glyceraldehyde 6 to give the 3,4-*anti* crotylation product 4, followed by transformation of 4 to analogues of 2. This plan is of wider scope in that 4 can also be transformed to biologically relevant α -Gal-(1,3)-furanosides like 3.⁵³

2. Results and discussion

2.1. Synthesis of C-galactosyl crotylboronate 5

Our earlier synthesis of E-glycosylboronate like 5 followed the Ni (cod)₂ promoted reaction of an allylic acetate precursor with bis-(pinacolato)-diboron (BPin)₂, which required a glovebox procedure because of the sensitivity of the nickel pre-catalyst.^{52,54} In the present work, we developed a modified procedure from an allylic chloride precursor and a palladium catalyst that did not require glovebox conditions (Scheme 1).^{54,55} Thus, reaction of allylic chloride 7, (prepared

* Corresponding author.

E-mail address: dmootoo@hunter.cuny.edu (D.R. Mootoo).

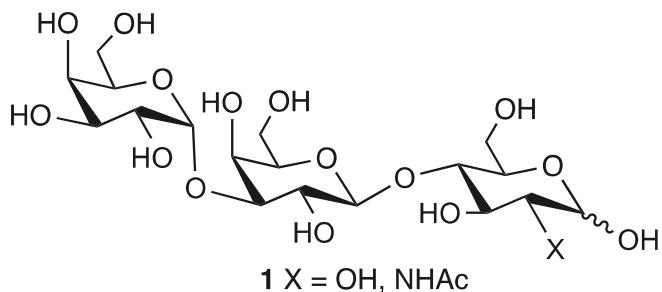


Fig. 1. α -Gal trisaccharide antigens.

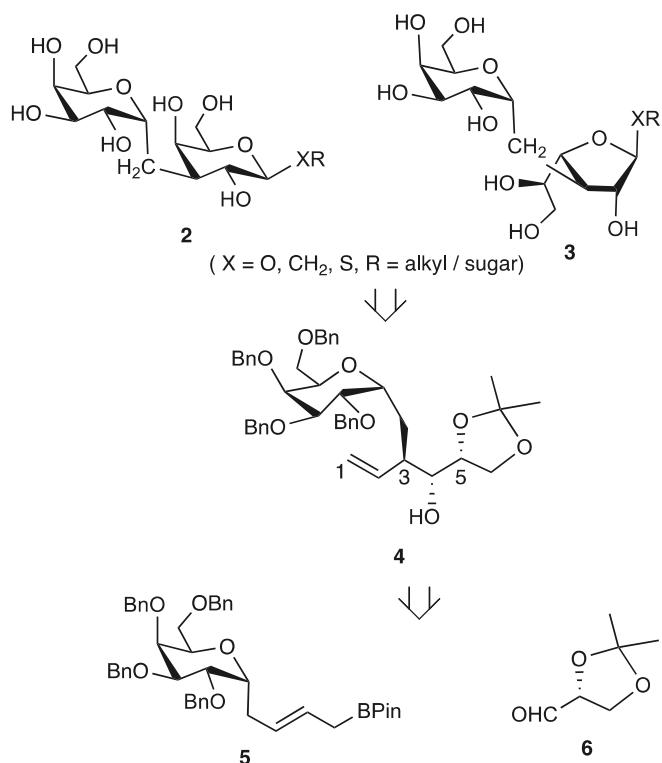
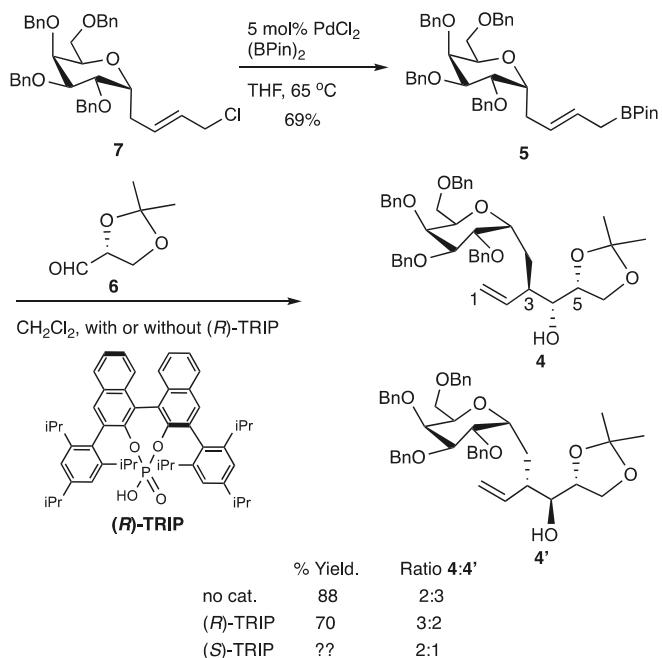



Fig. 2. The crotylation way to C-glycosides.

via a reported cross metathesis on *C*-allyl tetra-*O*-benzyl palactopyranoside and allyl chloride),⁵⁶ and (BPin)₂ in tetrahydrofuran, in the presence of catalytic Pd(OAc)₂/PCy₃ and K₃PO₄ provided the *E*-crotylboronate **5** in 71 % yield after chromatographic purification, and greater than 95 % *E*:*Z* selectivity as determined by ¹H NMR. It should be noted that **5** appeared to be stable under the conditions for flash column chromatography, some degree of decomposition was observed on thin layer chromatography plates. The stereochemistry of **5** was assigned by NMR comparisons with related *E*- and *Z*-C-glycosylcrotylboronates, and confirmed by stereochemical assignment in the subsequent crotylation products (*vide infra*).^{52,54}

2.2. Crotylation reactions

The reaction of **5** and 2,3-*O*-isopropylidene D-glyceraldehyde **6**⁵⁷ in dichloromethane afforded a mixture of the two 3,4-*anti* crotylation products **4** and **4'** in 88 % yield in a respective ratio of 2:3 (Scheme 1). The stereochemistry of **4** and **4'** was assigned in subsequent disaccharide analogues and the structure of **4** was confirmed by X-Ray crystallography on the benzyl ether derivative **8** (Fig. 3, *vide infra*, Supplementary Material). When the reaction was performed with 15 mol % of (*R*)-TRIP, the stereoselectivity was reversed, albeit modestly, to give a 3:2 ratio in

Scheme 1. Synthesis of **5** and crotylation reactions.

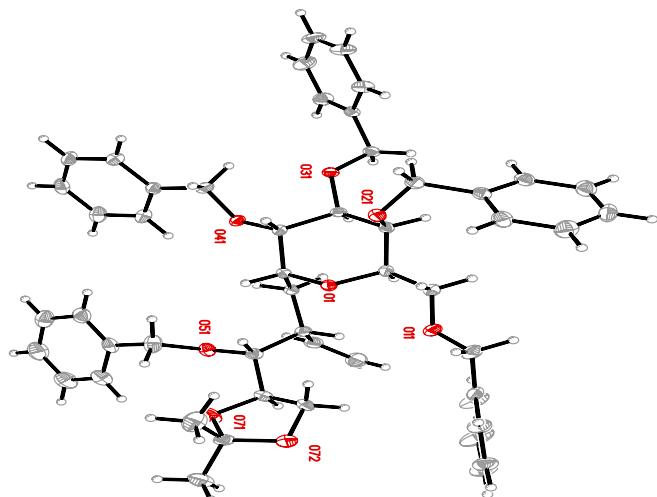
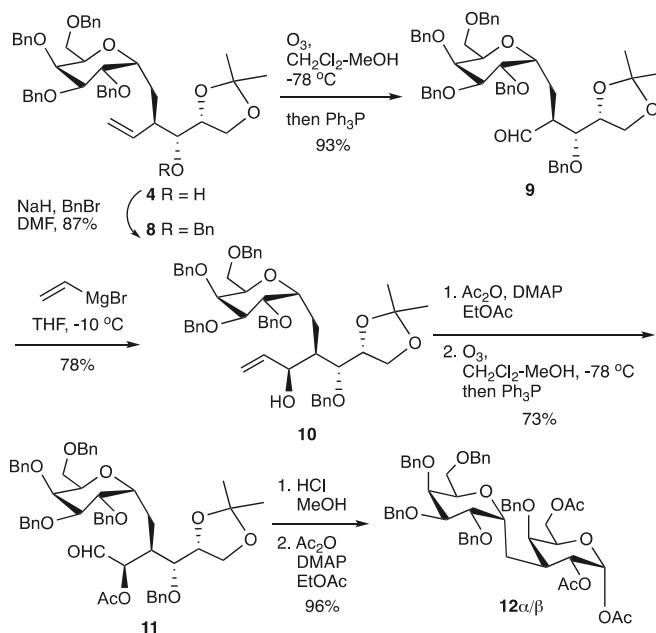
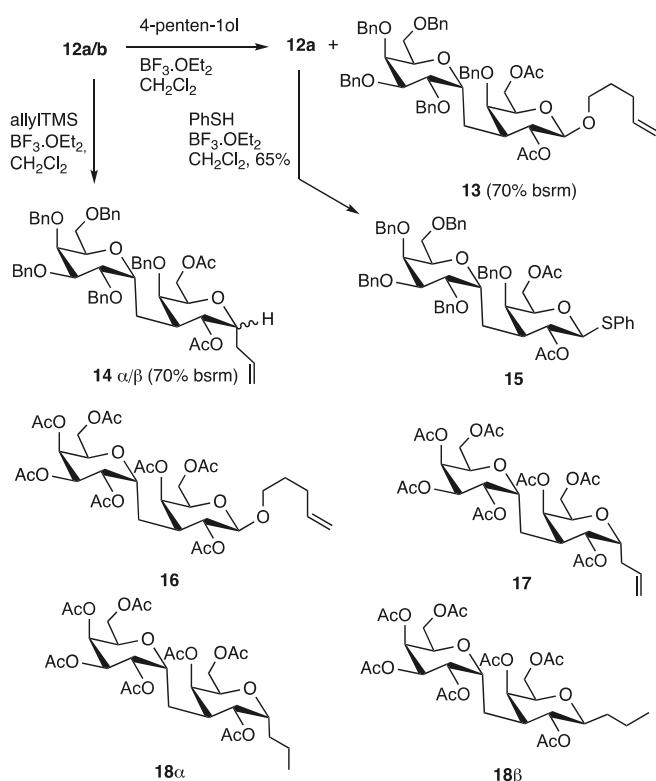



