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Abstract

Recent advances in generative Al have led to the de-
velopment of techniques to generate visually realistic syn-
thetic video. While a number of techniques have been de-
veloped to detect Al-generated synthetic images, in this pa-
per we show that synthetic image detectors are unable to
detect synthetic videos. We demonstrate that this is because
synthetic video generators introduce substantially different
traces than those left by image generators. Despite this, we
show that synthetic video traces can be learned, and used
to perform reliable synthetic video detection or generator
source attribution even after H.264 re-compression. Fur-
thermore, we demonstrate that while detecting videos from
new generators through zero-shot transferability is chal-
lenging, accurate detection of videos from a new generator
can be achieved through few-shot learning.

1. Introduction

In recent years, substantial progress in generative Al has
produced numerous techniques for generating visually real-
istic synthetic images. These advances have also introduced
significant misinformation and disinformation threats. Syn-
thetic images can be easily produced and used as falsified
visual evidence to deceive a target audience.

To combat this, researchers have developed a number of
techniques to detect synthetic images. These techniques op-
erate by searching for statistical traces left in synthetic im-
ages by their source generator. For example, prior work by
Zhang et al. has shown that the upsampling operation used
in many generator architectures to grow an image from a
small latent representation to a full sized image leaves be-
hind traces similar to those left by resampling [94]. A num-
ber of approaches have been successfully developed to ac-
curately detect synthetic images made by a wide variety of
generators [3, 15, 19, 22, 47, 53, 78, 95, 97] and attribute
them to their source [23, 77, 97].

Very recently, Al-based synthetic video generators have
begun to emerge. These range from text-prompted ap-

Sora Stable Video Diffusion Pika
b

m ;’ ‘

L

Figure 1. Top row: video frames taken from Al-generated videos.
Bottom row: Fourier transforms of the residual forensic traces for
each corresponding frame above. The process to produce visual
results in the bottom row is described in Sec. 4.

proaches such as Stable Video Diffusion, VideoCrafter, or
OpenAl’s recently released Sora, to others such as Luma
ATl’s NeRF-basesd approach which allows synthetic videos
to be generated and manipulated based on a set of input im-
ages. The emergence of synthetic video generators repre-
sents not only a major technological advancement, but also
a significant escalation in the potential misinformation and
disinformation threats caused by generative Al.

One would reasonably assume that synthetic image de-
tectors should accurately detect synthetic videos. In this
paper, however, we demonstrate that synthetic image detec-
tors do not accurately detect synthetic videos. Furthermore,
we show that this is not due to performance degradation
caused by H.264 compression. Instead, we demonstrate that
synthetic video generators leave distinct traces that are not
detected by image detectors. Encouragingly, we show that
these traces can be learned and utilized to perform accurate
synthetic video detection and generator source attribution.
In addition, we investigate the transferability of synthetic
video detectors and show that they can be adapted to detect
videos from new generators that contain substantially dif-
ferent traces using very little data. The novel contributions
of this paper are listed below:

1. We show that synthetic image detectors do not reliably
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Figure 2. Sample frames from different video generators. The figure shows the synthetic video frames: from left to right Luma [1],
VideoCrafter [13], CogVideo [34], Pika [45], Sora [9], and Stable Video Diffusion [8].

detect Al-generated videos, and empirically verify this is
not due to the degradation effects of H.264 compression.

2. We demonstrate that synthetic video generators leave
substantially different forensic traces than those left by
synthetic image generators. This is the primary cause of
synthetic image detectors’ poor performance on video.

3. Furthermore, we show that synthetic video traces can
be learned and used to perform reliable synthetic video
detection or source attribution even in the presence of
H.264 re-compression.

4. We demonstrate that while detecting videos from new
generators through zero-shot transferability is challeng-
ing, accurate detection of videos from a new generator
can be achieved through few-shot learning.

