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Abstract—Modern data mining methods have seen a
widespread and growing application in the field of materials
science for regression-based predictive modeling due to their
effectiveness in extracting and utilizing the hidden information
from the materials datasets. However, due to the costly and
time-consuming nature of the methods involved in obtaining
the experimental and computational data, the majority of the
materials datasets are small in size. Moreover, limited hand-
engineered representations available from the raw materials
data make it harder to improve the accuracy of predictive
models on such small and specialized training datasets. In this
paper, we introduce a novel technique that combines transfer
learning (TL) and representation learning (RL) using a pre-
trained deep neural network to maximize accuracy without
additional computational costs on inorganic material properties.
The performance of the proposed method is compared against
traditional machine learning (ML), and deep neural network
models trained from scratch (SC) with elemental fraction (EF)
as input, more informative physical attributes (PA) as input (for
a stringent comparison), as well as conventional TL and RL
techniques using deep neural networks. The results demonstrate
that the proposed method can improve the accuracy as compared
to SC models and conventional TL and RL techniques.

Index Terms—deep learning, transfer learning, representation
learning, deep regression, predictive modeling

I. INTRODUCTION

Modern data mining methods have seen a widespread and
growing application in the field of materials science for
regression-based predictive modeling due to their effectiveness
in extracting and utilizing the hidden information from the
materials datasets and aid in the process of materials discov-
ery [1]-[7]. This has been made possible due to the availability
of computationally calculated large materials databases [8],
[9] as well as easy-to-use data mining tools and advance-
ment in the machine learning (ML) and deep learning (DL)
algorithms to extract hidden information from raw inputs
and build accurate and robust models for various material
properties [10]-[15]. Since materials property prediction is a
regression-based task and the representation used as model
input to train various ML/DL methods usually comprises of a
one-dimensional numerical vector obtained by pre-processing

Alok Choudhary
ECE Department
Northwestern University
Evanston, Illinois, USA
choudhar @
eecs.northwestern.edu

Ankit Agrawal
ECE Department
Northwestern University
Evanston, Illinois, USA
ankitag@
eecs.northwestern.edu

raw materials input, traditional ML algorithms [10], [11] and
DL models composed of fully connected layers [16]—[21]
are extensively used. However, due to the costly and time-
consuming nature of the methods involved in obtaining the
experimental and, in some cases even computational data, the
majority of the materials datasets are small in size, limiting the
highly accurate models to a selected few materials properties
with a large amount of data [22], [23]. Moreover, limited
generalized hand-engineered representations available from
the raw materials data [24], [25] make it harder to improve
the accuracy of predictive models built on such small and
specialized training datasets. Therefore, various advanced data
mining techniques such as transfer learning (TL) [26]-[29]
and representation learning (RL) [30]-[35] are often applied to
tackle the bottleneck of small data size by reusing the existing
knowledge in a bid to boost the predictive performance of the
model.

Our goal in this work is to design a data mining method
that can improve the predictive ability of the model by using
a raw materials representation as input. We introduce the
idea of combining TL and RL to perform model training
for deep regression networks on materials datasets where the
input data used to train the model is different from what
the pre-trained model was trained on. Although both the
TL and RL methods [29], [32]-[35] have been widely used
separately to handle small training datasets, to the best of our
knowledge, no previous work investigates the effectiveness
of the combination of TL and RL techniques for building
deep regression networks composed of fully connected layers
for numerical vector inputs, especially for materials science
applications.

In this paper, we propose a novel TL+RL method where
we combine the weights and activations extracted from a pre-
trained model trained on a large dataset to train small datasets
to maximize accuracy without additional computational costs.
We compare the proposed TL+RL method against state-of-
the-art ML/DL models trained directly on the small target
dataset from scratch (SC) and conventional TL (fine-tuning)



and DL-based RL methods using deep neural networks. We
perform predictive analysis of formation energy of inorganic
materials from a numerical input vector composed of 86
features representing composition-based elemental fractions
with OQMD [8] as the source dataset used to train the source
model, and JARVIS [9] as the target dataset used to train the
target model. Our proposed TL+RL method achieves better
results in terms of the 10-fold cross-validation error and test
error than other approaches for the regression-based prediction
tasks. Overall, the proposed TL+RL method provided a more
accurate model as compared to other models used for the com-
parison and is expected to be widely helpful for efficient and
accurate predictive modeling without additional computational
costs on not only materials datasets but for datasets from other
domains as well.

