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ABSTRACT

Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a growing number of 
clinical applications. Although most studies still focus on the brain, there is a growing interest in utilizing dMRI to 
investigate the healthy or injured spinal cord. The past decade has also seen the development of biophysical models 
that link MR-based diffusion measures to underlying microscopic tissue characteristics, which necessitates validation 
through ex vivo dMRI measurements. Building upon 13 years of research and development, we present an open-
source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox for Image Processing 
and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an extension to the Statistical Paramet-
ric Mapping (SPM) software, designed to process and model dMRI data of the brain, spinal cord, and ex vivo speci-
mens by incorporating state-of-the-art artifact correction tools, diffusion and kurtosis tensor imaging, and biophysical 
models that enable the estimation of microstructural properties in white matter. Additionally, the software includes an 
array of linear and nonlinear fitting algorithms for accurate diffusion parameter estimation. By adhering to the Brain 
Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures compati-
bility with other BIDS-compliant software, and aligns with the growing availability of large databases utilizing the BIDS 
format. Furthermore, being integrated into the popular SPM framework, ACID benefits from a wide range of segmen-
tation, spatial processing, and statistical analysis tools as well as a large and growing number of SPM extensions. As 
such, this comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level statistics, 
all within a single software package.
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1.  INTRODUCTION

Diffusion MRI (dMRI) exploits the self-diffusion of water 
molecules to produce images that are sensitive to tissue 
microstructure by measuring the diffusion along various 
spatial directions (Callaghan et al., 1988; Le Bihan et al., 
1988; Stejskal & Tanner, 1965). dMRI has been applied to 
study a number of phenomena including normal brain 
development (Dubois et  al., 2014; Miller et  al., 2002), 
aging (Draganski et  al., 2011; Sullivan et  al., 2010), 
training-induced plasticity (Scholz et al., 2009), and mon-
itoring progression of and recovery from neurological dis-
eases (Farbota et al., 2012; Meinzer et al., 2010). Clinical 
applications of dMRI include the diagnosis of ischemic 
stroke (Urbach et al., 2000), multiple sclerosis (Horsfield 
et  al., 1996), cancer and metastases (Gerstner & 
Sorensen, 2011), and surgical planning of brain tumors 
(Chun et al., 2005). Although the vast majority of dMRI 
applications has focused on the brain, there is a growing 
interest in spinal cord dMRI, as researchers seek sensi-
tive and predictive markers of spinal cord white matter 
damage (Cohen et al., 2017; Martin et al., 2016). Further-
more, an increasing number of studies utilize dMRI on ex 
vivo specimens for comparative analysis with other imag-
ing modalities, such as electron microscopy (Barazany 
et al., 2009; Kelm et al., 2016; Papazoglou et al., 2024).

To fully utilize the sensitivity of dMRI to tissue micro-
structure, expert knowledge is required to minimize arti-
facts both during acquisition, for example, by cardiac 
gating or twice-refocused spin-echo sequences, and 
through dedicated retrospective correction methods. 
Commonly used retrospective correction techniques 
include motion and eddy-current correction (J. L. R. 
Andersson & Sotiropoulos, 2016; Mohammadi et  al., 
2010), susceptibility distortion correction (Gu & Eklund, 
2019; Ruthotto et  al., 2012), denoising (Becker et  al., 
2014; Veraart et  al., 2016), Rician bias correction 
(Oeschger et al., 2023a; Sijbers et al., 1998), and robust 
tensor fitting techniques (Chang et al., 2005; Mohammadi, 
Freund, et  al., 2013). Retrospective artifact correction 
techniques, along with diffusion signal modeling capabil-
ities, are widely available in open-source toolboxes such 
as FSL-FDT (Smith et al., 2004), DiPY (Garyfallidis et al., 
2014), DESIGNER (Ades-Aron et  al., 2018), ExploreDTI 
(Leemans et  al., 2009), MRtrix3 (Tournier et  al., 2019), 
TORTOISE (Pierpaoli et al., 2010), AFNI-FATCAT (Taylor & 
Saad, 2013), and others.

