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Introduction: Reconstructing low-level particle tracks in neutrino physics

can address some of the most fundamental questions about the universe.

However, processing petabytes of raw data using deep learning techniques

poses a challenging problem in the field of High Energy Physics (HEP). In the

Exa.TrkX Project, an illustrative HEP application, preprocessed simulation data

is fed into a state-of-art Graph Neural Network (GNN) model, accelerated by

GPUs. However, limited GPU memory often leads to Out-of-Memory (OOM)

exceptions during training, due to the large size of models and datasets.

This problem is exacerbated when deploying models on High-Performance

Computing (HPC) systems designed for large-scale applications.

Methods: We observe a high workload imbalance issue during GNN model

training caused by the irregular sizes of input graph samples in HEP datasets,

contributing to OOM exceptions. We aim to scale GNNs on HPC systems, by

prioritizing workload balance in graph inputs while maintaining model accuracy.

Our paper introduces diverse balancing strategies aimed at decreasing the

maximum GPU memory footprint and avoiding the OOM exception, across

various datasets.

Results: Our experiments showcase memory reduction of up to 32.14%

compared to the baseline. We also demonstrate the proposed strategies can

avoid OOM in application. Additionally, we create a distributed multi-GPU

implementation using these samplers to demonstrate the scalability of these

techniques on the HEP dataset.

Discussion: By assessing the performance of these strategies as data loading

samplers across multiple datasets, we can gauge their e+ectiveness in both

single-GPU and distributed environments. Our experiments, conducted on

datasets of varying sizes and across multiple GPUs, broaden the applicability of

our work to various GNN applications that handle input datasets with irregular

graph sizes.

KEYWORDS

high-performance computing, scientific workflows, graph neural networks,

supercomputing, graphic processing units, deep learning

1 Introduction

Neutrinos, the most abundant matter particles in the universe, can answer

fundamental questions about the nature of matter and the evolution of the universe.

Conducting experiments using advanced tracking algorithms to reconstruct the trajectories

of thousands of charged particles from a collision event as they fly through a

detector can advance neutrino discoveries (Abi and Acciarri, 2020). To harness this
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low-level particle data, High Energy Physics (HEP) applications

are increasingly developing deep learning (DL) models aimed at

reconstructing millions of particle trajectories per second from the

petabytes of raw data produced by the next generation of detectors

at the Energy and Intensity Frontiers (ExaTrkX Collaboration,

2024). In particular, recent success in using GraphNeural Networks

(GNNs) in accurately classifying particle types and edges have

prompted multiple scientific workflows based on GNNs (Ju et al.,

2021). We use one of these scientific workflows as an illustrative

example of an HEP application to demonstrate the current

limitations of large-scale GNNs (Lee et al., 2023).

In the deployment of GNNs for particle reconstruction on HPC

systems, we rely on GPUs for efficient model training. Currently,

GPU utilization remains prevalent for accelerating the training,

testing, and deployment of DL models. However, an Out-of-

Memory (OOM) exception can arise during model training due to

constrained GPU memory space relative to the large CPU memory

space. The limited aggregate GPU memory size of state-of-art

GPUs amplifies the prevalence of OOM issues in Deep Learning

(DL) applications. According to Rajbhandari and Ruwase (2021),

while the size of largest training dense model has increased by

a factor of 1,000 in recent years, GPU memory has only grown

5-fold from 16 GB (NVIDIA Tesla V100) to 80 GB (NVIDIA

Tesla A100). Moreover, an empirical study detailed in Gao et al.

(2020), cites the exhaustion of GPU memory as the top reason

for failed DL jobs. Consequently, GPU memory limitations pose

a bottleneck, particularly when the size of datasets surpass the GPU

memory capacity.

The problem of OOM is further exacerbated using GPUs

to run model training on large-scale datasets. HPC systems are

designed to support larger datasets with a parallel filesystem and

stronger processing cores. However, these resources cannot be fully

utilized with a limited GPU memory capacity (Pumma et al., 2019;

Anonymous, 2003). One proposed strategy for OOM exceptions is

reducing the batch size (Yang et al., 2023). However, maintaining

a larger batch size provides advantages. First, a larger batch size

increases the degree of data parallelism we can exploit on HPC

systems. Given a smaller batch size, this upper limit is reached

much more quickly. Furthermore, using a larger batch size can

increase the number of features we can run with our model. Also,

too small of a batch size can hurt model accuracy (Peng et al., 2017).

