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Recent progress in deep learning has significantly impacted materials science, leading to accelerated 
material discovery and innovation. ElemNet, a deep neural network model that predicts formation 
energy from elemental compositions, exemplifies the application of deep learning techniques in this 
field. However, the “black-box” nature of deep learning models often raises concerns about their 
interpretability and reliability. In this study, we propose XElemNet to explore the interpretability of 
ElemNet by applying a series of explainable artificial intelligence (XAI) techniques, focusing on post-
hoc analysis and model transparency. The experiments with artificial binary datasets reveal ElemNet’s 
effectiveness in predicting convex hulls of element-pair systems across periodic table groups, 
indicating its capability to effectively discern elemental interactions in most cases. Additionally, 
feature importance analysis within ElemNet highlights alignment with chemical properties of elements 
such as reactivity and electronegativity. XElemNet provides insights into the strengths and limitations 
of ElemNet and offers a potential pathway for explaining other deep learning models in materials 
science.

Recent advancements in machine learning, especially Deep Neural Networks (DNNs), have significantly 
impacted various scientific fields due to their exceptional ability to recognize complex patterns. This impact is 
evident in diverse areas, such as bioinformatics1,2, healthcare3–5, cosmology6,7, geosciences8, climate science9, 
materials science10–12 and so on. In materials science, deep learning, combined with large materials databases, 
heralds a new era of material discovery and innovation and plays a crucial role in uncovering the intricate 
processing-structure-property-performance (PSPP) relationships13. Noteworthy examples include ElemNet14, 
which predicts material properties based solely on elemental compositions, and crystal graph convolutional 
neural networks15, which offer insights into crystal structures. Moreover, 3-D CNNs have been effective in 
predicting the effective stiffness of composites16. These methodologies accelerate the materials design process 
and facilitate exploration in expansive materials spaces.

The proven effectiveness of various machine learning methods in materials informatics comes at the price 
of explainability. There exists a trade-off in machine learning: as the complexity of a model increases, especially 
in the case of advanced models like deep neural networks, its explainability tends to decrease17,18. This decrease 
in interpretability leads to models being perceived as “black-boxes,” where the internal mechanisms and the 
learned relationships are not transparent19. The absence of explainability not only undermines trust in these 
models but also affects their performance in extrapolation to unseen data20. Moreover, in contexts where a false 
positive could result in significant costs, it is crucial to ensure that the model learns based on accurate and logical 
features rather than incorrect correlations.

To address the explainability of machine learning models, a variety of model explanation techniques have 
been introduced in existing research, including feature importance analysis21,22, explanation by example23, and 
parameter inspection. Commonly, these methods can be grouped into two main categories: transparency to 
humans and post-hoc explanations. Transparency focuses on understanding the operational mechanisms of the 
model, while post-hoc explanations aim to interpret what the model has learned from the data. Nevertheless, 
in the context of material property prediction problems like ElemNet, challenges arise when applying certain 
techniques due to the high dimensionality of inputs.

Addressing these challenges, the proposed work on XElemNet advances the application of explainable artificial 
intelligence (XAI) techniques within materials science by applying customized XAI methods to ElemNet. The 
interpretation of ElemNet is conducted through both post-hoc and transparency explanations. We perform a 
post-hoc analysis using secondary binary element datasets to investigate discrepancies between predictions and 
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expectations, including an examination of predicted convex hulls, which reveals intricate interactions between 
elements learned by ElemNet. Additionally, we assess the model’s ability to distinguish between stable and 
unstable compounds on secondary datasets, thereby confirming its predictive reliability. For transparency, we 
use decision trees as the surrogate model to approximate the behavior of ElemNet. Our analysis focuses on the 
feature importance of ElemNet, offering deeper insights into its operational mechanisms.

The proposed XElemNet described in this work not only contributes valuable insights into ElemNet but also 
highlights domain-specific methodologies that are expected to be broadly applicable to other models within 
the field of materials informatics. The rest of the paper is organized as follows: The relevant material science 
background is briefly described in the section “Materials Science Background.” The ElemNet model and model 
explanation workflow used in this study are presented in the section “Methods.” The section “Evaluation and 
Results” presents the experimental results and analysis, and we conclude the paper with possibilities for future 
research in the “Conclusion and Future Work” section.

