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Introduction: Reconstructing low-level particle tracks in neutrino physics
can address some of the most fundamental questions about the universe.
However, processing petabytes of raw data using deep learning techniques
poses a challenging problem in the field of High Energy Physics (HEP). In the
Exa.TrkX Project, an illustrative HEP application, preprocessed simulation data
is fed into a state-of-art Graph Neural Network (GNN) model, accelerated by
GPUs. However, limited GPU memory often leads to Out-of-Memory (OOM)
exceptions during training, due to the large size of models and datasets.
This problem is exacerbated when deploying models on High-Performance
Computing (HPC) systems designed for large-scale applications.

Methods: We observe a high workload imbalance issue during GNN model
training caused by the irregular sizes of input graph samples in HEP datasets,
contributing to OOM exceptions. We aim to scale GNNs on HPC systems, by
prioritizing workload balance in graph inputs while maintaining model accuracy.
Our paper introduces diverse balancing strategies aimed at decreasing the
maximum GPU memory footprint and avoiding the OOM exception, across
various datasets.

Results: Our experiments showcase memory reduction of up to 32.14%
compared to the baseline. We also demonstrate the proposed strategies can
avoid OOM in application. Additionally, we create a distributed multi-GPU
implementation using these samplers to demonstrate the scalability of these
techniques on the HEP dataset.

Discussion: By assessing the performance of these strategies as data loading
samplers across multiple datasets, we can gauge their effectiveness in both
single-GPU and distributed environments. Our experiments, conducted on
datasets of varying sizes and across multiple GPUs, broaden the applicability of
our work to various GNN applications that handle input datasets with irregular
graph sizes.

KEYWORDS

high-performance computing, scientific workflows, graph neural networks,
supercomputing, graphic processing units, deep learning

1 Introduction

Neutrinos, the most abundant matter particles in the universe, can answer
fundamental questions about the nature of matter and the evolution of the universe.
Conducting experiments using advanced tracking algorithms to reconstruct the trajectories
of thousands of charged particles from a collision event as they fly through a
detector can advance neutrino discoveries (Abi and Acciarri, 2020). To harness this
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low-level particle data, High Energy Physics (HEP) applications
are increasingly developing deep learning (DL) models aimed at
reconstructing millions of particle trajectories per second from the
petabytes of raw data produced by the next generation of detectors
at the Energy and Intensity Frontiers (ExaTrkX Collaboration,
2024). In particular, recent success in using Graph Neural Networks
(GNNs) in accurately classifying particle types and edges have
prompted multiple scientific workflows based on GNNs (Ju et al.,
2021). We use one of these scientific workflows as an illustrative
example of an HEP application to demonstrate the current
limitations of large-scale GNNs (Lee et al., 2023).

In the deployment of GNNs for particle reconstruction on HPC
systems, we rely on GPUs for efficient model training. Currently,
GPU utilization remains prevalent for accelerating the training,
testing, and deployment of DL models. However, an Out-of-
Memory (OOM) exception can arise during model training due to
constrained GPU memory space relative to the large CPU memory
space. The limited aggregate GPU memory size of state-of-art
GPUs amplifies the prevalence of OOM issues in Deep Learning
(DL) applications. According to Rajbhandari and Ruwase (2021),
while the size of largest training dense model has increased by
a factor of 1,000 in recent years, GPU memory has only grown
5-fold from 16 GB (NVIDIA Tesla V100) to 80 GB (NVIDIA
Tesla A100). Moreover, an empirical study detailed in Gao et al.
(2020), cites the exhaustion of GPU memory as the top reason
for failed DL jobs. Consequently, GPU memory limitations pose
a bottleneck, particularly when the size of datasets surpass the GPU
memory capacity.

The problem of OOM is further exacerbated using GPUs
to run model training on large-scale datasets. HPC systems are
designed to support larger datasets with a parallel filesystem and
stronger processing cores. However, these resources cannot be fully
utilized with a limited GPU memory capacity (Pumma et al., 2019;
Anonymous, 2003). One proposed strategy for OOM exceptions is
reducing the batch size (Yang et al., 2023). However, maintaining
a larger batch size provides advantages. First, a larger batch size
increases the degree of data parallelism we can exploit on HPC
systems. Given a smaller batch size, this upper limit is reached
much more quickly. Furthermore, using a larger batch size can
increase the number of features we can run with our model. Also,
too small of a batch size can hurt model accuracy (Peng et al., 2017).