II. DESIGN

Here we describe the proposed TL+RL method with the
novel combination of data mining techniques and the pri-
mary DL architecture deployed in this work. For the primary
architecture, we use a 17-layered neural network (NN-17)
comprising of stacks of fully connected layers and ReLU as the
activation function as used in [19], [22], [23]. For the proposed
TL+RL mechanism, we use activations of the pre-trained
model from a given layer as the materials representation for
each compound of the small target dataset and the weights
of the pre-trained model as the initial set of weights of the
deep neural network. The activations of the pre-trained model
from a given layer can have varying sizes as it depends on
the number of neurons in a given layer. For example, if
we represent the materials representation using the first layer
of the DL model, each compound will be represented as a
1024-dimensional feature vector. As our primary architecture
consists of 16 layers (except the output layer), we can have 15
different types of representations (excluding the layer before
the output layer, which is used for freezing). Moreover, as each
layer in the network comprises of a dense block and ReLU
activation, we call the representation obtained from the dense
block and ReLU activation as DL(Dense) and DL(ReLU),
respectively. The main difference between DL(Dense) and
DL(ReLU) is that the DL(Dense) features comprise of both
the positive and negative activations, whereas DL(ReLU)
representation truncates the negative values to zero, causing a
potential loss of information during the process. The weights
of the pre-trained model are obtained by training the primary
architecture on a large source dataset (OQMD) using elemental
fraction (EF) composed of 86 composition-based attributes
only. Hence, although in our proposed TL+RL method, the
input representation used to train the model on the target
dataset is obtained from the activations of the pre-trained
model, the input representation used to train the target model
is different from the input representation used to train the
source model. We also initialize the target model’s weights
using those from the pre-trained model before starting the
training process (except for the first layer, which is randomly
initialized due to the differing inputs between the source and

TABLE I
NOTATIONS FOR THE DIFFERENT SCRATCH (SC) AND TRANSFER
LEARNING/REPRESENTATION LEARNING (TL/RL/TL+RL) MODELING
CONFIGURATIONS USED IN THIS WORK.

Notation Description

SC:ML AutoML model trained from scratch (SC) using
(EF) Elemental Fractions (EF)

SC:ML AutoML model trained from SC using Physical
(PA) Attributes (PA)

SC:DL(EF) | NN-17 model trained from SC using EF
SC:DL(PA) | NN-17 model trained from SC using PA

TL: Fine-tuning on the same NN-17 framework using the

Fine-Tune pre-trained weights of source model

RL: NN-17 model trained from the representation obtained

Freezing from the last layer of the source model

RL:DL NN-17 model trained using the representation obtained

(ReLU) after the ReLU activation function of the source model

RL:DL NN-17 model trained using the representation obtained

(Dense) after the dense layer of the source model

TL+RL:DL | NN-17 model trained from the representation obtained

(ReLU) after the dense layer of the source model and using the
pre-trained weights of source model

TL+RL:DL | NN-17 model trained from the representation obtained

(Dense) after the dense layer of the source model and using the

pre-trained weights of source model

target models). A block diagram depicting the workflow of
our proposed method is shown in Figure 1. After training
the models on representations obtained from different layers
as model input, we report the result of the best-performing
layer on the validation set (which are usually the features
extracted from the first four layers [32]). The notations for
specific methods used in this work are stated in Table I.

III. EMPIRICAL EVALUATION

In this section, we present a detailed analysis and assess-
ment of the proposed combination of transfer learning and
representation learning (TL+RL) method. Before presenting
the results, we discuss the experimental settings and datasets
used in this work.

1) Experimental Settings: For the DL model, we use a 17-
layered neural network comprising of stacks of fully connected
layers and ReLU as the activation function as used in [19],
[22], [23]. For ML, we used an AutoML library called
hyperopt sklearn [36] to find the best-performing ML model.
We used mean absolute error (MAE) as the loss function and
the error metric for all the results. In general, we follow a
two-step comparison for the result analyses performed in our
work. For step one, we perform 10-fold cross-validation (CV)
for all the methods used in this work, and the mean validation
MAE from 10-fold CV is used to select the best-performing
method among two categories SC and TL/RL/TL+RL (as all
the methods discussed in TL, RL, and TL+RL use some
form of pre-obtained knowledge to assist the model training).
For step two, we compare the test MAEs among SC and
TL/RL/TL+RL by performing model testing on the holdout
test set using the selected methods in step one. Since the
selected method from each of the categories would have 10
models (from the 10-fold CV), the one with the least validation
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Fig. 1. Block diagram depicting the workflow of our proposed method.

