
Deep Reinforcement Learning Based Coexistence
Management in LPWAN

Md Ashikul Haque
Department of Computer Science

Wayne State University

USA

Abusayeed Saifullah
Department of Computer Science

Wayne State University

USA

Haibo Zhang
School of Computing

University of Otago

New Zealand

Abstract—This paper addresses the coexistence problem in

Low-Power Wide-Area Networks (LPWANs), focusing on LoRa,

a leading technology in this domain. Current LPWANs lack

effective mechanisms to handle coexistence, especially in urban

areas where numerous networks and devices may be operating

in the limited spectrum. Existing approaches, including colli-

sion resolution techniques and adaptations from other wireless

technologies like WiFi, are inadequate due to LPWANs’ unique

characteristics, such as long-range communication and severe

energy constraints. Existing learning based approach addresses

this issue through embedded Q-learning at low-power for LoRa

nodes, imposing computation and energy overhead for them and

limiting the network’s learning capability by using simple Q-

table learning at individual nodes. We propose a novel system

design leveraging the computational capabilities of LoRa Net-

work Servers (LNS) for coexistence management. By offloading

learning and computation tasks to LNS, the proposed framework

employs deep Q-learning, a powerful reinforcement learning tech-

nique, to adapt dynamically to complex coexistence scenarios. By

exploiting the LNS’s global view of the communication channels,

our framework enables more effective learning and decision-

making compared to decentralized approaches. Furthermore, our

system design seamlessly integrates with traditional LoRaWAN

infrastructure, imposing minimal overhead on low-power nodes.

We evaluate our approach through physical experiments and

large-scale simulations in NS-3, considering various coexistence

scenarios for a LoRa network. Our results show that, in com-

parison with the state-of-the-art decentralized learning method,

our scheme achieves up to 70.97%, 62.91%, and 47.01% of

improvement in packet reception rate, energy per packet, and

average transmission attempts per packet, respectively.

Index Terms—deep learning, reinforcement learning, coexis-

tence, experiment, simulation.

I. INTRODUCTION

The Low-Power Wide-Area Network (LPWAN) technology
is revolutionizing the Internet-of-Things (IoT) landscape by
enabling low-power (milliwatts) wireless communication over
long distances (kms). LPWANs are instrumental in enabling
various wide-area IoT applications, such as smart cities, smart
buildings, and smart metering, where numerous low-power
nodes directly transmit data to a cloud-connected gateway
[1, 2]. The escalating demand for IoT applications has led
to the emergence of numerous LPWAN technologies in recent
years, including LoRa (Long-Range), SigFox, IQRF, RPMA,
DASH7, Weightless-N/P, Telensa in the ISM band, EC-GSM-

IoT, NB-IoT in the licensed cellular band, and SNOW in the
TV band [3].

The rapid proliferation of LPWANs in limited spectrum
introduces coexistence challenges. With the number of con-
nected devices expected to exceed 50 billions within a year
[4], LPWANs are becoming ubiquitous, exacerbating coex-
istence issues, especially in urban areas. This results in de-
graded network performance, including reduced throughput,
increased latency, and higher energy consumption, with some
networks experiencing spectrum starvation. Research shows
that throughput drops to 25% when four LoRa networks
operate simultaneously [5], and studies report a 100% collision
rate among 1000 nodes when LoRa, SigFox, or IQRF coexist
[6, 7].

Current LPWANs are ill-equipped to address the impending
challenge of coexistence. The nodes typically feature minimal
computation power, low memory, and rely on limited energy
supplied by small batteries. Due to severe energy constraints of
the devices, LPWANs typically employ very simple and low-
overhead MAC (media access control) protocols. For instance,
LoRa’s MAC protocol, LoRaWAN, is based on pure ALOHA,
lacking collision avoidance mechanisms. Existing collision
resolution approaches rely on physical layer interventions,
necessitating changes to LoRa gateways, and can resolve
collisions of several packets [8, 9, 10, 11, 12]. Coexistence
handling strategies developed for WiFi, traditional short-range
wireless sensor networks (WSN), and Bluetooth [13, 14]
are inadequate for LPWANs. In environments with massive
crowds of coexisting networks, detecting interference patterns
can be challenging for LPWAN nodes, which may face an
unprecedented number of hidden nodes due to their long
communication ranges. Thus, conventional approaches such
as TDMA (time division multiple access) or CSMA (carrier
sense multiple access) are ineffective.

We explore and propose solutions to enable the coexistence
of LPWANs in this paper, with a specific focus on LoRa,
widely recognized as an LPWAN leader globally with over 600
use cases [15]. As LoRa operates in the unlicensed ISM band,
shared by various other LPWAN technologies, coexistence
management becomes imperative. Although some efforts, such
as [16], propose addressing this issue through embedded Q-
learning agents for LoRa, their approach introduces computa-

tion and energy overhead for LoRa nodes and limits the net-
work’s learning capability by using simple Q-table learning at
individual nodes. Furthermore, their reward function depends
on acknowledgments (ACK) from the gateway, introducing a
serious weakness for the Q-learning agent, as the ACK packet
can get lost. A centralized approach that entails the learning
agent at the gateway can address this weakness. Moreover,
their approach does not handle downlink (gateway to node)
coexistence, which is important because lost ACKs cause
retransmissions by the nodes, leading to depleted batteries.

We propose a learning framework for LoRa network co-
existence, leveraging the computational capabilities of the
LoRa Network Server (LNS). Given the dynamic and un-
known wireless environment due to numerous unidentified
networks, a learning-based approach is essential. However,
the computational and memory demands of machine learn-
ing algorithms pose challenges for LoRa nodes. To address
this, we offload learning and computation to the LNS. This
offloading raises issues regarding performance measurement,
parameter communication overhead, and time synchronization.
Our centralized learning approach tackles these by introducing
a MAC layer with novel techniques: piggybacking next trans-
mission information with the ACK, managing ACK reception
time slots at the node to minimize unnecessary Rx radio
usage, and implementing a soft time synchronization method
with minimal node overhead. The LNS, interacting with the
communication channel through all nodes, facilitates better
learning. We adopt deep Q-learning, a robust reinforcement
learning (RL) technique, for handling coexistence in LoRa
networks due to its ability to model complex scenarios. Our
framework uses successful packet decoding at the gateway
to assess the communication channel, enabling the RL agent
at the LNS to select actions with a higher probability of
successful transmissions.