Previous research employs distributed GNNs such as those

presented in Jia et al. (2017), Tripathy et al. (2020), Hu et al.

(2021), and Zhu et al. (2019) for scaling GNNs leverages large input

graphs as input to the model. However, in our HEP application,

each sample constitutes an independent collision event, thus

forming individual graphs of moderate sizes. To the best of our

knowledge, our work stands as the pioneering attempt to apply such

methodologies to datasets comprised of individual graph samples

with dynamic sizes.

The HEP application input training samples are comprised of

event graphs can differ from each other by an order of magnitude

creating a large standard deviation between the sizes of graphs.

Therefore, using a naïve random sampler to generate the mini-

batches from training may result in a large range in memory

size and results in a substantially higher maximum GPU memory

consumption value compared to the average size of the samples

in the mini-batch. OOM exceptions are caused when the GPU

memory spikes to a value above the supported GPU capacity.

This GPU memory threshold can be exceeded due to a batch

comprised of large graph samples, creating an imbalance among

mini-batches. Therefore, we introduce the multiple alternative

mini-batch balancing strategies to avoid an OOM exception.

Our paper addresses workload imbalances in GNNs with

irregular-sized training samples across various settings by

proposing multiple workload-balancing algorithms to redistribute

data samples.

We make the following key contributions in this paper. We (1)

introduce multiple mini-batch balancing strategies and integrate

them into a state-of-the-art HEP GNN model to reduce the

maximumGPUmemory usage and consequently the probability of

an OOM exception on a single-GPU while maintaining accuracy

on the full dataset, (2) parallelize the GNN and the mini-batch

balancing strategies across multiple GPUs without compromising

accuracy to demonstrate the scalability of the strategies, and

(3) evaluate the tradeoff between memory conservation and

preprocessing overhead of the proposed mini-batch balancing

strategies on HPC systems.

In this paper, we describe how the balancing scheme is

utilized in the Exa.TrkX workflow to address these challenges

and coordinate the data management requirements, using datasets

provided by the MicroBoone Collaboration (Abratenko and

Aldana, 2022b,a) and the computing and storage resources from

the supercomputer Perlmutter (National Energy Research Scientific

Computing Center (NERSC), 2024) located at the National Energy

Research Scientific Computing Center (NERSC).

2 Background and motivation

2.1 High energy physics workflow

Graph Neural Networks (GNNs) to capture high-level patterns

on non-Euclidean datasets have recently received considerable

attention in High-energy Physics (HEP) projects, providing

promising results for particle track reconstruction and other data

analyzes (ExaTrkX Collaboration, 2024). The Exa.TrkX Project,

an illustrative HEP application aims to create particle tracking

algorithms linearly scales with numerous data points. Geometric

Deep Learning (GDL) offers a reasonable solution to both needs

of scalability on large datasets and optimal performance on non-

Euclidean datasets. Therefore, GNNs are utilized in multiple

scientific workflows for HEP collider experiment data (Ju et al.,

2021).

One such pipeline is for simulated data from the Liquid

Argon Time Projection Chambers (LArTPC) neutrino

experiments (Hewes and Aurisano, 2021). The main goal of this

application is to semantically label recorded energy depositions,

or hits, according to the type of particle that generated them. The

raw data consists of petabytes of data but is condensed into graphs

through a scientific workflow. The infrastructure of the pipeline, as

outlined in Lee et al. (2023), preprocesses simulation data to graph

samples. These samples are in turn used as input to a state-of-art

GNNmodel for classification. The simulated data is stored in event

graphs with each graph containing a variable number of nodes and

edges. Therefore, the graph samples in the dataset have irregular

graph sizes.
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FIGURE 1

Dataset histogram shows the right-skewedness of the sample sizes. Individual graph samples range from 12 to 2,833 MB. The red line indicates the

average graph sample size.

TABLE 1 Mini-batch statistics given a batch size of 64.

Statistics (MB) 100% 10% 1%

Maximum 2,833.02 2,200.67 1,648.69

Minimum 11.70 11.70 18.73

Average 243.72 245.21 240.29

Median 192.50 192.70 188.44

Std Dev 190.06 191.41 182.29

2.2 Input dataset characterization

Figure 1 shows the dataset exhibits a right-skewed distribution,

as illustrated by the histogram. Among the samples, the majority

cluster within the 100MB range. However, as shown by Table 1, the

largest sample in the dataset ranges upto an order of magnitude

larger compared to the average sample size. Furthermore, the

presence of a large standard deviation signals numerous outliers

within the dataset.

