Jamming-Resilient Channel Hopping for WirelessHART
Networks

Elisabeth K. A. Permatasari
Iowa State University, USA

ABSTRACT

Time Synchronized Channel Hopping (TSCH) is a key feature in
existing industrial Internet of Things wireless standards such as
WirelessHART to achieve reliable and real-time communication.
However, the current TSCH strategy adopted in WirelessHART
can produce strong repetitive channel usage, making it vulnerable
to channel cracking and jamming attacks. Developing a jamming-
resilient channel hopping strategy for WirelessHART networks
poses significant challenges due to the need to ensure fast chan-
nel switching (within 0.192 ms), channel synchronization between
senders and receivers, and interference-free concurrent transmis-
sions. In this paper, we present a jamming-resilient channel hop-
ping mechanism for WirelessHART that meets these requirements.
Our approach leverages multi-level randomness to reduce repet-
itive channel hopping patterns, thereby enhancing resistance to
jamming attacks. We have implemented our approach in Contiki-
NG and evaluated it through both testbed experiments and sim-
ulations in Cooja. Our results demonstrate that this new channel
hopping strategy markedly reduces the effectiveness of a jammer’s
ability to predict channel patterns, without increasing the chan-
nel hopping overhead compared to the current WirelessHART ap-
proach.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Sen-
sor networks; » Networks — Network reliability.

KEYWORDS

Industrial Internet of Things, WirelessHART, channel hopping, jam-
ming resilience

ACM Reference Format:

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang. 2025.
Jamming-Resilient Channel Hopping for WirelessHART Networks. In 26th
International Conference on Distributed Computing and Networking (ICDCN
2025), January 04-07, 2025, Hyderabad, India. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3700838.3700852

1 INTRODUCTION

As a driving force behind Industry 4.0, the Industrial Internet of
Things (IIoT) has gained significant popularity in manufacturing
and process control applications in recent years. Ensuring reliable
and real-time communication between sensors and actuators is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICDCN 2025, January 04-07, 2025, Hyderabad, India

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1062-9/25/01

https://doi.org/10.1145/3700838.3700852

Abusayeed Saifullah
Wayne State University, USA

Haibo Zhang
University of Otago, NZ

crucial for the proper functioning of these applications. Several
wireless sensor-actuator network (WSAN) standards, such as Wire-
lessHART [1], ISA100 [2], and WIA-PA [35], have been specifically
developed for industrial control applications to provide reliable
and real-time communication over unreliable wireless links in in-
dustrial environments. Among these standards, WirelessHART [1]
is the predominant and widely adopted standard for process man-
agement worldwide [27]. To meet real-time and reliability require-
ments in highly unreliable industrial environment, WirelessHART
leverages multi-channel Time-Division-Multiple-Access (TDMA),
route diversity, channel blacklisting, and channel hopping [9].

Channel hopping is an important feature in WirelessHART for
ensuring reliable communication and mitigating jamming attacks.
Currently, WirelessHART implements time-synchronized channel
hopping (TSCH) by letting each transmitter and receiver derive the
channel for communication using a modular function based on a
predefined channel sequence. However, the length of the prede-
fined channel sequence is limited by the total number of active
channels, which causes the modular function to produce a strong
repetitive channel usage. As a result, a jammer may derive the
channel usage pattern through a small effort by listening to the ac-
tive links without knowing the original sequence. The adoption of
harmonic superframe (a communication pattern that repeats after
a certain interval) lengths further makes such a channel cracking
easier. A recent study has shown that cracking channel hopping
sequences can be performed easily by observing the channel us-
age alone [10]. Once the pattern of channel usage is figured out, a
selective jamming attack can be launched easily [12], posing sig-
nificant threats to industrial process control applications. Existing
channel hopping strategies in other wireless domains primarily fo-
cus on un-slotted networks [4, 7, 13, 16, 20, 21, 23, 32] and cognitive
radio networks [5, 6, 8, 22, 31]. In addition, several anti-jamming
solutions addressing selective jamming attack for TSCH-based and
WirelessHART networks have been explored in [19, 28-30, 36].
These strategies, however, are not specifically designed to meet
the high reliability and real-time requirements of WirelessHART
networks.

Designing a jamming-resilient channel hopping strategy for Wire-
lessHART networks is indeed challenging as it must guarantee
fast channel switching (within 0.192 ms as mandated by the Wire-
lessHART standard [1]), channel synchronization between sender-
receiver pairs, and interference-free concurrent transmissions in
the network. In this paper, we propose a jamming-resilient channel
hopping mechanism for WirelessHART networks that can meet
these requirements and be applied to other TSCH based networks
such as ISA100. The key idea of our approach is to exploit ran-
domness at multiple levels to reduce the strong periodic pattern in
channel hopping sequence, making it hard for a jammer to predict
and crack the channel usage. Such a high degree of randomness
together with the modular function can easily puzzle a jammer,

https://doi.org/10.1145/3700838.3700852
https://doi.org/10.1145/3700838.3700852

ICDCN 2025, January 04-07, 2025, Hyderabad, India

making it quite difficult to crack the channel hopping sequence
within a feasible amount of time or effort. Specifically, our ap-
proach uses two channel sequences, where each sender-receiver
pair uses an alternation sequence to dynamically determine the
channel sequence to be used for their communication. Another
level of randomness is introduced by using a pointer sequence to
choose a random starting index for the active channel sequence.

While theory-based design will give more fundamental under-
standing, our design principle is to seamlessly integrate with the
hopping mechanism in WirelessHART to maintain compatibility
with existing systems while enhancing security. Compared to ex-
isting complex algorithms, our method is very simple yet effec-
tive, capable of online execution with very low memory require-
ment, making it well-suited for WirelessHART devices which are
resource-constrained. We have implemented the proposed jamming-
resilient channel hopping approach in Contiki-NG [25]. Testbed ex-
periments have been conducted in an indoor deployment with 16
TelosB devices [3], and we also evaluate our scheme in large-scale
networks through simulations in Cooja [26]. Both the experimen-
tal and simulation results show that our proposed approach can
significantly lower a jammer’s capability in making correct chan-
nel prediction.

The remainder of this paper is structured as follows. In Section
3, we review the related work. Section 2 describes the background
and system model. Section 4 presents the proposed channel hop-
ping technique. Sections 5 presents the experimental and simula-
tion results. Finally, Section 6 concludes the paper.

2 BACKGROUND AND SYSTEM MODEL

WirelessHART adopts TDMA as its medium access control (MAC)
protocol to ensure collision-free and deterministic communications.
Time is slotted and synchronized. Each transmission and its asso-
ciated acknowledgement (ACK) need one time slot. A communi-
cation pattern that repeats over time in the network is defined as
superframe. Because of the use of TDMA, the knowledge of global
clock becomes vital for each node to determine the start and the
end of its communication time slot. Therefore, each node in the
network maintains the absolute slot number (ASN), which is de-
fined as the total number of time slots elapsed since the start of
the network.

