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Abstract

As generative Al progresses rapidly, new synthetic image
generators continue to emerge at a swift pace. Traditional
detection methods face two main challenges in adapting to
these generators: the forensic traces of synthetic images
from new techniques can vastly differ from those learned
during training, and access to data for these new genera-
tors is often limited. To address these issues, we introduce
the Ensemble of Expert Embedders (E3), a novel continual
learning framework for updating synthetic image detectors.
E3 enables the accurate detection of images from newly
emerged generators using minimal training data. Our ap-
proach does this by first employing transfer learning to de-
velop a suite of expert embedders, each specializing in the
forensic traces of a specific generator. Then, all embed-
dings are jointly analyzed by an Expert Knowledge Fusion
Network to produce accurate and reliable detection deci-
sions. Our experiments demonstrate that E3 outperforms
existing continual learning methods, including those devel-
oped specifically for synthetic image detection.

1. Introduction

Over recent years, a number of Al-based techniques have
been developed to create visually realistic synthetic images.
While these synthetic image generators can be used for cre-
ative or artistic purposes, they can also be used to malicious
ones. Specifically, they enable the creation of fake images
that can be used for misinformation or disinformation.

To address these challenges, considerable research ef-
forts have been directed towards the development of syn-
thetic image detection techniques. Prior work has demon-
strated the effectiveness of forensic neural networks in dis-
cerning synthetic images by identifying unique traces left
behind by different image generators. However, a signif-
icant limitation of existing detectors arises when they en-
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Figure 1. Visualization of the Ensemble of Expert Embedders (E3)
framework aimed at enhancing synthetic image detection in re-
sponse to new generators. Examples of the forensic residual traces
for different generator architectures are also depicted.

counter images generated by previously unseen or emerging
techniques, whose traces differ substantially from those in
the training data.

This poses a critical need for continually updating syn-
thetic image detectors to adapt to new generators. How-
ever, this task presents several challenges. Traditional ap-
proaches to updating detectors often encounter issues such
as catastrophic forgetting and the impracticality of storing
and retraining on large datasets [36, 53, 56]. Moreover, lim-
ited data availability from newly emerging generators, espe-
cially those not yet publicly accessible, further complicates
the updating process.

In this paper, we propose a novel approach to address
these challenges. Instead of relying on a single network to
capture all forensic traces, we introduce an Ensemble of Ex-
pert Embedders (E3) framework. Each expert embedder is



created through transfer learning and specializes in captur-
ing traces from a specific image generator. These expert
embedders collectively generate a sequence of embeddings,
which are then analyzed by an Expert Knowledge Fusion
Network (EKFN). The EKFN leverages information from
all expert embedders to accurately perform synthetic im-
age detection. Our experimental results demonstrate that
the proposed E3 framework significantly outperforms exist-
ing continual learning approaches, including those designed
specifically for updating synthetic image detectors, and can
perform strongly even with very limited data from new gen-
erators. The novel contributions of this paper are:

* We propose E3, a new approach that can update synthetic
image detectors to accurately detect newly emerging gen-
erators, while requiring only minimal amounts of training
data to be retained in a memory buffer.

* We develop a novel approach to create a set of expert em-
bedders to accurately capture traces from each new target
generator. Each expert can be adapted using a small set
of images from its target generator.

* We propose an expert knowledge fusion network able to
examine forensic evidence produced by the set of all ex-
perts and make accurate detection decision.

e We conduct an extensive set of experiments demon-
strating that E3 outperforms competing approaches from
continual learning, including approaches specifically de-
signed to update synthetic image detectors. Notably, E3
consistently outperforms competitors across various de-
tector architectures and excels even with limited data
from new generators.

2. Background

Synthetic Image Generators. Considerable effort has been
devoted to developing systems that can visually understand
the world through the process of mimicking; the first of
such work is Variational Auto-Encoder by Kingma and
Welling [33], which led to the development of Generative
Adverserial Networks (GANs) by Goodfellow et al. [18].
This work inspired many other subsequent works [8, 26,
28, 47, 71], which continued to improve visual understand-
ing through enhancing the generation’s quality, diversity,
and realism. Notably, the introduction of diffusion model
for image generation by Ho et al. [21] set the stage for the
explosion of research in this area, resulting in many pop-
ular generation methods such as: Stable Diffusion [54],
DALL-E [50], Midjourney [1], Cascade Diffusion [22],
etc. [3, 15, 64, 73]. Due to the rapidly increasing rate of
emergence of new generation methods, existing synthetic
image detectors face a formidable challenge. These detec-
tors often have limited capabilities, restricting them to de-
tecting only the generators seen during training [13, 59].