In addition to the original dataset, we meticulously curate

two additional smaller datasets derived from the original graph

data. These datasets are a subset of the original dataset selected at

random to represent a part of the real-world dataset. The reason

for creating these datasets is 2-fold. The first is to evaluate the

degree of randomness on model performance. As the size of the

dataset decreases, the range of samples the data loader can choose

from also decreases. We aim to understand how different workload

balancing strategies affect factors such as GPU memory footprint

and model accuracy. The second is for practical reasons. Running

the GNN model until validation loss converges takes ∼80 h. A

smaller dataset enables faster evaluation of trends in the dataset.

Each instance in the dataset represents an event graph depicting

a collision event involving sub-atomic particles. Each event graph

is assigned a unique event ID corresponding to a continuous time

range. We deliberately extract event IDs from this continuous time

range to generate datasets with 10 and 1% of the samples present in

the original dataset.

To visually represent the distribution of these datasets, we

utilize a box and whisker plot (Figure 2). In this visualization, the

whisker caps of the box plot denotes the minimum and maximum

values within the dataset and the red line in the center of the

boxes signifies the median value. The single black circles above the

boxes show the outliers. In Figure 2, a large number of outliers

is evident in the original dataset. In particular, as the dataset size

diminishes to 10 and 1%, the number of outliers in the dataset

decreases. However, all datasets maintain sample distribution; the

average, median, and standard deviation among the graph samples

are nearly the same.

2.3 GPU Out-of-Memory exception

The Out-of-Memory (OOM) exception on GPUs arises when

there is insufficient GPU memory during program runtime,

particularly in the context of model training. This exception

becomes apparent when the GPU memory utilization surges,

surpassing the maximum GPU memory capacity. Therefore,

lowering the maximum GPU memory footprint emerges as a

potential strategy to mitigate the likelihood of encountering

OOM exceptions, potentially averting such issues altogether. This

strategic adjustment contributes to a more stable and efficient

training process in the face of potential OOM challenges.

2.4 Impact of balancing mini-batches on
allocated memory

The Pytorch library leverages a CUDA caching memory

allocator for efficient management of GPU memory, specifically

tailored to optimize memory allocation and deallocation on

GPUs (Paszke et al., 2019). Allocated memory represents the

current GPU memory occupied by tensors in bytes for a specified

device whereas reserved memory monitors the GPU memory

actively managed by the caching allocator in bytes for a designated

GPU device.

We observe a similarity in the trend between GPU allocated

memory (Figure 3) and the batch size in bytes (Figure 4)

throughout the training process. To substantiate this correlation,

we employ the Pearson Correlation Coefficient (PCC). The PCC,

measuring linear correlation on a scale from -1 to 1, signifies

stronger correlation with values closer to 1. Our calculated PCC

between batch memory consumption and GPU memory allocation

at runtime, using the default model setting’s batch size (64), yields

a robust correlation coefficient of 0.928. Leveraging this insight,

we set an objective to balance mini-batch sizes during training to

effectively reduce GPU memory consumption.

The irregularities in the size of graph data samples introduce

variability, where certain samples may act as outliers, occupying

more bytes than others. This discrepancy can lead to an imbalance
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FIGURE 2

Box plot of di+erent datasets. The dots represent outliers in the dataset. The red line indicates the median and the whisker caps signify the minimum

and maximum values of dataset, excluding outliers.

FIGURE 3

The amount of allocated memory in GB during model training over 100 iterations.

in mini-batch sizes across different batches. To address this

concern, we aim to distribute data samples across all mini-

batches, to ensure a balanced size each iteration in terms of GPU

memory usage.

2.5 Particle type multiplicity

Within the graph dataset, all graph edges fall into one of four

categories: shower-like, muonic, hadronic, and false (Hewes and

Aurisano, 2021). The distribution of these particles is detailed in

Table 2. The particle types can also be divided into HIP, MIP,

EM showers, and Michel electrons. HIP denotes “Heavily Ionizing

Particles,” encompassing protons, kaons, nuclei, etc., while MIP

represents Minimum Ionizing Particles and consists of particles

such as muons, pions, etc. The goal of the semantic label in the

GNN is to correctly classify these particle types. Understanding

and considering these distinctions in particle types is crucial for

a nuanced analysis of the dataset and can inform strategies for

improving model accuracy.

In our dataset, the multiplicity of samples exhibits a correlation

with the subatomic particle type. The number of nodes in the graph

is directly linked to the true particle type, influencing the overall

graph size in bytes. For instance, particle types like Electromagnetic
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FIGURE 4

The mini-batch size in MB during model training over 100 iterations.