Materials science background
In this section, we briefly describe the basic materials science concepts of elements, compounds, formation 
energy, and Density Functional Theory (DFT) as relevant to this study.

Elements and compounds
Elements, as fundamental substances that cannot be chemically broken down into simpler substances, are 
characterized by a unique number of protons in their nucleus, known as the atomic number. They are organized 
in the periodic table (shown in Fig. 1) based on their atomic numbers, electron configurations, and chemical 
properties, which dictate their reactivity and interactions. For example, group 1 elements presented in the first 
column of the table, the alkali metals, are highly reactive, often forming ionic compounds with group 7 halogens 
(second column from the right) by transferring electrons. Compounds, on the other hand, are substances 
formed when two or more elements chemically combine in fixed ratios, resulting in new properties distinct from 
those of the individual elements. This process involves ionic or covalent bonding and occurs as elements seek 
stable electron arrangements similar to noble gases. In XElemNet, understanding these elemental interactions is 
crucial for interpreting how ElemNet predicts compound formation. By linking the behavior of these elements 
with the model’s predictions, we can assess the accuracy of ElemNet’s learning process, particularly through 
post-hoc analyses that explore the model’s treatment of different element pairs.

Formation energy
Formation energy is a fundamental material property in the realm of materials science, serving as a quantitative 
measure of a compound’s stability. It is measured in electron volts per atom (eV/atom) and represents the net 
energy change accompanying the synthesis of a compound from its elemental constituents. A compound with 
negative formation energy is considered to be more stable as its creation releases energy. Such compounds are 
more likely to exist in nature or be easily synthesized in laboratory conditions. Conversely, positive formation 
energy suggests that the formation of the compound is not spontaneous and requires external energy input. The 
advent of computational materials science has enabled the prediction of formation energies for various materials, 
including those yet to be synthesized. Thus, these predictions can accelerate the discovery of new materials, 
allowing for virtual screening of compounds based on their formation energies before the costly experimental 
synthesis. Within the XElemNet framework, formation energy evaluates ElemNet’s stability predictions. By 

Fig. 1.  The periodic table.The 86 elements in the ElemNet training dataset are denoted in blue; the remaining 
elements are in gray.
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comparing predicted and expected values, XElemNet’s post-hoc analysis reveals how well ElemNet distinguishes 
between stable and unstable compounds, offering critical insights into the model’s reliability.

Density functional theory
Density Functional Theory (DFT)24 is a cornerstone quantum mechanical modeling method that probes 
the properties of materials at the electronic level25. It is predicated on the principle that the electron density 
distribution within a material can be a reliable predictor of its electronic attributes. The intricate nature of DFT 
computations, which require detailed atomistic structural data, leads to high computational intensity. Execution 
times for DFT calculations can range from hours to months, depending on material complexity and computing 
power. This underlines the importance of advanced algorithms and computing in DFT research, driving progress 
in computational methods through collaboration between materials science and computer science. DFT has 
enabled large-scale data collection efforts, such as the Open Quantum Materials Database (OQMD)26 and Joint 
Automated Repository for Various Integrated Simulations (JARVIS)27, containing properties of thousands of 
materials. These datasets are essential for training models like ElemNet, grounding their predictions in accurate 
data.

Methods
In this section, we propose deep neural network interpretation methods for analyzing the material properties 
prediction model, which is illustrated in Fig. 3. We begin by describing our target model that we aim to explain, 
ElemNet14,28, which involves the goal and design of the model and the corresponding training dataset. Then, we 
detail our method with a focus on two aspects: post-hoc explanations and transparency. For post-hoc explanation 
methods for understanding what knowledge neural networks have learned, we propose to analyze the prediction 
results on secondary datasets in different ways. In addition, with the goal of better understanding how the model 
works, the transparency explanation method is proposed to approximate deep neural networks with traditional 
machine learning models and then explain the approximation model.