While Q-learning-based approaches have been previously
employed in frame-based MAC protocols with time synchro-
nization to learn contention and collision within the same
network [17, 18], we extend Q-learning to address coexis-
tence with numerous unknown and uncoordinated LPWANs.
Although a decentralized Q-learning scheme using simple Q-
table has been proposed in [16], it limits the learning capability
because each node learns based solely on its local knowl-
edge rather than global knowledge. Our proposed learning
framework integrates seamlessly with traditional LoRaWAN,
requiring no modifications to the physical layer and impos-
ing minimal overhead on low-power nodes. Specifically, this
paper presents a deep-learning based co-existence handling
technique for a LoRa network with other networks for both
uplink and downlink by modeling coexistence management
as a Markov Decision Process and using deep Q-learning
in the LNS, requiring little to no energy overhead at the
LoRa nodes. We evaluate our approach through both physical
experiments and simulations in NS-3 [19], considering var-
ious coexistence scenarios for a LoRa network. Our results
demonstrate that, compared with the state-of-the-art decen-
tralized learning scheme, our scheme achieves up to 70.97%,

62.91%, and 47.01% improvements in packet reception rate,
energy per node, and average transmission attempts per packet,
respectively.

The rest of this paper is organized as follows: Section II
reviews the related works. Section III firstly gives an overview
of LoRa and then presents our system model. Section IV
presents the detailed design of our deep learning framework
and Section V outlines its implementation. In Section VI,
we present the solutions to handle the key design challenges.
Sections VII presents experimental and simulation results, and
the paper is concluded in Section VIII.

II. RELATED WORK

While coexistence handling has been studied for WiFi,
WSN, and Bluetooth [13, 14], it is inadequate for LPWANs
due to the latter’s unique characteristics such as long-range
communication and severe energy constraints. In environments
characterized by massive crowds of coexisting networks, the
interference pattern can be challenging to detect for LPWAN
nodes. Some studies have explored resolving collided packets
in LoRa through physical layer approaches [8, 9, 10, 11,
12, 20, 21, 22]. These approaches propose reactive solutions
requiring alterations to the LoRa gateway and/or additional
software-defined radio-based hardware. However, their effec-
tiveness has primarily been demonstrated for collisions involv-
ing several packets, limiting their generalizability to handle
the collisions from numerous unknown coexisting devices and
networks. In contrast, we propose a link-layer approach for
managing extensive coexistence, directly applicable to low-
power LoRa nodes. The work proposed in [23] examines
LoRa and WiFi coexistence in the 2.4GHz band but is not
suitable for coexistence with networks other than WiFi. In
an uncoordinated environment with collisions from various
unknown networks, such an approach becomes ineffective and
requires additional hardware.

Machine learning approaches have demonstrated notable
effectiveness across various wireless applications including
cognitive radios utilization [24], WSN routing [25], quality of
service provisioning [26], and resource management [27, 28,
29, 30]. In the context of LPWAN, the efficacy of Q-learning
has been investigated through simulation [31]. Additionally,
Q-learning has been incorporated into frame-based MAC
protocols featuring time synchronization. This implementation
allows Q-learning to adeptly learn contention and collision
patterns among nodes within the same network utilizing a
single channel [17, 18].

Very few recent works have addressed coexistence and
jamming mitigation in LPWAN [16, 32, 33]. The work in
[16] presents a Q-learning approach for LoRa nodes to coexist
with other ISM band users. However, they use a Q-table
with a simple reward function to find suitable transmission
time, channel, and spreading factor, which is not effective
for complex environments. Furthermore, it is implemented in
LoRa node depleting its energy for calculation related to Q-
table. The study in [32] presents jamming mitigation through
non-cooperative reinforcement learning and game theoretic

2

interaction between the jammer and the LPWAN network.
However, there is no such advisory in the coexistence scenario
making this approach unsuitable. In contrast, we propose
to use a deep Q-Network (DQN) approach with complex
reward function comprising transmission power, coding rate,
and packet reception status for uplink transmission (i.e., LoRa
node to gateway). This approach can handle complex coexis-
tence environment while enabling lower energy consumption.
Moreover, it is implemented centrally at the network manager
waiving the computation load from LoRa nodes. Furthermore,
we propose to use a deep Q-network for coexistence in
downlink communication (i.e., acknowledgment from gateway
to LoRa node), as reliable downlink communication can help
the node receive its acknowledgment promptly and alleviate
the need for unnecessary retransmissions. Our approach is
designed to assist LoRa nodes to handle coexistence with
numerous unknown and uncoordinated LPWANs with little
energy overhead.

III. BACKGROUND AND SYSTEM MODEL

Here, we describe the necessary background for LoRa in
Section III-A and the system model in Section III-B.

A. An Overview of LoRa

LoRa is a prominent commercially available LPWAN tech-
nology that enables long range (3-7 miles) [34], low power
communication for energy-constrained IoT devices. Its distin-
guishing feature lies in its ability to efficiently receive packets
even amidst low signal-to-noise ratios (SNR). This capability
is achieved through Chirp Spread Spectrum (CSS) modula-
tion, a technique that disperses the signal across the entire
bandwidth spectrum, thus fortifying it against interference and
enabling reception under challenging SNR conditions. The
modulated signal comprises symbols or chirps, characterized
by a continuous frequency variation over time. Each chirp
carries encoded information through multiple cyclic shifted
chips. The spreading factor (SF), a crucial parameter ranging
from 7 to 12, governs the number of chips per symbol, thereby
influencing the data transmission rate, airtime, and energy
consumption. Notably, higher SF translates to lower data rates
and increased energy consumption, while lower SF results in
higher data rates and reduced energy consumption.