WirelessHART devices are built upon the IEEE 802.15.4 phys-
ical layer which provides channel diversity. Originally, there are
16 different channels available to support communications. Some
of these channels may be blacklisted due to excessive noise. To
improve communication reliability and mitigate jamming, Wire-
lessHART adopts TSCH, in which each pair of communicating de-
vices uses one channel in the current slot and hops to a different
channel in the next slot. As stated in the standard, only one pair
of devices communicates on a particular channel in a time slot due
to the need to ensure interference-free concurrent transmissions
[1]. Moreover, channel hopping in WirelessHART needs to be ex-
tremely lightweight as the standard mandates a maximum channel
switching time of 0.192 ms [1].

TSCH in WirelessHART uses a random channel sequence shared
among all nodes prior to network operation. Each communication
link can be represented as a tuple {slot_index, channel_of fset},

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang

where slot_index is the slot index in a superframe in which the link
is schedule for transmission and channel_of fset is the allocated
logical channel. To derive the hopping sequence, each node must

keep track of the list of active channels (A). For a given channel_of f'set,

the index for the corresponding physical channel in A (ch_id) is
computed using the following modular function:

ch_id = (channel_of fset + ASN) mod s_length (1)

where s_length denotes the number of active channels. Once the
node knows its channel index, the physical channel to be used for
communication can be looked up from A as follows:

ch = Alch_id]. (2)

A
ch_id ch
0 15)
1 25
2 26 ——
channel_offset =0
3 20 N 2

(a) (b)

Figure 1: The table in (a) represents channel mapping A with
4-active channels. The left and right columns of the table
are the channel index and the physical channel, respectively.
(b) Simple network topology consisting 2 sensors, namely n;
and ny and 1 link connecting n; and ny with channel_of fset =

Currently, TSCH uses a one-level random hopping sequence de-
fined as a list of channels in which the order of channels does not
follow any particular pattern. For example, a one-level random
hopping sequence for 4-active channels can be written as 15, 25,
26, 20. The sequence is set up prior to the network execution; and
every node in the network must know this sequence and store the
information in a mapping table as illustrated in Fig. 1a. During net-
work execution, each node will receive the following information:
ASN, channel offset, and transmission schedule. Based on this in-
formation and channel mapping, a pair of communicating node
computes their transmission channel using Egs. (1) and (2). Sup-
pose there are 2 active nodes in the network n; and nz and the
link connecting nq and ny is assigned with a channel_of fset = 0
as shown in Fig. 1b. Without loss of generality, assume that the
two nodes are scheduled for transmission every time slot. Based on
the channel mapping, each node knows that the channel sequence
length is 4. To derive the transmission channel when ASN = 1,
each node first computes the channel index using Eq. (1).

ch_id=(1+0)mod4=1 (3)

After the two nodes know the channel index, the physical chan-
nel is obtained by looking up the channel mapping table. For exam-
ple, the physical communication channel derived from Eq. (3) is 25.
For each successive packet transmission, the nodes hop to a new

Jamming-Resilient Channel Hopping for WirelessHART Networks

channel by using the same computation. The channel hopping se-
quence computed based on the current method in WirelessHART
is shown in Fig. 2.

ch 25 (26120 (1525|2620 |15]|25({26[20]15

ch_id 1 2 (3101 (2]13]J0]12]3(0

ASN 1 2 (314|567 |8]9([10]11]f12

Figure 2: one-level of randomness hopping sequence

The use of function-based channel hopping incurs less overhead
since each node can easily calculate its communication channel
from the ASN and channel offset information only. However, since
the predefined sequence length is limited by the number of active
channels, the modular function produces a strong repetitive chan-
nel usage, as shown in Fig. 2. The main objective of our work is to
develop a new hopping strategy in which its predefined channel
sequence is difficult to be figured out by a jammer.

3 RELATED WORK

Channel hopping techniques have been extensively studied to en-
hance communication reliability in various wireless networks [34].
Based on the channel hopping sequence across nodes, there are
two types: symmetric sequences where every node uses the same se-
quence, and asymmetric sequences where channel sequences may
vary among nodes. In terms of the requirement on time synchro-
nization, existing channel hopping mechanisms can be further di-
vided into two classes: asynchronous or un-slotted channel hopping
(USCH), and time-synchronized channel hopping (TSCH).

Existing channel hopping strategies proposed for cognitive ra-
dio networks (CRNs) primarily focus on using asymmetric sequence
for both USCH and TSCH [5, 6, 8, 22, 31]. However, these strate-
gies are not suitable for WirelessHART networks due to the dy-
namic nature of communication channels in CRNs. Since asym-
metric channel hopping techniques require additional procedures
for channel selection, additional overhead is introduced to the net-
work making them not suitable for WirelessHART networks that
have stringent real-time and reliability requirements.

USCH is commonly implemented in contention-based MAC such
as CSMA/CA. Several channel hopping schemes have been designed
for IEEE 802.11 based networks [4, 13, 21, 24, 33]. However, these
schemes are not applicable to be used to WirelessHART networks
since the reliability requirement cannot be guaranteed. Besides,
these approaches introduce additional overhead for exchanging
the channel sequences, making them less suitable for WirelessHART
networks as WirelessHART devices are highly energy-constrained.
Most existing channel hopping techniques for low-power wireless
sensor networks relying on a dedicated channel for channel hop-
ping synchronization also incurs much overhead on latency. Thus,
none of these approaches can meet the reliability and real-time re-
quirement in WirelessHART. Furthermore, WirelessHART requires
that every transmission in a time slot happens on a different chan-
nel for enhanced reliability. Applying other existing channel hop-
ping strategies including the one used in Bluetooth/BLE may not
ensure this.

ICDCN 2025, January 04-07, 2025, Hyderabad, India

In the current standard, in order to enable high reliability, Wire-
lessHART employs the symmetric and TSCH approach in which
both the channel sequence and hopping function are predefined be-
fore network execution. Channel hopping in TSCH uses a modulo-
based function. The recent work in [14] improves channel hopping
strategy by adding mechanism for channel quality evaluation to in-
crease reliability. Gunatilaka et al. have proposed to enhance Wire-
lessHART network reliability through channel reuse and reactive
link scheduling, employing the basic TSCH protocol [17, 18]. No-
tably, their work does not focus on developing new TSCH schemes.
The study in [10] has presented the vulnerability of using modu-
lar function in TSCH. Cheng et al. in [11, 12] showed the crucial
impact of detecting future channel usage, particularly for Wire-
lessHART networks.

Several anti-jamming solutions have been proposed recently to
disguise channel hopping pattern. R-TSCH [36] is an anti-jamming
strategy for TSCH based network that tries to tackle the problem
by generating random channel sequence using cryptographic key.
Kim et al. proposed another way to reduce a jammer’s capability
of figuring out the channel hopping pattern by detecting the jam-
mer’s channel sequence and changing the communication channel
sequence according to the jammer’s sequence [19]. However, these
solutions require a more advanced device capability and additional
synchronization overhead to exchange the randomized sequence.
Several anti-jamming techniques addressing WirelessHART net-
works, in particular, are proposed in [28-30] approaching the prob-
lem by randomizing the transmission slot for end-to-end data flow.
Nonetheless, these strategies do not specifically remove the repe-
tition pattern.