ElemNet
ElemNet14 is a deep learning model, originally developed by Jha et al.14 and later improved by Gupta et al.28, 
designed to predict the properties of materials based on their elemental compositions. Compared to conventional 
machine learning approaches, this approach excludes the need for domain knowledge-intensive manual feature 
engineering. By utilizing a deep neural network, ElemNet is expected to autonomously capture the complex 
chemical and physical interactions among elements, leading to superior prediction accuracy and speed even 
with limited training samples.

In this study, we use the ElemNet model developed in Gupta et al.28 trained on the OQMD-JARVIS dataset, 
which includes density functional theory computed properties, including formation enthalpies, for a wide 
range of compounds. For compositions with multiple structures, the lowest formation enthalpy is used as the 
prediction target in the ElemNet training as it represents the most stable structure for that composition. This 
enables the ElemNet model to estimate the energy of the fundamental state structure based on each composition. 
The dataset contains 321,140 unique compositions, which are randomly divided into 90% for training and 
10% for validation. In the dataset, 86 elements from 118 elements in the periodic table are included, which are 
marked in blue in Fig. 1. Shown in Fig. 3, each of the 86 elements is treated as a distinct feature, representing the 
fractional composition of that element in the material being analyzed. These features are input into the model 
as a vector, where each entry in the vector corresponds to the fraction of a specific element in the material. For 
each sample, the composition is represented with such a vector of elemental fractions, which are non-zero for 
elements present in the compound and zero for other elements.

Extensive experiments optimized ElemNet’s model architecture14,28, which contains 17 layers and allows 
inputs with 86 dimensions, each representing the elemental fractions of 86 elements. The model architecture 
and hyperparameters were based on extensive search through network architecture space and hyperparameter 
space. The final model of ElemNet is shown in Fig. 2. It includes 17 fully connected layers marked in orange and 
4 dropout layers marked in red. In our target trained model, dropout is disabled to extract consistent features 
for a given input28. The speed and accuracy of ElemNet enable efficient screening of vast material combinations, 
making it a powerful tool for accelerating materials discovery and design processes.

Post-hoc explanation methods
Following the taxonomy of model explainability introduced by Lipton29, we divide our interpretation approach 
into two main categories: post-hoc explanations and transparency to humans. The post-hoc explanations 
encompass a variety of methods aimed at shedding light on the knowledge acquired by the model. In this section, 

Fig. 2.  The model architecture of ElemNet. It contains 17 fully connected layers, 4 dropout layers, and ReLU as 
the activation function.
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our study primarily investigates post-hoc explanation techniques, as shown at the top of Fig. 3, including the use 
of external data as a proxy for convex hull analysis and compound stability analysis. We detail the explainable 
machine learning methods employed to enhance our understanding of ElemNet’s learning outcomes and 
operational dynamics.

Convex hulls analysis with secondary datasets
Given the 86-dimensional input framework of ElemNet, with each dimension representing the fractional 
presence of a specific element, it can be challenging to analyze the element interactions captured by the model. 
To tackle this, we create a secondary unlabeled dataset as a tool to study the formation energy predictions made 
by the trained ElemNet model. This dataset is carefully designed so that each entry contains only non-zero 
fractions of a pair of elements, say A and B, whose combined fractions always equal one. The composition of 
each entry is varied in discrete steps of 0.05, from A0.05B0.95 to A0.95B0.05, covering all possible pairs of the 86 
elements included in ElemNet. This systematic approach covers the entire spectrum of possibilities between 
compositions with two elements, ensuring a comprehensive exploration of the compositional space of AxBy 
systems.

After the generation of the secondary binary dataset, as shown in Fig. 3, it is fed into the trained ElemNet 
for model prediction, where the model predicts the formation energy for each binary compound in the dataset. 
To understand the interactions between elements learned by the ElemNet model, we organize the dataset and 
the corresponding formation energy predictions by the pairs of non-zero elements A and B. Each pair has 19 
possible compositions, which together form the convex hull for that pair of elements. In a convex hull, each point 
on the plot represents a potential compound composed of the two elements, with its position determined by its 
composition (relative ratio of the two elements) and its formation energy. This convex hull analysis allows us to 
identify the predicted most stable phases or compounds that can exist for each given combination of elements. 
By comparing the predictions with theoretical expectations, we can systematically explore how changing the 
proportions of elements A and B affects the predicted formation energy, providing a granular understanding of 
element interactions learned by ElemNet.

