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Abstract—Polycrystalline materials are crucial in various in-
dustries, necessitating a comprehensive understanding of the
processing-structure-property-performance (PSPP) relationships.
Traditional experimental methods are laborious and slow, while
computational approaches predominantly address forward prob-
lems, deriving structures and properties from processing condi-
tions. Conversely, inferring processing parameters from desired
microstructures and properties remains a crucial yet challenging
inverse problem due to the complex and nonlinear mappings
involved. In this work, we propose a deep learning-based frame-
work exploring non-sequential and sequential models to address
two key inverse problems: predicting processing parameters from
microstructures and from properties. Focusing on microstruc-
tural texture defined by the orientation distribution function
(ODF), we apply our framework to copper, generating a dataset
of 31,588 unique processing strain rates (s~') in [0,1] with
corresponding ODFs and homogenized properties through simu-
lations. Our inverse prediction results on processing parameters
demonstrate high accuracy, with average test RMSEs of 0.0152
from microstructures and 0.0295 from properties. These findings
validate the framework’s efficacy as a tool for polycrystalline
materials process design, enabling the precise determination
of processing methods to achieve desired microstructures and
properties.

Index Terms—Inverse Modeling, Deep Learning, Polycrys-
talline Materials

I. INTRODUCTION

Polycrystalline materials are crucial in various industries
such as aerospace, automotive, and electronics due to their
cost-effectiveness and mechanical properties [1]. Understand-
ing the processing-structure-property-performance (PSPP) re-
lationship enables the development of advanced materials with
tailored properties, which is crucial for enhancing performance
across multiple industrial domains [2]. However, analyzing this
relationship is challenging due to the complex and hetero-
geneous microstructures, requiring advanced characterization
and modeling techniques to optimize their behaviors [3].

While traditional experimental approaches have been the
cornerstone for exploring PSPP relationships, they are often
time-consuming and laborious. In recent years, computational
methods have emerged as efficient alternatives. For instance,
surrogate models have been developed for various materials,

such as zirconia-toughened alumina ceramics [4] and nickel-
titanium shape-memory alloys [5], accelerating the design of
microstructures with desired properties.

Building on these advancements, a strain-rate independent
crystal plasticity simulator has been developed to model mi-
crostructure evolution in polycrystalline materials under each
elementary process [6]. This simulator employs the orienta-
tion distribution function (ODF) to represent microstructure
texture and predicts future ODFs based on initial texture and
processing parameters. This represents the forward problem in
scientific modeling, predicting outcomes from known param-
eters. Conversely, the inverse problem, crucial for optimizing
material design and manufacturing efficiency [7], involves
determining the necessary processing parameters to achieve
desired microstructures and properties [8]. However, forward
simulations remain time-consuming due to intensive calcula-
tions and do not directly solve the inverse problem, which
is particularly challenging due to the need to deduce exact
processing parameters for specific material characteristics.

To address the challenges, machine learning (ML) tech-
niques have been increasingly employed to understand mate-
rial behavior and develop new materials with desired properties
[9]. These methods have demonstrated considerable success in
modeling microstructure evolution. For example, Farizhandi
et al. [10] introduced a Predictive Recurrent Neural Network
(PredRNN) model for rapid and accurate microstructure pre-
diction. Montes et al. [11] developed a data-driven surrogate
model combining phase-field and history-dependent machine
learning techniques. Additionally, Mao et al. [12] proposed
an Al-based framework to predict microstructural texture in
polycrystalline materials, achieving less than 0.5% error rates.
Despite these advances, most existing methods focus on the
forward problem of polycrystalline materials rather than the
inverse problem of predicting processing parameters from
desired microstructures and properties.

In this paper, we propose a novel deep learning based frame-
work exploring both sequential models and non-sequential
models to address the inverse modeling of processing-structure
and processing-property linkages in polycrystalline materi-



als. This framework predicts processing parameters based
on changes in the orientation distribution function (ODF) or
desired properties. Our framework employs a two-step sim-
ulation process: first, simulating microstructures represented
by ODFs using processing parameters through crystal plas-
ticity simulation, then generating material properties through
homogenization. The ODF, a statistical representation of the
crystallographic orientations within a polycrystalline material,
directly impacts its overall properties. Our study generates a
dataset comprising 31,588 unique combinations of processing
parameters for Copper, represented as strain rate values (s~1)
between [0,1]. Each combination generates a sequence of
ODFs and their corresponding homogenized properties. Our
framework is designed to predict the original processing
parameters from either sequential or single ODFs or properties,
providing a powerful tool for optimizing material design and
manufacturing processes.