LoRa’s adaptability extends to channel allocation, band-
width, and coding rate configurations. Operating within the
unlicensed ISM band (902-928MHz) in the United States,
LoRa defines 64 uplink channels with 125kHz bandwidth,
alongside an additional 8 uplink channels featuring 500kHz
bandwidth. Downlink operations (gateway to nodes) are fa-
cilitated through 8 channels, each possessing a bandwidth of
500kHz. Furthermore, LoRa offers various levels of forward
error correction (FEC), represented by coding rates ranging
from 4

5 to 4
8 , with higher coding rates ensuring enhanced

reliability at the expense of prolonged packet duration.
LoRaWAN (LoRa Wide Area Network) is the MAC pro-

tocol of LoRa, facilitating low-power, low data rate commu-
nication among numerous end-devices or nodes. These nodes

form a star topology by directly connecting to one or more
gateways, which serve as intermediaries for relaying data
to a central LoRa Network Server (LNS). The LNS is re-
sponsible for managing network parameters, ensuring security,
and addressing application requirements. On the other hand,
the application server interprets sensor data and application
information provided by the sensors.

B. System Model

We consider a landscape of dense deployment where a LoRa
network, so-called a primary network , coexists with many
other networks, so-called secondary networks, in the same
spectrum. The secondary networks can be based on LoRa
or any other technologies. We aim to optimize the resource
allocation for the primary network to mitigate the interference
from the secondary networks.

LoRa follows a star topology, with nodes transmitting their
packets directly to gateways. The nodes are low-powered
in terms of both computation and energy. Typically, these
nodes sleep until required to transmit packets to the gateway.
Node transmissions rely on acknowledgments (ACK) from the
gateway for confirmation. If the nodes do not receive any ACK
within the ACK period, they initiate packet retransmission with
a configurable limit on the number of retries. Additionally,
nodes intermittently assess their surroundings, autonomously
determining whether data transmission is warranted, thus
enforcing a minimum inter-arrival time between packets. It’s
worth noting that the primary flow of traffic within an LPWAN
is from nodes to the gateway (uplink direction), and nodes
have the ability to transmit across multiple channels as dictated
by the link-layer protocol. The gateway is line-powered and
Internet-connected. It supports concurrent reception of mul-
tiple packets on the same channel using different SFs, with
the maximum number of simultaneous receptions governed
by hardware specifications.

Nodes in the secondary networks face similar constraints
to those in the primary network, including energy limitations
and inability to sustain continuous transmission across all
channels. The multitude of secondary networks within the
spectrum significantly impacts the primary network’s perfor-
mance. While these secondary networks may employ different
communication technologies, they all operate within the same
spectrum. It’s crucial to differentiate between coexistence
and jamming; while jamming involves intentional interference
causing collisions, coexistence stems from the finite spectrum
leading to unintended collisions.

IV. LEVERAGING DEEP LEARNING TO HANDLE
COEXISTENCE

This section outlines the overview of our approach and
models both uplink and downlink coexistence as Markov
Decision Process (MDP).

A. Overview

In the LPWAN coexistence scenario, competing networks
are uncoordinated, meaning transmission success depends on

3

current environmental conditions. With numerous secondary
networks and diverse applications, the environment is largely
unknown to primary network nodes, making a learning-based
approach effective.

Unlike other wireless technologies, LoRa achieves orthogo-
nality with different Spreading Factors (SFs). Choosing best-
effort combinations of channel, SF, timing, and transmission
power can improve transmission success. However, the large
number of combinations makes learning challenging, espe-
cially with many secondary networks. Selecting higher SF and
Tx power can impact battery life. Deep reinforcement learning
(RL) can significantly improve the selection of suitable com-
munication parameters while minimizing the nodes’ energy
consumption.

Deep Q-learning, though effective, requires high computa-
tional power and energy, impractical for LoRa nodes. Offload-
ing computation to the LoRa Network Server (LNS) addresses
this but introduces challenges in measuring performance, com-
municating parameters, and synchronizing time. Our design
addresses the challenges associated with a centralized learning
approach.

We propose a centralized learning agent based on RL to en-
hance LoRa network performance amid numerous independent
networks. Centralized learning provides global environmental
knowledge, speeding up the learning process. The network
manager, aware of parameter assignments, can predict low-
collision parameters based on past transmission, aiding action
selection. Utilizing deep Q-learning, our agent learns best-
effort actions through trials, quantified by Q-values. Our goal
is to enhance communication quality and conserve LoRa node
energy by optimizing transmission timing, SF, and Tx power
for uplink, improving downlink quality to avoid retransmis-
sions, and reducing computation overhead.

The Centralized Q-learning agent at the LNS selects best-
effort communication paths (channel, SF, timing, Tx power)
based on observations and learning. The RL agent interacts
with the environment, receiving rewards or penalties based
on the successful reception of LoRa packets, encouraging
efficient Tx power and SF use. Through trial evaluations,
the agent trains the deep Q-network, significantly enhancing
performance in coexistence scenarios.

B. Deep Reinforcement Learning

We propose using reinforcement learning (RL) to find high-
performing uplink and downlink communication parameters
for LoRa networks in coexisting scenarios. RL is a machine
learning technique that enables an agent to learn from its
own experience and adapt to the environment. The agent
interacts with the environment by taking actions and receiving
rewards or penalties based on the outcomes. The agent aims
to maximize cumulative rewards by learning the best-effort
policy for mapping environmental states to actions.

Downlink communication (gateway to nodes) has been
overlooked for coexistence scenario in previous works. Even
though this is justified in a sense that the gateway is not
energy-constraint, it has energy impact on the LoRa node

when an ACK gets lost and the LoRa node retransmits the
already successfully transmitted packet. This energy overhead
for LoRa nodes can be avoided by introducing coexistence in
downlink communication.