Most stable and unstable compound predictions on secondary datasets
To evaluate the reliability of machine learning models, explaining their predictions with examples is a common 
approach. Following the generation of the synthetic binary dataset described in the previous subsection, we first 
identify the elemental fractions that are predicted to have the highest and lowest formation energies. Potential 
compounds can be inferred based on the corresponding elemental fractions. Examining the material properties 
of these compounds can help us assess the effectiveness of ElemNet’s predictions.

In addition, to generalize this method to ternary compounds of the form AxByCz, we utilize a ternary 
dataset30 with the elements A, B, and C drawn from the list of 86 elements used in ElemNet. Among the 
possible C(86, 3) ternary systems, this dataset focuses on those with the most common compositions found 
in the Inorganic Crystal Structure Database (ICSD), including ABC3, ABC2, and ABC. For compositions that 
involve preferentially ionic elements such as F and O, it ensures that the overall charge is balanced based on the 
common oxidation states for anionic species and cationic species. This expanded ternary dataset, with over 1 
million possible compositions30, extends the range of elemental fractions we examine compared to the one in the 
previous section. As depicted at the top of Fig. 3, similar to the binary dataset, we investigate compositions that 
show the highest and lowest formation energies to evaluate ElemNet’s performance further.

Fig. 3.  Overview of XElemNet framework. The framework includes post-hoc and transparency explanation 
methods. ElemNet is used as the base model for generating the secondary datasets for compound stability 
analysis and convex hulls assessment.The transparency explanation component is depicted at the bottom. 
Surrogate model fitting is performed to generate the decision tree, which is then used for feature importance 
analysis.
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Transparency explanation methods
Deep neural networks are often described as “black-box” due to their opaque nature, posing challenges in 
interpretability. To address this, numerous studies have focused on improving model transparency for better 
human understanding. In this section, we explore the explanation method that focuses on transparency to shed 
light on the inner workings of the ElemNet.

Approximation with traditional machine learning models
In contrast to the opaque nature of deep neural networks, certain machine learning models are inherently 
regarded as transparent due to their straightforward interpretability. Notable examples of such transparent 
models include linear regression, decision trees, K-nearest neighbors (KNN), and Generalized Additive Models 
(GAMs), etc. One common method for approaching the transparency of opaque models is through simplification 
techniques31,32. By constructing a transparent model to approximate a deep neural network, the interpretable 
characteristics of the transparent model can serve as a proxy, offering insights into the underlying workings of 
the more complex original model.

In the proposed study of ElemNet illustrated at the bottom of Fig. 3, we apply feature importance analysis to 
a surrogate model developed using the secondary dataset described in the subsection of convex hull analysis. 
We choose the decision tree as our surrogate model due to its inherent interpretability and simplicity. Decision 
trees have been widely recognized in the literature as effective surrogate models for explaining the behavior of 
more complex, less interpretable models17. This choice aligns with our goal of enhancing the transparency of our 
model’s predictions, making it easier to understand and evaluate the trustworthiness of the results. Additionally, 
decision trees provide a straightforward method for calculating feature importance, which is crucial for our 
analysis.

With the generated predictions serving as labels, we train a decision tree on the labeled secondary binary 
dataset. Each of these 86 features is considered individually as a potential splitting criterion. The tree examines 
the contribution of each element’s fraction to the final prediction by splitting nodes based on different thresholds 
of these fractional values. Balancing the complexity of the decision tree is crucial as overly simple trees might 
not capture ElemNet’s nuances, while too complex trees risk overfitting and become difficult to interpret. We 
adjust the depth of the tree based on prediction accuracy to maintain this balance. This tree acts as the surrogate 
model for our feature importance analysis, enabling us to determine the Gini importance values for each of 
ElemNet’s 86 features and rank them accordingly33. Gini importance, or “mean decrease impurity,” quantifies the 
contribution of each feature to node homogeneity in a decision tree by measuring how much it reduces weighted 
impurity during tree construction. The importance of each feature is calculated by summing this reduction 
across all nodes where the feature is used as a splitting criterion and then normalizing these values34. In addition, 
we examine the correlation between each feature and the formation energy, providing another layer of ranking 
based on these correlation values. Together, these rankings offer a comprehensive view of which features are 
pivotal for ElemNet, thereby deepening our understanding of the model’s decision-making process.