Synthetic Image Traces and Detection. Numerous ef-

forts have been undertaken to distinguish synthetic images
from real ones. Marra et al. [39] demonstrated that GAN-
generated images possess unique “fingerprints” useful for
detection and source attribution. This work showed that in-
dividual image generators all left behind identifiable arti-
facts, called forensic traces, that can be used to detect their
generated images. While prior work has examined trans-
ferable forensic features [43], subsequent research demon-
strated the difficulty for a detector to generalize to forensic
traces from a new family of generators [13, 41]. To ad-
dress the rapid release of generators, a broad spectrum of
new synthetic image detectors, and more recently, synthetic
video detectors, were developed [13, 17, 25, 39, 58, 60—
62, 68, 69, 72].

Continual Learning For Synthetic Image Detection.
Given the distinct forensic traces left by various generator
families, it is crucial for image detectors to continually up-
date their knowledge with new generators. Traditional re-
training is often data inefficient and fine-tuning may often
lead to catastrophic forgetting [45, 46]. Hence, a number
of methods have been developed to allow the base model
to adapt without losing prior knowledge [10, 36, 52, 56].
Notably, Marra et al. [40] and Kim et al. [31] have success-
fully applied such strategies to synthetic image detection,
demonstrating the feasibility and effectiveness of continual
learning in this domain.

3. Problem Formulation

We begin by assuming that an initial synthetic image detec-
tor fo has been created to detect images generated by a set
of known generators Gy. We will refer to this detector as
the baseline detector. We further assume that fj, was trained
using a large baseline training dataset BB consisting of both
real and synthetic images made using generators in Gy.

After the baseline detector has been trained, new syn-
thetic image generators g ¢ Go will continue to emerge.
As previous research has shown, fy will have a difficult time
detecting these new generators if the forensic traces or “fin-
gerprints” left by these generators are substantially different
than those left by the generators in Gy [13]. Because of this,
the synthetic image detector will need to be continually up-
dated as new generators emerge.

This presents an important set of problems. Training a
new detector from scratch can be resource intensive and
requires that the baseline dataset 13 be stored indefinitely.
Instead, it is preferable to retain only a small dataset M,
known as the memory buffer, to update the detector. Care
must be taken when updating the detector, however, because
naively fine-tuning the detector can lead to catastrophic for-
getting. When this happens, the detector is able to identify
images produced by the new generator, but loses its ability
to reliably detect images from previous generators.
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Additionally, challenges may arise when access to syn-
thetic images generated by the new generator gj, is limited.
For instance, a generator may not be available to the general
public, but a small number of examples from the generator
may be publicly obtainable. An example of this is OpenAlI’s
Sora generator [9]. Currently, access to Sora is restricted,
however OpenAl has shared a small number of sample out-
puts. Alternatively, a party engaged in a misinformation
campaign may have developed a new generator for their
purposes. In this case, access to images produced by this
new generator is severely limited by the number of exam-
ples that have been released into the wild. Training an ef-
fective synthetic image detector that can continuously adapt
to new generators with limited data is highly non-trivial.

To formalize the problem of updating the detector given
these constraints, we define Mj_; as the memory buffer
when the k" new generator is introduced. Mj,_; consists
of two subsets: R which contains real images and Sy_1
which contains images made by each of the previously seen
generators. The memory buffer has a fixed size |[M,|= M,
that remains constant even as more generators emerge. Ad-
ditionally, we define Dy, as the set of images from the new
generator g that can be used to update the detector. We
assume that |[Di|= N, and that N is significantly smaller
than the number of images in B, i.e. we are allowed a small
number of images from the new generator.

4. Proposed Approach

While a synthetic image detector f is often thought of as a
single network, we can conceptually view it as the composi-
tion of an embedder ¢ and a classifier h, such that f = ho¢.
When adopting this view, the embeddings produced by ¢
capture forensic traces left by synthetic image generators,
while the detector maps these embeddings to detection de-
cisions. In practice, lower layers of the network can be
thought of as the embedder, while the final layer or layers
can be thought of as the classifier.

When a continual learning technique is used to update f,
this typically involves using a special process that retrains
f to detect images from both a new generator and existing
generators using M}, and Dy,. This corresponds to updating
¢ so that it learns an embedding space that is able to jointly
capture forensic traces from previous generators as well as
the new generator. However, since forensic traces from dif-
ferent generators can be substantially different [13], learn-
ing an embedding space that successfully does this with a
limited amount of data in M, and Dy, can be challenging.