Previous research employs distributed GNNs such as those
presented in Jia et al. (2017), Tripathy et al. (2020), Hu et al.
(2021), and Zhu et al. (2019) for scaling GNNs leverages large input
graphs as input to the model. However, in our HEP application,
each sample constitutes an independent collision event, thus
forming individual graphs of moderate sizes. To the best of our
knowledge, our work stands as the pioneering attempt to apply such
methodologies to datasets comprised of individual graph samples
with dynamic sizes.

The HEP application input training samples are comprised of
event graphs can differ from each other by an order of magnitude
creating a large standard deviation between the sizes of graphs.
Therefore, using a naive random sampler to generate the mini-
batches from training may result in a large range in memory
size and results in a substantially higher maximum GPU memory
consumption value compared to the average size of the samples
in the mini-batch. OOM exceptions are caused when the GPU
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memory spikes to a value above the supported GPU capacity.
This GPU memory threshold can be exceeded due to a batch
comprised of large graph samples, creating an imbalance among
mini-batches. Therefore, we introduce the multiple alternative
mini-batch balancing strategies to avoid an OOM exception.

Our paper addresses workload imbalances in GNNs with
irregular-sized training samples across various settings by
proposing multiple workload-balancing algorithms to redistribute
data samples.

We make the following key contributions in this paper. We (1)
introduce multiple mini-batch balancing strategies and integrate
them into a state-of-the-art HEP GNN model to reduce the
maximum GPU memory usage and consequently the probability of
an OOM exception on a single-GPU while maintaining accuracy
on the full dataset, (2) parallelize the GNN and the mini-batch
balancing strategies across multiple GPUs without compromising
accuracy to demonstrate the scalability of the strategies, and
(3) evaluate the tradeoff between memory conservation and
preprocessing overhead of the proposed mini-batch balancing
strategies on HPC systems.

In this paper, we describe how the balancing scheme is
utilized in the Exa.TrkX workflow to address these challenges
and coordinate the data management requirements, using datasets
provided by the MicroBoone Collaboration (Abratenko and
Aldana, 2022b,a) and the computing and storage resources from
the supercomputer Perlmutter (National Energy Research Scientific
Computing Center (NERSC), 2024) located at the National Energy
Research Scientific Computing Center (NERSC).

2 Background and motivation

2.1 High energy physics workflow

Graph Neural Networks (GNNs) to capture high-level patterns
on non-Euclidean datasets have recently received considerable
attention in High-energy Physics (HEP) projects, providing
promising results for particle track reconstruction and other data
analyzes (ExaTrkX Collaboration, 2024). The Exa.TrkX Project,
an illustrative HEP application aims to create particle tracking
algorithms linearly scales with numerous data points. Geometric
Deep Learning (GDL) offers a reasonable solution to both needs
of scalability on large datasets and optimal performance on non-
Euclidean datasets. Therefore, GNNs are utilized in multiple
scientific workflows for HEP collider experiment data (Ju et al.,
2021).

One such pipeline is for simulated data from the Liquid
Chambers (LArTPC)
experiments (Hewes and Aurisano, 2021). The main goal of this

Argon Time Projection neutrino
application is to semantically label recorded energy depositions,
or hits, according to the type of particle that generated them. The
raw data consists of petabytes of data but is condensed into graphs
through a scientific workflow. The infrastructure of the pipeline, as
outlined in Lee et al. (2023), preprocesses simulation data to graph
samples. These samples are in turn used as input to a state-of-art
GNN model for classification. The simulated data is stored in event
graphs with each graph containing a variable number of nodes and
edges. Therefore, the graph samples in the dataset have irregular

graph sizes.
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FIGURE 1
Dataset histogram shows the right-skewedness of the sample sizes. Individual graph samples range from 12 to 2,833 MB. The red line indicates the
average graph sample size.

TABLE 1 Mini-batch statistics given a batch size of 64.

Statistics (MB) {0[0)7 10% 1%
Maximum 2,833.02 2,200.67 1,648.69
Minimum 11.70 11.70 18.73
Average 243.72 24521 240.29
Median 192.50 192.70 188.44
Std Dev 190.06 191.41 182.29

2.2 Input dataset characterization

Figure 1 shows the dataset exhibits a right-skewed distribution,
as illustrated by the histogram. Among the samples, the majority
cluster within the 100 MB range. However, as shown by Table 1, the
largest sample in the dataset ranges upto an order of magnitude
larger compared to the average sample size. Furthermore, the
presence of a large standard deviation signals numerous outliers
within the dataset.