Evaluation and results
As described earlier, we use ElemNet model trained on the OQMD-JARVIS dataset28 for interpretation. The 
training dataset contained 288, 989 samples, and the validation dataset contained 32, 151 samples. The accuracy 
achieved by the model was 0.0369 eV/atom28.

Interpretations with post-hoc explanation methods
Interpretation with convex hull analysis results
Based on the method described in the section on “Convex Hulls Analysis with Secondary Datasets,” we generate 
the secondary binary dataset with the formula of AxBy. By iterating one elemental fraction from 0.05 to 0.95 
in discrete steps of 0.05, 19 possible elemental fractions can be generated for each pair of elements. There are 
C(86, 2) = 3655 pairs of elements, thus resulting in 69445 samples in this binary dataset. Then, each sample 
is labeled with the formation energy prediction from ElemNet. To better understand the learned interactions 
between elements, we examine the convex hulls formed by pairs of elements. In each convex hull of an AxBy 
composition, we look into the elemental fraction of the element “A,” i.e., x, where the minimum formation 
energy is predicted. As the metal cations from groups 1-3 combine with non-metal anions from groups 5-7 often 
leading to the formation of stable ionic compounds, we pick the elements from groups 1-3 as element “A”, and 
from groups 5-7 as element “B” to investigate the interactions between elements learned by ElemNet.

As illustrated in Fig. 4, we delve into the interactions learned on AxBy systems with elements “A” shown in 
the first column and elements “B” shown in the first row in both tables. The combinations of “A” and “B,” each 
from three groups, result in 9 element pair groups, each containing the combinations of elements from two 
groups. In each element pair group, there is an expectation on the elemental fraction of element “A,” i.e., xe, 
at which a stable compound is expected. For instance, in the first element pair group, element pairs are Alkali 
metals (group 1) combined with Halogens (group 7). As Alkali metals have a valency of +1, while Halogens 
have a valency of -1, the stable elemental fraction in a binary compound from this group is often in a 1:1 ratio, 
reflecting the one-to-one electron transfer to form an ionic bond. For example, in the stable compound NaCl 
(sodium chloride), the elemental fraction of sodium (Na) is 0.50; thus, xe in the first element pair group equals 
0.50. Similar to this example, the expectations of xe can be calculated for these 9 element pair groups. In the 
element pair group of Alkali metals (group 1) and Chalcogens (group 6), the expected xe is 0.67, as seen in 
Na2O (sodium oxide), where the valency of Alkali metals is +1, and Chalcogens is -2. For Alkali metals (group 
1) combined with Pnictogens (group 5), as in Na3P  (sodium phosphide), the expected xe is 0.75, given the +1 
valency of Alkali metals and -3 for Pnictogens.
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Moving on to the combinations involving Alkaline earth metals (group 2), when combined with Halogens 
(group 7), as in CaCl2 (calcium chloride), the expected xe is 0.33, based on their valencies (+2 for Alkaline earth 
metals and -1 for Halogens). In CaO (calcium oxide), formed with Chalcogens (group 6), the expected xe is 
0.50. When paired with Pnictogens (group 5), as in Ca3P2 (calcium phosphide), the expected xe is 0.60. For the 
Boron group (group 3), the combination with Halogens (group 7), such as in BCl3 (boron trichloride), results 
in an xe of 0.25. When combined with Chalcogens (group 6), as in Al2O3 (aluminum oxide), the expected xe is 
0.40. In pairing with Pnictogens (group 5), as seen in AlP (aluminum phosphide), the expected xe is 0.50. It is 
important to note that for simplicity, here we only consider the most common oxidation states for the elements 
for determining xe for a given binary composition.