To overcome this challenge, we propose a new frame-
work to update f called Ensemble of Expert Embedders
(E3). In this framework, we do not attempt to learn a
single embedding space to capture the traces left by all
generators. Instead, we form a set of expert embedders
O, = {¢o, ..., dr}, where each expert embedder ¢y is spe-
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Figure 2. End-to-end architecture workflow: An image is first pro-
cessed by E3 to generate embeddings, which are passed through a
transformer and MLP layers to produce the detection decision.

cialized to capture traces from generator g,. When forming
an expert embedder ¢, for a new generator g, we allow it
to experience catastrophic forgetting, since other experts in
®;, are dedicated to capturing traces from other generators.

To analyze an image, it is passed through all embedders
in @, to produce a sequence of embeddings {xo, ..., X}
Each embedding x, captures evidence that the image was
generated by gy. This set of embeddings is then analyzed
using an Expert Knowledge Fusion Network (EKFN) to
produce a single detection decision. As a result, E3 is able
to leverage forensic evidence within the union of every ex-
pert’s embedding space, as opposed to relying on a single
embedding space to capture all forensic evidence.

We describe the process to form each expert embedder,
update the memory buffer, and train the expert knowledge
fusion network in the following subsections.

4.1. Creating A New Expert Embedder

Let G, —1 be the set of currently known synthetic image gen-
erators. When a new synthetic image generator g, ¢ Gr._1
emerges, we need to update our detector. To do this, we
must first create a new expert embedder ¢y, to capture traces
left by gi. We accomplish this by adapting the baseline de-
tector fo using transfer learning. An overview of this pro-
cess is shown in Fig. 3.

We start by forming a new expert training set 7, of real
and synthetic images that we will use to create ¢;. This
is done by collecting a set Dy, of N synthetic images cre-
ated by the new generator. Real images are taken from the
current memory buffer Mj,_;, which contains the subset R
consisting of M /2 real images. As a result, the new expert
training set is T, = Dy U R.

Next, we use T to update fj to detect images made by
gi- Specifically, we form a new detector fk by fine tuning
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Figure 3. Creation of a new specialized expert, ¢, when a new
generator emerges. The baseline detector f; is fine-tuned with data
Dy, and real images R from memory buffer. The new classifier
fk ’s embedder ¢y, is then preserved.

fo with T using the loss function

D -
Ly=—)" %teﬂog(fk(fe))
1T IR| ()

1+ m(1 —t¢)log(1 — fi(Ie)),

where I, is the £-th image in 7, and ¢, is the class label of
the image I, where 0 means the image is real and 1 means
the image is synthetic. By doing this, the resulting detector
fr will be adapted to detect images made by g;. However, it
will likely experience catastrophic forgetting and be poorly
suited to detect generators in Gg_1. )

After obtaining the expert detector fi, we decompose it
into its corresponding embedder ¢, and classifier compo-
nents. The classifier portion is discarded, while ¢y is re-
tained. Finally, ¢, is added to the set of expert embedders
b =P, U {d)k}, where &g = {qf)g}

4.2. Expert Knowledge Fusion Network

After adding the new expert embedder ¢, to the set of ex-
isting expert embedders, we must update the Expert Knowl-
edge Fusion Network (EKFN) 1/ so that it can utilize the
embeddings produced by ¢x. We do this by first updating
the memory buffer My, then using this data to train 9 to
perform detection. This process is described below.

Updating The Memory Buffer. When a new generator g
emerges, the current memory buffer My_; does not include
images generated by it. As a result, we need to add images
from Dy, to form the updated memory buffer M,. How-
ever, since the memory buffer has a fixed size M, we must
remove synthetic images made by previous generators in
Gr—1 to make space for these new images.

We first note that S;,_, i.e. the subset of M, _; that cor-
responds to synthetic images, contains Px_1 = [M/(2k)]
images from each generator in G,_1. We now need to form

Algorithm 1 Training Expert Knowledge Fusion Network
Require: My_;,Dy, Py
/I Let wg;r_l) be the procedure to sample images from
M1 uniformly at random
/I Let wgc) be the procedure to sample images from Dy
uniformly at random
/I Let S be the number of training steps
My ™ (M) U ) (Dx)
forstep=1,---,5do
X+ {}
fori=1; i <|[Mg|; i +=1do
Iﬁ = Mk [3], Xg‘ — {}
forj=1; j<|®f; j+=1do

9« B i
X; = X;u{o;(1:)}
end for
X+ Xu{X;}
end for
L Ly( M, X) & Compute loss with Eqn. 2
1) + BackPropagate(L, 1)
end for
return

an updated set of synthetically generated images Sy that
contains an equal number of images from all generators in
G- To do this, we retain Py = (k/(k + 1))Px_1 images
corresponding to each generator in G_1 from Sg_; drawn
uniformly at random. These images are added to the new
updated memory buffer’s subset of synthetic images Sy. Fi-
nally, we add P, images drawn uniformly at random from
Dy to Sk to form a complete set of synthetic images from
all generators in Gy for the memory buffer. The updated
memory buffer is now formed as My = S UR.

