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Abstract—Generative models have been widely used in the
field of computer vision due to their ability to produce unseen
data points. Its application has proven to be useful in various
scientific domains such as materials science for generating new
microstructure images that require learning nonlinear and one-
to-many property-microstructure relationships. However, existing
simulation-based solutions for this application are inefficient
and time-consuming. Moreover, nonlinearity from the lower to
higher dimensions poses considerable challenges. In this work, we
propose a novel Mixture Density Network (MDN) based Quan-
tized Autoencoder Network designed to generate microstructure
images from only a single data point by establishing one-to-many
nonlinear relationships from property to microstructure. Once
the autoencoder effectively compresses spatial information into
the property domain, we use the combination of produced latent
vectors and property values to create a supplementary dataset
for MDN. Upon completion of the model training, generative
structures are extracted and merged to create a framework
that generates images based on target property values (i.e.,
absorption values in this study). The trained MDN demonstrates
proficiency in generating latent vectors within distribution, while
the proposed Vector Quantized Variational Autoencoder (VQ-
VAE) efficiently maps the embedding table to the latent space,
generating images from property values within the range of
properties observed during training. We demonstrate that our
proposed model consistently outperforms the baselines with
respect to generating new microstructure images having target
properties and overcoming the above-mentioned challenges.

Index Terms—Generative Networks, Autoencoder, Inverse
Modeling, Microstructure Images

I. INTRODUCTION

Artificial intelligence has become widely recognized for
its capacity to comprehend nonlinear relations and employ
generative models, including Autoencoders, Generative Ad-
versarial Networks (GANs), and Diffusion Models [1]—[3]].
These models are engineered to produce new data points by
leveraging the learned data distribution during the training
phase, allowing for the creation of higher-dimensional outputs.

In this study, we present our proposed model focused on the
generation of microstructure images. Our goal is to generate
images not from a random value, such as a diffusion models
or GANSs, but rather from the optical absorption value, which
is a property of the microstructure images, as shown in Fig. [I]
However, one of the challenges here is the high sensitivity
encountered during the creation of a highly accurate model.
An illustrative example, as depicted in Fig.|l|using the dataset

from this research, reveals that even a small change in the
microstructure image may result in significant change in the
property value. Despite a 99.73% similarity between images
calculated by pixel difference, the measured Residual Error
Percentage (REP) value, used as a performance metric in this
research, is 3.07%, indicating a notable deviation.

The similarity : 0.9973

Absorption rate : 0.64767

Absorption rate : 0.62779

Residual Error Percentage(REP) : 3.0708

Fig. 1. Comparison of absorption values for microstructure images that appear
visually similar, but have significant absorption value differences.

Contributions of this study are as follows:

o We demonstrate that the proposed model can generate
realistic microstructure images.

e Our model overcomes challenges such as overfitting,
compression loss, blurriness, and overly generalized out-
puts.

o Unlike simulations, it enables the rapid generation of
images with the desired properties in a very short time.

II. RELATED WORK

Autoencoders: Autoencoders stand out among generative
models due to their ability to compress input data and extract
information from it. Notably, the Variational Autoencoder
(VAE) [5] is renowned for its capacity to extract concise
information.

Diffusion Models: This popular generative model aims to
generate images from reverse Markov transitions and has also
started to be used in the field of materials science [|6]]. However,
the linearity inherent of this structure implies that it may
struggle to capture the nonlinear relationships present in our
study.

GANs: Among the related works, this model structure
stands out as the most prominent and is highly popular
in materials science [7]-[9] but the training instability and
model collapse associated with GAN models have prompted
researchers to explore different models.
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Fig. 2. Processing, Structure, Property, Performance (PSPP) Relationship [4].

PCA-MDN Method: This method utilizes the traditional
dimension reduction technique, Principal Component Anal-
ysis (PCA), to perform an inverse transform and generate
microstructure images [10]. The input data it receives is a
reduced set of principal components created by MDN [[11].

Optimization-Based Inverse Modeling: The inverse mod-
eling method, based on optimization, involves sampling 250
pairs of design representations [/11[]. Subsequently, metamodel-
based Bayesian optimization is employed to iteratively explore
the next potentially optimal design point [[12]].

III. BACKGROUND: NONLINEARITY AND INVERSE
MODELING

During the course of scientific evolution, four foundational
paradigms have historically guided research endeavors: empir-
ical, theoretical, computational, and data-driven [4], [[13]. In
the current epoch, we observe the significant impact of data-
driven science, signaling the rise of the fourth paradigm in
scientific history. In this realm, key concepts are built upon
four fundamental phenomena known as Processing, Structure,
Property, and Performance (PSPP) principles [4].