While the majority of toolboxes have been designed 
for brain dMRI, ACID has introduced several features and 
utilities that make it particularly suitable for spinal cord 
and ex vivo dMRI as well. Specifically, ACID addresses 
the higher level and different nature of artifacts in spinal 
cord dMRI (Barker, 2001; Stroman et al., 2014), and the 

highly variable geometry and diffusion properties in ex 
vivo dMRI (see Sébille et al., 2019 for a list of ex vivo/
postmortem dMRI studies). Although there are some 
software options available for processing spinal cord 
images, most notably the Spinal Cord Toolbox (De Leener 
et al., 2017), these tools lack comprehensive artifact cor-
rection and biophysical modeling capabilities for estima-
tion of dMRI-based metrics related to microscopic tissue 
properties. Biophysical modeling estimates microstruc-
tural properties, such as axonal water fraction and orien-
tation dispersion, as aggregated measures on the voxel 
level, providing greater specificity than standard diffusion 
tensor (DTI) or diffusion kurtosis imaging (DKI). Toolboxes 
dedicated for biophysical modeling of the dMRI signal, 
such as the NODDI (Zhang et al., 2012) or SMI toolbox 
(Coelho et al., 2022), typically do not include a compre-
hensive processing pipeline to correct for artifacts in 
dMRI data. In addition, to date, only a few of the dMRI 
toolboxes support the Brain Imaging Data Structure 
(BIDS; Gorgolewski et al., 2016) standard for organizing 
and annotating raw and processed dMRI data. The lack 
of standardization not only complicates the sharing and 
aggregation of processed dMRI data but also the appli-
cation of automated image analysis tools designed for 
big data, such as machine learning techniques. Over the 
past two decades, tens of thousands of dMRI datasets 
have been made openly available in large neuroimaging 
databases (e.g., HCP (Van Essen et al., 2013) and the UK 
Biobank (Littlejohns et  al., 2020)), underscoring the 
importance of consistent data storage practices.

Building upon 13 years of research and development, 
we introduce an open-source MATLAB-based extension 
to the Statistical Parametric Mapping (SPM) software, the 
ACID toolbox: A Comprehensive Toolbox for Image Pro-
cessing and Modeling of Brain, Spinal Cord, and Ex Vivo 
Diffusion MRI Data. ACID was initially developed as a col-
lection of artifact correction tools but has now been 
extended to a comprehensive toolbox for processing and 
modeling of dMRI data. In particular, ACID offers (i) state-
of-the-art image processing tools as well as (ii) DTI, DKI, 
and white matter biophysical model parameter estimation 
methods optimized for brain, spinal cord, and ex vivo 
dMRI data. Additionally, (iii) ACID adheres to the BIDS 
standard for organizing the output, making the processed 
images compliant with other BIDS software and facilitat-
ing data sharing. Finally, (iv) ACID is embedded in the 
SPM framework to benefit from its established functions 
including spatial processing tools and statistical inference 
schemes. ACID tools can be combined with other SPM 
functions to create pipelines in the SPM batch system, 
which offers an all-in-one software solution from conver-
sion of DICOM data to statistical group analysis. ACID 
also benefits from a large and growing number of SPM 
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extensions. For example, ACID can be combined with the 
SPM12-based hMRI toolbox (Tabelow et al., 2019) to per-
form multicontrast analysis of dMRI and other quantitative 
MRI data, such as relaxation rates, acquired from the 
same subject, all within a single pipeline. Many of the 
methods used in the ACID toolbox have already been 
published in the scientific dMRI literature (Table 1). In this 
paper, we detail the design and function of the ACID mod-
ules and provide guidance on their optimal combination 
for brain, spinal cord, and ex vivo applications.

2.  METHODS

2.1.  Overview

The ACID toolbox is a comprehensive toolbox for pro-
cessing and analyzing dMRI data, built upon the following 
four pillars: (1) preprocessing of dMRI data (Pre-processing 
module), (2) physical models of the diffusion signal (Diffu-
sion tensor/kurtosis imaging module), (3) white matter 
biophysical models of the diffusion signal (Biophysical 
models module), and (4) additional features referred to as 
Utilities. The Pre-processing module consists of state-of-
the-art methods for retrospective correction of the dMRI 
data. The Diffusion tensor/kurtosis imaging module con-
tains tensor and kurtosis models that can be applied to 
dMRI data from various tissues or samples, including 
gray and white matter, as well as diffusion phantoms 
(Woletz et al., 2024). In contrast, the Biophysical models 
module can only be applied to samples that fall within 

their validity ranges (see Section 4.2.2). The Utilities mod-
ule contains various useful tools, including masking and 
noise estimation. The ACID toolbox follows the BIDS 
convention and enables the seamless integration of 
external tools into its processing pipeline in a modular 
fashion (External tools module). More details about the 
implementation and organization of ACID are provided in 
Appendix A.