To evaluate our framework, we conducted extensive testing
on the Copper dataset, achieving promising results with an
average RMSE as low as 0.0152 from microstructures and
0.0295 from properties. These results demonstrate the effi-
cacy of our framework in providing a fast, accurate method
for inverse modeling. Compared to computational simulation
methods, our approach significantly reduces computation time
while maintaining negligible accuracy loss, addressing the
challenging inverse problem of efficiently processing materials
to achieve desired microstructures and properties.

II. BACKGROUND AND RELATED WORKS

A. Orientation Distribution Function (ODF) and Crystal Plas-
ticity Simulation

Polycrystalline materials consist of numerous crystals, each
with distinct crystallographic orientations that define the ma-
terial’s microstructural texture. This microstructural texture is
quantified by the Orientation Distribution Function (ODF),
denoted as A(r,t), which represents the volume density of
each distinct crystal orientation. Here, r signifies the Rodrigues
orientation of the crystals in the orientation space and t
indicates time. The ODF can be used to calculate homogenized
properties through the Taylor approximation [13] and allows
for efficient modeling of deformation processes, enabling the
prediction of microstructural evolution under various process-
ing parameters.

Given an initial ODF A(r,0), the crystal plasticity sim-
ulation, influenced by processing parameters, can be used
to model the evolution of the current texture A(r,t). This
evolution is governed by the ODF conservation equation. The
ODFs always adhere to the volume normalization constraint.
The Eulerian rate form of this conservation equation in the
crystallographic orientation space is expressed as [14]:

w + VA(r,t) - v(r,t) + A(r,t)V - v(r,t) =0 (1)
where v(r,t) is the reorientation velocity, derived from the
velocity gradient (L), a macroscopic measure of the defor-
mation applied to the material [15]. Consequently, different

deformation processes, such as tension/compression and shear,
result in different ODFs as outputs after applying a load for
a specific amount of time. Our study aims to conduct inverse
modeling to deduce the processing methods from the ODFs
or corresponding homogenized properties.

B. Homogenized Polycrystal Property

The volume-averaged (homogenized) properties of poly-
crystalline materials are calculated using the Taylor approxi-
mation, which utilizes single-crystal properties and microstruc-
tural texture. Representing averaging with the symbol (-), the
homogenized polycrystal property (x) can be calculated by
averaging over the ODF with single-crystal material properties
in the orientation space. This relationship is expressed by the
equation:

() = /Q X(®)A(r) dv @

where A(r) is the ODF, x(r) represents the single-crystal
material properties depending on the crystal orientation, and
) is the orientation space. The can also be expressed in linear
form as:

(x)=PTA 3)

where P encapsulates the integration weights, Jacobian de-
terminants, Rodrigues parameterization metric, and other fac-
tors. Our study focuses on elastic properties, including the
stiffness tensor C and the compliance tensor S. The volume-
averaged properties can be calculated through equations such
as C*¢ = (C).

C. Related Works

Inverse modeling has emerged as a crucial approach in
materials informatics. Several studies have demonstrated the
effectiveness of machine learning techniques in solving com-
plex inverse problems. For instance, Tran et al. [16] developed
an active learning framework for optimizing microstructure
properties in additive manufacturing and grain growth. Liu
et al. [17] presented a machine learning methodology for
microstructure optimization in Fe-Ga alloy, addressing the in-
version of property-microstructure relationships. Additionally,
Pei et al. [18] introduced a neural network-based approach for
alloy inverse design, focusing on complex microstructure im-
ages in martensitic and ferritic steels. Despite these advances
in machine learning for inverse modeling, there remains a lack
of attention on inverse modeling for polycrystalline materials.