Fig. 3. X-ray crystal structure of benzyl ether **8** (CCDC number 2343201).

favor of the desired diastereomer **4**. The corresponding reaction with (*S*)-TRIP gave a 1:2 ratio of **4**:**4'**. The stereoselectivity trends for reactions with and without the TRIP catalysts were similar for the reactions of **6** and a mannose derived *E*-crotylboronate.⁵²


2.3. Transformation of crotylation products to C-disaccharides

The crotylation product **4** was next transformed to a mixture of *C*-linked dipyranosyl acetates **12** α / β (Scheme 2). Thus, benzylation on **4**, followed by ozonolysis of the product **8** and reaction of vinylmagnesium bromide with the derived aldehyde **9** provided a 7:1 mixture of allylic alcohol **10** in 78 % yield, and a minor product that was presumed to be a diastereomer of **10**. The stereochemistry of **10** was assigned in the eventual disaccharide derivatives (*vide infra*). Acetylation of **10** followed by ozonolysis of the product provided aldehyde **11**. Acid hydrolysis on **11** and acetylation of the crude product with acetic anhydride and DMAP in ethyl acetate, afforded acetate anomers **12** α / β in a 2/1 respective ratio, as an inseparable mixture. When the acetylation was

Scheme 2. Transformation of 4 to C-disaccharide 12 α / β .

performed with acetic anhydride in the presence of sodium acetate a 1/2 ratio of 12 α / β was observed.

The mixture 12 α / β was next transformed to C/O-, C/C- and C/S-anti-Gal disaccharide analogues, with versatile anomeric handles for glycoconjugate synthesis (Scheme 3).^{5,8–10,16,18} Treatment of 12 α / β with 4-penten-1-ol in the presence of $\text{BF}_3\text{-OEt}_2$, provided the β -glycoside 13 in 70 % yield based on unreacted 12 α . When allyltrimethylsilane was used as the glycosyl acceptor in place of 4-penten-1-ol, a mixture of C-glycosides 14 α / β with a respective ratio of 3/2 was obtained in a similar

Scheme 3. Synthesis of C/O-, C/C- and C/S- disaccharides of anti-Gal.

yield based on unreacted 12 α . Under similar conditions, treatment of 12 α with thiophenol as the acceptor afforded the β -thioglycoside 15 with complete consumption of 12 α . The stereochemistry in the newly formed pyran ring in these disaccharide analogues was assigned by *J* coupling and NOE analysis on 13, 14 α , 14 β and 15, and their peracetate derivatives 16, 17, 18 α and 18 β , which were prepared via standard debenzylation and acetylation procedures (See Experimental and Supplementary Material for procedures and NMR data with peak assignments).

3. Conclusions

Bis C- and mixed C/O- and C/S disaccharides of anti-Gal were prepared. These syntheses centered on the $\text{R}^{\text{a}}\text{-TRIP}$ catalyzed reaction of a C-galactosyl crotylboronate, which was available in four steps from commercially available methyl α -D-galactopyranoside, and 2,3-O-isopropylidene D-glyceraldehyde, and transformation of the major crotylation product to the eventual targets via a straightforward *de novo* pyran ring-forming strategy. Application of this methodology to higher order saccharide analogues and bioconjugates of anti-Gal are currently under investigation and will be reported in due course.

4. Materials and methods

4.1. General

Solvents were purified by standard procedures or used from commercial sources as appropriate. Petroleum ether refers to the fraction of petroleum ether boiling between 40 and 60 °C. Unless otherwise stated thin layer chromatography (TLC) was done on 0.25 mm thick precoated silica gel 60 (HF-254, Whatman) aluminium sheets and flash column chromatography (FCC) was performed using Kieselgel 60 (32–63 mesh, Scientific Adsorbents). Elution for FCC usually employed a stepwise solvent polarity gradient, correlated with TLC mobility. Chromatograms were observed under UV (short and long wavelength) light, and/or were visualized by heating plates that were dipped in a solution of ammonium (VI) molybdate tetrahydrate (12.5 g) and cerium (IV) sulfate tetrahydrate (5.0 g) in 10 % aqueous sulphuric acid (500 mL), or a solution of 20 % sulfuric acid in ethanol. NMR spectra were recorded using Varian Unity Plus 500 and Bruker Ultra Shield Plus 600 MHz instruments, in CDCl_3 or C_6D_6 . Unless otherwise stated residual CHCl_3 and C_6H_6 were used as internal standards respectively (δ_{H} 7.27, 7.16, 4.80 and δ_{C} 77.2, 128.4 ppm). Chemical shifts are quoted in ppm relative to tetramethylsilane (δ_{H} 0.00) and coupling constants (J) are given in Hertz. First order approximations are employed throughout. High resolution mass spectrometry was performed on an Agilent 6520 Q-TOF instrument.

4.2. 4,4,5,5-tetramethyl-2-((E)-4-((2R,3S,4R,5S,6R)-3,4,5-tris((benzylxy)6-((benzylxy)methyl)tetrahydro-2H-pyran-2-yl)but-2-en-1-yl)-1,3,2-dioxaborolane (5)

A mixture of $\text{Pd}(\text{OAc})_2$ (22 mg, 0.1 mmol) and PCy_3 (82 mg, 0.29 mmol) in dry THF (1 mL) was stirred under nitrogen for 20 min. A portion of this solution (0.7 mL) was added to a mixture of allylic chloride 7 (427 mg, 0.70 mmol) and bis(pinacolato)diboron (362 mg, 1.43 mmol) in dry THF (2.5 mL) under nitrogen. Powdered, anhydrous K_3PO_4 (200 mg, 0.94 mmol) was then added to the reaction mixture and the suspension stirred at rt for 1 h, at which the color of the reaction had changed from an original golden brown to black. The mixture was then diluted with a 1:1 mixture of ether:hexane (40 mL) and filtered through a short column of Celite. The filtrate was concentrated *in vacuo* and the residue purified by FCC to yield 5 (350 mg, 71 %): clear oil; R_f 0.38 (15 % $\text{EtOAc}/\text{hexane}$). ^1H NMR (500 MHz, CDCl_3). δ 5.45 (m, 1H), 5.24 (m, 1H), 4.60 (apparent d, J = 12.1 Hz, 2H), 4.53–4.41 (m, 6H), 4.01 (m, 1H), 3.93 (m, 1H), 3.85 (m, 1H), 3.81 (m, 1H), 3.62–3.58 (m, 3H), 2.26 (m, 2H, J = 7.3 Hz), 1.56 (m, 2H), 1.15 (s, 12H). ^{13}C NMR (125 MHz,

CDCl_3) δ 138.7, 138.6, 138.5, 138.4, 128.3, 128.0, 127.8, 127.8, 127.7, 127.6, 126.6, 83.2, 76.3, 74.3, 73.2, 73.0 (2 signals), 72.9, 72.7, 71.0, 67.1, 31.3, 24.8, 16.4. HRMS (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{44}\text{H}_{53}\text{BO}_7\text{Na}$ 727.3784; Found 727.3782.