TABLE 11
PREDICTION PERFORMANCE BENCHMARKING. THE TABLE SHOWS THE
MEAN * STANDARD DEVIATION OF MAE FROM 10-FOLD
CROSS-VALIDATION FOR ALL METHODS AND TEST MAE OF THE BEST SC,
TL/RL, AND TL+RL MODEL.

Model Validation MAE | Test MAE
SC:DL(EF) 0.135+0.007 0.142
SC:DL(PA) 0.167+£0.005

SC:ML(EF) 0.206+0.011

SC:ML(PA) 0.141£0.005
TL:Fine-Tune 0.121£0.007

RL:Freezing 0.230+0.008
RL:DL(ReLU) 0.128+0.005
RL:DL(Dense) 0.118+0.006 0.123
TL+RL:DL(ReLU) 0.124+0.006
TL+RL:DL(Dense) 0.117%0.005 0.121

MAE is used to perform model testing on the holdout test set,
thereby ensuring that the test set is seen only once.

2) Datasets: The two datasets and their respective data
sizes used to evaluate our methods are as follows: OQMD
(345,220), and JARVIS (28,171). OQMD and JARVIS
databases were downloaded from their respective websites [8],
[9]. The formation energy from JARVIS as the target dataset
and OQMD as the source dataset are used for model training.
The datasets are randomly split with a fixed random seed of
12345 into training, validation, and test sets in the ratio of
81:9:10.

A. Prediction performance benchmarking

We conduct predictive analysis for formation energy, using
EF as input across all methods. Additionally, we introduce a
more stringent comparison by employing a composition-based
input physical attributes (PA), for the baseline SC models. This
allows us to assess the potential of the proposed TL+RL:DL
method, which relies solely on EF-based inputs.

In Table II, we show the 10-fold cross-validation MAE
for all methods and test MAE of the best SC, TL/RL, and
TL+RL models. For the SC methods, SC:DL(EF) achieved the
best 10-fold cross-validation MAE of 0.135+£0.007 eV/atom as
compared to other SC models. Interestingly, for SC models,
the PA attributes benefited only the ML models and not the DL
models. We believe this might be because, compared to ML,

the neural-network-based DL is much better equipped to work
well on raw inputs due to its hierarchical feature learning capa-
bility [22]. For TL/RL methods, RL:DL(Dense) achieved the
best 10-fold cross-validation MAE of 0.118+0.006 eV/atom,
whereas RL:Freezing performed the worst with an MAE of
0.230+0.008 eV/atom. Among our proposed TL+RL methods,
TL+RL:DL(Dense) method performs the best with a 10-fold
cross-validation MAE of 0.117+£0.005 eV/atom.

We then use the best model with the least validation
(out of 10 models) for SC:DL(EF), RL:DL(Dense), and
TL+RL:DL(Dense) to perform model testing on the holdout
test set and obtain test MAE of 0.142 eV/atom, 0.123 eV/atom,
and 0.121 eV/atom respectively. Even though the SC models
were allowed potentially more informative PA-based attributes
for their input, the results show that the best TL+RL method
outperforms the SC and TL/RL methods in terms of the 10-
fold cross-validation MAE and test MAE.

IV. CONCLUSION AND FUTURE WORK

In this paper, we analyzed and proposed a combination
of data mining methods for deep regression networks com-
posed of fully connected layers with numerical vectors as
inputs. We introduced a novel combination of transfer learn-
ing and representation learning method (TL+RL) in a deep
regression network, which leverages the both “representation”
and “weights” learned from the pre-trained source model
for building the target model on the small target dataset.
The proposed TL+RL method not only outperformed ML/DL
models trained from scratch for predictive modeling using
the same input but also performed better than conventional
TL and DL-based RL methods where SC methods were even
allowed to use more informative PA-based model input. The
insights obtained from the proposed combination of transfer
learning and representation learning methods can help build
predictive models for other applications with numerical vec-
tor inputs without additional computational costs. The code,
data, and models used in this work are publicly available at
https://github.com/GuptaVishu2002/TLRL to facilitate repro-
ducibility and further building upon this work.