Recent years have seen increased attention to deep learn-
ing techniques for analyzing polycrystalline materials. For
instance, Mao et al. [7] proposed an Al-driven framework that
optimizes microstructures for elastic properties, discovering
multiple solutions faster without compromising optimality. A
deep learning augmented genetic algorithm [19] was proposed
to investigate polycrystalline 2D material fracture, demonstrat-
ing the model’s capability to predict fracture paths. Hsu et
al. [20] developed a deep generative framework to design
polycrystalline materials with specific mechanical properties.
While several prior works on inverse modeling in materials



science have explored the application of ML for structure-
property optimization, here we focus on inverse modeling for
process design of polycrystalline materials, inferring process-
ing parameters from microstructures and properties.

III. METHODS

In our study, we introduce an inverse modeling frame-
work designed to enhance traditional deformation process
simulation technology. As illustrated in Figure 1, it conducts
data generation through simulation as forward modeling and
addresses two primary inverse modeling tasks: predicting the
processing parameters from microstructure evolution (ODFs)
and from homogenized properties of these microstructures.

For the first task, we use either the ODF sequence or the
final ODF, emphasizing the latter as it reflects the accumulated
effects of the deformation process and relates closely to
final material properties. The second task utilizes either the
properties of the entire ODF sequence or only the final ODF.
We explore both non-sequential and sequential modeling meth-
ods to address these challenges. Non-sequential approaches,
including machine learning methods as baselines and autoML
techniques, are applied to both the ODF sequence and the final
ODEF. Sequential modeling methods are employed to capture
temporal dynamics in time-series data like the ODF sequence
and corresponding properties. These predictions guide the gen-
eration of desired microstructures and properties for enhanced
material performance.

A. Data Generation from Simulation

To generate datasets for our inverse modeling tasks, we
employ a strain-rate independent crystal plasticity simulation,
as depicted in the upper left portion of Figure 1. This simula-
tion models deformation under tension/compression and shear
forces in the XY, YZ, and XZ planes, with varying strain
rates for each scenario. The resulting data capture the ma-
terial’s microstructure evolution over p steps, represented by
Orientation Distribution Functions (ODFs). Let ODF; denote
the ODF at the i-th step of the deformation process, where
1 € {1,2,...,p}. The sequence of ODFs is represented as:
(ODF1, ODFy, ..., ODF,). This sequence includes both inter-
mediate ODFs and the final ODF, reflecting the accumulated
effects of the deformation process.

For the second task of inferring processing parameters
from homogenized material properties, we derive the stiffness
tensor C and the compliance tensor S for each generated
ODF through homogenization, as shown in the upper right
portion of Figure 1. The property sequences are expressed
as:(Cq,Cs,...,C,) and (S1,S2,...,S,), where C; and S;
represents the tensors at the i-th step. These tensors provide
critical information about the material’s elastic properties at
each step of the deformation process. Both ODF sequences and
their corresponding properties serve as foundational inputs for
our non-sequential and sequential modeling methods to predict
processing parameters.

B. Non-sequential Modeling Methods

Our proposed framework utilizes non-sequential modeling
methods to predict processing parameters from both time-
series and final ODF or property data. Non-sequential models
treat each input independently and ignore temporal depen-
dencies. For time-series data, we concatenate the ODF se-
quence (ODF;,ODFs,...,ODF,) into a single feature vector
of size p x d, where d denotes the ODF dimensionality.
Similarly, the sequences of stiffness tensors (Cy, Cs,...,C,)
and compliance tensors (S1,Sa, ..., S,) are concatenated and
flattened into feature vectors. Given that the final step of the
microstructure and its properties encapsulate its ultimate state,
we specifically select and flatten the last step ODF (ODF,,)
and its homogenized properties (Cp, S;,) as inputs for our non-
sequential modeling methods. These representations serve as
inputs for various non-sequential models.

To establish baseline performance, we employ established
machine learning techniques, including Ridge regression and
random forest, capturing relationships from linear to complex
non-linear interactions. Additionally, we employ AutoKeras,
an advanced AutoML tool, to automate model selection
and hyperparameter tuning for Densely Connected Neural
Networks (DCNNs). AutoKeras explores a wide range of
neural network architectures and configurations, ensuring the
selection of well-tuned and effective models. This approach
efficiently identifies optimal model structures and parameters,
enhancing our framework’s predictive performance.