We consider the LNS as our RL agent, which collects data
from all the gateways in the network and assigns communi-
cation parameters to the LoRa devices for uplink and to the
gateways for downlink. The LNS observes the state of the
network, including packet reception for each LoRa device.
Determining the quality of a downlink channel from gateway
side is simple as the gateway can observe the retransmissions
from the nodes. If a successfully transmitted packet gets re-
transmitted, it implies the ACK got lost. From this observation
it can determine the last downlink channel parameters and
transmission timing were being used by some other coexisting
network.

The LNS then takes an action, which involves changing
the communication parameters of LoRa devices, and receives
a reward or penalty based on the outcome. For uplink, the
reward is positive for successful packet reception but negative
for higher Tx power or higher SF. The LNS learns a Q-
function, which estimates the expected future reward for each
state-action pair, and follows an epsilon-greedy exploration
strategy to balance between exploiting the best-known actions
and exploring new actions. The LNS sends communication
parameters (transmission time, channel, SF, Tx power) to the
LoRa device via the downlink channel with the ACK.

In this scenario, a centralized agent, embodied by the
LNS, oversees the communication paths for both uplink and
downlink within the LoRa network. The MDP is characterized
by a 4-tuple (S,A, T,R), where S,A, T, and R are the set of
states, set of actions, state-transition function, and the set of
rewards, respectively.

1) State Set: The state of the network manager encom-
passes the parameters of the communication medium for the
entire network, considering characteristics such as channels
and SFs, as well as the aggregated state of the generated
packets across all nodes. In the LoRa network, we use si =<
ci, sf i, ti, txi > to represent the state for node or gateway i,
where ci → Cup (node) or ci → Cdown (gateway), sf i → SP ,
ti → T , txi → TXP and Cup, Cdown, SP , T , and TXP
represent the sets of uplink channels, downlink channels, SFs,
transmission timings, and Tx powers respectively. The state
of the uplink and downlink network can be represented by
Su = {s1, s2, . . . , sn} and Sd = {s1, s2, . . . , sg}, respectively,
n being the number of nodes and g being the number of
gateways in the network. As Tx power in ISM band is limited
(30 dBm in the USA) by the respective authority in each
country, the set of Tx powers is same for both uplink and
downlink.

2) Action Set: The LNS’s actions involve generating uplink
and downlink communication paths for all nodes and gateway,
respectively. Actions include selecting channels ci → Cup or
ci → Cdown, spreading factors sf i → SP and Tx power txi →
TXP for transmission, and selection of transmission timing
ti → T . The action for node or gateway i in the network is

4

defined as ai = {ci, sf i, ti, txi}. The set of actions for nodes
and gatewayas in the primary network is represented by Au =
{a1, a2, . . . , an} and Ad = {a1, a2, . . . , ag}, respectively, n
being the number of nodes and g being the number of gateways
in the network.

3) State Transition Function: The state transition function
Fu and Fd models the dynamics of the environment, defining
the next state for each state-action pair with a probability. In
this case, Fu : Su ↑ Au ↓↔ P(Su) and Fd : Sd ↑ Ad ↓↔
P(Sd), where P(Su) and P(Sd) are probability distribution
over the set of states in uplink and downlink, respectively. The
transition probability P[su→|su, au] and P[sd→|sd, ad] adheres
to the Markov Property, signifying that the next state depends
solely on the immediate preceding state and action.

4) Reward Function Formulation: Uplink communication
focuses on better packet delivery while being energy efficient
as much as possible. To achieve that we need to select the
combination of communication parameters (i.e., channel, SF,
Tx power, and transmission timing) incurring low energy
(lower SF and Tx power) and having higher probability of
successful packet transmission. Moreover, the coding rate used
for communication can impact energy consumption due to
variable packet size incurring extra computation at the nodes.
Thus, we need to give higher reward whenever the packet is
delivered successfully using lower SF and Tx power, and vice
versa.

For every action au taken in state su, the agent receives
an immediate reward or penalty ru. The reward function is
defined as follows:

ru(su, au) =

{
k1

(
1

p↑sf

)
+ k2 · cd packet received

↓k3 (p↑ sf)↓ k4 · cd packet not received

Here, k1, k2, k3, k4 are coefficients to normalize the values,
p is the Tx power, sf is the SF, and cd is the coding rate.
The reward function incorporates a penalty for higher Tx
power and SF even when the packet is received successfully.
This encourages to seek a communication path with lower
Tx power and SF, optimizing the trade-off between successful
transmission and resource utilization. The agent’s objective is
to find a policy ω↓

u maximizing its total reward.
Downlink communication does not focus on conserving

energy rather it tries to increase the probability of success-
ful packet transmission. Thus, the downlink communication
focuses on choosing communication parameters with higher
probability of successful packet delivery and gives reward
whenever a packet gets delivered irrespective of the Tx power
and SF used for it. Our proposed reward function is as below:

rd(sd, ad) =

{
1, ACK is successfully delivered
↓1, ACK is not successfully delivered

The objective is to find a policy ω↓
d maximizing its total reward.

5) Deep Q-Network Design: The uplink and downlink
RL modeled above can integrate Deep Q-Network (DQN),
involving a neural network architecture that enables the LNS
to learn and optimize communication parameters. The Deep

Q-Learning network is designed to map state-action pairs to
their corresponding Q-values.

The network design for Deep Q-Learning in the uplink
and downlink RL Module includes an input layer for uplink
and downlink, receiving node ID, channel, SF, coding rate,
Tx power, packet reception status, transmission timing, and
gateway ID, channel, SF, packet reception status, transmission
timing, respectively. There are four fully connected hidden
layers with Rectified Linear Unit (ReLU) activation functions,
although the number of hidden layers and neurons per layer
can be adjusted based on network complexity.

The output layer provides Q-values for each possible action:
next channel, next SF, next transmission timing, next Tx
power, next coding rate, and node ID (uplink), or next channel,
next SF, next transmission timing, and gateway ID (downlink).
Only Q-values for the current node (uplink) or gateway
(downlink) ID are used during training and decision-making,
ensuring optimization for the specific node or gateway.

6) Learning Algorithm: The LNS learns a Q-function to
estimate the expected future reward for each state-action pair.
The LNS can follow an epsilon-greedy exploration strategy
to balance between exploiting the best-known actions and
exploring new actions.