Our work is the first to present a resilient channel hopping scheme
for WirelessHART networks without needing additional sequence
synchronization overhead, complex device’s capability, and sched-
uling modification. The scope of this work is limited to devising
new hopping function for WirelessHART networks. Any random
channel sequence generated through state-of-the-art pseudo ran-
dom number generator (PRNG) can be applied to our hopping scheme
as WirelessHART hopping sequence as long as both the sender-
receiver pair use the same PNRG.

4 PROPOSED JAMMING-RESILIENT
CHANNEL HOPPING

In this section, we first discuss the attack vulnerability of the cur-
rent channel hopping technique used in WirelessHART, the attack
model, and then present our jamming-resilient channel hopping
scheme.

4.1 Attack vulnerability

In order to ensure that all devices know their communication time
and channels, a tuple of time slot and channel offset {slot_index,,
channel_of fset} is assigned to every device in the network. Un-
der the current hopping technique, every receiver uses a unique
channel which is not used by any other receivers across the net-
work at any time slot. This approach can guarantee high reliability
without inducing overhead in the network. However, the recent
work in [10] observed that the existing technique is vulnerable to

ICDCN 2025, January 04-07, 2025, Hyderabad, India

jammers who can easily crack the channel hopping pattern with-
out knowing the predefined sequence. Once the pattern is known,
a severe selective jamming attack can be launched. This weakness
mainly stems from the strong repetitive pattern of channel usage
due to the short channel sequence length.

1.0
0.8
0.6
0.4
0.2

{ WIS SSS R R
ST

000~ F 1o wTo s+ 75 "

-0.25

~0.50

-0.75 _04

0 5 10 15 20 0 5 10 15 20
Lag Lag

Autocorrelation Value
Autocorrelation Value

(a) 4 active channels (b) 16 active channels
Figure 3: Comparison of autocorrelation graphs of hopping
sequences generated from the current hopping technique.

To show the strong repetitiveness of channel usage in the cur-
rent approach, we perform an autocorrelation analysis on its chan-
nel hopping sequence. The autocorrelation analysis helps in iden-
tifying patterns within time series data. We generate a sequence us-

ing Eq. (1), where we set channel_of fset = 0,ASN = {0, 1, 2, - - -, 20},

and s_length = {4, 16}. Fig. 3a and 3b depict the autocorrelation
results of the current hopping function when 4 and 16 active chan-
nels are used in the network, respectively. In this example, we se-
lects_length = {4, 16} to show that less number of active channels
produces a stronger repetition. In the autocorrelation analysis, lag
is used to define the time gap or time period apart between values.
Hence, the lag showing positive spike in autocorrelation value is
the period when the sequence repeats. From Fig. 3a, when there
are four active channels used in the network, the positive spike of
autocorrelation value appears when the lag is a multiple of 4 such
as 4, 8, 12, - - -, which means that the hopping sequence repeats
after 4 time (units) apart. A similar result can be observed from
Fig. 3b where the positive spike of autocorrelation value appears
when lag is a factor of 16. Both figures show strong repetitive pat-
tern of channel usage.

4.2 Attack model

In this work, instead of jamming the network in all channels, we
consider a jamming attack model for TSCH-based networks such
as WirelessHART investigated in [10]. The straightforward jam-
ming model requires more resource at the jammer while it is re-
ported in [12] that the smart selective jamming makes the attack
energy efficient and hardly detectable. Hence, we used this type of
attack to evaluate the performance of our method. The attackers’
main objective, in their scenario, is to crack the channel hopping
sequence in order to launch selective jamming attack [12] reduc-
ing the network reliability. There are 4 steps that the jammers need
to complete before the channel hopping is figured out as follows:
(1) Grouping eavesdropped packets; (2) Identifying least common
multiple (LCM) of the number of time slots in combined super-
frame and sequence length; (3) Identifying time slots of every trans-
mission; and (4) Creating channel offset table. Among these steps,

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang

identifying the LCM is the core function to predict the future hop-
ping pattern since the hopping sequence follows a periodic fash-
ion. To successfully perform the jamming procedures, the jammer
should be equipped with moderate computational abilities, capa-
ble of monitoring and generating signals across all channels in 2.4
GHz to intercept WirelessHART packets. It has energy-budget and
needs to carefully spend energy for jamming.

Here we describe an example of an attack scenario where a
jamming device is placed near an industrial plant with a Wire-
lessHART network in operation. Suppose the jammer listens to a
link connecting node n; and ny (as depicted in Fig. 1) with channel
hopping pattern as described in Fig. 2. In this situation, the jammer
has no prior knowledge of the sequence used by the WirelessHART
nodes. Initially, the jammer will monitor all communication chan-
nels according to its own channel-hopping sequence and capture
transmitted packets on the channels it is currently tuned to. For
each intercepted packet, the sender-receiver information can be
extracted from the packet’s header, which is not encrypted. The
jammer will also record the time slots and communication chan-
nels for each successfully intercepted packet. Subsequently, the
jammer will create a jamming table that includes essential details
such as sender and receiver identities, channel information, and
approximate time slots of packet transmissions. By analyzing this
data and calculating the least common multiple (LCM), the jammer
can predict the timing and channel of future transmissions. Once
these predictions are validated, the jammer will proceed with a se-
lective jamming attack.

As identified in [10], WirelessHART’s hopping sequence can
be cracked more easily and quickly than that of Orchestra [15].
This happens because the lengths of superframes stated in Wire-
lessHART standard follow a harmonic chain (e.g., 1, 2, 4, 8, --+),
i.e. each superframe length is divisible by all smaller superframe
lengths. The LCM of these values indicates the time period after
which the entire schedule of transmissions repeats and is much
smaller compared to the case when superframe lengths are relative
prime numbers. Therefore, our work focuses on improving the re-
silience of channel hopping in WirelessHART so that the hopping
pattern cannot be cracked within a feasible amount of time. Our
work is different from [10] as their work shows the vulnerability by
launching an attack while we propose to solve that vulnerability.

4.3 Jamming-Resilient Channel Hopping

Designing a jamming-resilient hopping strategy for WirelessHART
network is challenging due to the following reasons:

o A small number of available channels: WirelessHART can

support a maximum of 16 channels as specified in IEEE 802.15.4,

and some channels can even be blacklisted due to low chan-
nel quality. Hence, the channel sequence used in the Wire-
lessHART’s default TSCH mechanism is short and thereby
can not give much protection from channel cracking.

o Fast channel switching with low overhead: the WirelessHART
standard mandates a maximum channel switching time of
0.192 ms. This stringent requirement makes it impossible
to use different random sequences across the nodes or dy-
namic random sequences, since they cannot guarantee all
pairs of communicating devices scheduled in the same slot

Jamming-Resilient Channel Hopping for WirelessHART Networks

use different channels. Although most of the modern IoT de-
vices are equipped with a standard pseudo-random number
generator (PRNG), each sender-receiver pair must use the
same random seed to generate the pseudo-random channel
sequence so that they can hop to the same channel in each
time slot. Using a synchronized random seed (e.g. ASN) for
all concurrent transmission pairs can still generate channel
hopping sequence with strong repeated patterns, whereas
using different seeds for different transmission pairs requires
each sender and its receiver to synchronize its own seed,
which can result in significant overhead.