4.3. (1*R*,2*R*)-1-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-((2*R*,3*S*,4*R*,5*S*,6*R*)-3,4,5-tris(benzylxy)-6-((benzylxy)methyl)tetrahydro-2*H*-pyran-2-yl)methyl)but-3-en-1-ol (4**) and (1*S*,2*S*)-1-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-((2*R*,3*S*,4*R*,5*S*,6*R*)-3,4,5-tris(benzylxy)-6-((benzylxy)methyl)tetrahydro-2*H*-pyran-2-yl)methyl)but-3-en-1-ol (**4'**)**

A mixture of **5** (210 mg, 0.30 mmol) in CH_2Cl_2 , (2 mL) and (*R*)-TRIP (40 mg, 0.05 mmol) was stirred at rt for 15 min. A solution of **6** (100 mg, 0.77 mmol) in CH_2Cl_2 (0.5 mL) was then added, and the reaction stirred for 16 h. The mixture was then diluted with 2 N NaOH and extracted with ether. The organic phase was washed with brine, dried (Na_2SO_4), and concentrated under reduced pressure. This material was then dissolved in EtOAc and filtered through a short column of basic alumina to remove residual boronic acid side products and TRIP catalyst. The filtrate was evaporated under reduced pressure and the residue subjected to FCC (30 % EtOAc/hexane), to afford an unseparated mixture of **4** and **4'** (150 mg, 70 %), as a 2:1 respective ratio as determined by ^1H NMR. Careful FCC of this mixture provided separated **4** and **4'**. For **4**: clear oil; R_f = 0.40 (30 % EtOAc/hexane); ^1H NMR (500 MHz, CDCl_3) δ 7.40–7.20 (m, 20H), 5.91 (m, 1H), 5.07 (dd, J = 1.9, 10.2 Hz, 1H), 4.97 (dd, J = 1.6, 17.3 Hz, 1H), 4.70–4.60 (m, 4H), 4.55 (m, 3H), 4.45 (apparent d, J = 12.0 Hz, 1H), 4.20 (m, 1H), 4.04 (apparent quartet, J = 7.2 Hz, 1H), 3.99 (m, 2H), 3.87 (dd, J = 6.4, 8.1 Hz, 1H), 3.82 (m, 2H), 3.73 (dd, J = 2.7, 7.3 Hz, 1H), 3.60 (m, 3H), 2.40 (bs, 1H, OH), 2.14 (m, 1H), 1.94 (m, 1H), 1.77 (m, 1H), 1.41 (s, 3H), 1.31 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 138.8, 138.6, 138.4, 138.1, 128.6 (2 signals), 128.5, 128.3, 128.2, 128.0, 127.8, 127.7, 116.8, 109.5, 78.1, 77.4, 76.7, 74.5, 73.4, 73.3, 73.2, 73.1, 72.4, 68.6, 67.9, 66.1, 42.8, 29.2, 26.9, 25.8. HRMS (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{44}\text{H}_{52}\text{O}_8\text{Na}$ 731.3554; Found 731.3557. For **4'**: R_f 0.35 (30 % EtOAc/hexanes). ^1H NMR (500 MHz, CDCl_3) δ 7.30–7.15 (m, 20H), 5.67 (m, 1H), 5.05 (m, 2H), 4.73 (apparent d, J = 11.8 Hz, 1H), 4.62 (m, 3H), 4.50–4.35 (m, 4H), 4.02 (m, 1H), 3.85 (m, 3H), 3.74 (m, 3H), 3.55 (m, 3H), 3.27 (bd, J = 9.6 Hz, 1H), 2.96 (bs, 1H, OH), 2.32 (m, 1H), 1.80 (m, 1H), 1.52 (m, 1H), 1.30 (s, 3H), 1.25 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 138.8, 138.6, 138.5, 137.7, 128.7, 128.6 (3 signals), 128.5, 128.4, 128.3, 128.2, 128.1 (2 signals), 128.0, 127.9 (2 signals), 127.8, 117.5, 108.8, 78.1, 76.7, 74.9, 73.8, 73.6, 73.5, 73.4, 73.3, 72.9, 71.9, 69.8, 67.0, 45.0, 27.1, 26.8, 25.7. HRMS (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{44}\text{H}_{52}\text{O}_8\text{Na}$ 731.3554; Found 731.3557.

4.4. (2*R*,3*S*,4*R*,5*S*,6*R*)-3,4,5-tris(benzylxy)-2-((*R*)-2-((*R*)-(benzylxy)(*R*-2,2-dimethyl-1,3-dioxolan-4-yl)methyl)but-3-en-1-yl)-6-(benzylxy)methyl)tetrahydro-2*H*-pyran (8**)**

A suspension of 60 % NaH in mineral oil (56 mg, 1.4 mmol) was added at 0 °C to a solution of **4** (280 mg, 0.40 mmol) and TBAI (30 mg, 0.08 mmol) in anhydrous DMF (2 mL). The mixture was stirred for 15 min at rt, then cooled to 0 °C. BnBr (0.012 mL, 1.01 mmol) was added, and the reaction was stirred at rt for 2 h, then quenched with methanol (0.1 mL), diluted with brine and extracted with EtOAc. The organic phase was dried (Na_2SO_4) and concentrated *in vacuo*. FCC of the residue provided **8** (277 mg, 87 %) as a clear gum. R_f = 0.65 (25 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) 7.30–7.10 (m, 25H), 5.84 (m, 1H), 4.92 (m, 2H), 4.84 (dd, J = 1.7, 17.3 Hz, 1H), 4.68 (app d, J = 11.7 Hz, 1H), 4.56 (m, 2H), 4.46 (m, 4H), 4.35 (m, 2H), 4.08 (m, 1H), 3.95 (m, 1H), 3.86 (m, 1H), 3.77 (m, 3H), 3.62 (m, 2H), 3.44 (dd, J = 4.8, 10.2 Hz, 1H), 3.40 (dd, J = 1.7, 8.3 Hz, 1H), 3.36 (t, J = 8.8 Hz, 1H), (m, 2H), 1.92 (m, 1H), 1.84 (m, 1H), 1.60 (m, 1H), 1.32 (s, 3H), 1.26 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 139.4, 138.8, 138.7, 138.6, 138.4, 138.3,

128.6, 128.5 (3 signals), 128.4, 128.2, 128.0, 127.9, 127.8 (2 signals), 127.7, 127.6, 127.5, 116.3, 109.4, 81.0, 80.0, 77.4, 76.5, 74.5, 74.0, 73.7, 73.5, 73.2, 73.1, 72.1, 69.0, 68.2, 66.1, 42.8, 29.3, 27.0, 26.1. HRMS (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{51}\text{H}_{58}\text{O}_8\text{Na}$ 821.4024; Found 821.4021.

4.5. (2*S*,3*R*)-3-(benzylxy)-3-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-((2*R*,3*S*,4*R*,5*S*,6*R*)-3,4,5-tris(benzylxy)-6-(benzylxy)methyl)tetrahydro-2*H*-pyran-2-yl)propanal (9**)**

Ozone was bubbled through a solution of **8** (210 mg, 0.26 mmol) in a mixture of CH_2Cl_2 (5 mL) and methanol (1 mL) at -78 °C. Bubbling was continued until the color of the solution was pale blue, at which time TLC indicated complete disappearance of **8**. The mixture was then purged with nitrogen and Ph_3P (160 mg, 0.61 mol) was added. After stirring 3 h at rt, the solvent was evaporated under reduced pressure. FCC of the residue afforded **9** (195 mg, 93 %) as a clear oil. R_f = 0.20 (15 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) δ 9.70 (d, J = 2.7 Hz, 1H), 7.25 (m, 25H, ArH), 4.75–4.30 (m, 10H, PhCH), 4.23 (q, J = 7.4 Hz, 1H), 3.88 (m, 3H), 3.78 (m, 1H), 3.73 (m, 1H), 3.62 (dd, J = 2.7, 7.6 Hz, 1H), 3.57 (m, 3H), 3.44 (d, J = 4.5, 10.5 Hz, 1H), 2.30 (m, 1H), 2.17 (m, 1H), 1.73 (m, 1H), 1.34 (s, 3H), 1.27 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 204.0, 138.6 (2 signals), 138.4 (2 signals), 138.3, 128.6 (2 signals), 128.5 (2 signals), 128.4, 128.2, 128.1 (2 signals), 128.0 (2 signals), 127.9, 127.8, 127.7 (2 signals), 109.9, 79.9, 78.7, 76.7, 74.4, 74.2, 73.7, 73.5, 73.4, 73.2, 72.1, 68.0, 66.3, 51.2, 26.8, 25.9. (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{50}\text{H}_{56}\text{O}_9\text{Na}$ 823.3817; Found 823.3817.

4.6. (3*S*,4*R*,5*R*)-5-(benzylxy)-5-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-((2*R*,3*S*,4*R*,5*S*,6*R*)-3,4,5-tris(benzylxy)-6-(benzylxy)methyl)tetrahydro-2*H*-pyran-2-yl)methylpent-1-en-3-ol (10**)**

A 0.7 M vinyl magnesium bromide in THF (1.75 mL, 1.23 mmol) was added to a solution of **9** (190 mg, 0.24 mmol) in dry THF (2 mL) at 0 °C, under an atmosphere of nitrogen. The mixture was warmed to rt, stirred for an additional 30 min, then poured into saturated aqueous NH_4Cl and extracted with ether. The organic layer was dried (Na_2SO_4), filtered, and evaporated under reduced pressure. FCC of the residue afforded a mixture of **10** and a minor product, which was presumed to be a diastereomer of **10**, in a ratio of 7:1. For **10**: (155 mg, 78 %); clear gum; R_f = 0.50 (30 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) δ 7.25 (m, 25H), 5.63 (m, 1H), 5.23 (d, J = 14.2 Hz, 1H), 5.04 (d, J = 10.6 Hz, 1H), 4.93 (app d, J = 11.2 Hz, 1H), 4.72 (app d, J = 11.6 Hz, 1H), 4.62 (s, 2H), 4.57 (app d, J = 11.7 Hz, 1H), 4.52 (bs, 1H), 4.42 (m, 5H), 4.30 (app d, J = 12.0 Hz, 1H), 3.95 (m, 1H), 3.86 (m, 1H), 3.81 (t, J = 2.1 Hz, 1H), 3.78 (t, J = 8.3 Hz, 1H), 3.67 (bs, 1H, OH), 3.61 (m, 2H), 3.47 (m, 2H), 3.33 (m, 1H), 1.75 (m, 2H), 1.45 (m, 1H), 1.35 (s, 3H), 1.31 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 139.1, 138.6, 138.5, 138.4, 138.1, 128.5, 128.4 (3 signals), 128.3, 128.2, 128.0, 127.9, 127.8 (2 signals), 127.7 (2 signals), 127.6 (2 signals), 127.5, 114.9, 109.7, 82.1, 79.2, 78.5, 76.7, 75.0, 74.5, 73.5, 73.3, 73.8, 71.3, 71.0, 69.8, 68.4, 66.5, 40.1, 26.8, 25.9, 20.5. (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{52}\text{H}_{60}\text{O}_9\text{Na}$ 851.4130; Found 851.4132.