C. Sequential Modeling Methods

Considering the time-series nature of the evolved mi-
crostructures and their homogenized properties, we utilize
several sequential modeling methods. Our proposed model
architecture leverages time-series layers to capture the tem-
poral dependencies inherent in the data. We use Long Short-
Term Memory (LSTM) networks, a type of recurrent neural
network (RNN) designed for sequential data. LSTMs address
the vanishing gradient problem through a gating mechanism,
enabling the network to maintain and update information over
long sequences. This makes them well-suited for capturing
temporal changes in microstructure evolution and predicting
processing parameters. Gated Recurrent Units (GRUs), as
another type of RNN optimized for sequential data, simplify
the LSTM architecture by combining gates and merging the
cell state with the hidden state.

Our proposed model architecture incorporates either LSTM
or GRU layers combined with fully connected layers to
process the time-series data. We use the sigmoid activation
function in the output layer to bound predictions between 0
and 1, appropriate for our processing parameter values. This
combination of sequential and dense layers allows the model to
effectively learn the temporal patterns and relationships within
the data, leading to more accurate and reliable predictions.

We further explore a transformer architecture to capture
complex temporal dependencies. This model includes an input
embedding layer that projects the input features into a higher-
dimensional space, followed by a positional encoding layer to
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by our framework: predicting processing parameters from microstructures and properties using both non-sequential and sequential deep learning methods.

retain sequence order information. Its core comprises multiple
transformer encoder layers with self-attention mechanisms and
feedforward neural networks to model intricate relationships
within the data. The final output is passed through a fully
connected layer and a sigmoid activation function to ensure
the predictions are within the range of [0, 1]. This transformer-
based model complements our LSTM and GRU architectures,
providing a robust framework for capturing temporal patterns
in microstructure evolution or its properties.

IV. EVALUATION
A. Dataset

We evaluated our framework on two inverse modeling tasks,
each with a distinct dataset. The first task involves predicting
processing parameters from the microstructure inputs. We em-
ployed the strain-rate independent crystal plasticity simulation
with randomly sampled strain rate values (s~1) between [0, 1]
to create 31,588 unique parameter combinations. For each
combination, we simulated 10 steps (p = 10), starting from a
uniform initial ODF and producing the final deformed ODF
along with nine intermediate steps. Each ODF is represented as
a 76-dimensional vector, resulting in an input size of 10 x 76.

In our second task, our framework predicts the processing
parameters from properties. The second dataset was derived
from the first through homogenization as described in Section
II-B. For each ODF, we calculated two elastic properties: the
stiffness tensor C and the compliance tensor S, both sized
6 x 6. These tensors were concatenated to form the input data
with a size of 10 X 6 x 6 x 2, using the same processing
parameters as the first dataset for labels. For both datasets, we
divided the data into 70% for training and 30% for testing.

B. Evaluation Metrics

We use the Root Mean Squared Error (RMSE) as the
primary evaluation metric, aligning with the Mean Squared
Error (MSE) loss used during training. RMSE provides an
interpretable measure of the average prediction error in the
same units as the output variable. We calculate RMSE for

each individual processing parameter to gain detailed insights
into the model’s performance:

n

1

- E (Process_actual; — Process_pred,)?  (4)
n

i=1

RMSE =

where n is the number of samples, Process_actual; is the
actual value and Process_pred, is the predicted value of the
processing parameter for the i-th sample. The processing
parameters (strain rates) range between [0,1]. We calculate
the average RMSE across all 5 processing parameters for a
comprehensive assessment of overall prediction accuracy.

C. Experimental Settings

We employed distinct configurations for non-sequential and
sequential models. For non-sequential models, we utilized Au-
toKeras to explore various architectures and used the AdamW
optimizer with a Mean Squared Error (MSE) loss function.
The learning rate for these models was set to 0.001. Sequential
models used the Adam optimizer with an MSE loss function,
with learning rates of 0.001 for ODF-based models and 0.0001
for property-only models. The training dataset was further split
into 70% training and 30% validation sets. The best models,
selected based on validation performance, were then evaluated
on the unseen test dataset. In the following sections, we
compare the results of non-sequential and sequential models
on our two primary inverse modeling tasks.

D. Evaluation on Predicting Processing from Microstructure

To assess the performance of our framework on the first
task, we compared it with several baseline machine learning
methods. The dataset consists of sequences of 10 ODFs
(size 10 x 76) as inputs and 5 processing parameters as
labels. Additionally, we assessed the framework using only
the final ODF (size 76) as inputs, allowing us to compare the
predictive results of the complete ODF sequence versus the
final microstructural state.



