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Abstract—Deep Neural Networks, as a subset of AI, outper-
form in understanding complex relationships. The key to this
success lies in the network’s ability to adapt to problem-specific
nuances. During model training, the network dynamically opti-
mizes its weights by updating them during backpropagation while
trying to minimize the value of the loss function. Throughout
this process, the shaping of model weights is crucially linked
to how they were initialized. In this study, we introduce the
auxiliary network model, called Sup-Walsh (Support Walsh),
which reorganizes weights to enhance class boundaries. We
tested our approach on three publicly available datasets using
popular classification models. For instance, when using AlexNet
[1] on the MNIST dataset [2], integrating Sup-Walsh led to a
significant increase in accuracy after first epoch from 14.61%
to 78.99%. Similarly, GoogleNet [3] on the FashionMNIST
dataset [4] showed a notable 31.61% accuracy difference between
configurations without and with Sup-Walsh after first epoch.
Across nearly all experiments, our proposed method consistently
outperformed existing approaches, demonstrating its potential to
improve classification accuracy.

Code availability: Code is available at Efficient-Weight-
Initializer.

Index Terms—Weight Initialization, Deep Learning, Dimension
Reduction, t-SNE, Walsh Matrix

I. INTRODUCTION

Deep neural networks, with their nonlinear network struc-
tures, offer solutions to a variety of complex problems, includ-
ing speech recognition [5], computer vision [6]–[8], natural
language processing [9], [10], etc. The effectiveness and com-
prehension of these models are improved by deepening their
structures [1]. However, one of the most crucial factors for
the effective utilization of these aforementioned structures is
the initialization of model weights. During the model training,
initial weights are commonly generated in a similar manner
across different types of problems. However, the goal in
each problem is to identify problem-specific global minima,
which may vary significantly [11], and inappropriate weight
initialization can lead to convergence issues.

In this study, our objective is to give essential details about
the dataset to the model prior to the training phase with t-
SNE Supported Walsh matrix approach, rather than directly
inputting the dataset into the deep learning model. This

method helps the model distinguish between different class
clusters more effectively. Compared to conventional weight
initialization methods, our proposed methodology accelerates
model convergence by providing dataset insights upfront.

Contributions of this study are as follows:
• We propose an auxiliary model designed to expedite the

convergence process of the primary model.
• Our analysis demonstrates that models incorporating pre-

learned distribution information tend to exhibit lower loss.

II. PROBLEM DEFINITION

We study the process of weight initialization in the context
of classification tasks. Specifically, we denote the training
dataset as Dtrain = (xi, yi)ni=1, where n represents the
number of data points. The ultimate objective is to determine
centroids for each class that are positioned at the farthest
possible locations.

Let’s denote the set of centroids as c1, c2, ...cz with z being
different the number of distinct classes. Let D(ci, cj) represent
the distance between centroid ci and cj , where i and j range
from 1 to z and i 6= j. The formula for calculating the distance
between all pairs of centroids is given by:

D(ci, cj) =

vuut
dX

k=1

(cik � cjk)2 (1)

where,
• ci and cj are the centroids.
• cik is the k-th cordinate of centroid ci.
• cjk is the k-th cordinate of centroid cj .
• d is the number of dimensions/features.
The ultimate goal is to maximize

P
D(ci, cj). Therefore,

the objective in the Walsh Vector integration is to relocate
centroids to positions where the product of their components
equals zero, i.e., ci • cj =

Pd
k=1(cik • cjk) = 0, ensuring

perpendicularity between centroids.

III. METHODS

In this section, we offer explanations of the dimensionality
reduction techniques and Walsh Vector utilized in this study.

https://github.com/mntalha/Efficient-Weight-Initializer/
https://github.com/mntalha/Efficient-Weight-Initializer/


Fig. 1. A specific formula and initial version of the Hadamard Matrix, represented as H2. Matrices undergo extensions in powers of two, exemplified by
R

1x1, R2x2,R4x4,R8x8 and R
16x16.

A. Dimensionality Reduction
Dimensionality reduction involves transforming high-

dimensional data into a lower-dimensional representation
while minimizing information loss. In this study, the purpose
of using dimension reduction is based on extracting the
most significant features and centroids associated with class
distinctions from the input data obtained. The goal is to
emphasize unique characteristics while potentially eliminating
noise. Considering the distribution of classes, t-SNE [12],
which demonstrates the broadest dispersion in space, surpasses
one hot encoding, PCA [13], and UMAP [14], forming the
foundational component of the support network in this study.