For minor product: (25 mg, 12 %); clear gum; R_f = 0.40 (30 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) δ 7.25 (m, 25H), 5.81 (m, 1H), 5.17 (d, J = 14.2 Hz, 1H), 5.04 (d, J = 10.4 Hz, 1H), 4.84 (app d, J = 11.7 Hz, 1H), 4.70 (app d, J = 11.7 Hz, 1H), 4.55 (s, 2H), 4.40 (m, 6H), 4.31 (app d, J = 11.7 Hz, 1H), 4.13 (m, 1H), 3.90 (m, 1H), 3.80 (m, 4H), 3.52 (m, 4H), 3.40 (m, 1H), 2.92 (bs, OH), 1.60 (m, 3H), 1.34 (s, 3H), 1.28 (s, 3H). ^{13}C NMR (150 MHz, CDCl_3) δ 140.3, 138.6, 138.4, 138.0, 128.5–127.5 (several signals, Ph), 115.7, 109.4, 81.9, 79.5, 76.8, 74.4, 73.5, 73.4, 66.5, 42.0, 29.7, 25.9, 25.7. (ESI) m/z : $[\text{M}+\text{Na}]^+$ Calc for $\text{C}_{52}\text{H}_{60}\text{O}_9\text{Na}$ 851.4130; Found 851.4134.

4.7. (2R,3S,4R)-4-(benzyloxy)-4-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-oxo-3-((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)butan-2-yl acetate (11)

A mixture of **10** (150 mg, 0.18 mmol), DMAP (5 mg, 0.04 mmol) and acetic anhydride (0.10 mL, 1.05 mmol) in EtOAc (2 mL) was stirred for 30 min at rt. The reaction was then quenched with MeOH (0.10 mL), and the volatiles removed under reduced pressure. FCC of the residue gave the derived acetate (148 mg, 85 %) as a clear oil. $R_f = 0.55$ (30 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) δ 7.20 (m, 25H), 5.72 (m, 1H), 5.52 (m, 1H), 5.07 (m, 2H), 4.81 (app d, $J = 11.5$ Hz, 1H), 4.72 (app d, $J = 11.7$ Hz, 1H), 4.62 (s, 2H), 4.54 (app d, $J = 11.7$ Hz, 1H), 4.46 (app d, $J = 11.1$ Hz, 1H), 4.46 (m, 3H), 4.35 (app d, $J = 11.5$ Hz, 1H), 4.32 (app d, $J = 11.9$ Hz, 1H), 4.13 (m, 1H), 3.88 (m, 1H), 3.79 (t, $J = 6.2$ Hz, 1H), 3.6b (m, 1H), 3.63 (dd, $J = 2.8, 8.4$ Hz, 1H), 3.57 (m, 1H), 3.52 (t, $J = 8.3$ Hz, 1H), 3.45 (dd, $J = 2.1, 7.5$ Hz, 1H), 3.40 (dd, $J = 4.0, 10.0$ Hz, 1H), 1.77 (s, 3H), 1.75 (m, 3H), 1.31 (s, 3H), 1.38 (s, 3H). (ESI) m/z : [M+Na]⁺ Calc for $\text{C}_{54}\text{H}_{62}\text{O}_{10}\text{Na}$ 893.4235; Found 893.4242.

A portion of the material from the previous step (100 mg, 0.12 mmol) was subjected to the ozonolysis procedure described for the synthesis of **9**. FCC of the crude product provided **11** (86 mg, 86 %) as a clear oil. $R_f = 0.35$ (30 % EtOAc/hexane). ^1H NMR (500 MHz, CDCl_3) δ 9.43 (s, 1H), 7.20 (m, 25H), 5.12 (d, $J = 3.2$ Hz, 1H), 4.77 (app d, $J = 11.6$ Hz, 1H), 4.72 (app d, $J = 11.6$ Hz, 1H), 4.65 (ABq, $J = 11.9$ Hz, $\Delta d = 05$ ppm, 2H), 4.57 (app d, $J = 11.8$ Hz, 1H), 4.45 (m, 4H), 4.36 (app d, $J = 11.9$ Hz, 1H), 3.97 (m, 1H), 3.92 (m, 3H), 3.82 (m, 1H), 3.68 (m, 3H), 3.60 (t, $J = 8.2$ Hz, 1H), 3.48 (m, 2H), 2.20 (m, 1H), 2.02 (s, 3H), 1.85 (m, 1H), 1.73 (m, 1H), 1.35 (s, 3H), 1.39 (s, 3H). ^{13}C NMR (125 MHz, CDCl_3) δ 197.0, 170.0, 138.7, 138.5, 138.4, 138.3 (2 signals), 128.6, 128.5 (2 signals), 128.3, 128.2, 128.1 (2 signals), 128.0, 127.9, 127.8, 127.7, 109.7, 79.9, 79.3, 79.1, 77.4, 76.8, 74.4 (2 signals), 73.7, 73.6, 73.4, 73.2, 72.1, 69.4, 68.2, 66.5, 39.4, 26.9, 26.1, 20.9. (ESI) m/z : [M+Na]⁺ Calc for $\text{C}_{53}\text{H}_{60}\text{O}_{11}\text{Na}$ 895.4028; Found 895.4038.

4.8. (2R,3R,4S,5R,6R)- and (2S,3R,4S,5R,6R)- 6-(acetoxymethyl)-5-(benzyloxy)-4-((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)tetrahydro-2H-pyran-2,3-diyli diacetate (12 α**) and (**12 β**)**

A mixture of **11** (74 mg, 0.085 mmol) in THF (1.5 mL) and 2 N HCl (0.40 mL) was stirred at rt for 3 h. The mixture was then diluted with THF (10 mL) and evaporated under reduced pressure at rt. The residue was taken up in EtOAc (1 mL), NaOAc (20 mg) and Ac_2O (0.2 mL) were introduced, and the mixture stirred at rt for 72 h. MeOH (0.2 mL) was then added and stirring continued for 30 min. The volatiles were removed *in vacuo*, the residue triturated with EtOAc, and the filtrate evaporated under reduced pressure. FCC of the residue afforded **12 α** /**12 β** (65 mg, 84 %) in a 1/2 respective ratio.

In an alternative procedure, a mixture of **11** (45 mg, 0.052 mmol) in THF (2 mL) and 2 N HCl (0.25 mL) was stirred at rt for 3 h. The pH of the solution was then adjusted to 4–5 by addition of solid NaHCO_3 and the volatiles removed *in vacuo*. The residue was taken up in EtOAc (2 mL), Ac_2O (0.2 mL) and DMAP (5 mg) introduced, and the mixture stirred at rt for 2 h. MeOH (0.2 mL) was then added, and the mixture processed as described in the previous procedure. FCC of the crude reaction product afforded **12 α** /**12 β** (46 mg, 96 %) in a 2/1 respective ratio.

For **12 α** /**12 β** (1/1): $R_f = 0.20$ (30 % EtOAc/hexane). ^1H NMR (500 MHz, C_6D_6) δ 7.25 (m, 25H), 6.82 (d, $J = 3.4$ Hz, 0.5H), 5.97 (d, $J = 7.2$ Hz, 0.5H), 5.64 (m, 1H), 4.60–4.20 (m, 16H), 4.03 (m, 2H), 3.82 (m, 2H), 3.78 (m, 1H), 3.65 (m, 1H), 2.88 (m, 0.5H), 2.47 (m, 0.5H), 2.28 (m, 0.5H), 2.22 (m, 0.5H), 1.96 (m, 0.5H), 1.82 (m, 0.5H), 1.74 (s, 1.5H), 1.71 (s, 1.5H), 1.64 (s, 3H), 1.59 (s, 1.5H), 1.57 (s, 1.5H). ^{13}C NMR (125 MHz, C_6D_6) δ 170.3, 170.2, 170.1, 170.0, 169.5, 169.3, 139.4 (2 signals), 139.1, 139.0, 138.8, 129.1–128.2 (several lines, buried under C_6D_6 triplet), 94.7, 90.4, 78.4, 78.3, 77.6, 77.3, 76.1 (2 signals), 75.9, 75.4 (2 signals), 73.9, 73.7, 73.6, 73.1, 71.3, 70.0, 68.4, 68.2, 64.5,

41.4, 41.8, 36.1, 36.1, 25.7, 25.5, 20.8 (2 signals), 20.7 (2 signals).