TABLE I
TEST RMSE FOR PREDICTING 5 PROCESSING PARAMETERS FROM 10
ODFS USING NON-SEQUENTIAL BASELINES, NON-SEQUENTIAL DEEP
LEARNING MODELS, AND SEQUENTIAL DEEP LEARNING MODELS.

Average

Models Test RMSE Values Test
RMSE

Ridge Regression | [0.0455, 0.0418, 0.0373, 0.0418, 0.0391] 0.0411
Random Forest [0.0356, 0.0329, 0.0329, 0.0330, 0.0330] 0.0335

[ AutoKeras | [0.0161, 0.0164, 0.0138, 0.0148, 0.0170] | 0.0156 |
LSTM [0.0167, 0.0184, 0.0158, 0.0158, 0.0173] | 0.0168
Transformer | [0.0255, 0.0283, 0.0226, 0.0224, 0.0241] | 0.0246
GRU [0.0148, 0.0176, 0.0141, 0.0134, 0.0161] | 0.0152

TABLE I
TEST RMSE FOR PREDICTING 5 PROCESSING PARAMETERS FROM LAST
ODF USING NON-SEQUENTIAL MACHINE LEARNING BASELINES AND
NON-SEQUENTIAL DEEP LEARNING MODELS.

TABLE III
TEST RMSE FOR PREDICTING 5 PROCESSING PARAMETERS FROM 10
ODFS PROPERTIES USING NON-SEQUENTIAL BASELINES,
NON-SEQUENTIAL DEEP LEARNING MODELS, AND SEQUENTIAL DEEP
LEARNING MODELS.

Average

Models Test RMSE Values Test
RMSE
Ridge Regression | [0.1182, 0.1015, 0.1166, 0.1119, 0.1312] 0.1159
Random Forest [0.0862, 0.0526, 0.0597, 0.0564, 0.0531] 0.0616

[ AutoKeras [ [0.0326, 0.0288, 0.0281, 0.0300, 0.0281] [ 0.0295 ]

LSTM [0.0716, 0.0563, 0.0632, 0.0547, 0.0524] 0.0596
Transformer [0.0495, 0.0446, 0.0473, 0.0420, 0.0399] 0.0447
GRU [0.0523, 0.0354, 0.0412, 0.0359, 0.0361] 0.0402

TABLE IV
TEST RMSE FOR PREDICTING 5 PROCESSING PARAMETERS FROM
PROPERTIES OF THE LAST ODF USING NON-SEQUENTIAL MACHINE
LEARNING BASELINES AND NON-SEQUENTIAL DEEP LEARNING MODELS.

[ AutoKeras [ 10.0268 0.0295 0.0237 0.0245 0.0257] [ 0.0260

Average
Models Test RMSE Values Test Average
RMSE Models Test RMSE Values Test
Ridge Regression | [0.0612 0.0587 0.0504 0.0612 0.0571] | 0.0577 RMSE
Random Forest [0.0417 0.0421 0.0400 0.0406 0.0400] | 0.0409 Ridge Regression | [0.1673, 0.1447, 0.1707, 0.1902, 0.1372] | 0.1620
Random Forest [0.1155, 0.0893, 0.0989, 0.1282, 0.0677] | 0.0999

1) Using Evolution of 10 ODFs: Table I presents the RMSE
for each of the five processing parameters and the average
RMSE, comparing baseline machine learning methods, non-
sequential deep learning models (AutoKeras), and sequential
deep learning models. Among the baselines, Random Forest
performs best with an average RMSE of 0.0335, outperforming
ridge regression. The optimal AutoKeras model uses four
dense layers (1024, 512, 128, 5) with ReLU activations. The
input sequences were flattened into a 760-dimensional vector.

Given that the ODFs are time-series data reflecting mi-
crostructure evolution, we evaluated sequential models using
LSTM, GRU, and transformer layers. A grid search was con-
ducted to optimize the hyperparameters, selecting the model
with the minimum validation loss for testing. The results show
that the GRU model achieved a significant reduction in the
average RMSE, lowering it from 0.0335 (Random Forest)
to 0.0152, a reduction of 54.62%. As anticipated, the GRU
model, designed for sequential data, slightly outperformed
the non-sequential model from AutoKeras, which achieved
0.0156. These improvements over baselines underscore our
framework’s effectiveness in learning from sequence data,
enabling accurate predictions of processing parameters based
on microstructural evolution.