In Fig. 4a, for each AxBy combination, we show x with the lowest predicted formation energy, denoted as 
xp, which is considered the most stable according to ElemNet, and may or may not match the expectation. 
To emphasize relative deviations, we computed the ratio of each predicted xp to the expectation xe for each 
element pair and applied a base-2 logarithm (log2) transformation to these ratios, so that higher and lower 
relative deviations of xp w.r.t. xe could be quantified consistently, e.g., xp/xe ratio of 2 and 1/2 is transformed to 
+1 and -1 respectively. The resultant data were visualized in the heatmap shown in Fig. 4, with exact matches (a 
ratio of 1, log2 of which is 0) marked in green, and the most significant deviations, both positive and negative, 
highlighted in red.

From Fig. 4b, we can see that the element pair groups in the top left are predominantly accurately predicted, 
with deviations near zero. This indicates a strong alignment between the predicted xp and the expected xe, 
suggesting that ElemNet effectively captures the relevant interactions between elements. Further analysis 
of ElemNet is conducted by examining the predicted convex hulls with elements “A” from group 1 and “B” 
from group 7, as depicted in Fig. 5. In each subfigure, the expected stable compound formation at xe = 0.50 is 
highlighted by a green vertical line. The proximity of the predicted lowest formation energy to this line across 
different element combinations validates ElemNet’s ability to accurately model element interactions without any 
valency information provided to model during training. Additionally, the V-shaped distribution of scatter dots 
in each figure corroborates the theoretical expectation: elemental fractions deviating from the stable condition 
exhibit increased instability and higher formation energies. This pattern reinforces our confidence in ElemNet’s 
predictive precision and its utility in new materials discovery.

In Fig. 6, we further look into other element pair groups. In each element pair group, excluding the first 
one, we pick three pairs of elements with the minimum, median, and maximum relative deviations, which are 
shown in each row. The complete set of convex hulls for all eight element pair groups are provided in Figures 
1Ã¢â‚¬â€œ8. Similar to Fig. 5, the expected elemental fractions with the lowest formation energy are marked 
with green lines. First, in the first column of subfigures in Fig. 6, picked element pairs are expected to have stable 
compounds formed at the green vertical line, such as potassium selenide (K2Se), sodium arsenide (Na3Sb
), and aluminum fluoride (AlF3), etc. In convex hulls predicted by ElemNet, we can see that the formation 
energy reaches the lowest negative value at the green line, which is consistent with the expectation. Second, 
from examining the convex hulls, we find that there are a few examples with deviations between xe (green line) 
and xp, but they are correctly predicted as having negative formation energy at the green line. In predictions 
on most of the element combinations from the second column, including Na2Te, Rb3P , CaBr2, MgS, from 
the convex hulls, we can see the formation energy is predicted as negative at the green line. Similar effects are 
observed on predictions of Cs2O, BeI2, MgSe, and Be3P2 from the third column with large deviations between 
the green line and the composition predicted as having the lowest formation energy. These examples of correctly 

Fig. 4.  (a) The elemental fraction of element “A” with the lowest predicted formation energy in binary AxBy 
compounds, i.e., xp. (b) Deviation of xp from the expected value xe among binary AxBy compounds. In each 
binary AxBy composition, element “A” belongs to groups 1-3, and element “B” to groups 5-7.
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predicted stable compounds demonstrate that ElemNet could automatically learn the element interactions and 
valency without being directly exposed to such known domain knowledge since ElemNet is only trained on raw 
elemental fractions as input features without any periodic table information about periods, groups, oxidation 
states, etc.

Figure 6 also shows some examples of expected stable compounds on the green lines but incorrectly 
predicted by ElemNet. In combination of elements Boron B and Phosphorus P, compound BP is thermally and 
chemically stable with negative formation energy. Similarly, compound B2Se3 is generally considered stable 
under normal conditions. However, from the subfigures at the bottom right, we can see their formation energies 
are incorrectly predicted as positive at the green line. This misprediction, particularly for pairs involving group 
3 and group 5 elements, can be attributed to two key factors: the limited amount of training data available for 
these combinations and the outdated training dataset, which has only 54 binaries containing one element from 
Group 3 and one from Group 5. Besides, the training data includes configurations like BP3 and B3P  with 
positive formation energy, while more recent OQMD data shows that BP has a negative formation energy of 
−0.524eV/atom, which was not present in the training data that was used to build the ElemNet model being 
examined in this study28. These discrepancies highlight the need to update the training dataset to include more 
recent and relevant data, which could improve the predictability for such pairs. Furthermore, there are cases 
in which ElemNet was found to have learned unexpected patterns. In Potassium (K) and Nitrogen (N) pairs, 
KN4 is predicted as a potential stable compound in the convex hull. However, it is not recognized as a stable 
chemical compound in practice. Interestingly though, a somewhat close composition in the KN system, KN3 
(potassium azide) is a stable compound known to act as a nitrification inhibitor in soil35. Such analysis thus can 