A separated sample of **12 α** was obtained as unreacted material in the transformation of **12 α** /**12 β** to **13** and **14 α** /**14 β** respectively (*vide infra*). For **12 α** : $R_f = 0.20$ (30 % EtOAc/hexane). ^1H NMR (600 MHz, C_6D_6) δ 7.25 (m, 25H), 6.82 (d, $J = 3.4$ Hz, 1H, H1), 5.63 (dd, $J = 3.4, 12.0$ Hz, 1H, H2), 4.60–4.20 (m, 16H, 5xPhCH₂, H-5, CH₂-6, 1', 5', 6'), 4.05 (bs, 1H, H4), 3.99 (bt, $J = 3.0$ Hz, 1H, H4'), 3.84 (dd, $J = 3.5, 6.7$ Hz, 1H, H6'), 3.78 (m, 1H, H3'), 3.64 (m, 1H, H2'), 2.89 (m, 1H, 3H), 2.27 (m, 1H, Ha), 1.81 (m, 1H, Ha), 1.71 (s, 3H, Ac), 1.64 (s, 3H, Ac), 1.57 (s, 3H, Ac). ^{13}C NMR (125 MHz, C_6D_6) δ 170.3, 170.1, 169.3, 139.4 (2 signals), 139.1, 138.8, 129.0–128.0 (several lines, buried under C_6D_6 triplet), 90.4, 78.4, 77.2, 76.1 (2 signals), 75.4, 73.9, 73.7, 73.6, 73.5, 73.2, 73.1 (2 signals), 70.0, 68.4, 64.5, 36.1, 25.6, 20.7 (2 signals), 20.6. (ESI) m/z : [M+Na]⁺ Calc for $\text{C}_{54}\text{H}_{60}\text{O}_{13}\text{Na}$ 939.3926; Found 939.3926.

4.9. ((2R,3R,4S,5R,6R)-5-acetoxy-3-(benzyloxy)-6-(pent-4-en-1-yloxy)-4-((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)tetrahydro-2H-pyran-2-yl methyl acetate (13**)**

BF_3OEt_2 (0.03 mL, 0.25 mmol) was added to a mixture of **12 α** /**12 β** (19 mg, 0.021 mmol) and 4-penten-1-ol (0.02 mL, 0.20 mmol) in dry CH_2Cl_2 (1 mL) at rt, under nitrogen. The mixture maintained at this temperature for 3 h. Et_3N (0.02 mL) was then added, and the mixture diluted with saturated aqueous NaHCO_3 and extracted with ether. The organic extract was dried (Na_2SO_4) and evaporated under reduced pressure. FCC of the residue afforded recovered **12 α** (9 mg) and **13** (7 mg, 70 % brsm) as a clear film. $R_f = 0.50$ (30 % EtOAc/hexane). ^1H NMR (500 MHz, C_6D_6) δ 7.50–7.00 (m, 25H, ArH), 5.77 (m, 1H, —CH=), 5.63 (dd, $J = 7.8, 11.6$ Hz, 1H, H2), 5.02 (m, 2H, =CH₂), 4.65–4.35 (m, 15H, 5xPhCH₂, H-1, 1', 5', 6, 6'), 4.32 (m, 2H, H-3', 6), 4.11 (t, $J = 3.1$ Hz, 1H, H4'), 3.96 (m, 3H, H-1", 4, 6'), 3.87 (m, 1H, H3'), 3.72 (m, 2H, H-2', 5), 3.48 (m, 1H, 1'), 2.52 (tt, $J = 2.8, 11.3$ Hz, 1H, H3), 2.33 (bt, $J = 13.0$ Hz, 1H, Ha), 2.11 (m, 3H, Ha, CH₂-3"), 1.92 (s, 3H, Ac), 1.76 (s, 3H, Ac), 1.64 (m, 2H, CH₂-2"). ^{13}C NMR (125 MHz, C_6D_6) δ 170.2, 170.0, 139.4 (3 signals), 139.1, 138.9, 129.0 (2 signals), 129.0–128.0 (several lines, buried under C_6D_6 triplet), 115.2, 103.3 (C1), 78.4, 77.1, 76.6, 75.8, 75.7, 75.4, 74.0, 73.7, 73.6, 73.4, 73.3, 72.1, 68.4, 68.3, 67.3, 64.4, 41.7, 30.8, 29.7, 26.1, 21.1, 20.8. (ESI) m/z : [M+Na]⁺ Found 965.4451.

4.10. ((2R,3R,4S,5R,6R)- and (2R,3R,4S,5R,6S)- 5-acetoxy-6-allyl-3-(benzyloxy)-4-((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl acetate (14 α**) and (**14 β**)**

BF_3OEt_2 (0.04 mL, 0.33 mmol) was added to a mixture of **12 α** /**12 β** (32 mg, 0.035 mmol) and allyltrimethylsilane (0.05 mL, 0.32 mmol) in dry CH_2Cl_2 (2 mL) at rt, under nitrogen. The mixture was maintained at this temperature for 6 h. Et_3N (0.02 mL) was then added, and the mixture diluted with saturated aqueous NaHCO_3 and extracted with ether. The organic extract was dried (Na_2SO_4) and evaporated under reduced pressure. FCC of the residue using 30 % EtOAc/hexane afforded recovered **12 α** (7 mg) and an unseparated mixture of **14 α** /**14 β** (18 mg, 70 % brsm) in a respective ratio of 3/2. Further FCC on this mixture afforded **14 α** and **14 β** . For **14 α** : clear film. $R_f = 0.25$ (2 % $\text{Et}_2\text{O}/\text{CH}_2\text{Cl}_2$). ^1H NMR (500 MHz, C_6D_6) δ 7.40–7.00 (m, 25H, ArH), 5.85 (m, 1H, —CH=), 5.57 (dd, $J = 4.7, 9.5$ Hz, 1H, H2), 5.05 (m, 2H, =CH₂), 4.70–4.20 (m, 16H, 5xPhCH₂, H1, 1', 5', 6', CH₂-6), 4.0 (m, 3H, H4, 4', 6'), 3.90 (m, 2H, H2', 3'), 3.82 (dd, $J = 5.0, 9.8$ Hz, 1H, H5), 2.56 (m, 2H, H1", 3), 2.25 (m, 2H, H1", a), 2.10 (m, 1H, Ha), 1.75 (s, 3H, Ac), 1.70 (s, 3H, Ac). ^{13}C NMR (125 MHz, C_6D_6) δ 170.4, 170.1, 139.6, 139.5, 139.4, 139.2, 138.9, 135.7, 129.0–128.0 (several lines), 117.0, 78.2, 78.0, 75.9, 75.6, 75.4, 74.0 (2 signals), 73.8, 73.5, 72.9, 72.6, 72.4, 72.1, 68.9, 63.9, 37.8, 32.1, 25.8, 20.9 (2 signals). (ESI) m/z : [M+Na]⁺ Calc for $\text{C}_{55}\text{H}_{62}\text{O}_{11}\text{Na}$ 921.4184; Found 921.4189.

For **14 β** : $R_f = 0.35$ (2 % $\text{Et}_2\text{O}/\text{CH}_2\text{Cl}_2$). δ 7.32–6.90 (m, 25H, ArH),

5.95 (m, 1H, =CH—), 5.35 (t, $J = 10.2$ Hz, 1H, H2), 5.00 (m, 2H, =CH₂), 5.52–4.15 (m, 15H, 5xPhCH₂, H1', 5', 6', CH₂-6), 3.99 (t, $J = 3.6$ Hz, 1H, H4'), 3.87 (m, 2H, H4, 6'), 3.69 (dd, $J = 4.7, 6.1$ Hz, 1H, H3'), 3.63 (bs, 1H, H2'), 3.54 t, =6.3 Hz, 1H, H5), 3.34 (m, 1H, H1), 2.35 (m, 3H, CH₂-1", H3), 2.19 (t, $J = 12.8$ Hz, 1H, Ha), 1.93 (t, $J = 12.0$ Hz, 1H, Ha), 1.75 (s, 3H, Ac), 1.69 (3H, Ac). ¹³C NMR (125 MHz, C₆D₆) δ 170.3, 170.2, 139.5, 139.4, 139.1, 139.0, 135.2, 129.0–128.0 (several lines), 117.0, 79.7, 78.9, 78.4, 77.2, 76.2, 75.9, 75.4, 73.9, 73.7, 73.6, 73.4, 73.3, 72.8, 68.3, 67.2, 64.8, 42.9, 37.6, 26.1, 21.1, 20.8. (ESI) m/z: [M+Na]⁺ Calc for C₅₅H₆₂O₁₁Na 921.4184; Found 921.4190.