V. DESIGN OF THE Q-LEARNING SYSTEM

This section presents the integration of our proposed DQN
in the LoRa network. The proposed design integrates re-
inforcement learning (RL) modules into the existing LoRa
network architecture to optimize both uplink and downlink
communication parameters. The system consists of three mod-
ules at the LNS (Uplink RL Module, Downlink RL Module,

and Downlink RL Transmission Module) and one module at
the LoRa Nodes (Downlink RL Reception Module).

A. Uplink RL Module

The Uplink RL Module operates at the LNS, acting as the
RL agent overseeing all the LoRa nodes. This module is re-
sponsible for optimizing the uplink communication parameters
for individual nodes based on the information received from
the decoder and the current state of the network. This module
works as follows:

For each packet reception, this module collects information
from the LoRa decoder, including whether the packet was
successfully decoded or not, as well as the node ID and
communication parameters such as channel, SF, and Tx power.
Additionally, the current system time is obtained and the trans-
mission time is then calculated by estimating the approximate
packet air time, packet reception and decoding time.

This information is then fed into the DQN designed in
IV-B, which will output the next action (i.e., channel, SF,
transmission period, Tx power) for the node from which
the packet was received. If the parameters in the suggested
action is different from the ones the node is currently using,
the suggested action is then passed to the Downlink RL
Transmission Module for further processing.

5

B. Downlink RL Module

The Downlink RL Module operates at the LNS, acting as the
RL agent overseeing all the downlink communications of the
gateways. This module is responsible for optimizing downlink
communication parameters for all the gateways based on the
information received from the decoder and the current state of
the downlink network.

The module receives information from the downlink RL
transmission module along with all the details (i.e., channel,
SF, transmission time, success or failure, gateway ID). This
information is then fed into the DQN designed in IV-B, which
suggests the next action (i.e., channel, SF, transmission time,
gateway ID) for a specific gateway. The suggested action is
then passed to the Downlink RL Transmission Module.

C. Downlink RL Transmission Module

The Downlink RL Transmission Module is responsible for
the dissemination of the uplink communication parameters
received from the Uplink RL Module. It operates at the LNS
and aims to transmit the uplink communication parameters for
each node.

After receiving the uplink action parameters that includes
the uplink channel, SF, transmission timing, and node ID,
the module appends this information at the end of the ACK
packet. Note that the ACK packet is transmitted irrespective
of the success or failure of the LoRa uplink communication.
In the event of a failed uplink scenario, the ack bit is set
to 0, while it is set to 1 for a successful uplink packet
transmission by the node. The ACK packet is sent using
the downlink communication parameters obtained from the
downlink RL agent, which include the channel, SF, and non-
periodic transmission timing.

The module then waits for any retransmission from the
node. Note that the retransmission window is larger compared
to the usual LoRaWAN to accommodate all the processing at
LNS and to find a proper transmission time for downlink. If
there is a retransmission, two cases are considered:

1) If the ACK was for a correctly received packet, it is
considered a failed downlink communication (i.e., the
packet is received, but the ACK is lost). The module
informs the RL agent of the failure, providing commu-
nication parameters such as gateway ID, channel, SF,
and transmission time.

2) If the ACK was for an incorrectly received packet, two
sub-cases are considered: a) The packet is received at
the given transmission parameters in the ACK. This is
considered a successful downlink communication, and
the module informs the RL agent of the success along
with the communication parameters; b) The packet is
not received at the given transmission parameters in the
ACK. This is considered a failed downlink communica-
tion, and the module informs the RL agent of the failure
along with the communication parameters.

The Downlink RL Transmission Module plays a crucial role
in providing feedback to the RL agent for optimizing downlink
communication strategies.

D. Downlink RL Reception Module

The Downlink RL Reception Module is situated at the LoRa
node’s MAC layer and complements the existing LoRaWAN
protocol. This module reads the downlink ACK packet to
extract the transmission parameters and the ACK bit.

Based on the ACK bit, the module adjusts the transmission
parameters. If retransmission is needed (ACK bit is 1), the
packet is sent again with the updated parameters. This allows
the LoRa node to adapt to the RL agent’s suggested commu-
nication parameters, optimizing downlink communication.

The combination of the Uplink RL Module, Downlink RL
Transmission Module, and Downlink RL Reception Module
forms a closed-loop system that continuously adapts and opti-
mizes both uplink and downlink communication parameters
in a coexisting LoRa network. This integration allows for
efficient resource utilization and energy conservation in LoRa-
based IoT networks.

VI. HANDLING THE KEY DESIGN CHALLENGES

In this section, we discuss the challenges of our proposed
system. Centralized learning faces issues as communication
parameters are sent to nodes via ACK packets. While the LNS
can understand the overall network communication, it strug-
gles to relay this to nodes due to potential clock differences,
causing timing issues.

Managing downlink coexistence adds another layer of com-
plexity. The gateway may delay ACK packet transmission,
leading to scenarios where ACKs are sent after a delay. LoRa
devices typically listen for ACKs during two short receive
windows post-transmission. Since the Tx/Rx radio consumes
significant energy, nodes must use their radios efficiently and
cannot keep them on indefinitely.

A. Time Synchronization

Our learning framework requires time synchronization be-
tween the gateway and the LoRa nodes, but precise time syn-
chronization is not needed. For our scenario, we opt for weak
time synchronization, meaning the LoRa nodes only update
their clock after receiving their ACK packet. Furthermore, we
propose to estimate the LoRa device’s time deviation from the
LNS’s perspective. To achieve this, we estimate the airtime of
the LoRa packet, which can be calculated using SF (Spread-
ing Factor), bandwidth, and packet size (parameters already
known). Estimating the airtime alone is sufficient because the
propagation time is usually less than 100 µs (corresponding
to approximately 30 km) for most LoRa applications.

Note that the transmission timing sent through the ACK
already accounts for the ACK packet airtime (tack), meaning
the LNS has already subtracted the ACK airtime from the
transmission timing. This ensures that the node does not need
to perform any computation; it can simply run the transmission
timer according to its clock and transmit its packet when the
timer reaches zero.