Training The EKFN. Once we have updated the memory
buffer, we use My, to train the EKFN ). To do this, we first
use the set of expert embedders @, to extract a sequence of
embeddings {x§,...,xt} for each image I, € M. Next,
we randomly initialize ¢ and train it using the loss function

Ly=— ) (xG,...,x})logty
Iee Mg ¢ ¢ (2)
+ (1 = ¥(xqp, - .-, x)) log(1 — ).
After training the EKFN, the synthetic image detector
has been completely updated and the network is ready to
perform detection. The EKFN’s training procedure is pro-
vided in Alg. 1.

EKFN Architecture. We can think of each embedder ¢,
as a mechanism that searches for evidence of traces left
by generator g,. The resulting embedding x, can then be
viewed as a measurement of this evidence. When viewed
this way, the purpose of the EKFN is to examine all forms
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Abbry.| Generator Name Abbry.| Generator Name

u 5 5G StyleGAN [28] VQD | Vec. Quant. Diff. [19]
'g E‘ 5G2 StyleGAN2 [29] DIG Diffusion GAN [63]
= & | ProG | ProGAN [27] 5G3 StyleGAN3 [30]

SD1.4 | Stable Diffusion 1.4 [54]
GLD | Glide [45]

GF ‘GANformer [24]
DL2 DALL-E2[51]

New & Emerging Genemtors

§ w | MI Midjourney [1] Latent Diffusion [54]

,E % DLM | DALL-E Mini [14] EG3 Eff.Geo. 3D GAN [11]

E] (§ T Taming Transformers [16] PG Projected GAN [55]

; SD2.1 | Stable Diffusion 2.1 [54] SD1.1 | Stable Diffusion 1.1 [54]
CIPS | Cond.Indep. Pix.Synt [2] DDG | Denoise Diff. GAN [65]
BG BigGAN [&] DDP | Denoise Diff. Prob. [21]

Table 1. The full names and abbreviations for all synthetic image
generators used in this paper.

of evidence in the context of one another in order to make
an accurate forensic decision. In light of this, we design the
EKFN such that it uses a transformer’s self-attention mech-
anism to examine the sequence of embeddings in the con-
text of one another.

An overview of our EKFN architecture is shown in
Fig. 2. The sequence of embeddings is first passed di-
rectly to a transformer. Each transformer output is used to
weight its corresponding embedding through element-wise
multiplication. The resulting weighted embeddings are then
passed to an MLP, which makes a final detection decision.
In practice, we form the MLP using 2 layers and the trans-
former using 20 layers in accordance to the results of an
ablation study reported on in Sec. 7. We note that simpler
EKFN architectures can be utilized to reduce network com-
plexity at the cost of decreased performance.

4.3. E3 Framework Summary

E3 uses the following steps to update a synthetic image de-
tector after the emergence of a new generator:

1. Form a new training set using real images from the mem-
ory buffer and a set of images from the new generator.

2. Utilize this training set to create an expert embedder
specifically trained to capture forensic traces associated
with the new generator, and incorporate it into the en-
semble of expert embedders.

3. Update the memory buffer with the new generator’s data.

4. Retrain the Expert Knowledge Fusion Network (EKFN)
using the data stored in the memory buffer.

5. Experiments

5.1. Experimental Setup

Baseline Detector Dataset. We created a baseline dataset
in order to train and evaluate the baseline synthetic im-
age detectors. To form a diverse set of real images,
we gathered 72,000 images equally distributed among the
CoCo dataset [37], the LSUN dataset [67], and the CelebA
dataset [38]. As for the set of synthetic images, we also

gathered 72,000 GAN-generated images from the datasets
used in prior work [17, 62]. The synthetic images in this set
are equally distributed among three GANs: StyleGAN [28],
StyleGAN2 [29], and ProGAN [27]. Additionally, to form
the set of images used for training, validation, and testing,
we split the set of real images and the set of synthetic im-
ages each into their own disjoint subsets. Specifically, we
used 132,000 images for training with 12,000 images held
out for validation, and 12,000 images for testing.

Emerging Generators Dataset. To simulate a constantly
evolving environment in which new synthetic image gen-
erators rapidly emerge, we created a dataset to train and
evaluate our proposed approach in a continual learning set-
ting. To accomplish this, we first selected a diverse set of
generators, composed of 19 different generation techniques.
These techniques are listed in Tab. 1. All synthetic im-
ages in this dataset are assembled from publicly available
datasets [17, 49, 58]. Then, from each generator, we gath-
ered 600 images exclusively used for training and 400 im-
ages exclusively used for testing.