4.11. ((2R,3R,4S,5R,6S)-5-acetoxy-3-(benzyloxy)-6-(phenylthio)-4-(((2R,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)methyl)tetrahydro-2H-pyran-2-yl)methyl acetate (15)

BF₃OEt₂ (0.015 mL, 0.12 mmol) was added to a mixture of 12 α (16 mg, 0.017 mmol) and thiophenol (0.03 mL, 0.29 mmol) in dry CH₂Cl₂ (1 mL) at –10 °C, under nitrogen. The mixture was allowed to warm to 0 °C and maintained at this temperature for 2 h. Et₃N (0.02 mL) was then added, and the mixture diluted with saturated aqueous NaHCO₃ and extracted with ether. The organic extract was dried (Na₂SO₄) and evaporated under reduced pressure. FCC of the residue afforded 15 (11 mg, 65 %) as a clear film. R_f = 0.50 (30 % EtOAc/hexane). ¹H NMR (600 MHz, C₆D₆) δ 7.66 (d, $J = 8.4$ Hz, 2H, ArH), 7.35–6.97 (m, 28H, ArH), 5.54 (t, $J = 10.5$ Hz, 1H, H2), 4.67 (d, $J = 9.7$ Hz, 1H, H1), 4.53 (m, 2H, 2xPhCH), 4.35 (m, 5H, 5xPhCH, H5', 6', 6), 4.23 (dt, $J = 3.0, 8.8$, 1H, H1'), 4.21 (app d, $J = 11.5$, 1H, PhCH), 4.14 (dd, $J = 4.2, 11.2$ Hz, 1H, H6), 4.01 (t, $J = 3.2$ Hz, 1H, H4'), 3.85 (m, 1H, H6'), 3.81 (bs, 1H, H4), 3.76 (dd, $J = 2.7, 6.1$ Hz, 1H, H3'), 3.62 (bs, H2'), 3.44 (dd, $J = 4.4, 8.3$, 1H, H5), 2.38 (tt, $J = 2.6, 11.0$, 1H, H3), 2.21 (bt, $J = 11.5$ Hz, 1H, Ha), 1.89 (bt, $J = 11.5$ Hz, 1H, Ha), 1.85 (s, 3H, Ac), 1.69 (s, 3H, Ac). ¹³C NMR (125 MHz, C₆D₆) δ 170.1(2 signals), 139.4 (2 signals), 139.3, 139.1, 138.8, 135.1, 132.6, 129.0–128.0 (several lines, buried under C₆D₆ triplet), 88.1 (C1), 79.6, 78.4, 77.1, 75.6, 75.4, 75.3, 74.0, 73.7, 73.6, 73.4, 73.2, 70.6, 68.2, 67.1, 64.5, 43.3, 26.5, 21.2, 20.8. (ESI) m/z: [M+Na]⁺ Calc for C₅₈H₆₂O₁₁Na 989.3905; Found 989.3905.

4.12. (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6R)-3,5-diacetoxy-2-(acetoxymethyl)-6-(pent-4-en-1-ylxy)tetrahydro-2H-pyran-4-yl)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (16)

Sodium (10 mg, 0.42 mmol) was added to a mixture of 13 (3.8 mg, 4.0 μ mol) in liquid NH₃ (1 mL) and dry THF (2 mL) at –78 °C, under nitrogen. The mixture was stirred at this temperature until the blue color persisted for 1 min, then warmed to –33 °C and maintained this temperature for 1 min. Solid NH₄Cl (25 mg) and MeOH (05 mL) were then successively added, and the mixture warmed to rt, stirred at this temperature until excess NH₃ had evaporated and diluted with CH₂Cl₂ (2 mL). The resulting suspension was filtered through Celite, and the filtrate evaporated *in vacuo*. The residue was taken up in EtOAc (1 mL) and treated with Ac₂O (0.05 mL, 0.50 mmol) and DMAP (2 mg, 0.02 mmol) for 16 h at rt. MeOH (0.1 mL) was then added and the mixture evaporated *in vacuo*. FCC of the residue afforded 16 (1.5 mg, 54 %) as a clear film. R_f = 0.30 (50 % EtOAc/hexane). ¹H NMR (600 MHz, C₆D₆) δ 5.68 (m, 1H, =HC=), 5.66 (bs, 1H, H4'), 5.48 (m, 3H, H2', 3', 4), 5.32 (dd, 1H, $J = 7.7, 11.8$, 1H, H2), 4.96 (m, 2H, =CH₂), 4.88 (dd, $J = 8.5, 11.8$, 1H, H6'), 4.66 (bd, $J = 11.4$ Hz, 1H, H1'), 4.45 (d, $J = 7.8$ Hz, 1H, H1), 4.25 (m, 3H, H5', CH₂-6), 4.11 (dd, $J = 4.1, 12.0$ Hz, 1H, H6'), 3.85 (m, 2H, H5, H1"), 3.41 (m, 1H, H1"), 2.33 (bt, $J = 11.5$ Hz, H3), 2.05 (m, 2H, H3"), 1.93 (bt, $J = 10.3$ Hz, 1H, Ha), 1.86 (s, 3H, CH₃CO), 1.86 (s, 3H, CH₃CO), 1.76 (bs, 9H, 3xAc), 1.67 (s, 6H, 2xAc), 1.57 (m, partially buried, 2H, CH₂-H"), 1.56 (s, 3H, Ac), 1.44 (bt, $J = 13.5$ Hz, 1H, Ha). ¹H NMR (125 MHz, C₆D₆) δ 171.1, 170.6, 170.3, 170.0, 169.9, 169.7 (2 signals), 138.6, 115.4, 103.4 (C1), 74.3, 71.6, 71.3, 70.0, 69.0, 68.8, 67.6, 67.4 (2 signals), 62.6, 61.1, 40.0, 30.7, 29.6, 25.2, 20.8 (2 signals),

20.7, 20.6, 20.4 (2 signals), 20.1. (ESI) m/z: [M+Na]⁺ Calc for C₃₂H₄₆O₁₇Na 725.2627; Found 725.2634.

4.13. (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(((2R,3R,4R,5R,6R)-3,5-diacetoxy-2-(acetoxymethyl)-6-allyltetrahydro-2H-pyran-4-yl)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (17)

Application of the two step Birch reaction-/acetylation protocol described for the synthesis of 16, to α -C-allyl glycoside 14 α afforded 17 as an amorphous white solid, R_f = 0.30 (20 % hexane/Et₂O). ¹H NMR (500 MHz, C₆D₆) δ 5.77 (m, 1H, =HC=), 5.67 (t, $J = 3.6$ Hz, 1H, H4'), 5.58 (dd, $J = 3.7, 7.1$, 1H, H2'), 5.51 (m, 2H, H3', 4), 5.33 (dd, $J = 5.5, 11.4$, 1H, H2), 5.08 (bd, $J = 17.1$, 1H, =CH), 5.04 (bd, $J = 10.3$ Hz, 1H, =CH), 4.79 (m, 1H, H6'), 4.70 (m, 1H, H1'), 4.46 (m, 1H, H1), 4.26 (dd, $J = 6.8, 11.2$, 1H, H6), 4.22 (m, 1H, H5'), 4.16 (dd, $J = 6.8, 11.0$, 1H, H6), 4.07 (dd, $J = 4.0, 12.0$, 1H, H6'), 3.99 (m, 1H, H5), 2.57 (m, 1H, H1"), 2.46 (bt, $J = 11.4$, 1H, H3), 2.21 (m, 1H, H1"), 1.94 (bt, $J = 13.3$ Hz, 1H, Ha), 1.76 (s, 3H, Ac), 1.74 (s, 3H, Ac), 1.72 (s, 3H, Ac), 1.67 (s, 3H, Ac), 1.66 (s, 3H, Ac), 1.63 (s, 3H, Ac), 1.61 (s, 3H, Ac), 1.35 (m, 1H, Ha). ¹H NMR (125 MHz, C₆D₆) δ 170.9, 170.4, 170.2, 169.9, 169.7, 169.5, 134.8, 117.3, 72.8, 70.9, 69.9, 69.6, 69.1, 68.9, 68.8, 68.1, 67.8, 62.8, 61.4, 35.1, 30.4, 24.5, 20.7, 20.6 (2 signals), 20.5, 20.4, 20.3, 20.2. (ESI) m/z: [M+Na]⁺ Calc for C₃₀H₄₂O₁₆Na 681.2365; Found 683.2365.

4.14. (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(((2R,3R,4R,5R,6R)-3,5-diacetoxy-2-(acetoxymethyl)-6-propyltetrahydro-2H-pyran-4-yl)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (18a)

A mixture of 14 α (7.0 mg, 7.7 mmol), 10 % Pd/C with 50 % H₂O (10 mg), HCOOH (0.02 mL) in methanol (1 mL) was stirred under a balloon of hydrogen for 24 h at rt. The mixture was purged with nitrogen, filtered through Celite and the filtrate evaporated *in vacuo*. The residue was taken up in EtOAc (1 mL) and treated with Ac₂O (0.05 mL) and DMAP (2 mg, 16 mmol) for 16 h at rt. Methanol (0.05 mL) was then added and the solution evaporated under reduced pressure. FCC of the residue afforded 18 α (2.2 mg, 43 %) as a white amorphous solid. R_f = 0.30 (20 % hexane/Et₂O). ¹H NMR (500 MHz, C₆D₆) δ 5.67 (t, $J = 3.5$ Hz, 1H, H4'), 5.60 (dd, $J = 4.1, 7.6$ Hz, 1H, H2'), 5.49 (m, 2H, H3', 4), 5.33 (dd, $J = 5.6, 11.4$ Hz, 1H, H2), 4.75 (m, 1H, H6'), 4.70 (m, 1H, H1'), 4.39 (m, 1H, H1), 4.21 (m, 3H, H5', CH₂6), 4.08 (dd, $J = 3.9, 11.6$ Hz, 1H, H6'), 3.89 (t, $J = 9.8$ Hz, H5), 2.45 (bt, $J = 11.4$ Hz, H3), 1.95 (bt, $J = 13.0$ Hz, 1H, H1"), 1.78 (m, partially buried, 1H, Ha), 1.77 (s, 3H, Ac), 1.75 (s, 3H, Ac), 1.72 (s, 3H, Ac), 1.69 (s, 3H, Ac), 1.68 (s, 3H, Ac), 1.63 (s, 3H, Ac), 1.62 (s, 3H, Ac), 1.5 (m, 1H, H2"), 1.30 (m, 3H, H1", 2", a), 0.88 (t, $J = 7.3$ Hz, 3H, CH₃-3"). ¹H NMR (125 MHz, C₆D₆) δ 171.0, 170.5, 170.2, 1170.1, 189.8, 169.6, 73.2, 71.2, 71.0, 69.6, 69.0, 68.9, 68.3, 67.9, 63.1, 61.6, 35.2, 27.2, 24.5, 20.8, 20.7, 20.5, 20.4, 20.3, 19.2, 14.5. (ESI) m/z: [M+Na]⁺ Calc for C₃₀H₄₄O₁₆Na 681.2522; Found 681.2525.