Suppose our calculated airtime is ta and the time sent
through ACK is td. Therefore, the estimated time at the LNS
should be test = tack + td + ta. Now, if the time at the LNS is

6

16 ft

14.5 ft

Gateway

Primary Node
Non-LoRa

Node
Secondary

Node

Fig. 1: Experimental setup.

tcur and the difference between tcur and test is zero, the clocks
of the LNS and the node are synchronized. However, if there
is an offset toff between tcur and test, this offset should be
accounted for in future ACKs.

We propose using a simple regression model on the calcu-
lated time offset for each primary LoRa node at the LNS to
account for clock drift in the nodes. This model is trained for
each uplink packet, improving its estimation as the network
continues to operate. While this method does not achieve
perfect time synchronization, it gets very close to it. This
approach offloads all responsibility to the LNS and ensures
there is almost no overhead for the LoRa nodes.

B. ACK Reception at the Node

Managing downlink coexistence means that the gateway will
not transmit the ACK packet immediately, which presents a
new challenge. With downlink coexistence management, there
can be scenarios where the ACK is transmitted after a delay
following the output from the DQN. Since the time between
the LoRa node and LNS is closely synchronized, we can
leverage this synchronization to convey additional information
about downlink ACK timing. When the LNS receives uplink
communication parameters from the uplink DQN for the node,
it adds them to the ACK along with estimated downlink
communication parameters received from the downlink DQN.

LoRa devices usually collect sensor data and send the data
periodically. Suppose the LoRa node produces a packet every
tprd time period (not transmission). Thus, the uplink communi-
cation transmission timing td should satisfy tprd < td < 2tprd,
meaning the uplink DQN needs to provide uplink transmission
for the node after the packet is ready to transmit and before
the next packet is ready to transmit. Therefore, the estimated
downlink transmission timing tdown chosen by the LNS should
satisfy td + ta < tdown < 2tprd.

To address this challenge, the estimated downlink transmis-
sion timing tdown and other communication parameters are also
included with the ACK. The node uses these communication
parameters and timing to listen for the ACK of its next uplink
transmission. Since the node and LNS are not perfectly time
synchronized, the LNS transmits the ACK multiple times
(before and after the downlink transmission timing). This
approach ensures that, even if the node turns on the Rx radio
a bit early or later, it can receive the ACK.

(a) PRR (b) EPN

(c) ATP

Fig. 2: Experimental results by varying exploration duration.

VII. EVALUATION

In this section, we evaluate the performance of our proposed
system through both small-scale indoor experiments and large-
scale simulations.

Setup: We implemented the deep Q-learning agent using
Pytorch [35] following our approach. The number of neurons
in the four hidden layers was set to 512, 256, 128, and 64,
respectively. We used ε = 0.1 and learning rate ϑ = 0.5.

For simulations, we used the LoRaWAN NS3 module
from [36] as the environment and connected it to our learning
agent via NS3-AI [37]. We varied the number of primary and
coexisting nodes, with up to 500 coexisting and 400 primary
nodes, randomly placed within a 6 km radius disc. Perfor-
mance comparisons of the Q-learning agent were made after
the random exploration interval. Each exploration or training
duration was followed by a five-hour network evaluation. All
nodes and the gateway utilized 8 channels in the US 915MHz
band, with coexisting nodes employing 8 retransmissions per
packet to create severe coexistence. All simulations involved
a single gateway.

For experiments, we used three USRP B200s [38] as one
LoRa gateway and two non-LoRa coexisting nodes through
GNU radio [39]. We employed six Dragino LoRa shields [40]
with Arduino Uno R3 [41], where three were used as primary
nodes and the other three as coexisting LoRa nodes. We
use non-LoRa coexisting nodes to create more challenging
scenario for the LNS, because all SFs gets interfered by the
transmission of non-LoRa coexisting nodes. An M1 Macbook
pro was used as the LNS. All the nodes and the gateway can
only use one channel in the US 915MHz band to emulate
severe density of traffic by large number of nodes. The
nodes can use Tx power from 0-20 dBm and SF from 7-
10. All the nodes transmit 100 packets per hour with up to
eight retransmission per packet. The node deployment in our
experiments is illustrated in Figure 1.

Metrics: we employ three metrics, namely packet reception
rate (PRR), average energy per node (EPN), and average
transmission attempts per packet (ATP).

7

(a) PRR (b) EPN

(c) ATP

Fig. 3: Results under varying number of primary nodes.

Baseline: We compare our scheme (marked as ‘LNS RL’)
with the state-of-the-art work that handles coexistence in
LoRa [16] (marked as ‘Per Node RL’). This work [16]
evaluated their approach compared to LoRaWAN and Lo-
RaWAN performed poorly. Therefore, we are not comparing
our approach to LoRaWAN in this paper.

A. Experimental Results

We perform a small-scale experiment using an indoor setup
to evaluate our approach. We vary the exploration duration
from 5 to 15 minutes for our experiment. Exploration duration
refers to the lower epsilon value (0.1) which means there is a
90% probability of randomly selecting an action instead of
using trained model to select the action. After exploration
duration we evaluate our network for one hour. As depicted in
Figure 2, our approach outperforms the ‘Per Node RL’ scheme
by a large margin on PRR, EPN, and ATP. It is evident that
our approach can explore and learn about the communication
environment more quickly than Per Node RL. It occurs due
to our centralized learning approach along with the use of
DQN. Significant improvement in EPN is contributed by no
computation overhead for LoRa nodes and low number of
retransmissions due to downlink coexistence management.

B. Simulation Results

1) Performance Under Varying Number of Primary Nodes:

In this simulation, we evaluate our approach by varying the
number of primary nodes from 100 to 400. For each run,
the number of coexisting nodes was equal to the number of
primary nodes. Under this setup, we present the results in
Figure 3. It can be seen that LNS RL achieves an improve-
ment of 37.5% in terms of PRR. Additionally, Figure 3(b)
demonstrates an improvement of around 33.72% on EPN when
using LNS RL. Figure 3(c) shows that LNS RL achieves an
improvement of around 10% in terms of ATP. The performance
improvements in all three evaluation metrics increase slightly
with the number of primary nodes, demonstrating the superior
scalability of our approach.