5. We create a new, publicly available dataset of synthetic
videos from a number of state-of-the-art video genera-
tors that can be used to train and benchmark the perfor-
mance of synthetic video detectors. '

2. Background

Synthetic Image Generation. The field of computer-
generated media has seen significant advancements, begin-
ning with the introduction of Generative Adversarial Net-
works (GANs) by Goodfellow et al. [27], a seminal work
that has since spurred a multitude of subsequent innova-
tions [17, 40-43, 56, 81, 96]. These innovations have
significantly enhanced the capabilities of generative mod-
els in producing images that are diverse, realistic, and of
high quality. Recent works have explored using Trans-
formers for improving generated image consistency [11,
21, 24, 30, 67, 92]. However, a notable milestone was
achieved with the advent of the diffusion model by Ho et
al. [32], which has since fueled a vast array of research
leading to cutting-edge generation methods like Stable Dif-
fusion [74], DALL-E [72], Midjourney [61], and Cascade
Diffusion [33], to name a few [4, 20, 29, 84, 98].

Synthetic Video Generation. Another modality of syn-
thetic media synthesis is synthetic video generation. Re-
cently, lots of research attention has been devoted to de-
veloping synthetic video generation methods. These meth-
ods ranges from diffusion models [8, 13, 14], to Transform-

I'Link to our dataset: https://huggingface.co/datasets/ductail99x/synth-
vid-detect

ers [25, 34, 39, 52, 71, 76, 86, 87, 91]. Moreover, there ex-
ists generation techniques that use a combination of meth-
ods such as SORA by OpenAl [9], and commercially avail-
able products that do not disclose the exact method used for
content generation [45, 62].

Synthetic Image Detection. As synthetic image genera-
tors proliferate, researchers aim to devise detection meth-
ods. Wang et al. [83] were among the first to tackle this by
training a CNN on a single generator, enabling the detec-
tion and classification of numerous synthetic images. Sub-
sequently, as generators grew more complex, researchers
developed sophisticated detectors, including methods pro-
posed by Marra et al. [54, 55], Zhang et al. [94], and oth-
ers [10, 23, 47, 60, 64, 65, 69, 82, 85, 93]. Recently, de-
tection methods have extended to newer image generation
techniques like diffusion models [2, 19, 51, 70, 77, 97].

3. Using Synthetic Image Detectors On Video

Given that a video can be seen as a sequence of images, it is
reasonable to expect that synthetic image detectors should
be effective at detecting Al-generated synthetic videos. Sur-
prisingly, however, we have found that synthetic image de-
tectors do not successfully identify synthetic videos. Fur-
thermore, we have found that this issue is not primarily
caused by the degradation of forensic traces due to H.264
video compression.

To demonstrate these findings, we conducted a series of
experiments in which we evaluated synthetic image detec-
tor’s ability to detect synthetic videos. The details of these
experiments, as well as their outcomes, are presented below.

3.1. Experimental Setup

Detectors. We evaluated the performance of a broad set of
detection algorithms. These include both publicly available
pretrained detectors made specifically for synthetic image
detection, and other architectures that are widely used to
perform image forensic tasks. The complete list of these
detectors and their referred-to names is provided in Table 1.

Image Training Dataset. To train detectors that weren’t
pretrained, we used a dataset of 100,000 images equally
divided between real and synthetic. For real images, we
utilized a subset of the COCO dataset [49] and the LSUN
dataset [90], as was done in [19]. For synthetic images, we
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Detection Algorithms
(P=Pretrained, R=Retrained, T=Trained-by-us)

Training | Refer to as Architecture Used by

P Corvi et al.[19] ResNet-50[31] [3, 19, 48,78, 95]

P Sinitsa et al.[77] | DIF[77] [15,77,97]

P Zhu et al.[97] Swin-Transformer[50] [97]

R ResNet-50[31] ResNet-50[31] [3, 19, 48,78, 95]

R DIF[77] DIF[77] [77]

R Swin-T[50] Swin-Transformer[50] [15,97]

T ResNet-34[31] ResNet-34[31] [3,22,53,94,95]

T VGG-16[75] VGG-16[75] [3, 26, 47, 68, 89]

T Xception[ 18] Xception[ 18] [3, 12, 16, 38, 79]

T DenseNet[37] DenseNet[37] [46, 54, 59, 88]

T MISLnet[23] MISLnet([5, 7] [23, 28]

Table 1. List of detection algorithms used in this paper and the
names as they are referred to in our paper.

used synthetic images from the datasets used in [23] con-
sisting of images made by CycleGAN [96], StarGAN [17],
StyleGAN3 [43], ProGAN [40], and Stable Diffusion [74].

Image Testing Dataset. To benchmark the performance
of each detector, we created a testing set of 20,000 images
equally divided between real and synthetic. This set was
made by utilizing disjoint subsets of the datasets used to
create the real and synthetic image training data.