In addition to the original dataset, we meticulously curate
two additional smaller datasets derived from the original graph
data. These datasets are a subset of the original dataset selected at
random to represent a part of the real-world dataset. The reason
for creating these datasets is 2-fold. The first is to evaluate the
degree of randomness on model performance. As the size of the
dataset decreases, the range of samples the data loader can choose
from also decreases. We aim to understand how different workload
balancing strategies affect factors such as GPU memory footprint
and model accuracy. The second is for practical reasons. Running
the GNN model until validation loss converges takes ~80 h. A
smaller dataset enables faster evaluation of trends in the dataset.
Each instance in the dataset represents an event graph depicting
a collision event involving sub-atomic particles. Each event graph
is assigned a unique event ID corresponding to a continuous time
range. We deliberately extract event IDs from this continuous time
range to generate datasets with 10 and 1% of the samples present in
the original dataset.

To visually represent the distribution of these datasets, we
utilize a box and whisker plot (Figure 2). In this visualization, the
whisker caps of the box plot denotes the minimum and maximum
values within the dataset and the red line in the center of the
boxes signifies the median value. The single black circles above the
boxes show the outliers. In Figure 2, a large number of outliers
is evident in the original dataset. In particular, as the dataset size

Frontiersin High Performance Computing

diminishes to 10 and 1%, the number of outliers in the dataset
decreases. However, all datasets maintain sample distribution; the
average, median, and standard deviation among the graph samples
are nearly the same.

2.3 GPU Out-of-Memory exception

The Out-of-Memory (OOM) exception on GPUs arises when
there is insufficient GPU memory during program runtime,
particularly in the context of model training. This exception
becomes apparent when the GPU memory utilization surges,
surpassing the maximum GPU memory capacity. Therefore,
lowering the maximum GPU memory footprint emerges as a
potential strategy to mitigate the likelihood of encountering
OOM exceptions, potentially averting such issues altogether. This
strategic adjustment contributes to a more stable and efficient
training process in the face of potential OOM challenges.

2.4 Impact of balancing mini-batches on
allocated memory

The Pytorch library leverages a CUDA caching memory
allocator for efficient management of GPU memory, specifically
tailored to optimize memory allocation and deallocation on
GPUs (Paszke et al, 2019). Allocated memory represents the
current GPU memory occupied by tensors in bytes for a specified
device whereas reserved memory monitors the GPU memory
actively managed by the caching allocator in bytes for a designated
GPU device.

We observe a similarity in the trend between GPU allocated
memory (Figure3) and the batch size in bytes (Figure 4)
throughout the training process. To substantiate this correlation,
we employ the Pearson Correlation Coefficient (PCC). The PCC,
measuring linear correlation on a scale from -1 to 1, signifies
stronger correlation with values closer to 1. Our calculated PCC
between batch memory consumption and GPU memory allocation
at runtime, using the default model setting’s batch size (64), yields
a robust correlation coefficient of 0.928. Leveraging this insight,
we set an objective to balance mini-batch sizes during training to
effectively reduce GPU memory consumption.

The irregularities in the size of graph data samples introduce
variability, where certain samples may act as outliers, occupying
more bytes than others. This discrepancy can lead to an imbalance
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and maximum values of dataset, excluding outliers.

Box plot of different datasets. The dots represent outliers in the dataset. The red line indicates the median and the whisker caps signify the minimum
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The amount of allocated memory in GB during model training over 100 iterations.

in mini-batch sizes across different batches. To address this
concern, we aim to distribute data samples across all mini-
batches, to ensure a balanced size each iteration in terms of GPU
memory usage.

2.5 Particle type multiplicity

Within the graph dataset, all graph edges fall into one of four
categories: shower-like, muonic, hadronic, and false (Hewes and
Aurisano, 2021). The distribution of these particles is detailed in
Table 2. The particle types can also be divided into HIP, MIP,

Frontiersin High Performance Computing

EM showers, and Michel electrons. HIP denotes “Heavily Ionizing
Particles,” encompassing protons, kaons, nuclei, etc., while MIP
represents Minimum Ionizing Particles and consists of particles
such as muons, pions, etc. The goal of the semantic label in the
GNN is to correctly classify these particle types. Understanding
and considering these distinctions in particle types is crucial for
a nuanced analysis of the dataset and can inform strategies for
improving model accuracy.