(EM) showers (Figure 5) typically entail numerous nodes, while a

Michel electron features only a few nodes (Figure 6). Therefore,

maintaining or improving model accuracy can be facilitated by

evenly balancing the batch size in bytes.

2.6 Degree of randomness

Shuffling input training samples is important for avoiding

bias and ultimately providing good generalization for the model.

However, the degree of randomness of shuffling can be reduced

when training a parallel model with multiple GPU devices. We

quantify the degree of randomness to evaluate the impact of the

randomness on model accuracy.

Given N training samples, B as the global batch size, at each

epoch, there are N
B batches processed. This training epoch is

repeated until the validation loss has converged. We assume there

are I training epochs in total. In parallel Deep Neural Network

training, assuming P as the number of processes, each individual

process randomly reads B
P samples at each iteration. Same as the

non-parallel training, there are N
B iterations per epoch.

In the context of distributed training across multiple GPUs

employing local shuffling, the total of N training samples is

uniformly distributed among the available devices. Consequently,

each process is allocated N
P samples, where P represents the

total number of processes or devices involved (Nguyen et al.,

2022). Throughout the training iterations, these assigned samples

are locally shuffled, contributing to the diversification of data

input for each process. This local shuffling approach ensures that

each process works with a distinct subset of training samples,

promoting effective exploration of the dataset across the distributed

training environment.

3 Design and implementation

3.1 Workload balancing strategies

Each graph sample in the dataset has a varying number

of nodes in the graph and consequently a different size. The

inherent variability in graph samples within our dataset, manifested

through varying node counts and sizes, presents a unique challenge,

TABLE 2 The particle type breakdown by percentage.

Particle class Percentage (%)

False 6.43

EM shower 65.43

Muon 26.37

Hadronic 1.77

particularly concerning GPU memory allocation during batching.

Aggregating large graph samples with substantial byte sizes into a

single batch can significantly inflate the GPU memory footprint,

leading to potential memory allocation issues. To tackle this,

our approach identifies outlier samples, with “outlier” defined as

samples with disproportionately larger sizes, and redistributing

these outliers across multiple batches. The balancing algorithm

redistributes these outliers, ensuring that the model’s loss and

accuracy remain reproducible across the batches. Our efforts extend

further to accommodate distributed computing environments and

multiple GPUs through a parallelized implementation of the

workload balancing sampler, enabling efficient execution on High-

Performance Computing (HPC) systems.

The torch.utils.data.Sampler class in

Pytorch (Paszke et al., 2019) is used to specify the sequence

of indices/keys used in data loading. The sampler creates an

returns a list of indices corresponding to the samples in the

dataset for the model to iterate over during a single epoch.

We implement multiple mini-batch balancing algorithms by

employing outlier detection algorithms and an algorithm to

find the lower-bound GPU memory footprint. These algorithms

are implemented in data loading samplers which are integrated

into the Pytorch framework. We evaluate the performance of

the model using multiple mini-batch balancing strategies and

compare them with the default Pytorch random sampler. The

evaluated samplers in Pytorch initialized and updated at the start of

every epoch.

Random sampler—The random sampler is the default sampler

to construct batches using batch size B random graph samples. The

model trainer iterates over these batches during each epoch. These

data samples within the batches are shuffled if shuffling is enabled.
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FIGURE 5

EM shower graph.

FIGURE 6

Michel electron graph.

FIGURE 7

Karmarkar-Karp algorithm mini-batch size (MB) compared to baseline.
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Balance sampler—The balance sampler incurs a one-time

preprocessing step before the sampler can be used during training.

This preparatory phase involves computing the sizes of individual

graph samples, sorting these sizes, and appending the sorted array

as metadata to the input dataset. This sorted metadata, appended,

streamlines the runtime initialization process by eliminating the

need to compute the graph sample sizes during each run of the

sampler. The balance sampler uses a user-specified fraction to take

a subset of the outliers in the dataset and distribute the values

across batches based on their byte-size. When this fraction equals

1, representing the entire dataset, the balancing algorithm simplifies

into a bucket partitioning strategy.

Z-score sampler—The Z-score method is statistical technique

used to identify outliers in a dataset. It standardizes the values in

the dataset to have a mean of 0 and a standard deviation of 1. The

Z-score of a data point measures how many standard deviations it

is from the mean. We calculate the Z-score for a data point with the

equation

Z =
X − µ

α

The X represents the data point being evaluated and the µ

and α signifies the mean and standard deviation of the dataset

respectively. Once the Z-scores are calculated for each data point, a

commonly used threshold to identify outliers is any data point with

a Z-score greater than a certain threshold. We use the threshold

3, which treats a data point more than 3 standard deviations away

from the mean as an outlier.