Video Testing Dataset. To measure the performance of
each detector, we created a testing dataset of both real
and synthetically generated videos. Real videos were
taken equally from the Moments in Time (MiT) [63] and
Video-ACID [36] datasets. Synthetic videos were gener-
ated using four different publicly available video genera-
tors: Luma [1], VideoCrafter-v1 [13], CogVideo [34], and
Stable Video Diffusion [8]. These synthetic videos were
created using a common set of diversified content and mo-
tion text prompts, with the exception of videos from Luma,
which were gathered from a similarly diverse set of publicly
shared videos. The qualitative samples of these videos are
shown in Fig. 2. Further details of this test set are provided
in Table 4 and in Sec. 5.1 below.

Metrics. The detection performance of each detector was
measured using the area under its ROC curve (AUC).

3.2. Synthetic Image Detector Performance

We first established the baseline performance of each syn-
thetic image detector on our image testing dataset. These
results are presented in the second column of Table 2. The
majority of detectors achieved an AUC of 0.94 or greater,
except for the pre-trained version of Swin-T with an AUC
of 0.891. These baseline results verify that when assessed
on images, each detector can achieve strong performance.
Next we evaluated each synthetic image detector using
our video testing dataset. These results are also shown in

Images Videos
Method

Baseline | Luma CogVideo VC-vl SVD | Average
Corvietal. [19] 0.974 0.583 0.704 0.590 0.682 0.640
Sinitsa et al. [77] 0.992 0.500 0.500 0.500  0.500 0.500
Zhu et al. [97] 0.891 0.652 0.694 0.728  0.719 0.698
ResNet-50 [31] 0.946 0.572 0.736 0.604 0.710 0.656
DIF [77] 0.991 0.581 0.603 0.617  0.573 0.594
Swin-T [50] 0911 0.638 0.685 0.698  0.692 0.678
ResNet-34 [31] 0.983 0.576 0.623 0.616  0.647 0.615
VGG-16 [75] 0.990 0.635 0.652 0.684  0.669 0.660
Xception [18] 0.996 0.592 0.638 0.670  0.664 0.641
DenseNet [37] 0.975 0.559 0.584 0.647  0.678 0.624
MISLnet [23] 0.983 0.626 0.718 0.710  0.707 0.690

Table 2. Detection performance of existing synthetic image detec-
tors, that were trained or pretrained on synthetic images, on differ-
ent synthetic video generation methods. Performance numbers are
measured using AUC.

Images Videos
Method Vs.

Baseline | Luma CogVideo VC-vl SVD | Avg. no H.264
ResNet-50 [31] 0.963 | 0.604 0.770 0.646  0.738 | 0.689 | +0.033
DIF [77] 0.994 | 0.617 0.634 0.655 0.624 | 0.632 | +0.038
Swin-T [50] 0.948 | 0.679 0.730 0.758  0.742 | 0.727 | +0.049
ResNet-34 [31] 0.989 | 0.663 0.687 0.700  0.727 | 0.694 | +0.079
VGG-16 [75] 0993 | 0.719 0.743 0.754  0.729 | 0.736 | +0.076
Xception [18] 0.979 | 0.642 0.692 0.734  0.708 | 0.694 | +0.053
DenseNet [37] 0.980 | 0.604 0.628 0.691 0.703 | 0.656 | +0.032
MISLnet [23] 0.995 | 0.674 0.759 0.784  0.760 | 0.744 | +0.054

Table 3. Detection performance of existing synthetic image detec-
tors, that were retrained on H.264-compressed synthetic images,
on different synthetic video generation methods. Performance
numbers are measured using AUC.

Table 2. These results show that all detectors experience
significant performance drops when evaluating synthetic
videos. The highest average AUC achieved was 0.698, with
most detectors scoring an AUC of 0.65 or lower. This drop
in performance cannot be attributed to a single challenging
generator, as AUCs for each detector on a single generator
are consistently less than 0.74.

These results demonstrate that synthetic image detectors
face significant challenges in detecting synthetic videos.
This difficulty persists across various detector architectures
and whether detectors are pre-trained by others or retrained
using our dataset.