In our dataset, the multiplicity of samples exhibits a correlation
with the subatomic particle type. The number of nodes in the graph
is directly linked to the true particle type, influencing the overall
graph size in bytes. For instance, particle types like Electromagnetic
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The mini-batch size in MB during model training over 100 iterations.
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(EM) showers (Figure 5) typically entail numerous nodes, while a
Michel electron features only a few nodes (Figure 6). Therefore,
maintaining or improving model accuracy can be facilitated by
evenly balancing the batch size in bytes.

2.6 Degree of randomness

Shuffling input training samples is important for avoiding
bias and ultimately providing good generalization for the model.
However, the degree of randomness of shuffling can be reduced
when training a parallel model with multiple GPU devices. We
quantify the degree of randomness to evaluate the impact of the
randomness on model accuracy.

Given N training samples, B as the global batch size, at each

N

epoch, there are &

repeated until the validation loss has converged. We assume there

batches processed. This training epoch is

are I training epochs in total. In parallel Deep Neural Network
training, assuming P as the number of processes, each individual
process randomly reads % samples at each iteration. Same as the
non-parallel training, there are % iterations per epoch.

In the context of distributed training across multiple GPUs
employing local shuffling, the total of N training samples is
uniformly distributed among the available devices. Consequently,
each process is allocated % samples, where P represents the
total number of processes or devices involved (Nguyen et al,
2022). Throughout the training iterations, these assigned samples
are locally shuffled, contributing to the diversification of data
input for each process. This local shuffling approach ensures that
each process works with a distinct subset of training samples,
promoting effective exploration of the dataset across the distributed
training environment.

3 Design and implementation
3.1 Workload balancing strategies

Each graph sample in the dataset has a varying number
of nodes in the graph and consequently a different size. The
inherent variability in graph samples within our dataset, manifested
through varying node counts and sizes, presents a unique challenge,
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TABLE 2 The particle type breakdown by percentage.

Particle class Percentage (%)

False 6.43
EM shower 65.43
Muon 26.37
Hadronic 1.77

particularly concerning GPU memory allocation during batching.
Aggregating large graph samples with substantial byte sizes into a
single batch can significantly inflate the GPU memory footprint,
leading to potential memory allocation issues. To tackle this,
our approach identifies outlier samples, with “outlier” defined as
samples with disproportionately larger sizes, and redistributing
these outliers across multiple batches. The balancing algorithm
redistributes these outliers, ensuring that the model’s loss and
accuracy remain reproducible across the batches. Our efforts extend
further to accommodate distributed computing environments and
multiple GPUs through a parallelized implementation of the
workload balancing sampler, enabling efficient execution on High-
Performance Computing (HPC) systems.

The torch.utils.data.Sampler class
Pytorch (Paszke et al, 2019) is used to specify the sequence
of indices/keys used in data loading. The sampler creates an

in

returns a list of indices corresponding to the samples in the
dataset for the model to iterate over during a single epoch.
We implement multiple mini-batch balancing algorithms by
employing outlier detection algorithms and an algorithm to
find the lower-bound GPU memory footprint. These algorithms
are implemented in data loading samplers which are integrated
into the Pytorch framework. We evaluate the performance of
the model using multiple mini-batch balancing strategies and
compare them with the default Pytorch random sampler. The
evaluated samplers in Pytorch initialized and updated at the start of
every epoch.

Random sampler—The random sampler is the default sampler
to construct batches using batch size B random graph samples. The
model trainer iterates over these batches during each epoch. These
data samples within the batches are shuffled if shuffling is enabled.
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Karmarkar-Karp algorithm mini-batch size (MB) compared to baseline.
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Balance sampler—The balance sampler incurs a one-time
preprocessing step before the sampler can be used during training.
This preparatory phase involves computing the sizes of individual
graph samples, sorting these sizes, and appending the sorted array
as metadata to the input dataset. This sorted metadata, appended,
streamlines the runtime initialization process by eliminating the
need to compute the graph sample sizes during each run of the
sampler. The balance sampler uses a user-specified fraction to take
a subset of the outliers in the dataset and distribute the values
across batches based on their byte-size. When this fraction equals
1, representing the entire dataset, the balancing algorithm simplifies
into a bucket partitioning strategy.