The process of dimensionality reduction using t-SNE can
be described as follows: Let X be a dataset, X 2 RnxD,
with n data points xi (i 2 1, 2,..., n), where each data point
possesses D dimensions, resulting in a matrix of size n⇥D.
We aim to obtain a lower-dimensional representation denoted
by Y , where Y is a matrix of low-dimensional embeddings
Y 2 Rnxd, with d being significantly smaller than D (d <<
D). If two data points xi and xj are close to each other in the
input space X (i.e., the original dataset), their corresponding
lower-dimensional embeddings yi and yj should also be close.
This is achieved through conditional probability, where the
probability of the existence of point j given point i in the
original space is utilized for mapping the points into the lower-
dimensional space [12].

pj|i =
exp

⇣
�kxi�xjk2

2�2
i

⌘

P
k 6=i exp

⇣
�kxi�xkk2

2�2
i

⌘ (2)

where,
• xi and xj are the original high-dimensional data points.
• yi and yj are the reduced low-dimensional data points.
• �i is the variance of the Gaussian distribution centered

at point i.
• k . k represent the Euclidean distance

B. Walsh Vector
The Walsh matrix, initially developed by L. Walsh in 1923

as a variant of the Hadamard matrix, has been widely utilized

in communication systems [15]. Its effectiveness lies in its
capacity to enhance predictive accuracy even in the presence of
noise, achieved by amplifying the distinctions between trans-
mitted data [16]. When analyzing the Walsh Matrix as depicted
in Fig. 1, it is observed that the greatest separation between
vectors arises from their orthogonality. Taking inspiration from
this situation, instead of one-hot encoding, we opt for Walsh
vectors to more precisely describe the distributional centers of
classes within the model, which is expressed as follows [17]:

Wk(x) = (�1)
P1

j=0 kjxj+1 (3)

where,
• Wk : [0, 1] ! {�1, 1}, k 2 N� 1.
• W0(x) = 1 everywhere on the interval.
• kj is the jth bit in the binary. representation of k, starting

with k0.
• xj is the jth bit in the fractional binary representation of

x, starting with x1.

C. The Proposed Architecture
In this section, we will provide a visual representation of the

method’s flow in Fig. 2. Initially, the training dataset classes
are identified. Random selection of one sample from these
classes is performed for each batch (size of 200). Following
this, a data reduction method is applied to project these
randomly sampled classes onto a two-dimensional plane. The
objective behind implementing this approach is to convey
class characteristics that the main model will subsequently
capture during training. Subsequently, we opt for the Walsh
matrix due to the broader dispersion observed when applying
t-SNE to randomly selected samples from higher dimensions
onto a two-dimensional plane. Each class is then randomly
assigned a vector from the Walsh matrix. After selecting the
Walsh vector, we combine our primary model with the Sup-
Walsh model to form a comprehensive pipeline. The learning
process concludes as the concatenated model converges during
training. This process fine-tunes the model’s weights.

IV. EXPERIMENTS

This section presents the experimental results and datasets.



Fig. 2. The complete pipeline of four stages, starting from Stage 1 and progressing to Stage 4.

A. Dataset
The performance of the proposed structure is assessed using

three widely recognized datasets that are publicly available.
These datasets include CIFAR-10 [18], which comprises a total
of 60,000 images. Additionally, MNIST [2] consists of a total
of 70,000 images. Fashion-MNIST [4], a variant of MNIST,
contains 70,000 images organized into distinct classes.

B. Experimental Results
Based on the four different stages depicted in Fig. 2,

we opted for well-known models widely available in the
literature and commonly used for comparative analysis. These
models include AlexNet [1], ResNet50 [19], VGG19 [20],
GoogleNet [3], SqueezeNet [21], and Nvidia-MIT [22]. Fur-
thermore, we introduce a relatively straightforward network
architecture, denoted as the base, comprising only three feed-
forward layers. During the initial epoch of training, AlexNet
on the MNIST dataset showed an accuracy gap of 64.38%,
with a performance rising from 14.61% to 78.99% after
using Sup-Walsh. Similarly, GoogleNet on the FashionMNIST
dataset had a remarkable 31.61% increase in accuracy when
using Sup-Walsh. GoogleNet also demonstrated a 15.37%
increase in accuracy on the Cifar-10 dataset. Our proposed
solutions outperform nearly in all 21 scenarios, except Base
and SqueezeNet on Cifar-10. This includes 7 models across 3
datasets, yielding better results in the final 10th epoch.

V. CONCLUSION

In this research, we integrated the Walsh Matrix into the
initialization process of various deep learning models. This
was achieved by introducing the Sup-Walsh network, aiming to
improve the distinction between different classes. We demon-
strated the validity of our opinions on this matter through the
experiments we conducted with different datasets and models.

TABLE I
THE ACCURACY RATES OF MODELS ON MNIST DATASET AT THE INITIAL
AND FINAL EPOCHS. ’With’ REPRESENTS TRAINING AS WITH SUP-WALSH,

’Without’ CORRESPONDS TO SITUATIONS WHERE THESE MODELS ARE
DIRECTLY TRAINED WITHOUT BEING CONNECTED TO THE PROPOSED

MODEL. THE CONTRIBUTION (ACCURACY INCREASE) PROVIDED BY THE
PROPOSED MODEL IS ILLUSTRATED PROPORTIONALLY WITH GREEN-RED

ARROWS.