3.3. Effect of H.264 Robust Training

It is well known that compression alters forensic traces and
degrade a detector’s performance. Hence, a plausible expla-
nation for synthetic image detector’s the poor performance
on synthetic video could be that H.264 video compression
is degrading synthetic video traces[66].

To test this hypothesis, we conducted an additional set
of experiments in which each synthetic image detector was
retrained to be robust against H.264 compression. Ro-
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Figure 3. Fourier transform analysis of the forensic traces extracted from different synthetic image and video generators.

bust training involves augmenting the training dataset by
re-compressing all data points using different compression
strengths, i.e. different quality factor for JPEG or different
compression rate factors (CRFs) for H.264. It is well known
that robust training can significantly mitigate the negative
effects of compression [0, 19, 44, 80]. As a result, if H.264
compression was truly the cause of a detector’s low perfor-
mance on synthetic video, we would expect the detector’s
performance to increase to a level much closer to its base-
line performance after robust training.

Table 3 shows the performance of each synthetic im-
age detector after it was robustly trained by augmenting the
image training dataset with H.264 compressed images us-
ing CRFs between 0 and 20. The baseline detector perfor-
mances on images show that robust training improves each
detector’s already strong performance on images. Despite
this, robust training did not substantially improve each de-
tector’s performance when evaluated on our video testing
set. The detector with the strongest performance on video
after robust training was VGG-16, which obtained an AUC
of 0.736 on video as opposed to its baseline performance
of 0.993 on images. Most detectors achieved an average
AUC of below 0.74. And on average, robust training only
improved the AUC of each detector by 0.052. The largest
AUC gain was seen by ResNet-34 [31, 94], increasing its
average AUC by 0.079 to 0.694.

These results indicate that H.264 is not the primary cause
of synthetic image detectors’ poor performance when de-
tecting synthetic videos. Instead, the poor performance of
synthetic image detectors after H.264 robust training sug-
gests that a different factor is causing this phenomenon.

4. Synthetic Video Forensic Traces

Here, we present evidence that forensic traces in synthetic
video are substantially different than those in synthetic im-

ages. We qualitatively demonstrate this by visualizing the
low-level forensic traces left by a number of different image
and video generators using the approach proposed in [94].

To do this, we collected a set of 1000 images and
video frames created using several different image and
video generators. These image generators included Pro-
GAN [40], CycleGAN [96], StarGAN [17], StyleGAN
3 [43], Latent Diffusion [73], and Stable Diffusion [74],
while video generators included Luma [1], VideoCrafter
vl [13], CogVideo [34], Pika [45], Sora [9], and Stable
Video Diffusion [8]. We then created a noise residual for
each image and video frame x; by de-noising it using a
de-noising algorithm ¢, then subtracting the denoised im-
age or frame from the original. All noise residuals from
a single generator were averaged to produce an aggregate
noise residual y = + ZkN:1 xp—¢(xy). Frequency domain
representations of these aggregate noise residuals were then
created by taking their Fourier transforms, then their mag-
nitudes were plotted to produce trace visualizations.

Image and Video Generator’s Trace Comparison. The
resulting low-level forensic traces for each image and video
generator are shown in Fig. 3. By examining these traces,
we can clearly see that synthetic images contain substan-
tially different traces than synthetic videos. For example,
traces left by image generators (e.g. ProGAN, CycleGAN,
Latent Diffusion) typically include periodic spectral peaks
or a grid-like structure that Zhang et al. [94] showed are
caused by up-sampling operations used in a generator’s ar-
chitecture. By contrast, some video generation techniques
such as Luma employ neural radiance fields (NeRFs) or
other architectures that do not utilize up-sampling. As a
result, the distinct patterns seen in synthetic image traces
will not be present in traces from these video generators.

Additionally, industry generators may use undisclosed
techniques to protect trade secrets. For instance, full details
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Training Validation Testing
Dataset
#Videos #Frames | # Videos #Frames | # Videos # Frames

3 MIT [63] 3,991 80,000 377 8,000 945 20,000
& | Video-ACID [36] 3,663 80,000 407 8,000 716 20,000
Total 7,654 160,000 784 16,000 1,661 40,000
o | Luma[l] 312 40,000 32 4,000 78 10,000
E VC-v1 [13] 1,428 40,000 143 4,000 280 10,000
£ | CogVideo [34] 1,600 40,000 163 4,000 357 10,000
@

SVD [8] 2,857 40,000 286 4,000 714 10,000
Total 6,197 160,000 624 16,000 1,429 40,000

Table 4. Dataset statistics for training and evaluating detection
systems on synthetic video data. VC stands for VideoCrafter.

about Pika’s generation method are not currently public, but
the significant difference between its traces and others’ sug-
gests Pika uses a noticeably different technique.