Fig. [2| visually represents forward modeling, where the
sequence from left to right represents a logical flow of cause-
effect relationships from processing to structure to property
to performance. This emphasizes the predictability of output
values in forward modeling, provided the mappings are well-
established. However, establishing a connection in the reverse
direction—from performance to processing, also known as
inverse modeling—poses a significant challenge due to the
nonlinearity [14]. Nonlinearity is a key characteristic of Al
models. It enables these systems to learn from data in ways
that linear models cannot, allowing them to handle a wide
range of complex tasks [15]. However, it also introduces
challenges that necessitate careful consideration in model
design and training. Additionally, using lower-dimensional in-
put data to generate higher-dimensional outputs, one-to-many
relationships, can lead to diversity issues because vital values
in high-dimensional data are derived from less informative
low-dimensional data [16].

IV. METHODS

Within this section, we provide an explanation of the deep
learning models used in this study.

A. Vector Quantized Variational Autoencoder

Autoencoders comprise three essential components: an en-
coder, a latent space, and a decoder. The encoder network
parameterizes a posterior distribution ¢(z|x), representing the
latent space z given the input data. The latent space includes
a prior distribution p(z) and a decoder operates by processing
this latent space as p(z|z). Initially, we explored the develop-
ment of a Variational Autoencoder (VAE) to establish a latent
space comprising u, o, and e. Due to the posterior collapse
[17], we chose to use VQ-VAE as a foundational method
[18]. In VQ-VAE, the encoder’s output becomes discrete, and
the decoder uses these discrete values instead of the original
encoded output [5]. The process initiates by generating discrete
representations through the transformation of the latent space.
The latent space is composed of embedding tables, denoted
as e;, which exist in RP. Here, k represents the size of the
discrete latent space, as defined by the user. This implies that
each D-dimensional array (e; € RP, where i € 1, 2,..., k)
originating from the encoder will be assigned to one of the &
classes.

VQ-VAE model incorporates three loss components: the
reconstruction loss (notated as R), the VQ loss (notated as
V), and the commitment loss (notated as C). Additionally,
we propose a new component A, which corresponds to the
absorption loss in this study to minimize the discrepancy
in properties between the generated output and the desired
attributes. The normalization parameters are denoted as «, (3,
and 6.

Total Loss=ax R+« A+60xV +C @))

The initial loss we consider is the reconstruction loss, mea-
suring the reconstruction error using the L2 norm, representing
the disparity between the model’s output and the input image.

R : reconstruction loss = log p(2|z4(2)) (2)

While updating the embedding table, it is advisable to
use exponential moving averages (EMA) [[18]]. The loss is
characterized as the vq loss, computed through the L2 norm.
This process guides the adjustment of e towards the encoder
output z.(2).

V :wq loss = ||sg[z.(2)] — el 3)



The commitment loss employs the stop gradient operator
(sg) to guarantee the embeddings’ commitment to the nearest
codebook vector [18]].

“4)

C : commitment loss = B.||z.(2) — sgle]|3,

where (. is a scale factor of the commitment loss.

To enhance the resilience of our proposed framework, we
have introduced a novel term known as the “absorption loss”,
denoted as A. This loss is implemented on a randomly chosen
subset of the training data (x) with the generated output (2),
specifically (n_batch/32) samples per epoch.

n

. X . Tbatch
A : absorption loss = E j — X ~ rand =
absorption loss k70|xj x|, j ~ rand(), n 39
o)

B. Mixture Density Network

The concept of the Mixture Density Network (MDN) was
introduced by Bishop in 1994 [19]. The primary objective of
this network is to generate not just a singular output but rather
a distribution. In this network, each output is characterized by
both mean and variance, collectively forming a part of the
output distribution. This network produces individual outputs,
1 and o. The accumulation of these values, each multiplied
by varying coefficients, 7, forms the closest approximation to
a Gaussian distribution [20].

P(jlz) = Zm ) * 0(4|pk (x), 07 () ©6)
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The symbol 6, in (6) and (7), denotes the conditional

density. The loss equation, in (7), employed for model learning

during the training phase is provided, where the inputs are

represented by =z, featuring associated weights w, and K

indicates the number of parameters for one of the three
partitions (u, o, and ) with N samples generated.