Z-score sampler—The Z-score method is statistical technique
used to identify outliers in a dataset. It standardizes the values in
the dataset to have a mean of 0 and a standard deviation of 1. The
Z-score of a data point measures how many standard deviations it
is from the mean. We calculate the Z-score for a data point with the
equation

The X represents the data point being evaluated and the p
and « signifies the mean and standard deviation of the dataset
respectively. Once the Z-scores are calculated for each data point, a
commonly used threshold to identify outliers is any data point with
a Z-score greater than a certain threshold. We use the threshold
3, which treats a data point more than 3 standard deviations away
from the mean as an outlier.

Karmarkar-Karp sampler—The Karmarkar-Karp algorithm,
also referred to as the largest differencing method, is a popular
approach to solve the multi-way number partitioning optimization
problem in polynomial time (Karmarkar, 1984; Korf, 1998). Since
employing the Karmarkar-Karp algorithm converges the dataset
partition toward an optimal solution by minimizing the standard
deviation between batches (Figure 7), we use this algorithm as a
lower-bound sampler to predict the theoretical lower-bound of the
GPU memory footprint during GNN training.

With a worst-case runtime of O(n), where n signifies the
number of data points within the dataset, the Karmarkar-Karp
algorithm emerges as a practical choice for handling extensive
datasets. While not guaranteeing an optimal partition, it notably
outperforms conventional greedy heuristics. However, employing
the Karmarkar-Karp algorithm converges the dataset partition
toward an optimal solution by minimizing the standard deviation
between batches, thereby constraining variations and consequently
the degree of freedom. This can leads to poor generalization of the
model and a lower model accuracy at convergence. Furthermore,
the Karmarkar-Karp algorithm is unideal for practical application
is because the algorithm has high memory requirements and easily
runs out of memory on the GPU. Therefore, our utilization of
the Karmarkar-Karp algorithm serves as a lower-bound estimator
to measure the GPU memory footprint for the previously
proposed samplers.

The Karmarkar-Karp algorithm partitions the dataset into sets
with sizes similar to the fixed batch size whereas the Pytorch
sampler implementation requires every dataset partition is of
a fixed batch size. Consequently in our implementation of the
algorithm, we perform a post-partitioning steps, rectifying any
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batches that exceed or are less than the specified batch size.
The corrective step involves removing random elements from
the oversized batches and appending the elements to undersized
batches, ensuring uniformity in batch size across the dataset.

3.2 Interquartile range (IQR) strategy

Interquartile Range (IQR) sampler—The Interquartile Range
(IQR) method is based on the interquartile range and identifies
outliers by measuring the spread of data between the first (Q1) and
third (Q3) quartiles. Outliers are typically values below Q1 — 1.5 %
IQR or above Q3 + 1.5 % IQR. In particular, IQR-based methods
are proven to be robust in situations where the data deviates from
normality and exhibits skewness (Iglewicz and Hoaglin, 1993).
Given a skewed distribution, users can also adjust the outlier
threshold value depending on the the dataset distribution. As our
dataset is right-skewed dataset, we detect outliers using the upper
bound equation,

Q34+ 1.5%IQR

After identifying outliers with the IQR method, we distribute
each outlier to a different batch in a round-robin fashion. We
hypothesize the IQR strategy will most effectively balance the
outliers among the mini-batches due to the unconstrained degree
of freedom, unlike the Karmarkar-Karp algorithm, allowing for
shuffling of outliers. In particular, assigning graphs with varying
sizes to a single mini-batch can include a more diverse set of particle
types leading to better generalization during model training.

3.3 Distributed data parallel training

Data parallelism can harness an extensive training dataset
and exploit a parallel High-Performance Computing (HPC)
environment. A widely used parallelization strategy, is employing
synchronous Stochastic Gradient Descent (SGD) with data
parallelism (Zinkevich et al., 2010). In this data parallel
training paradigm, workers are initialized with identical
weight parameters, and mini-batches are evenly distributed
among them. Each worker independently computes local
gradients based on its assigned training samples. At the end
of each iteration, these local gradients are averaged across all
processes and broadcasted back via inter-process communication
using an MPI Allreduce operation (Sergeev and Balso,
2018). Consequently, all workers can update their local model
parameters with globally synchronized gradients. This strategy
enables efficient parallel processing across multiple GPUs while
maintaining synchronization through coordinated gradient
updates, contributing to enhanced model training performance
in the distributed HPC environment. Therefore, we incorporate
a distributed data parallel (DDP) implementation for each of the
proposed mini-batch balancing strategies.