4.15. (2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-(((2R,3R,4R,5R,6S)-3,5-diacetoxy-2-(acetoxymethyl)-6-propyltetrahydro-2H-pyran-4-yl)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (18b)

C-allyl glycoside 14 β was subjected to the two step hydrogenolysis-acetylation protocol described for the synthesis of 18 α . FCC of the crude product afforded 18 β as a white amorphous solid. R_f = 0.35 (20 % hexane/Et₂O). ¹H NMR (500 MHz, C₆D₆) δ 5.67 (dd, $J = 2.6, 4.5$ Hz, 1H, H4'). 5.57 (bs, 1H, H4), 5.51 (bs, 2H, H2', 3'), 5.16 (t, $J = 10.2$, 1H, H2), 4.88 (m, 1H, H6'), 4.68 (m, 1H, H1'), 4.25 (m, 3H, H5', CH₂-6), 4.12 (dd, $J = 3.8, 12.0$ Hz, H6'), 3.78 (t, $J = 6.8$ Hz, 1H, H5), 3.37 (dt, $J = 3.3, 8.2$ Hz, 1H, H1), 2.29 (bt, $J = 11.3$ Hz, 1H, H3), 1.93 (ddd, $J = 2.5, 6.4, 14.3$ Hz, 1H, Ha), 1.76 (s, 3H CH₃CO), 1.75 (s, 3H CH₃CO), 1.74 (s, 3H CH₃CO), 1.72 (s, 3H CH₃CO), 1.67 (s, 3H CH₃CO), 1.65 (s, 3H CH₃CO), 1.62 (m, buried, 2H, CH₂-H"), 1.60 (s, 3H CH₃CO), 1.45 (m, 3H, Ha, CH₂-2"), 0.88 (t, $J = 7.4$ Hz, 3H, CH₃-3"). ¹H NMR (125 MHz, C₆D₆) δ 171.1,

170.6, 170.4, 170.3, 169.9, 169.7 (2 signals), 80.1, 76.7, 72.1, 71.6, 70.11, 69.1, 68.1, 67.6, 67.2, 62.9, 61.1, 41.1, 34.8, 25.6, 20.8, 20.7, 20.6, 20.4 (2 signals), 20.2, 19.1, 14.5. (ESI) m/z : [M+Na]⁺ Calc for C₃₀H₄₄O₁₆Na 681.2522; Found 681.2531.

Author contributions

The project was conceived and overseen by DRM, AA, ST, JP and DRM carried out the synthesis and analysis of new compounds. DRM wrote the paper with contributions from AA and ST.

CRediT authorship contribution statement

Alex Ann: Writing – original draft, Methodology. **Steven Truong:** Writing – original draft, Methodology, Data curation. **Jiwani Peters:** Methodology. **David R. Mootoo:** Writing – review & editing, Supervision, Project administration, Funding acquisition, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This research was supported by National Science Foundation awards CHE-1900509 and DBI-2032176. Funding for purchase of the NEO-500 NMR spectrometer and the diffractometer used to obtain data included in this publication, by the NSF (CHE 1828399) and the Air Force Office of Scientific Research (FA9550-20-1-0158) respectively, and help from CUNY-NMR and X-ray facility managers Matthew Devany and Michelle C. Neary, are also acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.bmc.2024.117903>.

References

- Galili U. The α -gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. *Immunol Cell Biol*. 2005;83:674–686. <https://doi.org/10.1111/j.1440-1711.2005.01366.x>.
- Galili U. Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. *Immunol Today*. 1993;14: 480–482. [https://doi.org/10.1016/0167-5699\(93\)90261-i](https://doi.org/10.1016/0167-5699(93)90261-i).
- Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. *Front Immunol*. 2022;13, 928173. <https://doi.org/10.3389/fimmu.2022.928173>.
- Hodzic A, Mateos-Hernández L, de la Fuente J, Cabezas-Cruz A. α -Gal-based vaccines: advances, opportunities, and perspectives. *Trends Parasitol*. 2020;36: 992–1001. <https://doi.org/10.1016/j.pt.2020.08.001>.
- Montoya AL, Austin VM, Portillo S, et al. Reversed immunoglycomics identifies α -galactosyl-bearing glycotopes specific for Leishmania major infection. *JACS Au*. 2021;1:1275–1287. <https://doi.org/10.1021/jacsau.1c00201>.
- Galili U. Human natural antibodies to mammalian carbohydrate antigens as unsung heroes protecting against past, present and future viral infections. *Antibodies*. 2020; 9:1–22. <https://doi.org/10.3390/antib9020025>.
- Huai G, Qi P, Yang H, Wang Y. Characteristics of α -Gal epitope, anti-Gal antibody, α 1,3 galactosyltransferase and its clinical exploitation (Review). *Int J Mol Med*. 2016;37:11–20. <https://doi.org/10.3892/ijmm.2015.2397>.
- Carlson CB, Mowery P, Owen RM, Dykhuizen EC, Kiessling LL. Selective tumor cell targeting using low-affinity, multivalent interactions. *ACS Chem Biol*. 2007;2: 119–127. <https://doi.org/10.1021/cb6003788>.
- Sianturi J, Manabe Y, Li H-S, et al. Development of α -Gal–antibody conjugates to increase immune response by recruiting natural antibodies. *Angew Chem Int Ed*. 2019;58:4526–4530. <https://doi.org/10.1002/anie.201812914>.
- LaTemple DC, Abrams JT, Zhang SY, Galili U. Increased immunogenicity of tumor vaccines complexed with anti-Gal: studies in knockout mice for α 1,3galactosyltransferase. *Cancer Res*. 1999;56:3069–3074.
- de Lederkremer RM, Giorgi ME, Marino C. The α -galactosyl carbohydrate epitope in pathogenic protozoa. *ACS Infect Dis*. 2022;8:2207–2222. <https://doi.org/10.1021/acsinfedis.2c00370>.
- Clarke BR, Ovchinnikova OG, Sweeney RP, et al. A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family. *Nat Chem Biol*. 2020; 16:450–457. <https://doi.org/10.1038/s41589-020-0494-0>.
- Bamgbosa T, Alberdi P, Abdullahi IO, et al. Functional characterization of α -Gal producing lactic acid bacteria with potential probiotic properties. *Sci Rep*. 2022;12: 7484. <https://doi.org/10.1038/s41598-022-11632-8>.
- Breiman A, Ruvén-Clouet N, Le Pendu J. Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. *PLoS Pathog*. 2020;16:e1008556.
- Georgi ME, de Lederkremer RM. The glycan structure of *T. cruzi* mucins depends on the host. Insights on the chameleonic galactose. *Molecules*. 2020;25:3913. <https://doi.org/10.3390/molecules25173913>.
- Schocker NS, Portillo S, Brito CRN, Marques AF, Almeida IC, Michael K. Synthesis of Gal α (1,3)Gal β (1,4)GlcNAc α , Gal β (1,4)GlcNAc α - and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. *Glycobiology*. 2016;26:39–50. <https://doi.org/10.1093/glycob/cwv081>.
- Argunoy DA, Trostianetskaia AS, Krylov VB, Kurbatova EA, Nifantiev NE. Convergent synthesis of oligosaccharides structurally related to galactan I and galactan II of *Klebsiella Pneumoniae* and their use in screening of antibody specificity. *Eur J Org Chem*. 2019;4226–4232. <https://doi.org/10.1002/ejoc.20190389>.
- Hanessian S, Huynh HK, Reddy GV, et al. Synthesis of Gal determinant epitopes, their glycomimetic variants, and trimeric clusters - relevance to tumor associated antigens and to discordant xenografts. *Tetrahedron*. 2001;57:3281–3290. [https://doi.org/10.1016/S0040-4020\(01\)0195-8](https://doi.org/10.1016/S0040-4020(01)0195-8).
- Plaza-Alexander P, Lowary TL. Synthesis of trisaccharides incorporating the α -Gal antigen functionalized for neoglycoconjugate preparation. *ARKIVOC*. 2013; 112–122. <https://doi.org/10.3998/ark.5550190.0014.210>.
- Litjens REJN, Hoogerhout P, Filippov DV, et al. Synthesis of an α -Gal epitope α -D-Galp-(1,3)- β -D-Galp-(1,4)- β -D-GlcNAc– lipid conjugate. *J Carbohydr Chem*. 2005; 24:755–769. <https://doi.org/10.1080/07328300500308113>.
- C-glycosides also called exo-C-glycosides are to be distinguished from their endocyclic methylene analogues, referred to as carbasugars or *endo*-C-glycosides. For examples of carbasugars, see: Arjona O, Gómez AM, López J, Plumet J. Synthesis and conformational and biological aspects of carbasugars. *Chem Rev* 2007; 107:1919–2036. Doi: 10.1021/cr0203701, and Ref. 22.
- Shan M, O'Doherty GA. Synthesis of SL0101 carbasugar analogues: Carbasugars via Pd-catalyzed cyclization and post-cyclization transformations. *Org Lett*. 2010; 12:2986–2989. <https://doi.org/10.1021/o101009q>.
- Lalitha K, Muthusamy K, Prasad YS, Vemula PK, Nagarajan S. Recent developments in β -C-glycosides: synthesis and applications. *Carbohydr Res*. 2015;402:158–171. <https://doi.org/10.1016/j.carres.2014.10.008>.
- Postema MHD. *C-glycoside synthesis*. Boca Raton, FL: CRC Press; 1995.
- Yang Y, Yu B. Recent advances in the chemical synthesis of C-glycosides. *Chem Rev*. 2017;117:12281–12356. <https://doi.org/10.1021/cs.chemrev.7b00234>.
- Jiménez-Barbero J, Espinosa JF, Asensio JL, Cañada FJ, Poveda A. The conformation of C-glycosyl compounds. *Adv Carbohydr Chem Biochem*. 2001;56:235–284. [https://doi.org/10.1016/S0065-2318\(01\)56006-0](https://doi.org/10.1016/S0065-2318(01)56006-0).
- Yuasa H, Hashimoto H. Recent advances in the development of unnatural oligosaccharides – conformation and bioactivity. *Trends Glycosci Glycotechnol*. 2001; 13:31–55. <https://doi.org/10.4052/tigg.13.31>.
- Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Recent advances on synthesis of C-glycosides. *Carbohydr Res*. 2023;530, 108856. <https://doi.org/10.1016/j.carres.2023.108856>.
- Ghosh T, Nakami T. Recent development of stereoselective C-glycosylation via generation of glycosyl radicals. *Carbohydr Res*. 2022;522, 108677. <https://doi.org/10.1016/j.carres.2022.108677>.
- Xu L-Y, Fan N-L, Hu X-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. *Org Biomol Chem*. 2020;18:5095–5109. <https://doi.org/10.1039/d0ob00711krcs.li/obc>.
- Wei Y, Lin LQH, Lee BC, Koh MJ. Recent advances in first-row transition metal-catalyzed reductive coupling reactions for π -bond functionalization and C-glycosylation. *Acc Chem Res*. 2023;56:3292–3312. <https://doi.org/10.1021/acs.accounts.3c00531>.
- Shang W, Shi R, Niu D. C-Glycoside synthesis enabled by nickel catalysis. *Chin J Chem*. 2023;41:2217–2236. <https://doi.org/10.1002/cjoc.202300153>.
- Gou X-Y, Zhu X-Y, Zhang B-S, Liang Y-M. Synthesis of C-aryl glycosides by C-H functionalization. *Chem Eur J*. 2023;29:e202203351.
- Liu C-F. Recent advances on natural aryl-C-glycoside scaffolds: Structure, bioactivities, and synthesis – a comprehensive review. *Molecules*. 2022;27: 7439–7463. <https://doi.org/10.3390/molecules27217439>.
- Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total synthesis of aryl C-glycoside natural products: strategies and tactics. *Chem Rev*. 2018;118:1495–1598. <https://doi.org/10.1021/acs.chemrev.7b00380>.
- Zhu F, Rodriguez J, Yang T, et al. Glycosyl cross-coupling of anomeric nucleophiles: scope, mechanism, and applications in the synthesis of aryl C-glycosides. *J Am Chem Soc*. 2017;139:17908–17922. <https://doi.org/10.1021/jacs.7b08707>.