Models Epoch Dataset Accuracy Change

With Sup-Walsh: ”With” MNIST [2] (%)

Without Sup-Walsh: ”Without” Without (%) With (%)

Base 1st 55.55 68.01 12.45 "
10th 88.93 91.65 2.71 "

VGG-19 [20] 1st 54.17 83.85 29.68 "
10th 96.80 98.53 1.73 "

ResNet-50 [19] 1st 13.13 27.14 14.01 "
10th 51.83 85.32 33.49 "

AlexNet [1] 1st 14.61 78.99 64.38 "
10th 89.06 96.64 7.57 "

GoogleNet [3] 1st 44.79 89.34 44.54 "
10th 97.95 98.84 0.88 "

SqueezeNet [21] 1st 16.07 42.41 26.34 "
10th 51.10 93..74 42.64 "

Nvidia-Mit [22] 1st 25.53 56.89 31.36 "
10th 94.21 95.67 1.45 "

Note: Bold values indicate the best values of 1st, 10th epochs
both for ”With” and ”Without” Sup-Walsh.

In future work, our intention is to shift towards a model
where weights are determined according to dataset specifica-
tions, eliminating the necessity for a support network.
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TABLE II
THE ACCURACY RATES OF MODELS ON FASHION-MNIST DATASET AT

THE INITIAL AND FINAL EPOCHS. ’With’ REPRESENTS TRAINING AS WITH
SUP-WALSH, ’Without’ CORRESPONDS TO SITUATIONS WHERE THESE

MODELS ARE DIRECTLY TRAINED WITHOUT BEING CONNECTED TO THE
PROPOSED MODEL. THE CONTRIBUTION (ACCURACY INCREASE)

PROVIDED BY THE PROPOSED MODEL IS ILLUSTRATED PROPORTIONALLY
WITH GREEN-RED ARROWS.

Models Epoch Dataset Accuracy Change

With Sup-Walsh: ”With” Fashion-MNIST [4] (%)

Without Sup-Walsh: ”Without” Without (%) With (%)

Base 1st 56.68 62.83 6.14 "
10th 78.44 81.43 2.99 "

VGG-19 [20] 1st 55.38 71.33 15.95 "
10th 84.82 88.90 4.16 "

ResNet-50 [19] 1st 13.22 26.23 12.98 "
10th 45.82 72.64 26.82 "

AlexNet [1] 1st 17.61 70.91 53.29 "
10th 69.77 85.24 15.46 "

GoogleNet [3] 1st 44.76 76.37 31.61 "
10th 87.67 92.87 5.19 "

SqueezeNet [21] 1st 27.16 48.93 21.77 "
10th 77.40 79.04 1.64 "

Nvidia-Mit [22] 1st 41.96 54.99 13.03 "
10th 81.88 82.75 0.87 "

Note: Bold values indicate the best values of 1st, 10th epochs
both for ”With” and ”Without” Sup-Walsh.

TABLE III
THE ACCURACY RATES OF MODELS ON CIFAR-10 DATASET AT THE
INITIAL AND FINAL EPOCHS. ’With’ REPRESENTS TRAINING AS WITH
SUP-WALSH, ’Without’ CORRESPONDS TO SITUATIONS WHERE THESE

MODELS ARE DIRECTLY TRAINED WITHOUT BEING CONNECTED TO THE
PROPOSED MODEL. THE CONTRIBUTION (ACCURACY INCREASE)

PROVIDED BY THE PROPOSED MODEL IS ILLUSTRATED PROPORTIONALLY
WITH GREEN-RED ARROWS.

Models Epoch Dataset Accuracy Change

With Sup-Walsh: ”With” CIFAR-10 [18] (%)

Without Sup-Walsh: ”Without” Without (%) With (%)

Base 1st 13.05 10.72 0.21 #
10th 23.44 21.72 0.97 #

VGG-19 [20] 1st 13.11 22.95 9.83 "
10th 39.60 50.13 10.52 "

ResNet-50 [19] 1st 10.62 11.47 0.84 "
10th 15.85 21.81 5.95 "

AlexNet [1] 1st 9.88 10.70 0.82 #
10th 9.96 14.63 4.66 "

GoogleNet [3] 1st 16.35 31.72 15.37 "
10th 48.56 59.54 10.98 "

SqueezeNet [21] 1st 10.84 9.97 0.13 #
10th 10.00 11.86 1.86 #

Nvidia-Mit [22] 1st 12.61 14.12 1.50 #
10th 36.59 37.28 0.68 "

Note: Bold values indicate the best values of 1st, 10th epochs
both for ”With” and ”Without” Sup-Walsh.
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