Distributed Sampler—The Distributed Sampler class provided
by Pytorch divides the full dataset into the number of subsets
as there are processes launched during initialization. The subsets

during local shuffling are partitioned using an interleaving pattern.
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We take the data subsets for each GPU device and implement a
distributed version for each of the proposed mini-batch balancing
strategies within each sampler. All of the strategies use local
shuffling and keep the global batch size constant. Global batch

size is calculated (number of devices *

per-device batch size).
In the context of this paper, we use the terms global batch
size interchangeably with effective batch size. We also use the
term local batch size interchangeably with the per-device batch
size. We evaluate the effectiveness of these samplers in the

distributed setting.

4 Performance evaluation

4.1 Experimental setup

The following tests have been run on the NERSC Perlmutter
cluster. We use GPU-accelerated nodes on Perlmutter for our
experiment. Each of the heterogeneous 1,536 nodes consist of 1 64-
core AMD Milan CPU and 4 NVIDIA A100 GPUs using a 3-hop
dragonfly topology interconnect. Each hardware-accelerated node
also comes with 256 GB of DDR4 DRAM and 40 GB HBM for
each GPU.

The Perlmutter storage system (also referred to as “Perlmutter
Scratch”) uses an all-flash Lustre parallel filesystem (Leventhal,
2008). The system holds upto 35 PB of data, 16 metadata servers
(MDS), 274 Object Storage Servers (OSS), 3,792 dual-ported NVMe
SSDs, 1 OST, 1 OST, and 12 NVMes.

Software—For the codebase, we use the Torch Geometric
library (Fey and Lenssen, 2019) for graph representation built on

10.3389/fhpcp.2024.1458674

top of the PyTorch machine learning framework (Paszke et al,
2019) in addition to system-specific libraries built on top. To
run our parallel and distributed framework we use the PyTorch
Distributed Data Parallel (DDP) library. We also leverage mpi4py
and h5py to access MPI and HDF5 library functions respectively,
and NCCL (NVIDIA, 2023) for synchronizing the distributed
model on NVIDIA GPU-based systems.

Datasets—LArTPC neutrino graph data is generated from
simulated neutrino interactions publicly provided by the
MicroBooNE project (Abratenko and Aldana, 2022b,a). The charge
measurements (hits) from the detector represent the nodes of the
graph. The tracks of the hits represent the edges of the graph. Three
independent graphs are produced for each neutrino interaction
corresponding to the three readout planes in the detector. The
event graphs vary in size. The simulated neutrino data is comprised
of 317,084 graphs in total and are split into 95% of samples for
training (300,396 graphs), and 5% of samples for validation and
testing (16,688 graphs). The total size of the dataset is 75 GB.
The graph samples are stored in the Pytorch files where one file
represents a graph sample. For the one file storing all samples,
all training samples are stored in a single HDF5 file in which
one graph sample corresponds to one HDF5 group. Each group
contains feature vectors stored as HDF5 datasets.

We use the carefully generated subsets of the dataset, 1 and 10%
of all samples. These datasets are created to show the performance
of the proposed mini-batch balancing strategies on datasets of
varying sizes. These graphs are chosen by selecting a continuous
range of event IDs from the full dataset.

Evaluation metrics—In the evaluation of our GNN, we
prioritize precision and recall as pivotal metrics over accuracy.
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TABLE 3 The setup overhead for using different balancing strategies on
the full dataset.

Strategy Initialization (ms)  Batch creation (ms)
Random 0.0136 36.49
Balance (0.1) 11.7 83.64
Balance (0.01) 11.7 82.44
IQR 12.25 136.6
Z-score 11.6 154.8
Karmarkar-Karp OOM OOM

The default random sampler has the lowest initialization and batch creation times. The setup
times of the strategies excluding Karmarkar-Karp are comparable to one another. The values
in parentheses list the chosen threshold for the balance strategy.

Precision serves as an indicator of the accuracy of positive
predictions, offering insights into the model’s proficiency in
correctly identifying instances of interest. On the other hand,
recall evaluates the model’s effectiveness in capturing all relevant
instances within the dataset. Recall refers to the ratio of correctly
predicted positive observations to the all observations in actual
class. Consequently, we use primarily use recall over accuracy to
measure performance.

Our primary objective is the classification of hits based on
particle type. In this context, precision and recall are particularly
pertinent metrics, as they provide a nuanced understanding of the
model’s performance in correctly identifying positive instances and
ensuring comprehensive coverage of the relevant particle types. By
emphasizing precision and recall in our evaluation, we aim to gain a
more insightful and nuanced assessment of the GNN’s capabilities,
specifically tailored to the intricacies of particle type classification.