To design a jamming-resilient channel hopping scheme, we still
adopt the principle in the current approach (i.e. modular function
+ predefined channel sequence) to ensure fast channel switching
with low overhead, but explore multi-level randomness to reduce
repetitive patterns in channel hopping sequence. In WirelessHART,
A time slot can be either dedicated (where at most one transmis-
sion is scheduled to a receiver) or shared (where multiple nodes
may contend to send to a common receiver). It is important to note
that our proposed solution is applicable to shared links since it is
a function-based channel hopping scheme that relies only on the
ASN, channel offset, and the pre-assigned random sequences, not
the type of links. Unlike the current technique that only employs
one channel sequence of size limited to the number of available
channels, our approach uses the following sequences:

o Channel sequence 0: ch_sequence
o Channel sequence 1: ch_sequence;
e An alternation sequence: alt_sequence
e A pointer sequence: pointer_sequence

where ch_sequencey and ch_sequence; are two random sequences
of active channels derived from the channel mapping, alt_sequence
is a random list of 0 and 1 of a predefined length used to deter-
mine whether ch_sequencey or ch_sequence; is currently active
for computing transmission channel, and pointer_sequence is a
list of channel pointer indicating the starting index of the active
channel sequence. When a pair of sender and receiver is about
to communicate, they need to firstly determine which channel se-
quence (ch_sequencey and ch_sequence;) will be used based on
alt_sequence. After the channel sequence is selected, the sender
and receiver will calculate the pointer sequence and use the value
in the pointer sequence to shift the selected channel sequence. Fi-
nally, the communication channel is computed from the shifted
channel sequence. In-depth explanations of these procedures are
provided in the following of this section.

The presence of multiple sequences will increase the repetition
period of channel significantly and create a confusing channel us-
age pattern which forces the jammer to put a humongous amount
of effort and time before making prediction. When our channel
hopping is applied, a jammer would make wrong predictions of
future channel usage, since the same channel may be repeated
multiple times without representing a repetitive pattern of the se-
quence. In this section, we provide a detailed explanation of the
proposed channel hopping technique, which includes two addi-
tional channel sequences, an alternation sequence, and a pointer

ICDCN 2025, January 04-07, 2025, Hyderabad, India

sequence. This configuration serves as the lower bound for jam-
ming resilience performance against selective jamming attacks. The
upper bound on the number of sequences that can be incorporated
into this technique depends on the number of available channels,
as further detailed in Section 4.5. Our approach consists of the fol-
lowing three main procedures.

ch_sequence, 311]10(2

ch_sequence; 1103]2

pointer_sequence | 2 [1 | 3 [0

alt_sequence 011 110

(a) Sample random sequences

ch |26 |20]25([25[15]26 (202620 25(15]20(25]15]26]15

chidl 2 |3 |1 |1]O0f2|3]2(3f1]Oo|3f1]O0[2(0O

ASN | 1 21314516 |7 (8|9 (10]11]|12]13]|14]15]]16

(b) Generated sequence after performing shifting operation

chidl 2 |3 |1 |1]O0f2(3]2(3f1]Oo3(f1]O0[2]3

ASN | 1 21314516 |7 (89 (1011|1213]|14]15]16

ch_id| 2 rjojoy3j2frfz2frjo)3jrjoj]3j2fo

ASN | 17 [18 [19 [20 |21 (22|23 |24 |25|26 (27 28 (2930|3132

(c) Complete hopping sequence after shifting and alternation are applied

Figure 4: Major procedures to reduce repetitive nature in
hopping sequence from Fig. 1

4.3.1 Generating Random Sequences. We use the same topology
and channel mapping provided in Fig. 1 to illustrate the procedure
for generating the random sequences. Suppose we have a network
that supports 4 different active channels (s_length = 4), namely
channel 15, 25, 26, 20 stored in a mapping A (see Fig. 1a). Note that
the channel sequence in array A is set randomly. Assume that in
our network, there are 2 wireless nodes n; and ny that are con-
nected through a link with channel offset 0 as presented in Fig. 1b.
Based on the available channel information, the following gives an
example of the random sequences that can be set to both node nq
and ns before the network execution:

e ch_sequenceg = [3, 1, 0, 2]

e ch_sequence; =[1,0, 3, 2]

e alt_sequence = [0, 1, 1, 0]

e pointer_sequence = [2, 1, 3, 0]

Each node keeps the sequences in a table depicted in Fig. 4a, and
all sequences start with index 0.

4.3.2 Shifting Channel Sequences. To increase randomness, we ap-
ply random shifting between ch_sequencey and ch_sequence; us-
ing the pointer_sequence. The random shift, denoted by pointer,
is derived based on ASN and the pointer_sequence as follows:

pointer_id = | (ASN/s_length)| mod s_length (4)

ICDCN 2025, January 04-07, 2025, Hyderabad, India

pointer = pointer_sequence|pointer_id] (5)

For example, using the pointer_sequence in Fig. 4a and ASN =
1, we can compute the pointer index using Eq. (4) and derive the
pointer value using Eq. (5) as follows:

pointer_id = | (1/4)] mod 4 =0 6)

pointer = pointer_sequence[0] = 2 7)

As a result, when ASN = 1, the channel sequence is shifted by 2.
As the main objective of channel hopping is to mitigate jamming
attack and channel interference, maintaining the fairness of chan-
nel distribution in the network becomes critical. Therefore, the
pointer’s value must not be updated before all active channels are
used for transmission. Since s_length denotes the total active chan-
nels, taking the floor of ASN/s_length in Eq. (4) guarantees that
pointer’s value remains the same before every channel is utilized.

Once the value of pointer is computed, the following functions
are used to calculate the physical channel:

ch_id = (channel_of fset + ASN + pointer) mod s_length (8)

ch = A[ch_sequence;[ch_id]])

where i € {0, 1} denotes the id of the active channel sequence. Ba-
sically, Eq. (8) is similar to Eq. (1) that gives the current channel
hopping function. The main difference between the two equations
lies on the shifting technique which is shown as an addition func-
tion of the pointer’s value.

To illustrate, Fig. 4b depicts the hopping sequence after the shift-
ing technique is applied. Suppose ch_sequencey is used currently.
Assume that the network topology in Fig. 1b is deployed where
channel_of fset = 0 is assigned to the link connecting 2 wireless
nodes, n; and ny. Previously, the pointer’s value has been com-
puted in Eq. (6) and Eq. (7) where pointer = 2 when ASN = 1.
Now, to derive the transmission channel, Eq. (8) and Eq. (9) are
used as follows:

ch id=(0+1+2)mod4=3 (10)

ch = Alch_sequencey[3]] = A[2] = 26 (11)

For the subsequent transmissions, the physical channels are com-
puted in the same manner.

4.3.3 Random Sequence Alternation. To further puzzle a jammer
in predicting our channel sequence, we introduce the concept of
sequence alternation to randomly alternate between ch_sequencey
and ch_sequence; based on the alternation sequence.