ACKNOWLEDGMENT

This work was performed under the following financial
assistance award 70NANB19H005 from U.S. Department of
Commerce, National Institute of Standards and Technology as
part of the Center for Hierarchical Materials Design (CHi-
MaD). Partial support is also acknowledged from NSF awards
CMMI-2053929, OAC-2331329, DOE award DE-SC0021399,
and Northwestern Center for Nanocombinatorics.

[1]

[3]

[4]

[5

=

[6

=

[7

—

[8

=

[9

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

A. Agrawal and A. Choudhary, “Perspective: Materials informatics and
big data: Realization of the “fourth paradigm” of science in materials
science,” APL Materials, vol. 4, no. 5, p. 053208, 2016.

L. Ward and C. Wolverton, “Atomistic calculations and materials infor-
matics: A review,” Current Opinion in Solid State and Materials Science,
vol. 21, no. 3, pp. 167-176, 2017.

R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and
C. Kim, “Machine learning in materials informatics: recent applications
and prospects,” npj Computational Materials, vol. 3, no. 1, p. 54, dec
2017.

A. Agrawal and A. Choudhary, “Deep materials informatics: Appli-
cations of deep learning in materials science,” MRS Communications,
vol. 9, no. 3, pp. 779-792, 2019.

K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C. W.
Park, A. Choudhary, A. Agrawal, S. J. Billinge et al., “Recent advances
and applications of deep learning methods in materials science,” npj
Computational Materials, vol. 8, no. 1, pp. 1-26, 2022.

V. Gupta, W.-k. Liao, A. Choudhary, and A. Agrawal, “Evolution of
artificial intelligence for application in contemporary materials science,”
MRS communications, vol. 13, no. 5, pp. 754-763, 2023.

K. Choudhary, D. Wines, K. Li, K. FE. Garrity, V. Gupta, A. H. Romero,
J. T. Krogel, K. Saritas, A. Fuhr, P. Ganesh et al., “Jarvis-leaderboard: a
large scale benchmark of materials design methods,” npj Computational
Materials, vol. 10, no. 1, p. 93, 2024.

S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol,
S. Riihl, and C. Wolverton, “The open quantum materials database
(ogmd): assessing the accuracy of dft formation energies,” npj Com-
putational Materials, vol. 1, p. 15010, 2015.

K. Choudhary, K. F. Garrity, A. C. Reid, B. DeCost, A. J. Biacchi, A. R.
Hight Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Centrone
et al., “The joint automated repository for various integrated simulations
(jarvis) for data-driven materials design,” npj Computational Materials,
vol. 6, no. 1, pp. 1-13, 2020.

L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, “A General-
Purpose Machine Learning Framework for Predicting Properties of
Inorganic Materials,” npj Computational Materials, vol. 2, no. August,
p- 16028, 2016.

A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, and I. Tanaka, “Rep-
resentation of compounds for machine-learning prediction of physical
properties,” Physical Review B, vol. 95, no. 14, p. 144110, 2017.

G. Pilania, “Machine learning in materials science: From explainable
predictions to autonomous design,” Computational Materials Science,
vol. 193, p. 110360, 2021.

D. Morgan and R. Jacobs, “Opportunities and challenges for machine
learning in materials science,” Annual Review of Materials Research,
vol. 50, pp. 71-103, 2020.

J. Westermayr, M. Gastegger, K. T. Schiitt, and R. J. Maurer, “Perspec-
tive on integrating machine learning into computational chemistry and
materials science,” The Journal of Chemical Physics, vol. 154, no. 23,
p. 230903, 2021.

V. Gupta, K. Choudhary, Y. Mao, K. Wang, F. Tavazza, C. Campbell,
W.-k. Liao, A. Choudhary, and A. Agrawal, “Mppredictor: An artificial
intelligence-driven web tool for composition-based material property
prediction,” Journal of Chemical Information and Modeling, 2023.

Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, and S.-C. Zhang, “Learning

atoms for materials discovery,” Proceedings of the National Academy of

Sciences, vol. 115, no. 28, pp. E6411-E6417, 2018.

D. Jha, V. Gupta, W.-k. Liao, A. Choudhary, and A. Agrawal, “Moving
closer to experimental level materials property prediction using ai,”
Scientific reports, vol. 12, 2022.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

E. O. Pyzer-Knapp, K. Li, and A. Aspuru-Guzik, “Learning from the
harvard clean energy project: The use of neural networks to accelerate
materials discovery,” Advanced Functional Materials, vol. 25, no. 41,
pp. 6495-6502, 2015.