(a) PRR (b) EPN

(c) ATP

Fig. 4: Results under varying number of dynamic nodes.

(a) PRR (b) EPN

(c) ATP

Fig. 5: Results under varying number of coexisting nodes.

2) Performance Under Varying Number of Coexisting

Nodes: In this simulation, we utilized 100 primary nodes and
varied the number of coexisting nodes from 100 to 500. As
depicted in Figure 5(a), LNS RL achieves an improvement of
16.92% in PRR compared to Per Node RL when the number
of coexisting nodes is 500. Figure 5(b) demonstrates around
a 35.33% improvement in EPN with LNS RL maintaining an
EPN of 43.52 J compared to 67.3 J in Per Node RL when the
number of coexisting nodes is 500. Moreover, in Figure 5(c),
LNS RL achieves a 12% improvement in ATP, maintaining
a value of 4.11 compared to 4.67 in Per Node RL when the
number of coexisting nodes is 500. These findings highlight
the superior coexistence management capabilities of LNS RL,
particularly under complex conditions, thanks to its utilization
of deep learning for accurate scenario representation.

3) Performance under Dynamic Coexistence Traffic: In this
simulation, we evaluated our approach under dynamic system
conditions with a fixed number of 100 primary and coexisting
nodes. We varied the number of dynamic coexisting nodes
from 20 to 100. As depicted in Figure 4(a), LNS RL achieves
a 2.06% improvement in PRR compared to Per Node RL
when the number of dynamic coexisting nodes is 100. Figure
4(b) demonstrates around a 30% improvement in EPN with

8

(a) PRR (b) EPN

(c) ATP

Fig. 6: Results under varying exploration duration.

LNS RL maintaining an EPN of 10.85 J compared to 15.5
J in Per Node RL when the number of dynamic coexisting
nodes is 100. Moreover, in Figure 4(c), LNS RL achieves
an 18% improvement in ATP, maintaining a value of 3.53
compared to 4.31 in Per Node RL with 100 dynamic coexisting
nodes. These results highlight the robustness and adaptability
of our technique under dynamic scenarios, ensuring effective
performance without overfitting.

4) Performance under Varying Exploration Duration: In
this simulation, we evaluated our approach under varying
exploration durations with a fixed number of 100 primary and
coexisting nodes. As shown in Figure 6(a), LNS RL achieves
a significant improvement of 70.97% in PRR compared to
Per Node RL when the exploration duration is 5 hours. Figure
6(b) demonstrates a notable 55.82% improvement in EPN with
LNS RL maintaining an EPN of 73.42 J compared to 166.19 J
in Per Node RL with a 5-hour exploration duration. Moreover,
in Figure 6(c), LNS RL achieves a 16% improvement in ATP,
maintaining a value of 6.14 compared to 7.31 in Per Node RL
with a 5-hour exploration duration. These findings highlight
our approach’s capability to quickly model complex commu-
nication paths, with LNS RL showing superior performance
under shorter exploration duration.

5) Performance under Varying Coexistence Node Traffic:

In this simulation, we evaluated our approach under varying
node traffic by adjusting the total number of generated packets
per second across primary and coexisting nodes. We fixed the
number of primary nodes at 10 and coexisting nodes at 50,
with specified random packet inter-arrival times. As shown in
Figure 7(a), LNS RL achieves a 10.13% improvement in PRR
compared to Per Node RL when the generated packet rate is
18 packets per second.

Figure 7(b) demonstrates a 28.31% improvement in EPN
with LNS RL maintaining an EPN of 10.78 J compared to
15.04 J in Per Node RL at a packet rate of 18 packets per
second. Moreover, in Figure 7(c), LNS RL achieves a 14%
improvement in ATP, maintaining a value of 2.59 compared
to 3.01 in Per Node RL at a packet rate of 18 packets
per second. These results underscore the robustness of our
approach in handling higher traffic scenarios and effectively

(a) PRR (b) EPN

(c) ATP

Fig. 7: Results under varying coexistence node traffic.

capturing complex communication dynamics.

C. Discussion

From the above experimental and simulation results on
varying scenarios, it is evident that our technique does not
impose any energy overhead; rather, it saves energy compared
to the state-of-the-art approach [16]. This is attributed to: 1)
modifications in the LoRa MAC layer to facilitate necessary
communication with minimal reception at the LoRa node, 2)
utilization of weak time synchronization, 3) usage of deep
learning at the LNS to predict other networks’ transmissions,
and 4) improving downlink transmission to help avoid unnec-
essary uplink transmissions due to lost ACKs.

VIII. CONCLUSION

In this paper, we have addressed the challenge of coexis-
tence in LPWANs, focusing on developing a deep RL approach
that can adapt dynamically to complex coexistence scenarios to
improve communication quality for both uplink and downlink
while saving energy at the LoRa node. Our RL framework
leverages the computational capabilities of LoRa Network
Servers (LNS) and its global view of the communication
channels to effectively deal with coexistence. By offloading
the learning and computation tasks to LNS, it seamlessly inte-
grates with the traditional LoRaWAN infrastructure, imposing
minimal overhead on low-power nodes. We have evaluated our
approach through both physical experiments and large-scale
simulations in NS-3, considering various coexistence scenarios
for a LoRa network. Our results demonstrate that, compared
with the state-of-the-art decentralized learning scheme, our
scheme achieves up to 70.97%, 62.91%, and 47.01% of
improvement in packet reception rate, energy per node, and
average transmission attempts per packet, respectively. In the
future, we will extend our learning framework for coexistence
handling to other LPWANs beyond LoRa.

ACKNOWLEDGEMENT
The work was supported by the US National Science Foun-

dation through grants CNS-2301757, CAREER- 2306486,
CNS-2306745, and by the US Office of Naval Research
through grant N00014-23-1-2151.