Due to the stark contrasts between forensic traces left
by image and video generators, it is highly likely that this is
the major reason why synthetic image detectors exhibit sub-
stantially lower performance on video. Even when robustly
trained, synthetic image detectors learn features to capture
forensic traces similar to what they have seen before. Since
video traces can be substantially different in nature, syn-
thetic image detectors are not suited to capture these traces.

We note that our findings align with prior research.
Specifically, Corvi et al. [19] found that Stable and Latent
diffusion models produce different forensic traces than im-
age generators such as ADM and DALL-E 2. They also
showed that even robustly trained synthetic image detectors
“still cannot reliably detect images that present artifacts sig-
nificantly different from those seen during training.” [19]

5. Learning Synthetic Video Forensic Traces

Results presented in the previous two sections show that
traces left by synthetic video generators are different than
those left by image generators, and that synthetic image de-
tectors do not reliably detect these traces.

In this section, however, we show that synthetic video
traces can be learned. Through a series of experiments, we
show that CNNs can be trained to accurately perform syn-
thetic video detection and source attribution. Furthermore,
we demonstrate that robust training can improve these de-
tectors even after H.264 re-compression. Additionally, we
show how video-level detection can be performed to boost
performance over frame-level detection.

5.1. Experimental Setup

The following experiments all used the same experimental
setup detailed here.

Video Training Data. To train synthetic video detectors in
the following experiments, we collected a diverse set of real
and synthetic videos. For real videos, we gathered videos
from the Moments in Time (MIT) [63] dataset and the
Video Authentication and Camera Identification Database

(Video-ACID) [36]. For the set of synthetic videos, we
used 4 publicly available video generators to generate a
large dataset for both training and testing purposes. These
generation methods are: Luma [1], VideoCrafter-v1 [13],
CogVideo [34], and Stable Video Diffusion [8]. To create
the synthetic videos in our dataset, we utilized a common
set of text prompts chosen to represent a diversified set of
scenes and activities. Videos created using Luma were gath-
ered from publicly shared videos, and similarly chosen to
represent a diverse set of contents and motion. Addition-
ally, all videos are by default compressed using H.264 at
constant rate factor 23. More detailed are provided in Ta-
ble 4.

Video Testing Data. To create our video testing data, we
utilized the same collection and generation methodology as
for our training data. However, we kept an exclusive set of
testing prompts to only be used to create testing data. Re-
garding videos from Luma, we also gathered a disjoint set
of videos, completely separate from those in the training set.
We note that this testing set is the same set used for experi-
ments in Sec. 3. More detailed are provided in Table 4.

Out-of-distribution Test-only Synthetic Videos. In addi-
tion to our in-distribution video testing set, we also evalu-
ated the performance of different detection algorithms on
an out-of-distribution, test-only set of videos. The synthetic
videos in this set is collected from three recently emerging
generation methods: Sora [9], Pika [45], and VideoCrafter-
v2 [14]. More details on this dataset are provided in Table 7

Metrics. In the following experiments, the performance of
each detector was measured using the area under its ROC
curve (AUC). In addition, to highlight performance differ-
ences, we provided the Relative Error Reduction (RER)
with respect to the second best performing method, reported
as a percentage. This metric is calculated as follows:

AUCy — AUCg
RER=100 x ——— 1
*T1ZAUCs M)
where AUCpR, is the AUC of the referencing method, and

AUCJ is the AUC of the method being compared against.

Detectors. To demonstrate the performance of different
detection methods on detecting synthetic videos, we con-
ducted our experiments with the diverse set of detectors
listed in Table 1 and Sec. 3.1.

