Molten Metal Synthesis of Nanographenes
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ABSTRACT: This manuscript describes a simple and effective method to cyclodehydrogenate arenes using liquid alkali metals. Direct reaction

between molten potassium and arenes forms 6-membered rings and zig-zag edged structures within polyarenes. The approach is extended to

integration of pyridinic nitrogen and 5-membered rings to arene structures and synthesis of larger, open-shell nanographenes.

Efficient intramolecular cyclodehydrogenation of polyarenes is crit-
ical for the bottom-up synthesis of polycyclic aromatic hydrocarbons
(PAHs), nanographenes, and other carbon-based nanomaterials.'™
There are two broad strategies for synthesis of nanographenes: solu-
tion-based syntheses and on-surface syntheses (Figure 1a). Solu-
tion-based syntheses, such as the Scholl oxidation, typically subject
the polyaromatic to strongly Lewis acidic and oxidizing conditions
for extended periods of time.*® Moreover, to maintain solubility and
processibility, the molecules are heavily functionalized with solubil-
izing groups, which often dictate the assembly and properties of the
nanographenes. Solution-based approaches, however, are scalable,
and relatively large amounts of the product can be isolated. Surface-
based syntheses typically employ noble metal surfaces to mediate a
thermally induced cyclodehydrogenation. These on-surface reac-
tions proceed with high selectivity and are applicable to a wide range
of substrates. Using these methods, it is possible to form S-mem-
bered rings, cyclize strained moieties (e.g., bianthryls), and build zig-
zag edges from methylated PAHs. >’ Unfortunately, the sub-mon-
olayer scale of these reactions makes it difficult to isolate sufficient

material for properties measurements in the absence of the surface.
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This manuscript marries the two approaches, using reactive liquid
metal surfaces to achieve the scope of the on-surface synthesis with
the scalability of the solution-based approach.

Our studies build from solution-phase alkali metal mediated cy-
clodehydrogenation reactions. Despite their unique reactivity and

selectivity,'*”

alkali metal mediated approaches are mostly re-
stricted to ethereal solvents in which reactants, products, intermedi-
ates, and the alkali metal have limited solubility. As such, only a few
structures have been realized using these protocols (Figure 1b).'-
131822 We reasoned that the scope of these reactions could be im-
proved if the solvent was removed completely. The malleability and
low melting point of the alkali metals (e.g., Na and K) enable a facile
mixing with the reaction substrates without the need for solvent nor
concerns about solubility — an issue that plagues nanographene syn-
theses. Moreover, molten alkali metal provides a fluid, regenerable
surface on which the reactions can turn over and provide large
amounts of the product. We find that performing reactions with
neat, molten potassium at elevated temperatures (100 - 200 °C)
promotes a facile formation of 6-membered rings, S-membered
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Figure 1. (a) Prototypical cyclodehydrogenation of polyarenes. (b) Reported structural motifs formed using solutlon based anionic cydodehydrogenation:

perylenes and triphenylenes, ‘%!

and pyridine-containing derivatives.'*"* (¢) Direct anionic cyclodehydrogenation with liquid alkali metal reported here.
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rings, in bianthryl subunits (Figure 1c). As a demonstration of the
power of this methodology, we create a large nanographene with
open-shell electronic character.

We first describe prototypical electrocyclizations of o-terphenyl (1”)
and 1,1’-binaphthyl (2’), forming 6-membered rings (Figure 2a,b).
When we grind elemental potassium (K) with o-terphenyl and then
heat to 100 °C, triphenylene (1) forms quantitatively within an hour.
The product isisolated after neutralization with I in tetrahydrofuran
(THF). Similarly, we find that the reaction of 1,1’-binaphthyl (2”)
with molten K produces perylene (2) in quantitative yield. It is im-
portant to note that these reactions could be run on a gram scale, and
there is no reason they could not be scaled further.

We note that the quenching of the reaction with I, is critical for ob-
taining the fully aromatized product. For example, in the reaction of
2’, if isopropyl alcohol (iPrOH) is used to quench the reaction, ma-
trix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF) mass spectrometry (MS) shows the corresponding di-, tetra-
and hexa-hydro- compounds along with 2 (See Figure S1). Analo-
gously, if IPrOD is used the di-, tetra- and hexadeuterio- compounds
are observed. Similar protonation has been observed upon Birch re-
duction of both triphenylene and perylene, illustrating that the neu-
tralization step should be performed in the absence of protic

15,2324
groups. ™

We next surveyed 6-membered ring-forming reactions for a range of
nanographenes (Figure 2c). Benzo[ghi]perylene (3), for example,
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Figure 2. Cyclization via arene-arene coupling to form 6-membered rings. (a) Cyclization of o-terphenyl, (b) cyclization of 1,1’-binaphthyl, and (c) scope of 6-
membered ring formation. Isolated yields, bold blue bonds represent bonds formed, shaded rings represent cycles formed, n.d. = not detected. *1 is observed in

forms from the cyclization of S-helicene in 82% yield - indicating
that the cyclization can be applied to contiguous aromatic systems.™
Turning to the construction of larger nanographenes involving mul-
tiple cyclizations, 4 is obtained in 47% yield from o-quaterphenyl,
while we form (5), (6) and (7) in 42-88% isolated yield from the
corresponding phenylated aromatic precursors. Hexabenzocoro-
nene (7) isan important subunit in the construction of many nanog-
raphenes.”*™” The actual yields are higher in many cases but limited
by the solubility of the products and byproducts.