37. Ling J, Bennett CS. Versatile glycosyl sulfonates in β -selective C-glycosylation. *Angew Chem Int Ed Engl.* 2020;59:4304–4308. <https://doi.org/10.1002/anie.201914221>.

38. Romeo JR, Lucera JD, Jensen D, Bennett CS. Application of redox-active ester catalysis to the synthesis of pyranose alkyl C-glycosides. *Org Lett.* 2023;25: 3760–3765. <https://doi.org/10.1021/acs.orglett.3c01228>.

39. Yuan X, Linhardt RJ. Recent advances in the synthesis of C-oligosaccharides. *Curr Top Med Chem.* 2005;5:1393–1430. <https://doi.org/10.2174/156802605774643033>.

40. Moriyama T, Yoritate M, Kato N, et al. Linkage-editing pseudo-glycans: a reductive α -fluorovinyl-C-glycosylation strategy to create glycan analogs with altered biological activities. *J Am Chem Soc.* 2024;146:2237–2247. <https://doi.org/10.1021/jacs.3c12581>.

41. Oroszova B, Choutka J, Pohl R, Parkan K. Modular stereoselective synthesis of (1,2)-C-glycosides based on the sp²-sp³ Suzuki-Miyaura reaction. *Chem Eur J.* 2015;21: 7043–7047. <https://doi.org/10.1002/chem.201406591>.

42. Mazéa D, Skrydstrup T, Beau J-M. A highly stereoselective synthesis of 1,2-trans-C-glycosides via glycosyl samarium (III) compounds. *Angew Chem, Int Ed Engl.* 1995; 34:909–912. <https://doi.org/10.1002/anie.199509091>.

43. Dietrich H, Schmidt RR. Synthesis of carbon-bridged C-lactose and derivatives. *Liebigs Ann Chem.* 1994:975–981. <https://doi.org/10.1002/jlac.199419941004>.

44. Giese B, Hoch M, Lambertz C, Schmidt RR. Synthesis of methylene bridged C-disaccharides. *Tetrahedron Lett.* 1988;29:1375–1378. [https://doi.org/10.1016/S0040-4039\(00\)80300-7](https://doi.org/10.1016/S0040-4039(00)80300-7).

45. Hirai G, Kato M, Koshino H, et al. Ganglioside GM3 analogues containing monofluoromethylene-linked sialoside: synthesis, stereochemical effects, conformational behavior, and biological activities. *JACS Au.* 2021;1:137–146. <https://doi.org/10.1021/jacsau.0c00058>.

46. Notz W, Hartel C, Waldschek B, Schmidt RR. De novo synthesis of a methylene-bridged Neu5Ac-a-(2,3)-Gal C-disaccharide. *J Org Chem.* 2001;66:4250–4260. <https://doi.org/10.1021/jo015543l>.

47. Liu L, Postema MH. A unified approach to differentially linked beta-C-disaccharides by ring-closing metathesis. *J Am Chem Soc.* 2001;123:8602–8603. <https://doi.org/10.1021/ja010641+>.

48. Khan N, Cheng X, Mootoo DR. 1-Thio-1,2-O-isopropylidene acetals: novel precursors for the synthesis of complex C-glycosides. *J Am Chem Soc.* 1999;121:4918–4919. <https://doi.org/10.1021/ja9843270>.

49. Armstrong RW, Sutherlin DP. Strategies for the synthesis of C-disaccharides containing D and L sugars. *Tetrahedron Lett.* 1994;35:7743–7746. [https://doi.org/10.1016/S0040-4039\(00\)77361-8](https://doi.org/10.1016/S0040-4039(00)77361-8).

50. Wang Y, Babirad SA, Kishi Y. Preferred conformation of C-glycosides. 8. Synthesis of 1,4-linked carbon disaccharides. *J Org Chem.* 1992;57:468–481. <https://doi.org/10.1021/jo00028a017>.

51. Altiti AS, Mootoo DR. Synthesis of C-glycoinositols from C-glycosylcrotyl-stannanes. *J Org Chem.* 2018;83:6534–6540. <https://doi.org/10.1021/acs.joc.8b00845>.

52. Truong S, Mootoo DR. C-Glycosylcrotylboronates for the synthesis of glycomimetics. *Org Lett.* 2022;24:191–195. <https://doi.org/10.1021/acs.orglett.1c03845>.

53. Sweeney RP, Lowary TL. A route to polypropenyl pyrophosphate-based probes of O-polysaccharide biosynthesis in *Klebsiella pneumoniae* O2a. *Org Lett.* 2019;21: 1050–1053. <https://doi.org/10.1021/acs.orglett.8b04093>.

54. Zhang P, Roundtree IA, Morken JP, Ni, and Pd-catalyzed synthesis of substituted and functionalized allylic boronates. *Org Lett.* 2012;14:1416–1419. <https://doi.org/10.1021/ol3001552>.

55. Netherton MR, Dai C, Neuschütz K, Fu GC. Room-temperature alkyl-alkyl Suzuki cross-coupling of alkyl bromides that possess β hydrogens. *J Am Chem Soc.* 2001; 123:10099–10100. <https://doi.org/10.1021/ja0113060>.

56. Liu B, Das SK, Roy R. Efficient ruthenium carbenoid-catalyzed cross-metathesis of allyl halides with olefins. *Org Lett.* 2002;4:2723–2726. <https://doi.org/10.1021/o1026235s>.

57. Schmid CR, Bryant JD, Dowlatzadeh M, et al. Synthesis of 2,3-O-isopropylidene-D-glyceraldehyde in high chemical and optical purity – observations on the development of a practical bulk process. *J Org Chem.* 1991;56:4056–4058. <https://doi.org/10.1021/jo00012a049>.