5.2. Synthetic Video Detection

First, we conducted an experiment in which we trained each
candidate detector network to perform synthetic video de-
tection using the training dataset described above. We then
evaluated their ability to detect each of the four synthetic
video generators in the test set. These experiments were
carried out at a patch-level, i.e. all detection decisions were
obtained using one patch taken from a single video frame.
The results of this experiment are presented in Table 5.
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Method Videos
Luma CogVideo VC-vl SVD Average

ResNet-50 [31] 0.921 0.935 0.940 0.939 0.934
DIF [77] 0.938 0.957 0.969 0.973 0.959
Swin-T [50] 0.960 0.964 0.986 0.991 0.975
ResNet-34 [31] 0.916 0.930 0.942 0.951 0.935
VGG-16 [75] 0.937 0.944 0.965 0.960 0.951
Xception [18] 0.928 0.951 0.973 0.969 0.955
DenseNet [37] 0.918 0.924 0.964 0.968 0.943
MISLnet [23] 0.975 0.980 0.991 0.987 0.983

Table 5. Detection performance of methods trained and tested on
different synthetic video generation methods. Performance num-
bers are measured using AUC.

Method Videos
Luma CogVideo VC-vl SVD Overall

Resnet-50 [19] 0.937 0.958 0.970 0.968 0.962
DIF [77] 0.894 0.909 0.926 0.924 0.917
Swin-T [50] 0.976 0.973 0.991 0.988 0.986
ResNet-34 [31] 0.925 0.947 0.963 0.932 0.948
VGG-16 [75] 0.901 0.936 0.945 0.959 0.935
Xception [18] 0.925 0.971 0.960 0.952 0.950
DenseNet [37] 0.954 0.959 0.976 0.970 0.966
MISLnet [23] 0.975 0.984 0.998 0.992 0.991

Table 6. Synthetic video source attribution performance of each
detection systems on individual generation method. Performance
numbers are measured using AUC.

These results clearly show that synthetic videos can be re-
liably detected using each of these detectors. All detectors
evaluated achieved an average AUC of at least 0.93. MIS-
Lnet achieved the highest average AUC of 0.983 and main-
tained consistently strong detection performance for each
video generator. We note that each detector trained on syn-
thetic video experienced an improvement of at least 0.23 in
average AUC when compared to performance of the same
detector robustly trained on synthetic images. This further
reinforces that synthetic video traces can be learned by ex-
isting architectures used for synthetic image detection.

5.3. Synthetic Video Source Attribution

Next, we conducted an experiment evaluating each net-
work’s ability in source attribution. The forensic network
identifies a video’s source generator or determines its au-
thenticity. To adapt each network for this multi-class clas-
sification, we replaced its final layer with one containing
neurons corresponding to each generator and one for real.
The trained network’s AUC was assessed using the one-vs-
the-rest strategy, where any incorrect source attribution was
counted as a miss regardless of the class.

The results of this experiment are shown in Table 6.
From these results, we can see that all networks achieved
an AUC of at least 0.91, with most achieving an AUC of
0.95 or higher. Again, the best performing network was

Performance Based on CRF Strength

—— Non Robust-Trained
Robust-Trained

0 10 30 40

20
CRF
Figure 4. Detection performance of MISLnet[23] before and after
robust-training on videos with constant rate factors from 0 to 40.

MISLnet, which acheived an AUC of 0.991. These results
indicate that existing networks can be trained to perform ac-
curate synthetic video source attribution. We note that this
result makes sense in light of the synthetic video traces vi-
sualized in Fig. 3. As discussed in Sec. 4, videos are gener-
ated using a wide variety of generation strategies and gener-
ator architectures. Since each technique imparts significant
different traces, this makes it much easier for networks to
accurately discriminate between each generator.

5.4. Effect of H.264 Re-compression

As we discussed in Sec. 3, it is well known that re-
compression can significantly reduce the performance of
a forensic system. This is particularly important since re-
compression is often utilized by social media platforms. In
light of this, we conducted a set of experiments to under-
stand the effect of H.264 compression on detection perfor-
mance. Additionally, we conducted experiments to assess
the ability of robust training to mitigate these effects. In
light of space constraints, results are reported for the MIS-
Lnet detector, which achieved the highest detection and at-
tribution performance in the previous experiments.

To carry out these experiments, we re-compressed each
video in the testing set with constant rate factors (CRFs)
ranging from 0 (weak) to 40 (strong). We note that videos
are all initially H.264 compressed at CRF 23 either by the
camera or the generator. We then re-compressed each video
in the training set using the same CRF levels, and used them
to robustly train MISLnet to perform synthetic video detec-
tion. After this, we evaluated the performance of both the
non-robustly and robustly trained version of this detector.