8 and 9 provide a direct comparison of our molten metal process to
published studies using the solution-based alkali metal approach and
the Scholl cyclization. For the molten metal synthesis, 8 is obtained
in 92% yield after 1 hour. This is a comparable yield to an extended
(10h) reaction with K in dimethoxyethane (DME) (reported yield:
90%) and represents a remarkable improvement over the mechano-
chemical approach with Li in THF (17% yield) and Scholl condi-
tions (50% yield).'**** For the formation of terrylene 9 using mol-
ten potassium, the ternaphthyl precursor fuses twice, forming 9 in
80% yield (See Figure 2cfor crystal structure). For comparison, pre-
viously reported conditions using K in DME yield only 24% of the
product. Under Scholl conditions, 9 is not formed from the same
precursor due to both isomerization and debutylation.*®*" Using
Scholl conditions, 9 could only be formed from the corresponding
naphthyl perylene precursor in (42% yield).***' These comparisons
emphasize the remarkable efficacy of the molten metal reactions.
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Figure 3. Zig-zag edges via incorporation of pendant groups. (a) Zig-zag edges through methyl group incorporation, (b) N-terminated edges from primary

amines. We report isolated yields unless it states (NMR), indicating that product was detected by NMR but not isolated. In those cases, the yield is based on the

amount relative to the major product. Green bonds represent bonds formed via incorporation of pendant methyl or amino groups, bold blue bonds represent

bonds formed by arene-arene coupling, shaded rings represent cycles formed.

A counterintuitive aspect of these molten metal reactions is that they
are able to tolerate functional groups. For example, rylene 9 con-
tained tert-butyl substituents.'”">**" We used the cyclization of
mono-substituted o-terphenyl to test whether methyl or ether sub-
stituents were tolerated. Indeed, 2-methyltriphenylene (10), is iso-
lated in 30% yield. Interestingly, the other major product from this
reaction (26% yield), was the triphenylene dimer resulting from a
homocoupling at the benzylic position (See Figure S8 for crystal
structure). Conversely, for arylalkyl ethers (11 and 12) we find that
the major product is the defunctionalized PAH, triphenylene (1),
suggesting that the reaction conditions employed are incompatible
with alkoxy-substituents.*”

Based on the observation that 10 formed and dimerized in signifi-
cant quantities under our reaction conditions, we chose to explore
the incorporation of pendant methyl groups into PAH precursors as
a potential strategy for generating zig-zag edged nanographenes
(Figure 3a)¥7. The prototype reaction of 2,2"-dimethyl-1,1"-
binaphthalene (13’, Figure 3a) with molten potassium at 150 °C re-
sults in full conversion of starting material. We form anthanthrene
(13) and benzo[ghi]perylene (3) in a ratio of 12:1, with trace oligo-
meric products also observed. We isolate 13 in 91% yield and crys-
tallize it from hot toluene as red-orange crystals suitable for SCXRD
(Figure 3a).¥ To further manipulate the zig-zag edge structure, we
explored the creation of nitrogen-terminated nanographene struc-
tures, through incorporation of pendant amino groups (Figure 3b).
When we treat [1,1-binaphthalene]-2,2’-diamine (14’) with potas-
sium at 150 °C, we isolate 14a and 14b in yields of 41% and 14%,
respectively (Figure 3b shows the SCXRD structure for 14a, while
the structure of 14b is shown in Figure S11). We note that under
oxidative conditions the same transformation from a diamine has
previously been used to form a diimide-functionalized derivative of
this motif.* The protocol presented produces significant amounts of
otherwise difficult to prepare, nitrogen-terminated nanographenes,’®
though A key finding here is that the reactivity of potassium’s dis-
solvable surface mirrors what is observed on the surface of noble

metals such as Ay, %353

Inspired by the similarities between cyclizations on noble metal and
molten potassium surfaces, we tested S-membered ring formation

(Figure 4).
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Figure 4. S-membered ring formation via arene-arene coupling. (a) Reac-
tion of 1-phenylnaphthalene, (b) scope of S-membered ring formation. Iso-
lated yields, bold burgundy bonds represent bonds formed, shaded rings rep-
resent cycles formed, n.d. = not detected.