Model training—The baseline model training spans 80 epochs,
a point where both precision and recall values converge, offering
a stable assessment of model effectiveness. The application trains
on the NuGraph2 model with a global batch size set at 64.
In distributed setups, we leverage the Distributed Data Parallel
(DDP) Framework and deploy one MPI process per GPU
device. We ensure the effective batch size remains consistent
by fixing the global batch size and reducing the local batch
size accordingly. We use maximum reserved GPU memory
(torch.cuda.max _memory reserved()) provided by the
Pytorch cache memory allocator to find the value of the maximum
memory footprint on a given GPU device. To evaluate the proposed
samplers, we use a threshold of recall improvement of more than
0.01 before stopping training to verify the model has converged.

4.2 Initialization overhead of mini-batch
balancing strategies

We analyze the setup overhead for the mini-batch balancing
strategies. The initialization time is a one-time preprocessing
overhead during sampler initialization and batch creation takes
place at the beginning of every epoch. Table 3 presents the
overhead of strategy initialization and batch creation times. Of
the presented strategies, the Karmarkar-Karp sampler runs into
an OOM exception at initialization. As mentioned above, the
Karmarkar-Karp algorithm has high memory requirements and
therefore incurs an expensive initialization step prone to OOM
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TABLE 4 Performance of datasets after model training.

Dataset Strategy Recall (%) GPU Mem (GB)
100% Random 95.03 12.26
Balance (0.1) 95.04 13.48
Balance (0.01) 95.06 14.26
IQR 95.10 12.13
Z-score 95.06 12.90
Karmarkar-Karp OOM OOM
10% Random 92.58 10.27
Balance (0.1) 92.59 14.07
Balance (0.01) 92.60 12.67
IQR 92.40 9.06
Z-score 92.51 10.47
Karmarkar-Karp 91.91 8.61
1% Random 86.85 11.69
Balance (0.1) 86.36 10.10
Balance (0.01) 85.04 10.38
IQR 86.55 7.70
Z-score 86.33 11.47
Karmarkar-Karp 86.16 6.84

We use the random strategy as the baseline. The values in parentheses list the chosen threshold
for the balance strategy. A higher recall value and a lower GPU memory footprint is preferred.

exceptions for large datasets. This is also the case shown running
the full dataset with the Karmarkar-Karp sampler. However, as
observed in Table 4, the smaller-sized datasets do not run out of
memory for the Karmarkar-Karp sampler. The results also show
the remaining balancing strategies heavily outweigh the default
random sampler in regards to initialization time and batch creation
time. The initialization time for the IQR sampler is 900.7 times
more expensive than the random sampler and the Z-score batch
creation time is 4.24 times the time it takes to construct a batch
for the random sampler. Furthermore, the initialization time and
batch creation time grows proportionally to the size of the dataset
for both the random and balancing strategies. These times also
decrease proportionally with an increased number of GPUs.

However, the duration for running the complete dataset for one
epoch is ~1 h and full training takes over 80 h. We also observe
that both the initialization and batch creation times in Table 3
individually do not surpass 200 ms. Consequently, creating a batch
at the start of each epoch consists of 0.005% of total epoch time and
the one-time initialization cost takes up an even smaller fraction.
Due to the nearly negligible setup overhead, we conclude that the
overhead, constituted by the combined time spent on initialization
and batch creation, is not significant in comparison to overall cost
incurred during the model training process.

4.3 Balancing strategy performance on
datasets

We highlight the effectiveness of various balancing strategies
in reducing GPU memory footprint throughout the model

convergence process. We use this experiment as a proof of
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TABLE 5 Performance of datasets on upto 8 GPUs using the
top-performing strategies.

GPUs Strategy GPU mem Mem Recall (%)
(GB) reduction
(%)

1 Random 12.26 — 95.03
IQR 12.13 1.07 95.10
Z-score 12.90 — 95.06

2 Random 8.99 — 91.25
IQR 6.33 29.58 90.73
Z-score 7.51 16.53 91.37

4 Random 8.29 — 86.81
IQR 5.63 32.07 89.87
Z-score 6.44 22.34 89.63

8 Random 8.15 — 87.88
IQR 6.31 22.60 88.00
Z-score 7.75 4.89 88.70

We use the random strategy as the baseline.

concept to compare how the GPU memory footprint fares in
comparison to the baseline GNN model used in real-world
application for reconstructing low-level particles rather than
using hyperparameters to induce an OOM error. Comparisons
between different balancing strategies are conducted using
the random strategy as a baseline. The random strategy
assigns graph samples to batches randomly, while balancing
strategies aim to distribute samples to different mini-batches
according to the graph sample size. The maximum GPU
memory footprint is monitored during training, and the results
are summarized in Figure8 and the rightmost column of
Table 4.