The results of this experiment are displayed in Fig. 4,
which shows the AUC achieved by the detector at each CRF
both with and without robust training. From these results,
we can see that without robust training, the detector’s per-
formance decreases as the CRF increases. The notable ex-
ception to this is at CRF 20, which is close to the typical
default CRF of 23. Performance increases here because the
CRF used during re-compression is close to the default CRF
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Figure 5. Video-level performance of MISLnet over different
number of patches used for obtaining video-level detection score.

that has already been seen during training.

The results presented in Fig. 4 also show that when ro-
bust training is utilized, the detector’s performance remains
consistently strong across all CRFs. Specifically, the de-
tector is able to achieve an AUC of 0.95 or higher for all
CRFs. Furthermore, when the CRF is 30 or higher, the de-
tector achieves an AUC of 0.97 or higher. These results
demonstrate that robust training enables accurate synthetic
video detection even after re-compression.

5.5. Video-Level Detection Performance

Unlike synthetic images, synthetic videos consist of a se-
quence of Al-generated frames. Because of this, gener-
ator traces are distributed temporally throughout a video.
This information can be exploited to perform detection at a
video-level with greater accuracy.

To perform video-level detection, we first form a patch-
level embedder v(-) by discarding the final layer of a
pre-trained patch-level synthetic video detector. The pre-
softmax activations produced by this network correspond to
patch-level embeddings that capture video generator traces.
Next, a sequence of [NV temporally distributed patches x, are
gathered throughout a video and added together to form a
single video-level embedding. This is then passed through a
soft-max layer to produce the final output detection score

s=o(3) o), @)

where o (-) is the soft-max function[35, 58].

We conducted a series of experiments where we mea-
sured the performance of this video-level detection strategy
using different numbers of patches. In these experiments,
we used the MISLnet detector architecture since it achieved
the best performance for patch-level detection and attribu-
tion. Performance in terms of AUC was measured on both
our non-recompressed testing set, as well as on a version of
the testing set that was re-compressed with a CRF of 40 for
different numbers of patches NV ranging from 1 to 80. Ad-
ditionally, the percentage of relative error reduction (RER)
over a patch-level detector was also calculated for each N.

The results of these experiments are displayed in Fig. 5

Video Level Relative Error Reduction

—e— Non Re-Compressed
0.7 CRF40, Re-Compressed

0 10 20 30 40 50 60 70 80
Number of Patches

Figure 6. Relative Error Reduction in video-level performance
versus frame-level performance of MISLnet over different num-
ber of patches used for obtaining video-level detection score.

which shows video-level detection AUC vs number of
patches used for detection, and in Fig. 6 which shows the
RER vs. number of patches used for detection. From these
figures, we can see that performance increases as more
patches are used to perform video-level detection. This is
particularly strong for re-compressed video, where the AUC
grows from 0.953 to 0.984 as 80 patches are used, corre-
sponding to a RER of 66% over the patch-level detector.
These results show that video-level detection can achieve
important performance gains by leveraging traces through-
out an entire video.

We also note that while the increase in AUC for non-
recompressed videos is not large in absolute terms, the RER
achieved is substantial. Specifically, when 80 patches are
used, the video-level detector achieves an RER of 72.2%
over the patch-level detector. This is particularly important
when performing synthetic video detection at scale, such as
if a social media company were to examine all videos up-
loaded to its service. Because of the large number of videos
examined, small gains in performance can correspond to a
large reduction in the number of false alarms.

6. Detection Transferability to New Generators

New synthetic video generator architectures and generation
approaches are emerging at a rapidly. Hence, it is important
to understand the transferability of synthetic video detectors
to new generators as we know this could be achieved as
demonstrated by[57]. In this section, we conduct a series
of experiments to examine detector transferability in both
zero-shot and few-shot transfer scenarios.

6.1. Zero-Shot Transferability

In our first set of experiment, we examined synthetic video
detectors’ zero-shot transferability performance. This cor-
responds to a detector’s ability to detect videos from a new
generator without any re-training.