The alternation is done after all starting pointers have been ap-
plied to shift one of the channel sequences. Since the length of
pointer_sequence and channel_sequence are the same which equals
the s_length; when transmission is scheduled in every slot, the al-
ternation occurs after every (s_length)? slots due to the use of
two channel sequences. If the number of channel sequences (i)
is greater than two, the alternation occurs after (s_length)' slots.
Unlike the other three random sequences, the size of alternation
sequence is not limited to the number of active channels. There-
fore, the cycle of hopping sequence could be enlarged dramatically
by providing a large size of alternation sequence. The longer the

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang

length of the alternation sequence, the longer will be the time af-
ter which channel usage pattern repeats. The following function is
used to compute the alternation index (alt_id):

alt_id = | (ASN/(s_length)?)] mod alt_sequence_size (12)

where alt_sequence_size represents the size of the alternation se-
quence. After alt_id is computed, the sequence index can be obtain
by:
i = alt_sequence[alt_id] (13)
Fig. 4c illustrates the final hopping sequence after alternation
technique is used. For example, applying shifting technique to the
ch_sequencey with all the available values from pointer_sequence
in the second step produces a hopping sequence whose length is
(s_length)? (see Fig. 4b). Now, suppose another transmission is
scheduled when ASN = 17. To determine which channel sequence
to use, Eq. (12) and Eq. (13) are applied as follows:
alt_id = [(17/(4)?)] mod 4 = 1 (14)
i = alt_sequence[1] =1 (15)
Since the result of this computation is 1, ch_sequence; is selected
to derive the physical channel. As a result of adding shifting and
alternation procedures for hopping sequence generation, a longer
sequence can be produced. Obviously, the current function used in
WirelessHART for hopping sequence has a period equal to s_length
slots while our approach generates a hopping sequence with a pe-
riod of (alt_sequence_size)(s_length)? slots.

4.4 Analysis on Channel Usage Pattern

1.0 1.0
0.8
0.6
0.4
0.2
0.0
-0.2
—0.4 0.2

0 25 50 75 100 125 150 175 200 0 200 400 600 800 1000

Lag Lag

(b) 16 active channels

0.8

0.6

0.4

0.2

Autocorrelation Value
Autocorrelation Value

0.0

(a) 4 active channels

Figure 5: Comparison of autocorrelation graphs of hopping
sequences generated from our proposed method.

We perform an autocorrelation analysis on the channel hop-
ping sequence generated by our proposed method with the fol-
lowing setting: channel offset = 0, ASN = {0,1,2,...,200} when
s_length = 4 and ASN = {0,1,2,...,1000} when s_length = 16.
As shown in Fig. 5a and 5b, our proposed technique successfully
produces channel sequence with 40x and more than 60x larger pe-
riod for 4 and 16 active channels, respectively. In the case where
4 channels are used for transmission, the length of generated hop-
ping sequence is approximately 160. This means that the whole se-
quence will repeat after 160 transmissions. Furthermore, when 16
active channels are used, the hopping channel will not repeat even
after 1000 transmissions. From this result, we can confirm that our
proposed technique can significantly reduce the repetitive nature
of existing channel hopping technique and improve its resilience
towards jamming attack.

Jamming-Resilient Channel Hopping for WirelessHART Networks

Under realistic traffic scenario where transmission is not sched-
uled in every slot, jammers often encounter difficulty in success-
fully intercepting transmitted data, leading to sparse datasets. From
this fragmented data, accurately deriving the correct LCM to pre-
dict future channel usage becomes a formidable challenge. In [10],
a trial and error learning is applied to tackle such condition. The ad-
vantage of employing our hopping scheme is that a channel from
the available sequence appears multiple times without presenting
the correct period of the hopping pattern. As we prolong the repeti-
tion period of the hopping pattern, a channel may be used for com-
munication multiple times before the hopping cycle is repeated. As
a result, the attacker will perform numerous attempts of trial-error
inaccurately. Launching smart selective jamming with incorrect
channel usage prediction could increase the risk of exposing the
jamming attempt. Thus, despite the presence of periodicity in our
channel sequence, the inherent complexity arising from sparse and
incomplete data causes the jamming task to be significantly diffi-
cult and time-consuming for attackers. Besides, an attacker may
not target explicitly our approach without knowing our three lev-
els of randomness.

4.5 Enhancing the Robustness in Channel
Hopping

Our approach can be made even more robust by adding more ran-
domness through additional levels. Specifically, we can use more
than two random channel sequences that is ch_sequence; where
i ={0,1,2,...,s_length}, and add a pointer sequence for each of
these sequences (pointer_sequence;). Finally, we can use an alter-
nate sequence of length greater or equals to the number of ran-
dom channel sequences (i.e., alt_sequence_size > i) to choose a
sequence from the i sequences. By increasing the levels of ran-
domness in our strategy, we theoretically introduce only a minor
constant factor of computational complexity. Since only one com-
munication channel is assigned to each sender-receiver pair, the
addition of multiple sequences does not impact the network’s inter-
ference immunity or timing performance. These factors are deter-
mined solely by the number of active channels used concurrently
in a given time slot. Furthermore, the levels of randomness can
be a tunable parameter which can be chosen based on our desired
robustness or the severity of jamming.

GATEWAY JAMMER
E

((5))//LTJ\\§MZ(@))

@ 6 (@)
@ @O Ve

Voo

(b) Topology showing the routes to
the Gateway

(a) Real deployment

Figure 6: Experiment deployment and topology

ICDCN 2025, January 04-07, 2025, Hyderabad, India

5 PERFORMANCE EVALUATION

In this section, we evaluate the robustness of our proposed jamming-
resilient channel hopping strategy by comparing its performance
with the current approach adopted in WirelessHART. Recall that
WirelessHART mandates that no two nodes can hop to the same
channel in a dedicated time slot. Since the methods discussed in
[19, 28-30, 36] do not guarantee this requirement, we did not com-
pare our solution with these state-of-the-art approaches. We first
validate our scheme through testbed experiments and then evalu-
ate its performance in large-scale networks through simulations.

100 14
o A g @-current)
sl & W i |- #-proposed 127 |- proposed|
v [im] i R
\ E 10 i o =
v o { o
L 2 Pd 1 &8 o i
g |k r I 2 Y
€ 40 A FinY ! a 6 # /
¥ o ! \‘ 5 o Y ”, 4
20 Voxol o : g
/
;/ / \\\’; ! ; 2f g8 W& . /ﬁ* *
o ol N S o I o e
0 5 10 15 0 5 10 15
Active Channels Active Channels
(a) TPR (b) PGR

Figure 7: Results in real-deployment network

0.06
0.9
I -
7 @ -
§ Bt B et g * -
=06 =
5 5
2 2003
=) =3
El Ef
2 I
£ 0.3 £
- % -proposed -+ -proposed
0 0
30 90 150 210 1320 1410 1500 1590
Time (s) Time (s)

(a) Network throughput under jam-(b) Throughput per link under jam-
ming - free ming attack

Figure 8: Network performance under varying network en-
vironment in real-deployment network

5.1 Experimental setup

We have implemented the proposed hopping mechanism in Contiki-
NG [25] operating system, since Contiki-NG supports TSCH fea-
ture complying with the WirelessHART’s physical layer. In our ex-
periments, we used TelosB [3] as the WirelessHART’s nodes, gate-
way, and jamming device because TelosB has the same physical
layer as WirelessHART. We have used 14 TelosB devices as Wire-
lessHART sensor nodes, one device as the gateway, and one device
as a jammer. Fig. 6a shows the network deployed in an indoor envi-
ronment. We adjusted the transmission power to form a two-hop
network. Fig. 6b shows the routes from the sensor nodes to the
gateway. In our experiments, each sensor generates a packet after
every 2560 ms, the number of active channels was varied from 1
to 16, and s_length is set to 15. For the jamming strategy, we im-
itate the method presented in [10] in which the jammer aims to
predict future communication channel by observing channel us-
age through snooping transmitted packet. The jammer will only

ICDCN 2025, January 04-07, 2025, Hyderabad, India

eavesdrop transferred packets in the network for a fixed time du-
ration.