Baseline Detector Training. We obtained a baseline de-
tector by training MISLnet [6] to distinguish between real
and synthetic images in our baseline detector dataset. We
chose MISLnet as the architecture for our experiments be-
cause it is lightweight and has shown repeatedly to obtain
strong performance on detecting synthetic images and other
image forensic tasks [4, 5, 12, 42, 44]. We trained MISLnet
using a Binary Cross-Entropy Loss function via the ADAM
optimizer [32] with a constant learning rate of 5.0 x 105,
This model resulted in an accuracy of 0.97 on the testing
portion of our baseline detector dataset.

Memory Buffer. Throughout all experiments in this paper,
we fixed the size of memory buffer, M, to 1000 images
from which 500 are synthetic and 500 are real. The syn-
thetic images are then equally distributed among all previ-
ously known generators. We note that the memory buffer
is continually updated after each step to include samples of
the new generator.

Performance Metrics. To evaluate the performance of our
proposed approach and others, we chose the Area Under the
ROC Curve (AUC) metric. Additionally, in order to obtain
a more complete picture of our performance, we provided
the Relative Error Reduction (RER) with respect to the sec-
ond best performing method, reported as a percentage. This
metric is calculated as follows:
AUCy — AUCg 3
1-AUCgp '’ ®
where AUCpg, is the AUC of the referencing method, and
AUC is the AUC of the method being compared against.

Competing Methods. We compared our method against
multiple approaches, including two naive strategies: Base-
line, where the baseline detector is never updated, and

RER = 100 x
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Synthetic Image Generators
Method Avg. + Std.
SD14 | GLD | MJ | DLM | TT | SD2.1 | CIPS | BG | VQD | DIG | SG3 | GF | DL2 | LD | EG3 | PG | SDI1.1 | DDG | DDP
Baseline 089 | 098 | 085 | 0.86 | 0.81 | 0.89 | 0.76 | 0.77 | 0.85 | 0.76 | 0.98 | 0.73 | 0.97 | 0.81 | 0.98 | 0.89 | 0.87 0.67 | 0.78 | 0.85+.090
Fine-Tune 0.65 | 0.83 | 0.65 | 0.67 | 0.64 | 0.69 | 0.85 | 0.75 | 0.88 | 0.88 | 0.90 | 0.92 | 0.79 | 0.68 | 0.89 | 0.76 | 0.74 0.87 | 0.84 | 0.78 +.098
LWEF [36] 0.91 098 | 092 | 082 | 0.85| 092 | 0.85 | 0.88 | 0.96 | 0.94 | 0.99 | 095 | 0.94 | 0.72 | 0.97 | 0.92 | 091 0.95 | 0.94 | 0.91 £ .066
ER [53] 094 | 099 | 097 | 096 | 0.96 | 094 | 099 | 091 | 098 | 0.98 | 0.99 | 0.99 | 0.99 | 0.90 | 1.00 | 0.96 | 0.94 0.99 | 0.99 | 0.97 £+.030
DER++ [10] 094 | 099 | 096 | 095 | 095 | 0.93 098 | 0.89 | 0.97 | 097 | 099 | 0.98 | 0.99 | 0.90 | 1.00 | 0.96 | 0.93 0.99 | 098 | 0.96 +.031
UDIL [56] 0.94 1.00 | 097 | 097 | 096 | 094 | 099 | 092 | 098 | 0.98 | 0.99 | 0.99 | 0.99 | 0.91 | 1.00 | 0.97 | 0.93 0.99 | 0.99 | 0.97 +.028
ICaRL [52] 0.88 | 096 | 091 | 091 | 0.89 | 091 096 | 0.87 | 094 | 095 | 091 | 095 | 095 | 0.86 | 0.97 | 0.89 | 0.88 0.93 | 0.96 | 0.92 +.034
MT-SC [40] 0.91 099 | 093] 093 | 092 092 | 098 | 090 | 096 | 0.96 | 0.97 | 0.98 | 0.97 | 0.88 | 0.99 | 0.94 | 091 0.98 | 0.98 | 0.95+.034
MT-MC [40] | 0.92 1.00 | 095 | 095 | 0.94 | 0.93 0.99 | 09.0 | 098 | 098 | 0.99 | 0.99 | 0.99 | 0.88 | 0.99 | 0.96 | 0.92 0.99 | 0.99 | 0.96 +.036
Ours 0.99 1.00 | 099 | 099 | 098 | 098 | 099 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.96 | 1.00 | 0.99 | 0.99 1.00 | 0.99 | 0.99 +.010

Table 2. Detection performance of each method, measured in terms of AUC, when adapting to a single new generator. The “baseline”
detector has only seen data from the baseline detector dataset and all approaches started from the same baseline detector.