We began by training the best performing detector (MIS-
Lnet) using data from three of the generators in our train-
ing set. We benchmarked the detector’s performance on the

4403



Out-of-distribution Test-only
Generation Method # Videos # Frames
Sora [9] 38 5,000
Pika [45] 163 10,000
VC-v2 [14] 200 10,000
Total 401 25,000

Table 7. Statistics of the out-of-distribtion, test-only synthetic
video dataset used in Sec. 6.

Generation Method Seen Sources | Unseen Source
VideoCrafter v1[13] 0.993 0.773
Cogvideo[34] 0.990 0.671
Luma[1] 0.991 0.702
SVD[8] 0.985 0.760

Table 8. Zero-shot detection performance of MISLnet [23], which
was trained on 3 out of 4 synthetic video generation sources and
test on the remaining one. Performance numbers are in AUC.

portion of the test dataset corresponding to generators seen
during training. Then, we measured the detector’s zero-shot
transferability by using it to detect videos generated by a
generator not included in training, i.e. unseen sources.

Results from this experiment are presented in Table 8.
These results show that while the detector achieves strong
performance on videos from generators seen during train-
ing, performance drops significantly when evaluating on
new generators. Specifically, the AUC drops from an av-
erage of 0.990 for “seen” generators to an average of 0.727
for new, “unseen” generators.

We conducted a similar experiment, in which we used
the detector trained on all four generators in our train-
ing set to detect synthetic videos from the generators in
our Out-of-Distribution testing set described in Section 5.1.
These videos were generated using three different genera-
tors: Sora, Pika, and VideoCrafter v2.

The results of this experiment are presented in the second
colum of Table 9, labeled “Zero-Shot”. These experiments
yielded similar results, in which the detector had significant
difficulty detecting videos from these new, unseen genera-
tors. The only notable exception to this was VideoCrafter
v2, with a generator closely similar to VideoCrafter v1.

The results of these experiments are somewhat unsur-
prising. As we can see from the generator trace visualiza-
tions in Fig. 3, traces left by different generators can vary
substantially. Furthermore, we know that both video gen-
erator architectures and generation approaches (i.e. NeRF,
diffusion, transformer, etc.) vary significantly from gener-
ator to generator. As a result, it is difficult for a detector
to capture traces from new generation that leave different
traces than those seen in training. Plus, this aligns with sim-
ilar findings obtained for synthetic image detection [19].

Generation Method | Zero-Shot | Few-Shot RER
Sora [9] 0.530 0.982 96.2%
Pika [45] 0.620 0.989 97.1%
VideoCrafter v2 [14] 0.939 0.996 93.4%

Table 9. Zero-Shot and Few-Shot detection performance of MIS-
Lnet [23], which was trained on all training generators, and tested
on new generation sources. Performance numbers are measured
using AUC and RER.

6.2. Transferabilty Through Few-Shot Learning

Next, we examined the ability of a synthetic video detector
to detect a new generator through few-shot learning.

We began the experiments with a pre-trained detector
that identified all four generators in the training set, utiliz-
ing MISLnet. We then fine-tuned the detector to recognize
each generator in the Out-of-Distribution testing set, using
less than one minute of video from each generator. Notably,
the fine-tuning videos were not part of the testing set. Sub-
sequently, we evaluated the updated detector’s performance
on each new generator in the Out-of-Distribution testing set.

Results of this experiment are shown in the second col-
umn of Table 9 from the right, titled Few-Shot. These re-
sults show that the detector can very accurately transfer to
detect new generators through few-shot learning. In each
case, the detector achieves an AUC of 0.98 or higher. This
is a substantial increase over the AUCs achieved by zero-
shot transferability.

Notably, for Sora we increase the AUC from 0.530 to
0.982 through few-shot learning. This corresponds to an
AUC boost of 0.452 and an RER of 96%. These results
show that synthetic video detectors can be transferred to
reliably detect new generators through few-shot learning.
This is particularly important given the rapid pace with
which new generators such as Sora are emerging.

7. Conclusion

Our paper highlights the challenges of detecting syntheti-
cally generated videos, showing that forensic traces in syn-
thetic images and videos differ significantly. Leading to the
poor performance of existing synthetic image detectors on
Al-generated videos. However, we also showed that it is
possible to learn synthetic video traces through the process
of training. Resulting in strong and robust detection and
attribution using existing synthetic image detectors’ archi-
tectures. Additionally, we showed that while these detectors
have difficulties directly transferring to an unseen generator,
strong performance is attainable using very little data.
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