Performance Metrics. To evaluate the robustness of the proposed
approach, the following evaluation metrics are used:

o TPR: true prediction to total prediction ratio, indicating the
fraction of correct predictions out of the total predictions
made by the jammer for future channel usage.

e PGR: correct prediction to ground truth ratio, defined as the
fraction of jammer’s total correct channel usage predictions
over the total ground truth transmission channel usage (ac-
tual channel usage) in the network.

e Throughput: number of bits received per second.

5.2 Experimental Results

5.2.1 Channel prediction. Fig. 7 shows TPR and PGR under vary-
ing number of channels achieved by our channel hopping approach
and the current one in WirelessHART. Fig. 7a shows that our ap-
proach could lower TPR of a jammer by more than 50% compared
to the current strategy. A significant jamming-proof performance
is achieved when the number of channels is relatively prime to the
superframe’s length and greater than 8. In addition, Fig. 7a shows
that TPR decreases as the number of active channels increases and
remains significantly lower compared to the current one. Further-
more, Fig. 7b shows that our strategy also lowers PGR on average.
In summary, utilizing relatively prime numbers and more active
channel enables more channel switching in the network, leading
to significant increase of the jamming resilience.

5.2.2 Throughput under Jamming. We measure the network through-

put in the gateway side every 30 seconds for both our channel hop-
ping approach and the current approach. Our objective is to show
the performance difference under jamming. First we compare both
approaches under a jamming-free scenario as shown in Fig. 8a. As
expected, both approaches yield almost the same throughput. We
consider a jamming scenario where a jammer can launch selective
jamming attack after determining a link’s channel. After observ-
ing transmitted packets in one link for less than 30 minutes, the
jammer could predict future channel usage in that particular link
and jam that link. Fig. 8b shows that the throughput sharply drops
to 0 kbps after channel detection and the start of jamming. Under
our approach, the throughput remains steady as the jammer has
not been able to determine the channel usage.

100 1) 100
| o / Q
\ W o @ current
80 ! 80 |- % -proposed
\
!
< 60f = 60 w
T * K iy ?7 g Y o
g A A / 5] Y %
< 40 \ \ | T 40 “ hf 5
¥ [| al [)
\ ,’*\ Pat . / S o0 * [A
20 N Y ! 20 NV Ny EYIRY of
- current L i e w o/ Iy [E:
0 - #-proposed o * o I g
0 5 10 15 0 5 10 15
Active Channels Active Channels
(a) TPR (b) PGR

Figure 9: Results in single-hop sparse network

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang

100 50

o
80 o ° ~©- 3-flow 20 -9 3-flow
Q
® 60 230
E o i 9 g g o
k<1 \ T & @ @
= 40 £ I o 20 o
WL e -
20 W 10 |
90 o€ Vi > 5 &
A Covtgl | Ted Bey yed]
0 5 10 15 0 5 10 15
Active Channels Active Channels
(2) TPR (b) PGR

Figure 10: Multiple data flows in single-hop sparse network

5.3 Simulation results

To evaluate the robustness of our jamming-resilient channel hop-
ping strategy in large-scale networks, we perform simulations in
Cooja [26] - the default simulator in Contiki. We consider two
types of networks, namely sparse and dense networks. The sparse
network consists of a few links and nodes. We consider less than
10 nodes. The sparse network schema allows jammer to eavesdrop

more packets in the network through limited number of links. Through

this simulation, we wish to investigate the resilience of our pro-
posed technique when jammer has such capabilities. To further
observe our jamming-resilient hopping technique, we run simu-
lations in dense network scenario which involves many links and
hundreds of nodes in the network. Unlike the sparse network, jam-
mer can only get a smaller fraction of transmitted packets from
each link. For each type of networks, we further consider two net-
work typologies, namely single-hop and multi-hop networks. A single-
hop network represents an easier scenario for a jammer to crack
the channel usage as there is only one active link at a time (as
each device including the gateway has a single half-duplex radio).
A multi-hop network represents a relatively more difficult scenario
for a jammer to crack the channel usage as there may be many con-
current transmissions in a time slot. We set one gateway and one
jammer in every simulation while we vary the number of sensor
nodes. s_length is varied from 1 to 16 unless stated otherwise. Jam-
ming simulation for both the baseline (current approach) and pro-
posed technique are done for the same duration of time since we
only consider the jamming performance under the same amount of
jamming energy to observe and crack channel usage. We evaluate
channel predictability using the same evaluation metrics described
in Section 5.

5.3.1 Results under Sparse Networks. We consider a sparse net-
work that consists of 3 nodes; 1 sensor node and 1 gateway, and 1
jammer. In the first scenario, we schedule each sensor node to gen-
erate one data flow every 320 ms in a superframe whose length is
32 time slots. Subsequently, we consider the scenario with multiple
concurrent flows, where each sensor generates one packet either
every 320 ms, 640 ms, or 1280 ms.

Fig. 9 shows the results in terms of the success rate in channel
cracking. It can be seen that the jamming success rate is signifi-
cantly lower by more than 60% when our strategy is applied com-
pared to the current approach (see Fig. 9a). Our approach causes

Jamming-Resilient Channel Hopping for WirelessHART Networks

jammer to miscalculate the repetition period. As s_length is in-
creased, TPR keeps decreasing. Furthermore, we observe that ap-
plying our strategy decreases the PGR on average as presented in
Fig. 9b. Applying our approach forces the jammer to predict con-
siderably large repetition period. As the predicted period becomes
larger, PGR significantly decreases.

Fig. 10a shows the results with flows generated by three nodes
every 320, 640, and 1280 ms, respectively. It can be seen that a
significant resilience difference happens when s_length is greater
than 8. As shown, the jammer can hardly predict the future chan-
nel usage when each node generates 3 data flows, where PGR ~
0%, compared to that of single-data flow. This indicates that adding

more data flow to the network increases jamming difficulty, partic-
ularly when s_length > 8.