Fine-tuning, where the baseline detector is updated exclu-
sively with data from new generators. Additionally, we
benchmarked our approach against seven well-established
continual learning strategies: Learning Without Forgetting
(LWF) [36], Experience Replay (ER) [53], Dark Experience
Replay (DER++) [10], Unified Domain Incremental Learn-
ing (UDIL) [56], Incremental Classifier and Representation
Learning (ICaRL) [52], Multi-Task Single-Classifier (MT-
SC) [40], and Multi-Task Multi-Classifier IMT-MC) [40].
We benchmarked ICaRL, MT-SC, and MT-MC using our
own implementations, while to benchmark the rest of the
methods, we utilized the code provided by [56].

5.2. Adapting to One New Generator

In this experiment, we evaluated E3’s ability to detect syn-
thetic images from one new generator. This is important
because in reality we do not know beforehand which gen-
erator we need to adapt our detector to. As a result, we re-
peated this experiment for all 19 generators in our dataset.
We then compared our method’s performance to other tech-
niques used to update the baseline detector. We note that all
approaches started with the same baseline detector network.

We present the results of these experiments in Tab. 2. In
this table, each column represents the performance of differ-
ent algorithms adapting the baseline detector to one specific
generator. The final column calculates the average AUC and
standard deviation over all generators.

This experiment’s results in Tab. 2 show that our method
achieves the best detection performance across all possible
new generators with an average AUC of 0.99. Compared
to the second best method, UDIL, whose an average AUC
is 0.97, we obtained a significant relative error reduction
of 66%. This result shows that our approach is better at
adapting to any one new generator than other approaches.

Additionally, we note that other competing methods’
performance has standard deviations of about 3 to 10 times
larger than ours. This result can be further examined
by looking at certain occasions when the baseline detec-
tor experiences a significant performance drop detecting

a specific unseen generator. When this happens, other
approaches also tend to exhibit a similar drop in perfor-
mance. For example, all competing methods have a signif-
icant drop adapting to Latent Diffusion (LD) and BigGAN
(BG). Similarly, LWF experiences a performance drop on
DLM, DER++, MT-SC and MT-MC on SDI.1, SD1.4 &
SD2.1, and ICaRL on SD1.1 & SD1.4. This result is not
surprising, however, because the baseline detector, which
was trained on GAN, had to be adapted to detect diffusion
models’ images. This aligns with findings in prior work,
which showed that synthetic image detectors “cannot reli-
ably detect images that present artifacts significantly differ-
ent from those seen during training.” [13]

In contrast, our approach displays strong and stable per-
formance irrespective of which generator was added. This
is likely because our approach does not need to rely heavily
on learning a single embedding space to capture traces of
both existing and the new generators.

5.3. Adapting to Multiple Emerging Generators

In this experiment, we tested E3’s ability to adapt to mul-
tiple sequentially emerging generators. We conducted this
evaluation to mimic real world scenarios in which a detec-
tor needs to be able to adapt to detect synthetic images from
each and every newly emerging generator. We then com-
pared our method’s performance to other dedicated contin-
ual learning techniques. After adapting to a new generator,
we measured E3’s and competing methods’ performance in
terms of average AUC over the current and the previous
generators. We repeated this process until we exhausted all
19 emerging generators in our dataset.