Karmarkar-Karp sampler—The Karmarkar-Karp algorithm,

also referred to as the largest differencing method, is a popular

approach to solve the multi-way number partitioning optimization

problem in polynomial time (Karmarkar, 1984; Korf, 1998). Since

employing the Karmarkar-Karp algorithm converges the dataset

partition toward an optimal solution by minimizing the standard

deviation between batches (Figure 7), we use this algorithm as a

lower-bound sampler to predict the theoretical lower-bound of the

GPU memory footprint during GNN training.

With a worst-case runtime of O(n), where n signifies the

number of data points within the dataset, the Karmarkar-Karp

algorithm emerges as a practical choice for handling extensive

datasets. While not guaranteeing an optimal partition, it notably

outperforms conventional greedy heuristics. However, employing

the Karmarkar-Karp algorithm converges the dataset partition

toward an optimal solution by minimizing the standard deviation

between batches, thereby constraining variations and consequently

the degree of freedom. This can leads to poor generalization of the

model and a lower model accuracy at convergence. Furthermore,

the Karmarkar-Karp algorithm is unideal for practical application

is because the algorithm has high memory requirements and easily

runs out of memory on the GPU. Therefore, our utilization of

the Karmarkar-Karp algorithm serves as a lower-bound estimator

to measure the GPU memory footprint for the previously

proposed samplers.

The Karmarkar-Karp algorithm partitions the dataset into sets

with sizes similar to the fixed batch size whereas the Pytorch

sampler implementation requires every dataset partition is of

a fixed batch size. Consequently in our implementation of the

algorithm, we perform a post-partitioning steps, rectifying any

batches that exceed or are less than the specified batch size.

The corrective step involves removing random elements from

the oversized batches and appending the elements to undersized

batches, ensuring uniformity in batch size across the dataset.

3.2 Interquartile range (IQR) strategy

Interquartile Range (IQR) sampler—The Interquartile Range

(IQR) method is based on the interquartile range and identifies

outliers by measuring the spread of data between the first (Q1) and

third (Q3) quartiles. Outliers are typically values below Q1 − 1.5 ∗

IQR or above Q3 + 1.5 ∗ IQR. In particular, IQR-based methods

are proven to be robust in situations where the data deviates from

normality and exhibits skewness (Iglewicz and Hoaglin, 1993).

Given a skewed distribution, users can also adjust the outlier

threshold value depending on the the dataset distribution. As our

dataset is right-skewed dataset, we detect outliers using the upper

bound equation,

Q3+ 1.5 ∗ IQR

After identifying outliers with the IQR method, we distribute

each outlier to a different batch in a round-robin fashion. We

hypothesize the IQR strategy will most effectively balance the

outliers among the mini-batches due to the unconstrained degree

of freedom, unlike the Karmarkar-Karp algorithm, allowing for

shuffling of outliers. In particular, assigning graphs with varying

sizes to a singlemini-batch can include amore diverse set of particle

types leading to better generalization during model training.

3.3 Distributed data parallel training

Data parallelism can harness an extensive training dataset

and exploit a parallel High-Performance Computing (HPC)

environment. A widely used parallelization strategy, is employing

synchronous Stochastic Gradient Descent (SGD) with data

parallelism (Zinkevich et al., 2010). In this data parallel

training paradigm, workers are initialized with identical

weight parameters, and mini-batches are evenly distributed

among them. Each worker independently computes local

gradients based on its assigned training samples. At the end

of each iteration, these local gradients are averaged across all

processes and broadcasted back via inter-process communication

using an MPI Allreduce operation (Sergeev and Balso,

2018). Consequently, all workers can update their local model

parameters with globally synchronized gradients. This strategy

enables efficient parallel processing across multiple GPUs while

maintaining synchronization through coordinated gradient

updates, contributing to enhanced model training performance

in the distributed HPC environment. Therefore, we incorporate

a distributed data parallel (DDP) implementation for each of the

proposed mini-batch balancing strategies.