Each of the datasets we test the strategy on has the same
distribution but a varying range of sample sizes. The baseline
random sampler achieves recall values of 95, 92.6, and 86.9%
on the 100, 10, and 1% datasets, respectively as shown in
Figure 9. As dataset size decreases, both baseline and balancing
strategies exhibit declining recall values. However, the decrease is
more pronounced for the balancing strategies. While all balance
strategies outperform or match the baseline on the full dataset,
the number of strategies performing similarly diminishes with
smaller datasets. This result implies a tradeoff between the size
of the dataset and model recall. As the dataset size decreases,
the recall value achieved after validation loss converges also
decreases.

Analyzing the results in Table 4, we also identify a tradeoff
between GPU memory footprint and recall values for the
Karmarkar-Karp strategy. The Karmarkar-Karp sampler, serving as
a theoretical lower-bound for GPU memory footprint, consistently
exhibits the lowest recall values across all datasets. This implies
a positive correlation between a higher degree of freedom and
improved recall.

The post-launch assessment of the balance sampler exhibited
inferior performance compared to the random sampler. In the
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experiment, the balance sampler tests two different user-specified
thresholds to determine the fraction of outliers to distribute
between batches. Regardless of the treated fraction of the dataset
as outliers, the maximum GPU memory footprint surpassed that
of the random sampler. This observation highlights the lesson that
utilization of a dataset fraction for outlier distribution can expedite
OOM issues rather than alleviating them.

Focusing on the IQR sampler, which consistently achieves the
lowest GPU memory footprint, we note that recall falls below
baseline recall for the 1 and 10% dataset subsets. However, for the
full dataset, accuracy is comparable to the baseline. We attribute
this to the IQR strategy’s threshold settings, which impose more
restrictions on subsets, leading to increased accuracy as dataset size
grows and the impact of partitioning outliers decreases.

4.4 Scalability of balancing strategies

We scale up the HEP application by decreasing the local
batch size and keeping the effective batch size constant when
increasing the number of GPUs used for training. This multi-
GPU implementation of the application increases the aggregate
GPU memory size of the entire application. However, drastically
reducing the local batch size can detriment the recall accuracy
whereas too large of a batch size can cause an OOM exception.
Therefore, we run our experiments using a moderate number
of GPUs.

The strategies for balancing mini-batches demonstrate effective
scalability, as evidenced by the evaluation of the top-performing
strategies, namely IQR and Z-score, in comparison with the
baseline. To emphasize the performance over an extended
duration, we present the maximum GPU memory footprint in our
experiments. Our experiments showcase results for configurations
with 1, 2, 4, and 8 GPUs.

The IQR
maintaining the maximum GPU memory footprint value for

strategy distinguishes itself by consistently
an extended period. This characteristic suggests that subsequent
batch sizes, after reaching the maximum value, either remain the
same or decrease in size. As illustrated in Table 5, all configurations
consistently demonstrate that the IQR strategy outperforms
others, achieving up to a 32% reduction in memory usage in the
4-GPU configuration. In contrast, the baseline random sampler
exhibits the highest GPU usage over time. These findings imply
the efficacy of the IQR strategy in memory reduction, particularly
in multi-GPU configurations. Furthermore, applying the IQR
strategy to our HEP workflow for multiple GPUs allows us to avoid
the OOM exception.

5 Conclusion

The out-of-memory (OOM) exception frequently arises in
GNN applications dealing with expansive datasets, particularly
when the size of these datasets exceed GPU memory capacity.
This problem is made more apparent running larger datasets
on HPC systems. In this paper we aim to mitigate high GPU
memory usage in training large-scale GNNs. To address this
challenge, we present a multiple workload balancing strategies,
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crucial for managing independent graph samples with varying sizes.
By evaluating the performance of these strategies as data loading
samplers on multiple datasets, we can observe the effectiveness
of each strategy on both a single-GPU and distributed setting.
Our experiments using datasets of various sizes and multiple
GPU devices extends the potential applicability of our work to
different GNN applications using input datasets with irregular
graph sizes. The results presented in this paper give researchers
the insight of selecting the most appropriate balancing scheme for
their application.
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