V. Gupta, A. Peltekian, W.-k. Liao, A. Choudhary, and A. Agrawal, “Im-
proving deep learning model performance under parametric constraints
for materials informatics applications,” Scientific reports, vol. 13, no. 1,
p. 9128, 2023.

G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen,
A. Tkatchenko, K.-R. Miiller, and O. A. von Lilienfeld, “Machine learn-
ing of molecular electronic properties in chemical compound space,”
New Journal of Physics, Focus Issue, Novel Materials Discovery, 2013,
to appear.

V. Gupta, Y. Li, A. Peltekian, M. N. T. Kilic, W.-k. Liao, A. Choudhary,
and A. Agrawal, “Simultaneously improving accuracy and computa-
tional cost under parametric constraints in materials property prediction
tasks,” Journal of Cheminformatics, vol. 16, no. 1, p. 17, 2024.

D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, and
A. Agrawal, “ElemNet: Deep learning the chemistry of materials from
only elemental composition,” Scientific reports, vol. 8, no. 1, p. 17593,
2018.

D. Jha, V. Gupta, L. Ward, Z. Yang, C. Wolverton, I. Foster, W.-k. Liao,
A. Choudhary, and A. Agrawal, “Enabling deeper learning on big data
for materials informatics applications,” Scientific reports, vol. 11, no. 1,
pp. 1-12, 2021.

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Schef-
fler, “Big data of materials science: Critical role of the descriptor,”
Physical Review Letters, vol. 114, no. 10, p. 105503, 2015.

A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, and
E. J. Reed, “Holistic computational structure screening of more than
12000 candidates for solid lithium-ion conductor materials,” Energy &
Environmental Science, vol. 10, no. 1, pp. 306-320, 2017.

X. Li, Y. Zhang, H. Zhao, C. Burkhart, L. C. Brinson, and W. Chen,
“A transfer learning approach for microstructure reconstruction and
structure-property predictions,” Scientific reports, vol. 8, no. 1, pp. 1-13,
2018.

M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating
focused molecule libraries for drug discovery with recurrent neural
networks,” ACS central science, vol. 4, no. 1, pp. 120-131, 2018.

D. Jha, K. Choudhary, F. Tavazza, W.-k. Liao, A. Choudhary, C. Camp-
bell, and A. Agrawal, “Enhancing materials property prediction by
leveraging computational and experimental data using deep transfer
learning,” Nature communications, vol. 10, no. 1, pp. 1-12, 2019.

B. Kailkhura, B. Gallagher, S. Kim, A. Hiszpanski, and T. Y.-J. Han,
“Reliable and explainable machine-learning methods for accelerated
material discovery,” npj Computational Materials, vol. 5, no. 1, pp. 1-9,
2019.

R. E. Goodall and A. A. Lee, “Predicting materials properties without
crystal structure: Deep representation learning from stoichiometry,”
Nature communications, vol. 11, no. 1, pp. 1-9, 2020.

P. K. Routh, Y. Liu, N. Marcella, B. Kozinsky, and A. I. Frenkel, “Latent
representation learning for structural characterization of catalysts,” The
Journal of Physical Chemistry Letters, vol. 12, no. 8, pp. 2086-2094,
2021.

V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A. Choud-
hary, and A. Agrawal, “Cross-property deep transfer learning framework
for enhanced predictive analytics on small materials data,” Nature
communications, vol. 12, no. 1, pp. 1-10, 2021.

C. Shu, J. He, G. Xue, and C. Xie, “Grain knowledge graph representa-
tion learning: A new paradigm for microstructure-property prediction,”
Crystals, vol. 12, no. 2, p. 280, 2022.

V. Gupta, W.-k. Liao, A. Choudhary, and A. Agrawal, “Pre-activation
based representation learning to enhance predictive analytics on small
materials data,” in 2023 International Joint Conference on Neural
Networks (IJCNN). 1EEE, 2023, pp. 1-8.

V. Gupta, K. Choudhary, B. DeCost, F. Tavazza, C. Campbell, W.-k.
Liao, A. Choudhary, and A. Agrawal, “Structure-aware graph neural
network based deep transfer learning framework for enhanced predictive
analytics on diverse materials datasets,” npj Computational Materials,
vol. 10, no. 1, p. 1, 2024.

B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn,” in /ICML workshop on
AutoML, vol. 9. Citeseer, 2014, p. 50.