Distributed Sampler—The Distributed Sampler class provided

by Pytorch divides the full dataset into the number of subsets

as there are processes launched during initialization. The subsets

during local shuffling are partitioned using an interleaving pattern.
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We take the data subsets for each GPU device and implement a

distributed version for each of the proposed mini-batch balancing

strategies within each sampler. All of the strategies use local

shuffling and keep the global batch size constant. Global batch

size is calculated (number of devices * per-device batch size).

In the context of this paper, we use the terms global batch

size interchangeably with effective batch size. We also use the

term local batch size interchangeably with the per-device batch

size. We evaluate the effectiveness of these samplers in the

distributed setting.

4 Performance evaluation

4.1 Experimental setup

The following tests have been run on the NERSC Perlmutter

cluster. We use GPU-accelerated nodes on Perlmutter for our

experiment. Each of the heterogeneous 1,536 nodes consist of 1 64-

core AMD Milan CPU and 4 NVIDIA A100 GPUs using a 3-hop

dragonfly topology interconnect. Each hardware-accelerated node

also comes with 256 GB of DDR4 DRAM and 40 GB HBM for

each GPU.

The Perlmutter storage system (also referred to as “Perlmutter

Scratch”) uses an all-flash Lustre parallel filesystem (Leventhal,

2008). The system holds upto 35 PB of data, 16 metadata servers

(MDS), 274Object Storage Servers (OSS), 3,792 dual-ported NVMe

SSDs, 1 OST, 1 OST, and 12 NVMes.

Software—For the codebase, we use the Torch Geometric

library (Fey and Lenssen, 2019) for graph representation built on

top of the PyTorch machine learning framework (Paszke et al.,

2019) in addition to system-specific libraries built on top. To

run our parallel and distributed framework we use the PyTorch

Distributed Data Parallel (DDP) library. We also leverage mpi4py

and h5py to access MPI and HDF5 library functions respectively,

and NCCL (NVIDIA, 2023) for synchronizing the distributed

model on NVIDIA GPU-based systems.

Datasets—LArTPC neutrino graph data is generated from

simulated neutrino interactions publicly provided by the

MicroBooNE project (Abratenko and Aldana, 2022b,a). The charge

measurements (hits) from the detector represent the nodes of the

graph. The tracks of the hits represent the edges of the graph. Three

independent graphs are produced for each neutrino interaction

corresponding to the three readout planes in the detector. The

event graphs vary in size. The simulated neutrino data is comprised

of 317,084 graphs in total and are split into 95% of samples for

training (300,396 graphs), and 5% of samples for validation and

testing (16,688 graphs). The total size of the dataset is 75 GB.

The graph samples are stored in the Pytorch files where one file

represents a graph sample. For the one file storing all samples,

all training samples are stored in a single HDF5 file in which

one graph sample corresponds to one HDF5 group. Each group

contains feature vectors stored as HDF5 datasets.

We use the carefully generated subsets of the dataset, 1 and 10%

of all samples. These datasets are created to show the performance

of the proposed mini-batch balancing strategies on datasets of

varying sizes. These graphs are chosen by selecting a continuous

range of event IDs from the full dataset.

Evaluation metrics—In the evaluation of our GNN, we

prioritize precision and recall as pivotal metrics over accuracy.

FIGURE 8

Memory consumption of 2, 4, and 8 GPUs, respectively.

FIGURE 9

Recall values for 1, 10, and 100% datasets, respectively.
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TABLE 3 The setup overhead for using di*erent balancing strategies on

the full dataset.

Strategy Initialization (ms) Batch creation (ms)

Random 0.0136 36.49

Balance (0.1) 11.7 83.64

Balance (0.01) 11.7 82.44

IQR 12.25 136.6

Z-score 11.6 154.8

Karmarkar-Karp OOM OOM

The default random sampler has the lowest initialization and batch creation times. The setup

times of the strategies excluding Karmarkar-Karp are comparable to one another. The values

in parentheses list the chosen threshold for the balance strategy.

Precision serves as an indicator of the accuracy of positive

predictions, offering insights into the model’s proficiency in

correctly identifying instances of interest. On the other hand,

recall evaluates the model’s effectiveness in capturing all relevant

instances within the dataset. Recall refers to the ratio of correctly

predicted positive observations to the all observations in actual

class. Consequently, we use primarily use recall over accuracy to

measure performance.

Our primary objective is the classification of hits based on

particle type. In this context, precision and recall are particularly

pertinent metrics, as they provide a nuanced understanding of the

model’s performance in correctly identifying positive instances and

ensuring comprehensive coverage of the relevant particle types. By

emphasizing precision and recall in our evaluation, we aim to gain a

more insightful and nuanced assessment of the GNN’s capabilities,

specifically tailored to the intricacies of particle type classification.