100

P g 70
¥ teem BB - L g &-current
80 \\ s ! 601 o - #—-proposed
\ a / Bea g \ i H
\ 4] o i) 50 \ i
— o — \ H
& 60 faof Lo
5 A IR
T A T \ |
& 40 A N ¥ Sa0 L)
¥ LR % * / g/ VoA
AN JAN 20 A A I
20 Vo ! o VoS A)
o-current \ﬁ / ! 10 \ E,ﬁ\ B/ \E),E; 4 o
o -4 proposed 'l . * WA
0 5 10 15 0 5 10 15
Active Channels Active Channels
(a) TPR (b) PGR

Figure 11: Results in multi-hop sparse network

100

¢ 70
| —20% data —+—20% data
N % 50% data 60 - +-50% data
% 80% data 80% data
\ 50
T 6o /‘\ T 40
$.0 4 £
o 40 *\ / 7 i o %
* \/ A\ N ox f 20 i
20 y \ X\
UYL 10 La A
o Ry o TN WA e
0 5 10 15 0 5 10 15
Active Channels Active Channels
(a) TPR

(b) PGR

Figure 12: Multiple training data in multi-hop sparse net-
work

We further evaluate the resilience performance by adding more
nodes and links to form a multi-hop network. Here, we consider
a sparse network that consists of 6 nodes; 4 sensor nodes and 1
gateway, and 1 jammer. Fig. 11a shows that our approach dramat-
ically improves the jamming difficulty by more than 60%. Similar
to the single-hop network, the most noticeable difference between
the current hopping strategy and the proposed method can be ob-
served when s_length > 8. From the PGR in Fig. 11b, when the
number of active channels are 8, 12, 16, the jammer can only make
less than 20% correct predictions. To summarize, as s_length and
number of nodes increase in the network, the pattern of channel
hopping sequence becomes confusing to the jammer, reducing its
capabilities of making correct prediction.
Subsequently, we analyze the jamming difficulty based on the
size of training data. The training data is represented in the form

ICDCN 2025, January 04-07, 2025, Hyderabad, India

100 —# 70 &
b a-current - current
sl - % proposed 60 ~* proposed
;
\‘" 50
g 60 \F g 40 L
o) 5]
g ol Ao &30 A
\ x 5} = % a P g *
\ // \ PN, e, 20 \ =]
20 ¥\ / \\ Py \ 3
) / / - -2, a
e A R R S A e
0 ¥ ¥y 0 Yer# ek Bl
0 5 10 15 0 5 10 15
Active Channels Active Channels
(a) TPR

(b) PGR

Figure 13: Results in single-hop dense network

50 20
*
¢ A -t
s 4 proposed % proposed
£ 15 ‘.‘
.
i
g30p g0
g N s10f |
T |}] |
T2 g o (]
* e =] [
\H S 5 i
10 TS 7?\ ; L
¥ \ e/ \ae a-a 2 \g’ B 'E'\ =} ‘%
o e et B] o 0L Sl - -
0 10 15 0 10 15
Active Channels Active Channels
(a) TPR (b) PGR

Figure 14: Results in multi-hop dense network

of percentage. For example, 20% data means that 20% portion data
of the total observation is used for the jammer to snoop the chan-
nel usage. This means that as we increase the percentage, we use
more observation data for training. The channel prediction under
different size of observation data is presented in Fig. 12. In general,
it is shown that increasing the amount of training data does not
enhance jammer capability of predicting channel usage. Instead,
we found interesting findings from this simulation scenario. When
s_length € {4,6,8}, Fig. 12a shows approximately 20% drops of
jammer’s correct prediction. This means that, in some cases, us-
ing more observation data for making prediction would confuse
the jammer, leading to making incorrect prediction. This happens
when the jammer is not able to derive the correct channel usage
repetition as a result of adding multilevel randomness to the hop-
ping method. Fig. 12b demonstrates that a significant drop in PGR
happens while the number of active channels is prime or relative
prime to the superframe’s length, such as 3, 5, 7, 9, 11, 13, and 15.
The use of prime or relatively prime numbers enables more channel
switching in the network. From these results, we can conclude that
the utilization of prime or relative-prime to the size of superframe
numbers as the s_length will increase the jamming difficulty.

5.3.2 Results under Dense Networks. In this setting, we deploy one
WirelessHART gateway node and one jammer node in the network
while we increase the number of sensor nodes. Each sensor gener-
ates a data packet every 520 ms.

Fig. 13 shows the results in single-hop dense network setting
with 100 sensor nodes. It can be seen from Fig. 13a that the pro-
posed technique is able to considerably reduce TPR (by approxi-
mately 50%) compared to that of current hopping method. Fig. 13b
shows PGR under both approaches. As conclusion, our proposed
technique has shown satisfactory jamming-proof performance in

ICDCN 2025, January 04-07, 2025, Hyderabad, India

dense network setting compared to the existing technique when
s_length is set to prime or relative-prime numbers.

We further evaluate our scheme in a multi-hop network consist-
ing of 200 nodes. As the number of nodes is significantly higher
while the number of jammer is fixed (at one), we can expect a re-
duced performance of jammer to eavesdrop packets. The predic-
tion results are shown in Fig. 14. It can be seen that our approach
outperforms the current strategy of channel hopping in terms of
both TPR and PGR. As we increase s_length, the general pattern
shows that jamming the channel sequence becomes extremely dif-
ficult, especially when s_length > 8. To conclude, our approach is
able to give protection to jamming attack as the repetitive nature
is reduced by adding randomness to the hopping technique.

6 CONCLUSION

WirelessHART is a prominent standard for industrial Internet of
Things applications providing feasibility for reliable and real-time
communication. The current channel hopping strategy for ensur-
ing reliable communication in WirelessHART networks exhibits
strong repetitive channel usage patterns, making it vulnerable to

channel cracking and jamming attacks. Designing a jamming-resilient

channel hopping strategy for WirelessHART networks is challeng-
ing as it must guarantee fast channel switching (< 0.192 ms), chan-
nel synchronization between sender-receiver pairs, and interference-
free concurrent transmissions. In this paper, we have proposed a
jamming-resilient channel hopping mechanism that meets these
requirements for WirelessHART networks. Our approach signifi-
cantly reduces the strong repetitive pattern in channel sequence
by adding randomness at multiple levels. We have implemented
the proposed approach and evaluated through testbed experiments
using a 16-node network and also through large scale simulations
in Cooja. The results show that our proposed approach can sig-
nificantly lower a jammer’s capability in making correct channel
prediction without increasing the channel hopping overhead from
the current approach.

ACKNOWLEDGEMENT

The work was supported by the US National Science Foundation
through grants CNS-2301757, CAREER- 2306486, CNS-2306745, and
by the US Office of Naval Research through grant N00014-23-1-
2151.

REFERENCES

[1] 2007. WirelessHART. https://fieldcommgroup.org/technologies/hart.

[2] 2009. ISA100: Wireless Systems for Automation. http://www.isa.org/
MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891.

[3] 2016. CC2420 RF-Transceiver. http://www.ti.com/lit/ds/symlink/cc2420.pdf.

] Jia Bai, Emeka Eyisi, Yuan Xue, and Xenofon Koutsoukos. 2010. Dynamic Tun-
ing Retransmission Limit of IEEE 802.11 MAC Protocol for Networked Control
Systems. In CPSCom’10.

[5] Kaigui Bian and Jung-Min Park. 2011. Asynchronous channel hopping for estab-
lishing rendezvous in cognitive radio networks. In INFOCOM’11. 236-240.

[6] Kaigui Bian, Jung-Min Park, and Ruiliang Chen. 2011. Control Channel Estab-
lishment in Cognitive Radio Networks using Channel Hopping. IEEE Journal on
Selected Areas in Communications 29, 4 (2011), 689-703.