We present the results of this experiment in Tab. 3. These
results show that our approach achieved the best perfor-
mance irrespective of the number of new generators added.
Furthermore, we observe that after continually adapting to
19 different generators, our method obtained an average
AUC of 0.97, a reduction of only 0.02 when compared to
the initial performance of 0.99 average AUC. This result
is a significant improvement over the second best method,
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Synthetic Image Generators
Method SD14 | GLD | MJ | DLM | TT | SD2.1 | CIPS | BG | VQD | DIG | SG3 | GF | DL2 | LD | EG3 | PG | SD1 | DDG | DDP
Baseline 089 | 091 | 086 | 0.83 | 0.80| 0.79 | 0.76 | 0.73 | 0.73 | 0.71 | 0.73 | 0.71 | 0.73 | 0.72 | 0.74 | 0.74 | 0.74 | 0.72 | 0.71
Fine-Tune 065 | 0.79 | 073 | 0.81 | 0.83 | 0.83 0.80 | 0.84 | 0.82 | 0.82 | 0.85 | 0.85 | 0.73 | 0.79 | 0.81 | 0.70 | 0.76 | 0.83 | 0.74
LWF [36] 090 | 091 | 089 | 0.89 | 0.88 | 0.89 | 0.86 | 0.85 | 0.85 | 0.85 | 0.82 | 0.82 | 0.72 | 0.80 | 0.82 | 0.81 | 0.80 | 0.83 | 0.79
ER [53] 094 | 096 | 0.96 | 0.96 | 0.95 | 0.95 095 | 091 | 093 | 0.93 | 094 | 0.94 | 0.93 | 091 | 0.93 | 0.90 | 0.90 | 0.93 | 0.93
DER++ [10] 096 | 096 | 092 | 091 |0.88 | 089 | 0.86 | 0.84 | 0.83 | 0.82 | 0.82 | 0.82 | 0.79 | 0.81 | 0.82 | 0.82 | 0.82 | 0.82 | 0.80
UDIL [56] 095 | 097 | 096 | 0.96 | 0.96 | 0.95 096 | 093 | 094 | 094 | 094 | 094 | 0.94 | 093 | 0.94 | 092 | 092 | 093 | 0.93
ICaRL [52] 0.91 093 | 092 | 091 | 090 | 092 | 091 | 0.89 | 090 | 091 | 090 | 0.91 | 0.91 | 0.87 | 0.90 | 0.89 | 0.90 | 0.90 | 0.90
MT-SC [40] 087 | 0.85 | 077 | 0.76 | 0.75 | 0.74 | 0.76 | 0.69 | 0.73 | 0.74 | 0.74 | 0.73 | 0.74 | 0.70 | 0.69 | 0.70 | 0.70 | 0.76 | 0.74
MT-MC [40] | 0.92 | 0.96 | 0.94 | 094 | 0.93 | 0091 092 | 0.88 | 0.89 | 0.90 | 091 | 0.92 | 091 | 0.86 | 0.90 | 0.87 | 0.87 | 0.91 | 0.90
Ours 099 | 099 | 099 | 099 [ 099 | 098 | 098 | 098 | 0.98 | 0.98 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97

Table 3. Detection performance of each method, measured in terms of AUC, when sequentially adapting to a series of new generators. The
“baseline” detector has only seen data from the baseline detector dataset and all approaches started from the same baseline detector.

Effects of Training Data Sizes from New Generators on AUC
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Figure 4. Our method shows slight performance decline when
adapting to 19 generators with training image counts reduced from
500 to 50 per generator.

UDIL, with 0.93 average AUC. Additionally, it can be seen
from Tab. 3 that as the number of new generators introduced
increases, the more degraded the performance of some com-
peting approaches becomes (i.e. LWF, DER++, MT-SC). In
contrast, our method retained strong performance through-
out our experiment, with minimal reduction in performance.

Additionally, we note that other competing methods all
experience difficulties detecting new synthetic images from
certain generators. For example, LWF & ER experienced
significant performance drop when adapting to DALL-E 2
(DL2), similarly, UDIL’s performance dropped adapting to
BigGAN (BG), and ICaRL, MT-SC, MT-MC have substan-
tial difficulties adapting to Latent Diffusion (LD). However,
our proposed approach does not experience such issues.
This suggests that by fusing the embedding spaces of all
past and current expert embedders, we can gracefully adapt
to any new generator while avoid having significant perfor-
mance degradation as the number of generator being added
increases.

5.4. Effects of New Generator’s Training Data Size

In this experiment, we examined the impact of different
training data size from each new generator on our proposed

X Accuracy AUC AUC
Architecture
Ours | UDIL | Ours | UDIL | RER
MISLnet [6] 0.922 | 0.860 | 0.970 | 0.932 | 55.9%
ResNet-50 [20] | 0.817 | 0.790 | 0.901 | 0.890 | 10.0%
DenseNet [23] | 0.810 | 0.800 | 0.890 | 0.869 | 16.0%
SR-Net [7] 0.971 | 0.964 | 0.996 | 0.994 | 33.3%
Average 0.880 | 0.853 | 0.939 | 0.921 | 22.8%

Table 4. The performance of E3 versus UDIL using different
basline architectures. AUC-RER is also provided.

approach. This is important because in real world scenarios,
the amount of available data from a new generator is often
limited, especially if such generator is a proprietary prod-
uct. Therefore, to conduct this experiment, we repeated the
experiment in Sec 5.3, with different numbers of available
data ranging from 50 to 500 data points. We then reported
the average AUC after sequentially adding all 19 generators
to our dataset.

The results of this experiment are depicted in Fig. 4.
These results show that our method’s performance experi-
enced minimal reduction in detection performance as the
number of available training images decreased. Specifi-
cally, we received a very slight drop in performance (0.97
to 0.95 average AUC) while having 5 times less training
data, and a small drop in performance (0.97 to 0.94 average
AUC) with 10 times less data. Notably, our performance
of 0.94 average AUC is still an improvement over UDIL
(0.93 AUC), whose training data size is 10 times larger than
ours (see Sec. 5.3). This suggests that our approach not
only achieves the highest performance in adapting to de-
tect synthetic images from new generators but also requires
significantly less data than other methods to attain strong
performance.