Model training—The baseline model training spans 80 epochs,

a point where both precision and recall values converge, offering

a stable assessment of model effectiveness. The application trains

on the NuGraph2 model with a global batch size set at 64.

In distributed setups, we leverage the Distributed Data Parallel

(DDP) Framework and deploy one MPI process per GPU

device. We ensure the effective batch size remains consistent

by fixing the global batch size and reducing the local batch

size accordingly. We use maximum reserved GPU memory

(torch.cuda.max_memory_reserved()) provided by the

Pytorch cache memory allocator to find the value of the maximum

memory footprint on a given GPU device. To evaluate the proposed

samplers, we use a threshold of recall improvement of more than

0.01 before stopping training to verify the model has converged.

4.2 Initialization overhead of mini-batch
balancing strategies

We analyze the setup overhead for the mini-batch balancing

strategies. The initialization time is a one-time preprocessing

overhead during sampler initialization and batch creation takes

place at the beginning of every epoch. Table 3 presents the

overhead of strategy initialization and batch creation times. Of

the presented strategies, the Karmarkar-Karp sampler runs into

an OOM exception at initialization. As mentioned above, the

Karmarkar-Karp algorithm has high memory requirements and

therefore incurs an expensive initialization step prone to OOM

TABLE 4 Performance of datasets after model training.

Dataset Strategy Recall (%) GPU Mem (GB)

100% Random 95.03 12.26

Balance (0.1) 95.04 13.48

Balance (0.01) 95.06 14.26

IQR 95.10 12.13

Z-score 95.06 12.90

Karmarkar-Karp OOM OOM

10% Random 92.58 10.27

Balance (0.1) 92.59 14.07

Balance (0.01) 92.60 12.67

IQR 92.40 9.06

Z-score 92.51 10.47

Karmarkar-Karp 91.91 8.61

1% Random 86.85 11.69

Balance (0.1) 86.36 10.10

Balance (0.01) 85.04 10.38

IQR 86.55 7.70

Z-score 86.33 11.47

Karmarkar-Karp 86.16 6.84

We use the random strategy as the baseline. The values in parentheses list the chosen threshold

for the balance strategy. A higher recall value and a lower GPUmemory footprint is preferred.

exceptions for large datasets. This is also the case shown running

the full dataset with the Karmarkar-Karp sampler. However, as

observed in Table 4, the smaller-sized datasets do not run out of

memory for the Karmarkar-Karp sampler. The results also show

the remaining balancing strategies heavily outweigh the default

random sampler in regards to initialization time and batch creation

time. The initialization time for the IQR sampler is 900.7 times

more expensive than the random sampler and the Z-score batch

creation time is 4.24 times the time it takes to construct a batch

for the random sampler. Furthermore, the initialization time and

batch creation time grows proportionally to the size of the dataset

for both the random and balancing strategies. These times also

decrease proportionally with an increased number of GPUs.

However, the duration for running the complete dataset for one

epoch is ∼1 h and full training takes over 80 h. We also observe

that both the initialization and batch creation times in Table 3

individually do not surpass 200 ms. Consequently, creating a batch

at the start of each epoch consists of 0.005% of total epoch time and

the one-time initialization cost takes up an even smaller fraction.

Due to the nearly negligible setup overhead, we conclude that the

overhead, constituted by the combined time spent on initialization

and batch creation, is not significant in comparison to overall cost

incurred during the model training process.

4.3 Balancing strategy performance on
datasets

We highlight the effectiveness of various balancing strategies

in reducing GPU memory footprint throughout the model

convergence process. We use this experiment as a proof of
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TABLE 5 Performance of datasets on upto 8 GPUs using the

top-performing strategies.

GPUs Strategy GPU mem
(GB)

Mem
reduction

(%)

Recall (%)

1 Random 12.26 — 95.03

IQR 12.13 1.07 95.10

Z-score 12.90 — 95.06

2 Random 8.99 — 91.25

IQR 6.33 29.58 90.73

Z-score 7.51 16.53 91.37

4 Random 8.29 — 86.81

IQR 5.63 32.07 89.87

Z-score 6.44 22.34 89.63

8 Random 8.15 — 87.88

IQR 6.31 22.60 88.00

Z-score 7.75 4.89 88.70

We use the random strategy as the baseline.

concept to compare how the GPU memory footprint fares in

comparison to the baseline GNN model used in real-world

application for reconstructing low-level particles rather than

using hyperparameters to induce an OOM error. Comparisons

between different balancing strategies are conducted using

the random strategy as a baseline. The random strategy

assigns graph samples to batches randomly, while balancing

strategies aim to distribute samples to different mini-batches

according to the graph sample size. The maximum GPU

memory footprint is monitored during training, and the results

are summarized in Figure 8 and the rightmost column of

Table 4.