9

REFERENCES

[1] S. Fahmida and et al., “Long-lived lora: Prolonging the
lifetime of a lora network,” in 2020 ICNP. IEEE, 2020,
pp. 1–12.

[2] ——, “Real-time communication over lora networks,” in
2022 IoTDI. IEEE, 2022, pp. 14–27.

[3] A. Saifullah and et al., “Low-power wide-area networks
over white spaces,” ToN, vol. 26, no. 4, pp. 1893–1906,
2018.

[4] K. Mekkia and et al., “A comparative study of lpwan
technologies for large-scale iot deployment,” in ICT

Express, 2018.
[5] T. Voigt and et al., “Mitigating inter-network interference

in lora networks,” ser. EWSN ’17, 2017, pp. 323–328.
[6] L. Krupka and et al., “The issue of lpwan technology

coexistence in IoT environment,” in ME, 2016, pp. 1–8.
[7] O. Georgiou and et al., “Low power wide area network

analysis: Can lora scale?” WCL, 2017.
[8] Z. Xu, P. Xie, and J. Wang, “Pyramid: Real-time lora

collision decoding with peak tracking,” in INFOCOM’21.
[9] X. Xia and et al., “Ftrack: Parallel decoding for lora

transmissions,” IEEE/ACM Transactions on Networking,
2020.

[10] M. O. Shahid and et al., “Concurrent interference can-
cellation: Decoding multi-packet collisions in lora,” in
Proceedings of the 2021 ACM SIGCOMM 2021 Confer-

ence.
[11] X. Wang and et al., “mlora: A multi-packet reception pro-

tocol in lora networks,” in 2019 IEEE 27th International

Conference on Network Protocols (ICNP).
[12] S. Tong and et al., “Colora: Enabling multi-packet recep-

tion in lora,” in INFOCOM’20, 2020.
[13] D. Yang and et al., “Coexistence of ieee802.15.4 based

networks: A survey,” in IECON, 2010.
[14] ——, “Wireless coexistence between ieee 802.11- and

ieee 802.15.4-based networks: A survey,” IJDSN, vol. 7,
no. 1, p. 912152, 2011.

[15] https://www.i-scoop.eu/internet-of-things-guide/iot-
network-lora-lorawan/.

[16] S. Fahmida and et al., “Handling coexistence of lora
with other networks through embedded reinforcement
learning,” in IoTDI, 2023, p. 410–423.

[17] Z. Liu and I. Elhanany, “RL-MAC: A QoS-aware re-
inforcement learning based MAC protocol for wireless
sensor networks,” in ICNSC, 2006, pp. 768–773.

[18] X. Huang and et al., “A reinforcement learning based
medium access control method for lora networks,” in
ICNSC, 2020.

[19] “Ns-3,” https://www.nsnam.org/.
[20] X. Xia, Y. Zheng, and T. Gu, “Ftrack: Parallel decoding

for lora transmissions,” in SenSys, 2019, pp. 192–204.
[21] A. Dongare and et al., “Charm: exploiting geographical

diversity through coherent combining in low-power wide-
area networks,” in IPSN.

[22] A. Gadre and et al., “Frequency configuration for low-

power wide-area networks in a heartbeat.” in NSDI, 2020,
pp. 339–352.

[23] G. Chen and et al., “Lofi: Enabling 2.4 ghz lora and
wifi coexistence by detecting extremely weak signals,”
in INFOCOM 2021.

[24] K. L. A. Yau and et al., “Enhancing network performance
in distributed cognitive radio networks using single-agent
and multi-agent reinforcement learning,” in LCN, 2010,
pp. 152–159.

[25] R. Arroyo-Valles and et al., “Q-probabilistic routing in
wireless sensor networks,” in 2007 ISSNIP, 2007, pp. 1–
6.

[26] F. R. Yu and et al., “A new qos provisioning method for
adaptive multimedia in wireless networks,” TVT, vol. 57,
no. 3, pp. 1899–1909, 2008.

[27] Z. Lu and et al., “Dynamic channel access and power
control in wireless interference networks via multi-agent
deep reinforcement learning,” TVT.

[28] K.-L. A. Yau and et al., “Review: Reinforcement learning
for context awareness and intelligence in wireless net-
works: Review, new features and open issues,” J. Netw.

Comput. Appl., vol. 35, no. 1, pp. 253–267, Jan. 2012.
[29] H. Zhang and et al., “Reinforcement learning-based inter-

ference control for ultra-dense small cells,” in GLOBE-

COM’18.
[30] F. Meyer and V. Turau, “Qma: A resource-efficient, q-

learning-based multiple access scheme for the iiot,” in
2021 ICDCS.

[31] Y. Yu and et al., “Multi-agent q-learning algorithm for
dynamic power and rate allocation in lora networks,” in
2020 PIMRC.

[32] M. A. Haque and et al., “A game-theoretic approach for
mitigating jamming attacks in lpwan,” EWSN, 2023.

[33] M. A. Haque and A. Saifullah, “Handling jamming in
lora,” IoTDI, 2024.

[34] L. alliance, “LoRaWAN specification,” https://lora-
alliance.org/resource-hub/lorawanr-specification-v11,
2017.

[35] A. Paszke and et al., “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS.

[36] D. Magrin and et al., “Performance evaluation of lora
networks in a smart city scenario,” in ICC (2017).

[37] H. Yin and et al., “Ns3-ai: Fostering artificial
intelligence algorithms for networking research,” in
Proceedings of the 2020 Workshop on Ns-3, ser.
WNS3 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 57–64. [Online].
Available: https://doi.org/10.1145/3389400.3389404

[38] “Ettus research,” https://www.ettus.com/product/.
[39] “GNU Radio,” http://gnuradio.org.
[40] “Dragino gps/lora shield,”

https://www.dragino.com/products/lora/item/102-lora-
shield.html.

[41] “Arduino uno rev3,” https://store-
usa.arduino.cc/products/arduino-uno-rev3.

10