Fig. 5.  Predicted convex hulls for the secondary binary dataset with the formula of AxBy. The convex hulls 
marked with red dots represent element pairs from the first element pair group, with element “A” from group 1 
and element “B” from group 7. Elemental fractions expected to have the lowest formation energy are marked 
with green lines.
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Fig. 6.  Representative convex hulls from each element pair group with the minimum (best case), median, and 
maximum (worst case) relative deviations. The pairs of elements are from groups 1-3 and groups 5-7. Convex 
hulls containing only elements from groups 1 and 7 in the first element pair group are excluded (complete set 
shown in Fig. 5).
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help understand where ElemNet’s predictions are more reliable or are underperforming and help identify the 
potential room for improvements.

Assessment of stability predictions on synthetic datasets
In this section, we evaluate the most stable and unstable compounds predicted by the ElemNet model on two 
secondary datasets: the binary dataset and the ternary dataset. For the binary AxBy system studies, we utilize the 
secondary dataset containing 19 possible elemental fractions for each possible pair of combinations among 86 
elements. Similarly, on ternary AxByCz system, there are C(86, 3) = 102, 340 distinct elemental combinations. 
Considering the large number of possible elemental fractions for each combination, some uncommon pairs are 
eliminated, and the secondary ternary dataset contains 1, 048, 575 samples30.

In the binary secondary dataset, the sample labeled with the lowest formation energy has F : Ho equals to 
0.75 : 0.25. As the compound with negative formation energy releases energy during its creation, this sample 
is considered the predicted most stable binary composition with the formation energy as −4.2735 eV/atom. 
Based on the ratio between the two elements, one potential compound is HoF3. The prediction of HoF3 as a 
stable compound by ElemNet is consistent with the known chemistry of lanthanides and their compounds36. 
Generally, Lanthanide trifluorides tend to be stable due to the trivalent nature of lanthanide ions, which form 
strong ionic bonds with fluoride ions37. Like many Lanthanide trifluorides, it is characterized by its low solubility 
in water and stability against heat and light. Holmium Fluoride, with formula HoF3, has a high melting point of 
1143 Ã‚Â°C and is soluble in strong mineral acids38,39.

In contrast, the sample predicted with the highest formation energy in the binary secondary dataset 
is composed of elements Carbon and Bromine. The ratio between them is 0.65  :  0.35, which is close to the 
composition of C2Br. The predicted formation energy of this composition is 3.1887, which is considered the 
most unstable among all binary pairs. This composition with two carbon atoms to one bromine atom is not 
a standard or recognized chemical formula and does not conform to common bonding patterns observed in 
chemistry. This atypical bonding arrangement results in unfavorable electronic configurations, which aligns with 
the predicted high formation energy.

Similarly, in the ternary secondary dataset, we first look into the compositions with the lowest predicted 
formation energy. The composition with elemental fractions of F : Ba : Lu = 0.727273 : 0.090909 : 0.181818 is 
predicted with the lowest formation energy −4.4150. This suggests that the possible compound BaLu2F8 could 
be remarkably stable. The strong ionic bonds formed between the barium (Ba) and lutetium (Lu) cations with 
the fluorine (F) anions contribute significantly to its stability. Furthermore, the charge balance within BaLu2F8 
with one Ba2+ ion and two Lu3+ ions balancing the charges of eight F− ions further support a stable crystal 
structure40. This is consistent with the known behavior of similar fluoride compounds, which are often stable due 
to their high lattice energies and favorable electrostatic interactions. Therefore, this observation suggests that the 
prediction by ElemNet on BaLu2F8 is in line with the chemical theory.