2) Using the Last ODF: Given the significance of the
final microstructural state, we evaluated non-sequential models
using only the last ODF from the sequence. Table II shows
that Random Forest achieved the best baseline test RMSE of
0.0409. In contrast, the AutoKeras-optimized neural networks
achieved a significantly lower test RMSE of 0.0260, a 36.43%
reduction. The optimal model comprises three fully connected
layers (512, 64, 5) with ReLLU activation. Using only the last
ODF results in slightly worse prediction accuracy compared

[ AutoKeras [ 10.0784, 0.0573, 0.0592, 0.0791, 0.0506] [ 0.0649

to the full 10 ODF sequence (best RMSE 0.0152) due to less
information on microstructure evolution. Despite this, the re-
sults demonstrate our framework’s ability to make reasonably
accurate predictions from the final microstructural state.

E. Evaluation on Predicting Processing Parameters from
Properties

For the second inverse modeling task, we used a dataset
consisting of time-series properties derived from 10 ODFs,
represented by a tensor of size 10 x6 x 6 x 2, calculated through
homogenization. Both non-sequential and sequential modeling
methods are assessed on this dataset. To specifically examine
the final microstructure properties, we assessed non-sequential
models using the last ODF properties of size 6 X 6 x 2.

1) Using 10 ODFs Properties: Table III compares the pre-
diction accuracy of non-sequential modeling methods, includ-
ing machine learning baselines, dense networks explored with
AutoKeras, and sequential modeling methods using LSTM,
GRU, or Transformer layers. Random Forest performs best
among baselines with an average test RMSE of 0.0616.
The AutoKeras-optimized dense networks achieve the lowest
RMSE of 0.0295, representing a significant reduction of
52.11% from the best baseline. The optimal model uses four
1024-unit dense layers with batch normalization.

Despite the time-series nature of the data, sequential models
perform slightly worse, unlike with ODF sequences. This
suggests that sequential models may not fully capture relevant
information from property tensors as effectively as from ODFs.
Additionally, the best average RMSE from predicting with
10 ODFs is 0.0152, compared to 0.0295 from properties.
This indicates that predicting processing parameters from



properties is more challenging, as structures might contain
more information directly related to the processing methods,
making prediction easier than using properties alone.

2) Using last ODF Properties: Similar to the first task,
we evaluate our framework using the properties derived from
the last ODF to predict the processing strain rates. Table
IV shows that Random Forest achieves the best baseline
average RMSE of 0.0999, worse than previous evaluations.
This result is expected since microstructures are simulated
from processing parameters, while properties are then derived
from these microstructures. Properties from only the last ODF
contain less information than the full ODF sequence.

Following this trend, the best model optimized by AutoK-
eras achieves a test RMSE of 0.0649, which is also inferior to
predictions from microstructures or the sequence of properties.
This model contains four dense layers with 32, 1024, 256, and
5 units with ReLU activation and batch normalization layers
in between. Furthermore, the first processing parameter con-
sistently shows large test RMSE values among the five across
predictions, indicating a potential area for future refinement.

V. CONCLUSION

In this paper, we present a deep learning-based framework
exploring both non-sequential and sequential models to ad-
dress the inverse problem of predicting processing parameters
from microstructures and properties in polycrystalline mate-
rials. Our framework achieves high accuracy with RMSE as
low as 0.0152 for microstructures and 0.0295 for properties.
While our framework shows promise as a powerful tool for
material design, it currently predicts only a single combina-
tion of processing parameters. Future work could extend to
generating multiple viable parameter combinations and incor-
porate simulations for comprehensive evaluation. Moreover,
given our framework’s high accuracy in predicting processing
parameters from microstructures, it could be integrated with
approaches that predict microstructures from properties (e.g.,
Mao et al. [7]) to potentially enhance predictions from prop-
erties to processing parameters. In conclusion, our framework
represents a significant advancement in addressing the inverse
problem in materials science, providing a promising pathway
for optimizing the design and manufacturing of polycrystalline
materials.
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