[7] Joris Borms, Kris Steenhaut, and Bart Lemmens. 2010. Low-overhead dynamic
multi-channel MAC for wireless sensor networks. In EWSN’10. Springer, 81-96.

[8] Guey-Yun Chang, Wen-Hung Teng, Hao-Yu Chen, and Jang-Ping Sheu. 2014.
Novel Channel-Hopping Schemes for Cognitive Radio Networks. IEEE Transac-
tions on Mobile Computing 13, 2 (2014), 407-421.

Elisabeth K. A. Permatasari, Abusayeed Saifullah, and Haibo Zhang

[9] D Chen, M Nixon, and A Mok. 2010. WirelessHART™Real-Time Mesh Network

for Industrial Automation. Springer.

Xia Cheng, Junyang Shi, and Mo Sha. 2019. Cracking the channel hopping se-

quences in IEEE 802.15.4e-based industrial TSCH networks. In IoTDI’19.

Xia Cheng, Junyang Shi, and Mo Sha. 2019. Cracking the Graph Routes in Wire-

lessHART Networks. In AsiaCCS’19.

Xia Cheng, Junyang Shi, Mo Sha, and Linke Guo. 2021. Launching Smart Selec-

tive Jamming Attacks in WirelessHART Networks. In INFOCOM 1.

Hon Sun Chiu, Kwan L. Yeung, and King-Shan Lui. 2009. J-CAR: an efficient joint

channel assignment and routing protocol for IEEE 802.11-based multi-channel

multi-interface mobile ad hoc networks. Trans. Wireless. Comm. 8, 4 (2009).

[14] Peng Du and George Roussos. 2012. Adaptive time slotted channel hopping for
wireless sensor networks. In CEEC’12. 29-34.

[15] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne.

2015. Orchestra: Robust mesh networks through autonomously scheduled tsch.

In Sensys’15. 337-350.

Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and

Andreas Terzis. 2010. Design and Evaluation of a Versatile and Efficient Receiver-

Initiated Link Layer for Low-Power Wireless. In SenSys ’10. 1-14.

Dolvara Gunatilaka and Chenyang Lu. 2018. Conservative Channel Reuse in

Real-Time Industrial Wireless Sensor-Actuator Networks. In ICDCS’18. 344—

353.

Dolvara Gunatilaka and Chenyang Lu. 2020. REACT: an Agile Control Plane for

Industrial Wireless Sensor-Actuator Networks. In JoTDI’20. 53-65.

Yongchul Kim and Jungho Kang. 2017. Efficient Anti-Jamming Technique Based

on Detecting a Hopping Sequence of a Smart Jammer. IOSR Journal of Electrical

and Electronics Engineering 12 (2017), 118-123.

Youngmin Kim, Hyojeong Shin, and Hojung Cha. 2008. Y-MAC: An Energy-

Efficient Multi-channel MAC Protocol for Dense Wireless Sensor Networks. In

IPSN’08. 53-63.

M. Lacage, M. H. Manshaei T., and Turletti. 2004. IEEE 802.11 rate adaptation: a

practical approach. In MSWiM "04. 126-134.

Zhiyong Lin, Hai Liu, Xiaowen Chu, and Yiu-Wing Leung. 2011. Jump-stay

based channel-hopping algorithm with guaranteed rendezvous for cognitive ra-

dio networks. In INFOCOM’11. 2444-2452.

Tie Luo, Mehul Motani, and Vikram Srinivasan. 2009. Cooperative Asynchro-

nous Multichannel MAC: Design, Analysis, and Implementation. IEEE Transac-

tions on Mobile Computing 8, 3 (2009), 338-352.

[24] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein. 2007. Using Channel Hop-

ping to Increase 802.11 Resilience to Jamming Attacks. In INFOCOM’07. 2526~

2530.

George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki

Tanaka, and Nicolas Tsiftes. 2022. The Contiki-NG open source operating system

for next generation IoT devices. SoftwareX 18 (2022), 101089.

Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo

Voigt. 2006. Cross-Level Sensor Network Simulation with COOJA. In LCN’06.

641-648.

Abusayeed Saifullah, Dolvara Gunatilaka, Paras Tiwari, Mo Sha, Chenyang Lu,

Bo Li, Chengjie Wu, and Yixin Chen. 2015. Schedulability analysis under graph

routing in WirelessHART networks. In Real-Time Systems Symposium, 2015 IEEE.

IEEE, 165-174.

Ankita Samaddar and Arvind Easwaran. 2023. Online Distributed Schedule Ran-

domization to Mitigate Timing Attacks in Industrial Control Systems. ACM

Transactions on Embedded Computing Systems 22, 6 (2023), 1-39.

Ankita Samaddar, Arvind Easwaran, and Rui Tan. 2020. A schedule randomiza-

tion policy to mitigate timing attacks in WirelessHART networks. Real-Time

Systems 56, 4 (2020), 452-489.

[30] Ankita Samaddar, Arvind Easwaran, and Rui Tan. 2020. SlotSwapper: a schedule
randomization protocol for real-time WirelessHART networks. SIGBED Rev. 16,
4 (2020).

[31] C.F. Shih, T. Y. Wu, and W. Liao. 2010. DH-MAC: A Dynamic Channel Hopping

MAC Protocol for Cognitive Radio Networks. In ICC’10. 1-5.

Lei Tang, Yanjun Sun, Omer Gurewitz, and David B. Johnson. 2011. EM-MAC:

A Dynamic Multichannel Energy-Efficient MAC Protocol for Wireless Sensor

Networks. In MobiHoc ’11.

[33] A. Tzamaloukas and J.J. Garcia-Luna-Aceves. 2000. Channel-hopping multiple
access. In ICC’00, Vol. 1. 415-419 vol.1.

[34] Thomas Watteyne, Ankur Mehta, and Kris Pister. 2009. Reliability through Fre-
quency Diversity: Why Channel Hopping Makes Sense. In PE-WASUN ’09. 116—
123.

[35] Tang Zhong, Cheng Mengjin, Zeng Peng, and Wang Hong. 2010. Real-time com-

munication in WIA-PA industrial wireless networks. In ICCSIT 10, Vol. 2. IEEE,

600-605.

Dimitrios Zorbas, Panayiotis Kotzanikolaou, and Christos Douligeris. 2018. R-

TSCH: Proactive jamming attack protection for IEEE 802.15. 4-TSCH networks.

In ISCC’18. IEEE, 00766—00771.

[10

[11

[12

(13

[16

(17

[18

[19

[20

[21

[22

[23

~
2

[26

[27

[28

™~
29,

‘%
S

[36

https://fieldcommgroup.org/technologies/hart
http://%20www.isa.org/MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://%20www.isa.org/MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://www.ti.com/lit/ds/symlink/cc2420.pdf

	Abstract
	1 Introduction
	2 Background and System Model
	3 Related Work
	4 Proposed Jamming-Resilient Channel Hopping
	4.1 Attack vulnerability
	4.2 Attack model
	4.3 Jamming-Resilient Channel Hopping
	4.4 Analysis on Channel Usage Pattern
	4.5 Enhancing the Robustness in Channel Hopping

	5 Performance Evaluation
	5.1 Experimental setup
	5.2 Experimental Results
	5.3 Simulation results

	6 Conclusion
	References