C. End-to-End Pipeline

In this section, we explore the integration of both generative
models. In the initial phase, the training of the VQ-VAE model
focuses exclusively on microstructure images. The primary
metric for evaluating the VQ-VAE model revolves around
examining the network’s capability to reconstruct input images
closely. Upon concluding the training phase of the proposed
VQ-VAE, the subsequent algorithm incorporates mixture den-
sity networks. Dataset images, absorption values, and latent
space information from the proposed VQ-VAE is stored for the
mixture density models. In the training process of the mixture
density model, absorption values are utilized, predicting the
latent distribution shown by 30 potential latent vectors. The
end-to-end framework outlines the procedures for generating

images from a given property value. This involves combining
two trained generative models by deactivating the regularizer
from the MDN and disabling the encoder component of the
VQ-VAE.

TABLE I
THE PERFORMANCE OF THE PROPOSED FRAMEWORK, GAN-MDN
METHOD, PCA-MDN METHOD, MDN-BASED DEEP LEARNING INVERSE
METHOD, AND OPTIMIZATION BASED INVERSE MODEL

Absorption Value Residual Error Percentage (REP %)

(Target) Min Average  Standard Deviation
The Proposed Framework
0.55 0.07 % 6.17% 4.30%
0.60 0.36% 8.40% 6.04%
0.65 0.10% 8.21% 5.11%
0.70 0.03% 5.45% 4.03%
0.75 0.32% 6.84% 3.30%
GAN-MDN Method
0.55 1.25% 16.19% 8.96%
0.60 0.70% 10.99% 7.93%
0.65 0.18% 7.65% 5.64%
0.70 0.10% 5.00% 4.61%
0.75 0.43% 6.18% 3.51%
PCA-MDN Method
0.55 4.96% 11.74% 3.05%
0.60 0.07% 2.69% 2.18%
0.65 3.71% 8.79% 2.59%
0.70 0.10% 3.41% 2.44%
0.75 3.17% 6.27% 1.52%
MDN Based Deep Learning Inverse Model
0.55 2.85% 12.78% 3.89%
0.60 7.87% 14.95% 3.56%
0.65 11.00%  17.33% 2.63%
0.70 3.03% 15.62% 4.09%
0.75 8.44% 12.73% 3.20%
Optimization Based Inverse Model
0.55 15.51% - -
0.60 - - -
0.65 1.21% - -
0.70 - - -
0.75 - - -

Note: Bold values indicate the best values of the primary
evaluation metric (min REP).

V. EXPERIMENTS

This section provides the dataset information and experi-
mental results.

A. Dataset

The dataset used in this research were synthetically gen-
erated using the Gaussian random field (GRF) method [21].
The GRF method relies on three parameters—mean, standard
deviation, and volume fraction—and employs a simulation
technique. Additionally, the optical absorption property of
the microstructure images is simulated using the rigorous
coupled wave analysis [22]]. The dataset comprises 23,619
microstructure images, each sized at 64x64 pixels. This dataset
is accompanied by corresponding optical absorption values
spanning from 0.3 to 0.8, with the majority falling between
0.55 and 0.75.



B. Evaluation Metric

We employ the Residual Error Percentage, as indicated
by (8). This metric offers a percentage-based measure for
comparing the actual outcomes with the target results.

x 100

Residual Error Percentage (REP %) =

lz—2|

m ®)
where x represents the target optical absorption value and & is
the generated microstructure image’s optical absorption value.

C. Experimental Results

Initially, the improved VQ-VAE model with absorption loss
underwent unsupervised training. Following multiple iterations
with our dataset, we identified the most suitable parameters: a
batch size of 128, 1500 epochs, a learning rate of 3e-4, « set at
0.1, g at 1.2, and 6 at 1.2. Afterward, we trained the Mixture
Density Network (MDN) by utilizing optical absorption data
as the input and generating a latent space as the output, which
was then fed into the autoencoder model. Our MDN model was
set up with 40 Gaussian mixture parameters and 30 samples.

Tables I provides a comparative analysis of the proposed
framework against existing methods [23[]. Our examination
involves five targets, each characterized by distinct absorp-
tion values within the 0.55 to 0.75 range. These targets are
distributed across the dataset, displaying absorption values of
0.55, 0.60, 0.65, 0.70, and 0.75.

VI. CONCLUSION

In this work, we developed a novel generative framework
that integrates an improvised MDN and VQ-VAE for inverse
modeling. Our results illustrate that our proposed model ef-
fectively extracts valuable insights from the provided data,
enabling the generation of new images based on specified
optical absorption values. Leveraging the MDN approach,
our solution produces a distribution of outputs, facilitating
the creation of novel images while preserving underlying
connections. The experimental results show that the proposed
method performs better than the existing solutions. Our study
shows that the suggested framework facilitates a smoother shift
from intensive mathematical simulations to lighter Al models.

In the future, we plan to explore more informative datasets
for generalizability. We also plan to unify the independently
trained networks to minimize the connection loss.
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