After subjecting 1-phenylnaphthalene (15”) to potassium at 200 °C,
we isolate fluoranthene (15) in 18% yield (Figure 4a). Interestingly
1,4-diphenylnaphthalene yields only trace amounts of 16a and 16b
(Figure 4b) and conversion to a polymeric material. 9,10-diphenyl-
anthracene yields rubicene (17) in 18% yield. We note that the cor-
responding isorubicene is not observed.”” Similarly, when we treat
9,10-bis(4-tert-butyl)phenylanthracene with potassium at 200 °C,
5,12-di-tert-butylrubicene (18a) is the major product, isolated in a
yield of 72% (Figure 4b displays the structure from SCXRD). We
observe trace amounts of the partially fused product (18b, Figure
4b), with the remaining material being unconverted starting mate-
rial. Again, the corresponding isorubicene was not detected. Typi-
cally, approaches for the embedding of 5-membered rings into
nanographenes rely on carbon-halogen bonds as directing
groups,"*** Scholl oxidation reactions with limited success,*™* or
noble-metal surfaces.”*** The transformations in Figure 4 repre-
sent the first examples of an alkali-metal induced 5-membered ring
formation within a PAH core, delivering significant synthetic util-

ity.9,36738

To further demonstrate the parallels between the molten potassium
reaction and on-surface approaches, we describe the dehydrogena-
tive cyclization of the sterically encumbered bianthryl motif shown
in Figure Sa. Anthracenyl groups linked at the 9-position and the
corresponding oligoanthrenes have been used extensively as precur-
sors to graphene nanoribbon fragments, both on-surface and in so-
lution.”**** This cyclization, however, is notoriously difficult due to
the near orthogonal nature of the two anthracene moieties, and iso-
lation of products can be challenging.'®***-** We find that (4-tert-
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butyl)phenyl capped bianthryl substrate (19’, Figure 5a) reacts on
molten potassium to form a green-brown solid after workup and iso-
lation. The product of this reaction (19) is isolated in 15% yield,
mass spectrum shown in Figure Sb. Mass spectrometry of the crude
reaction mixture also reveals minor peaks at m/z= 612,614, and 616
for partially cyclized material. (See ESI for further details).

To form 19, 19’ must formally lose 8 hydrogen atoms, form two 5-
membered rings, and fuse the bisanthene core (19, Figure Sa). The
formation of 19 is analogous to the on-surface synthesis of related
benzo[a]fluoranthene-capped nanographenes.” We propose that 19
is a mixture of the cis- and trans- isomers (cis-/trans-19), but we
have yet to confirm this because 19 is "H NMR silent, even at tem-
peratures down to —80 °C. DFT predicts only a small thermody-
namic energy difference of the ground states (<1 kcal mol™) in favor
of the trans-isomer (trans-Me-19), supporting that both isomers
form during the reaction (See ESI S6).

Electron paramagnetic resonance (EPR) spectroscopy of cis-
/trans-19 at 30 °C gives a broad signal centered at g = 2.0022 (Fig-
ure 5c). This is consistent with a thermally accessible open-shell
electron configuration. Density functional theory (DFT) calcula-
tions of the triplet state for a truncated model of cis- and trans-19
(cis-Me-19 and trans-Me-19; B3LYP-D3/Def2-SVP level of the-
ory) suggest a delocalized spin-density that is concentrated on qua-
ternary carbon atoms embedded in the S-membered ring (Figure
5d), explaining the absence of observable hyperfine features.*!
The UV-vis spectrum of the product (Figure Se) shows a broad
band centered in the near-IR (NIR) range at 806 nm (FWHM ca.
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Figure 5. Cyclodehydrogenation to form the large nanographene 19 as a mixture of cis- and trans isomers. (a) overall reaction scheme; (b) measured and
simulated MALDI for 19; (c) X-band EPR spectrum of 19; (d) spin density maps (DFT; B3LYP-D3/Def2SVP; isovalue = 0.015) of the triplet states for 19
(tert-butyl groups were reduced to methyl) (&) UV-vis absorption spectrum and calculated electronic transitions for cis-/ trans-Me-19 (B3LYP/Def2-TZVP).



150 nm), which is consistent with the simulated values obtained
by TD-DFT (see Figure Se). The ease of creating and isolating 19,
an interesting open-shell PAH, speaks to the power of this method
and its applicability to larger nanocarbon systems.

In summary, we have revealed a new method to create nanogra-
phenes using molten alkali metals with both $- and 6-membered
rings using molten alkali metals. Furthermore, we show the for-
mation of zig-zag-edged structures through incorporation of pen-
dant methyl and amino groups. The study culminates with the for-
mation of an open-shell bisanthene nanographene. Importantly,
we are able to extend perylene both laterally (bisanthene) and lon-
gitudinally (terrylene), allowing the formation of extended nanog-
raphenes with interesting properties. In demonstrating the diverse
reactivity of this system, we highlight the similarities between this
reactivity and that of noble metal surfaces. This molten metal ap-
proach enables a broad range of scalable, bottom-up syntheses of
novel nanographenes and nanoribbons.

Note on Synthesis

Due to the non-traditional nature of the reaction, and the high re-
activity of some reagents, a detailed description of the experi-
mental procedure and an additional safety note can be found in the
ESI (S1).In our experience, this approach, performed on the scale
outlined in this work, is controlled and safe when performed with
adequate caution under inert (water and oxygen free) conditions.

Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org
Materials, experimental methods, and characterization, includ-
ing NMR Spectroscopy, Mass Spectrometry, single crystal
data, UV-Vis spectroscopy, and DFT calculations.
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