Each of the datasets we test the strategy on has the same

distribution but a varying range of sample sizes. The baseline

random sampler achieves recall values of 95, 92.6, and 86.9%

on the 100, 10, and 1% datasets, respectively as shown in

Figure 9. As dataset size decreases, both baseline and balancing

strategies exhibit declining recall values. However, the decrease is

more pronounced for the balancing strategies. While all balance

strategies outperform or match the baseline on the full dataset,

the number of strategies performing similarly diminishes with

smaller datasets. This result implies a tradeoff between the size

of the dataset and model recall. As the dataset size decreases,

the recall value achieved after validation loss converges also

decreases.

Analyzing the results in Table 4, we also identify a tradeoff

between GPU memory footprint and recall values for the

Karmarkar-Karp strategy. The Karmarkar-Karp sampler, serving as

a theoretical lower-bound for GPU memory footprint, consistently

exhibits the lowest recall values across all datasets. This implies

a positive correlation between a higher degree of freedom and

improved recall.

The post-launch assessment of the balance sampler exhibited

inferior performance compared to the random sampler. In the

experiment, the balance sampler tests two different user-specified

thresholds to determine the fraction of outliers to distribute

between batches. Regardless of the treated fraction of the dataset

as outliers, the maximum GPU memory footprint surpassed that

of the random sampler. This observation highlights the lesson that

utilization of a dataset fraction for outlier distribution can expedite

OOM issues rather than alleviating them.

Focusing on the IQR sampler, which consistently achieves the

lowest GPU memory footprint, we note that recall falls below

baseline recall for the 1 and 10% dataset subsets. However, for the

full dataset, accuracy is comparable to the baseline. We attribute

this to the IQR strategy’s threshold settings, which impose more

restrictions on subsets, leading to increased accuracy as dataset size

grows and the impact of partitioning outliers decreases.

4.4 Scalability of balancing strategies

We scale up the HEP application by decreasing the local

batch size and keeping the effective batch size constant when

increasing the number of GPUs used for training. This multi-

GPU implementation of the application increases the aggregate

GPU memory size of the entire application. However, drastically

reducing the local batch size can detriment the recall accuracy

whereas too large of a batch size can cause an OOM exception.

Therefore, we run our experiments using a moderate number

of GPUs.

The strategies for balancing mini-batches demonstrate effective

scalability, as evidenced by the evaluation of the top-performing

strategies, namely IQR and Z-score, in comparison with the

baseline. To emphasize the performance over an extended

duration, we present the maximum GPU memory footprint in our

experiments. Our experiments showcase results for configurations

with 1, 2, 4, and 8 GPUs.

The IQR strategy distinguishes itself by consistently

maintaining the maximum GPU memory footprint value for

an extended period. This characteristic suggests that subsequent

batch sizes, after reaching the maximum value, either remain the

same or decrease in size. As illustrated in Table 5, all configurations

consistently demonstrate that the IQR strategy outperforms

others, achieving up to a 32% reduction in memory usage in the

4-GPU configuration. In contrast, the baseline random sampler

exhibits the highest GPU usage over time. These findings imply

the efficacy of the IQR strategy in memory reduction, particularly

in multi-GPU configurations. Furthermore, applying the IQR

strategy to our HEP workflow for multiple GPUs allows us to avoid

the OOM exception.

5 Conclusion

The out-of-memory (OOM) exception frequently arises in

GNN applications dealing with expansive datasets, particularly

when the size of these datasets exceed GPU memory capacity.

This problem is made more apparent running larger datasets

on HPC systems. In this paper we aim to mitigate high GPU

memory usage in training large-scale GNNs. To address this

challenge, we present a multiple workload balancing strategies,
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crucial formanaging independent graph samples with varying sizes.

By evaluating the performance of these strategies as data loading

samplers on multiple datasets, we can observe the effectiveness

of each strategy on both a single-GPU and distributed setting.

Our experiments using datasets of various sizes and multiple

GPU devices extends the potential applicability of our work to

different GNN applications using input datasets with irregular

graph sizes. The results presented in this paper give researchers

the insight of selecting the most appropriate balancing scheme for

their application.
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