5.5. Effects of Different Detector Architectures

In this experiment, we examined the effects of different
network architectures for the baseline detector. This is to
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demonstrate the generality of our approach over the di-
verse set of detection algorithms in the wild. To do this,
we repeated the experiment in Sec. 5.3 with three addi-
tional network architectures: ResNet-50 [20], SR-Net [7],
and DenseNet [23]. These networks are widely used in
prior work for synthetic image detection and other foren-
sic tasks [31, 34, 35, 57, 66, 70]. We then measured ac-
curacy and AUC after adapting to all 19 generators in our
dataset. We note that due to space limitation, we will only
compare to UDIL, the best performing competitor in both
experiments in Secs. 5.2 and 5.3.

We present this experiment’s results in Tab. 4. These
results show that our proposed approach achieves the best
performance irrespective of the underlying detector archi-
tecture. In particular, we notably outperform UDIL in
terms of both accuracy and AUC when employing MISLnet,
ResNet-50, or DenseNet as the network architectures for the
baseline detector. Across all architectures, our performance
is a 22.8% relative error reduction when compared to UDIL.
These results suggest that our proposed method is invariant
to different architecture designs and can be applied in a gen-
eral manner to most, if not all, synthetic image detectors.

6. Discussion

Our method’s strong performance can be attributed to its
utilization of dedicated embedders for each new generator.
These embeddings are specifically learned to capture foren-
sic traces left by their corresponding generators. As a result,
our algorithm does not rely solely on a single embedding
space, but rather on the union of all embedding spaces from
every expert embedder in the ensemble.

However, our approach does come at a cost of increased
network size. Despite this, in many cases, the cost of mis-
detecting Al-generated images, or false-alarming real im-
ages as synthetic, is worth the increase in network param-
eters. Additionally, it is important to note that after our
method adapted the baseline detector (based on MISLnet)
to 19 different generators, the total number of parameters
in our network is 27.8M, a comparable number to a sin-
gle ResNet-50 model with 23.5M parameters. Furthermore,
25.1M of these parameters are frozen because they come
from the ensemble of embedders. In reality, only about 4M
parameters in our network are trainable. For perspective, af-
ter adding 100 new generators, the trainable portion of our
network is only 13.6M parameters.

7. Ablation Results

We conducted an ablation study to assess the impact of dif-
ferent design choices of our Expert Knowledge Fusion Net-
work (EKFN). We present these results in Tab. 5.

Majority Voting. In this setup, we fused the knowledge
from each expert embedder using a majority voting strat-

Setup Accuracy AUC

Proposed 0.93 0.97

0.50 (-0.43) | 0.90 (-0.07)
0.91 (-0.02) | 0.96 (-0.01)
0.88 (-0.05) | 0.96 (-0.01)
0.91 (-0.02) | 0.97 (-0.00)
0.91 (-0.02) | 0.96 (-0.01)

Majority Voting
Knowledge Fusion w/ MLP only
No Transformer Weighting

5 Transformer Layers

10 Transformer Layers

Table 5. Ablation study of the different design choices of the Ex-
pert Knowledge Fusion Network.

egy. This approach involves each expert embedder produc-
ing their own decisions about the input image and the final
detection score is decided using a majority vote. As shown
in Tab. 5, this approach resulted in a significant drop in both
accuracy and AUC. We note that the reason why this ver-
sion has an AUC of 0.90 with an accuracy of 0.50 is be-
cause it produces an uncalibrated decision score, a similar
phenomenon observed in Corvi et al. [13].

Knowledge Fusion with MLP Only. In this experiment,
we removed the transformer from the EKFN and evaluated
the performance of our approach. Tab. 5 shows that this ver-
sion experience a performance reduction compared to our
proposed method. Hence, the transformer is important to
obtain strong performance.

No Transformer Weighting. In this experiment setup, we
discarded the weighting between the transformer output and
its input. Results in Tab. 5 show that this version achieves
worse performance than our proposed method. Hence, this
integration approach is important for our method.

Number of Transformer Layers. We tested our ap-
proach with the transformer made using only 5 or 10 layers.
Tab. 5’s results show that this is sub-optimal to our approach
in terms of AUC and accuracy.

8. Conclusion

This paper introduces E3, a novel approach for effec-
tively updating synthetic image detectors to accurately de-
tect newly emerging generators with minimal training data.
By developing expert embedders tailored to capture traces
from each new target generator, our method demonstrates
strong adaptability. The proposed expert knowledge fusion
network analyzes forensic evidence from all experts, facil-
itating precise detection decisions. Through extensive ex-
perimentation, E3 consistently outperforms competing con-
tinual learning approaches, even across various detector ar-
chitectures and with limited data from new generators.
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