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Eight genome sequences of bacterial, environmental isolates 
from Canada Glacier, Antarctica
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ABSTRACT Sediments in cryoconite holes and meltwater streams in the McMurdo Dry 
Valleys, Antarctica, provide both substrates and conditions that support life in an arid 
polar desert. Here, we report the genomic sequences of eight environmental, bacterial 
isolates from Canada Glacier cryoconite holes and stream. These isolates span three 
major phyla.
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I n the barren polar desert of the McMurdo Dry Valleys, Antarctica, meltwater-driven 
supraglacial depressions (i.e., cryoconite holes) and streams such as those in the 

Canada Glacier basin are among the top refuges for microorganisms (1–6). Cryocon­
ite holes are cylindrical, water-filled depressions on glacial surfaces formed by the 
deposition and accumulation of aeolian material. The Canada Stream is an ephemeral 
stream, fed by runoff from the Canada Glacier.

While microbes thrive in cryoconite holes and the stream channel (7–10), rapid 
response and adaptation are required to withstand frequent disturbances, freezing, 
desiccation, and transition to quiescence. Our goal is to understand the genetic traits 
linked to persistence under the multitude of environmental stressors in these systems.

Cryoconite and stream water samples from the Canada Glacier (77°37′S, 162°59′E) 
were collected in December 2009 and are described elsewhere (9). Bacteria were isolated 
aerobically on R2A agar plates at 4°C. The cetyltrimethylammonium bromide procedure 
was used for extracting DNA from bacterial isolates grown to late exponential phase 
in R2A broth at 4°C while shaking at 150 rpm (11). Standard quality shotgun libraries 
for bacterial strains CAN_C2, CAN_C3, CAN_C7, CAN_S1, CAN_S2, CAN_S4, and CAN_S7 
were sequenced on the Illumina NovaSeq S4 platform (2 × 151 bp paired-end reads) 
(12). Libraries were prepared on the PerkinElmer Sciclone NGS robotic liquid handling 
workstation using the Kapa Biosystems Library Kit. DNA was sheared to 459 bp using 
a Covaris LE220-focused ultrasonicator. DNA fragments were size selected by double 
solid phase reversible immobilization (SPRI). Fragments were end repaired, A tailed, and 
ligated with Illumina compatible sequencing adaptors. Raw Illumina sequences were 
quality filtered using BBTools v38.95 (QV ≥20; length ≥100 bases) (13) per JGI SOP 1061 
and assembled with SPAdes (≥version v3.14.1; –phred-offset 33 –cov-cutoff auto -t 16 m 
64 –careful -k 25,55,95) (14). Contigs with a length <1 kb (BBTools reformat.sh: minlength 
= 1,000 ow = t) were discarded.

For improved high-quality draft genomes, Pacbio SMRTbell libraries for bacterial 
strain CAN_C5 were sequenced on Pacific Biosciences (PacBio) Sequel platform (15). 
PacBio sequencing generated 889,350 reads with an average length of 8,908 bp. 
DNA was sheared around 10 kb using Megaruptor 3 (Diagenode). Sheared DNA 
was treated with exonuclease, DNA repair enzyme mix, end-repair/A-tailing mix, and 
ligated with barcoded overhang adapters using SMRTbell Express Template Prep Kit 
2.0 (PacBio). Libraries were purified with AMPure PB Beads (PacBio) and bound to 
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Sequel II polymerase 2.0 using the Sequel II Binding Kit 2.0. Libraries were sequenced 
using tbd-sample-dependent sequencing primers, 8M v1 SMRT cells, and Version 2.0 
sequencing chemistry with 1 × 900 sequencing movie run times. Reads >5 kb were 
assembled with hierarchical genome assembly process (HGAP) [smrtlink/8.0.0.80529, 
HGAP 4 (1.0)] using default settings (16).

CRISPR elements were identified using the program CRT (CRISPR Recognition Tool) 
(17) or PILER-CR (18). All genomes were annotated in the Integrated Microbial Genomes 
(IMG) database (≥IMG Annotation Pipeline v.5.0.19) (19). Genome completeness was 
estimated using checkM (20). The genome-sequence-acquired 16S ribosomal RNA gene 
was queried in command line against the SILVA database 138.1 with blastn, from BLAST+ 
2.13.0 for taxonomic classification (21). Sequence details are given in Table 1.
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TABLE 1 Summary of genome characteristicsa

Platform Organism
(% match to genus)
Accession number

Coverage (×) # Contigs L50/N50 (bp) Size
(bp)

GC (%) # Genes # C

Illumina Cryobacterium sp. CAN_C2 (99.5)
JADOUX000000000
SRR13292036

419.2 58 8/149,434 3,600,773 64.66 3,541 –b

Illumina Cryobacterium sp. CAN_C3 (99.4)
JAXCHQ000000000
SRR25764242

394.8 60 9/149,434 3,604,084 64.65 3,519 –

PACBIO Arthrobacter sp. CAN_C5 (99.6)
JAGGMZ000000000
SRR26356106

250.1 1 1/3,860,921 3,860,921 64.15 3,796 –

Illumina Mycetocola sp. CAN_C7 (97.8)
JADOUY000000000
SRR13164828

374.4 20 3/556,454 3,420,744 65.49 3,308 –

Illumina Janthinobacterium sp. CAN_S1 (99.7)
JADOUZ000000000
SRR13164876

252.0 72 10/151,624 4,870,004 60.87 4,452 –

Illumina Flavobacterium sp. CAN_S2 (99.6)
JADOVA000000000
SRR13164877

197.8 17 2/469,638 3,844,435 34.22 3,572 2

Illumina Salinibacterium sp. CAN_S4 (99.6)
JADOVB000000000
SRR13164888

384.9 11 2/547,050 3,068,493 65.19 3,035 1

Illumina Janthinobacterium sp. CAN_S7 (98.4)
JBANDI000000000
SRR25764251

328.9 68 12/134,133 5,015,770 60.65 4,645 –

aC = CRISPR.
b–, none.
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