The composition with the highest predicted formation energy in the ternary secondary dataset contains 
elements with the ratio of Cr : Cs : W = 0.20 : 0.40 : 0.40, which is potentially the composition of CrCs2W2. 
The substantial electronegativity and atomic size disparities among chromium (Cr), cesium (Cs), and tungsten 
(W) likely engender considerable lattice strain and unstable electronic structures, impeding stable compound 
formation41. Given cesium’s propensity for ionic interactions with nonmetals and the complex electron 
configurations of Cr and W, a coherent bonding framework for CrCs2W2 appears improbable42. This example 
supports ElemNet’s prediction, highlighting its ability to identify unstable ternary compounds in the materials 
science domain.

Interpretations with transparency explanation methods
Based on the section on “Transparency Explanation Methods,” we approximate ElemNet with a decision tree. To 
focus on the binary compound analysis, we build up the decision tree on the labeled binary secondary dataset. 
Considering the 86 features used in ElemNet, the depth of the decision tree is limited to 100. Gini importance 
is calculated during the construction of the tree for each feature, which is ranked and shown in Fig. 7. From this 
figure, we can see that highly electronegative and reactive elements like Fluorine (F), Oxygen (O), and Chlorine 

Fig. 7.  Feature importance rankings on the decision tree, which approximates the behavior of ElemNet on 
binary secondary dataset.
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(Cl) are top-ranked. As we expect, their ability to form various stable and unstable compounds can significantly 
influence the overall energy dynamics of a compound. Furthermore, elements like Carbon (C), Nitrogen (N), 
and Phosphorus (P) have versatile bonding capabilities, allowing them to form multiple types of bonds. This 
versatility can drastically affect the structural and electronic properties of materials, thereby impacting their 
formation energies. Besides, elements such as Sulfur (S), Iodine (I), Selenium (Se), and Boron (B) influence 
electronic properties and are crucial in various applications like semiconductors and photovoltaics43,44. Their 
high rankings in feature importance of ElemNet confirms the known knowledge.

In Fig. 8, we examine another way to rank features based on their correlation with the ElemNet-predicted 
formation energy. First, we can see the recurrent appearance of elements like F (fluorine), O (oxygen), C (carbon), 
Cl (chlorine), and N (nitrogen), underscoring their significant influence on the formation energy of compounds. 
Second, halogens like F (Fluorine), Cl (Chlorine), and Br (Bromine), known for their high electronegativity, 
show negative correlations to the formation energy45. This observation is as what we expect, as these elements 
tend to form very stable compounds by gaining electrons to complete their outer electron shells, thus resulting 
in lower energy states. On the contrary, elements like C (Carbon) and N (Nitrogen) often form strong covalent 
bonds and can lead to complex molecular structures involving higher energy states46. The identification of these 
key elements not only sheds light on understanding ElemNet’s internal working mechanism but the reconfirming 
of known knowledge further ensures that the model’s predictions are grounded in actual chemical behavior.

Conclusion and future work
In this paper, we propose XElemNet, a framework that applies a suite of explainable AI (XAI) techniques for 
both post-hoc and transparency explanations to the ElemNet model, aimed at enhancing its interpretability. 
Through conducting convex hull analysis, stability predictions of compounds, and feature importance analysis, 
we found that most of ElemNet’s predictions align with theoretical expectations and empirical knowledge of 
material stability despite having all periodic table information withheld during the training phase. Our various 
analyses presented in this paper not only identify composition spaces where ElemNet could accurately model 
elemental interactions but also areas for further model refinement. Future work will focus on expanding the 
explainability of ElemNet to more complex systems, including ternary and quaternary compounds. Additionally, 
investigating other XAI methods, such as rule extraction and activation analysis, could yield deeper insights 
into the underlying mechanisms of ElemNet, contributing to the broader field of explainable AI in materials 
informatics. Furthermore, we plan to conduct in-depth investigations into the properties and potential 
applications of elements beyond the top-ranked ones identified in our current study, as these elements showed 
comparable levels of importance and may hold untapped potential for materials discovery. We also aim to 
employ XAI techniques to other deep learning models in materials science beyond ElemNet.

Data availability
The code and data used for XElemNet in this work are openly available at https://github.com/KWang1998/
XElemNet.
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