2.2.  Preprocessing

In this section, we provide brief descriptions of each arti-
fact correction tool currently implemented in ACID. For 
detailed recommendations on various dMRI datasets (in 
vivo brain, in vivo spinal cord, ex vivo/postmortem), refer 
to Sections 3.2 and 4.1, as well as Table 5.

2.2.1.  Eddy-current and motion  
correction (ECMOCO)

ACID uses the eddy-current and motion correction 
(ECMOCO) algorithm (Mohammadi et al., 2010) to correct 
for spatial misalignments that may occur between dMRI 
volumes. These misalignments can be caused by motion 
and eddy currents induced by the rapidly varying field of 
the diffusion-sensitizing gradients (Jezzard et al., 1998), 
which may lead to biased diffusion estimates (Mohammadi, 
Freund, et al., 2013). ECMOCO aligns all source volumes 
to a target volume using a coregistration algorithm with an 
affine transformation (Friston & Ashburner, 1997) imple-
mented in the SPM function spm_coreg. It was previously 
shown that the robustness of registration can be increased 
by separately registering diffusion-weighted (DW) and 
nondiffusion-weighted (b0) volumes to their correspond-
ing target volumes (Mohammadi, Carey, et  al., 2015). 
ECMOCO features the multitarget registration mode, 
where source volumes from each diffusion shell (b-value) 
are coregistered to their shell-specific target volume 
(Appendix Fig. B1). ECMOCO rotates the b-vectors by the 
obtained rotational parameters; these rotated b-vectors 
can be passed on to subsequent processing steps. Of 
note, the affine transformation of ECMOCO can only cor-
rect for first-order eddy-current displacements. The 
advantages and disadvantages of ECMOCO compared 
with other established tools, such as FSL eddy, are dis-
cussed in Section 4.1.

In spinal cord dMRI, eddy-current and motion correc-
tion is more challenging than in brain dMRI due to the 
considerably lower number of voxels and lower signal-
to-noise ratio (SNR), particularly in volumes with high 
b-values (>1000 s/mm2) or with diffusion-sensitizing gra-
dients parallel to the spinal cord. While movement of the 
brain can be considered approximately rigid, the spinal 

Table 1.  Peer-reviewed methods used in the ACID toolbox.

Method Publication

ECMOCO:  
Eddy-current and 
motion correction

Mohammadi et al. (2010); 
Mohammadi, Freund, et al. (2013); 
Mohammadi, Tabelow, et al. (2015)

HySCO: Susceptibility 
artifact correction

Macdonald and Ruthotto (2018); 
Ruthotto et al. (2012, 2013)

HySCO: Combine 
blip-up and blip-down

Clark et al. (2021)

msPOAS: Adaptive 
denoising

Becker et al. (2014); Tabelow et al. 
(2015)

RBC: Rician bias 
correction

Oeschger et al. (2023a)

DTI using robust 
fitting

Mohammadi, Freund, et al. (2013)

DKI and axisymmetric 
DKI using NLLS

Oeschger et al. (2023a, 2023b)

NODDI-DTI Edwards et al. (2017)
WMTI-Watson Oeschger et al. (2023b)*
Reliability masking David et al. (2017)

DKI, diffusion kurtosis imaging; DTI, diffusion tensor imaging; 
NLLS, nonlinear least squares; NODDI, neurite orientation 
dispersion and density imaging; WMTI, white matter tract integrity.
*The ACID implementation is based on the method introduced by 
Jespersen et al. (2018).
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cord may experience varying degrees of displacement 
along the rostrocaudal axis caused by factors such as 
breathing, pulsation of the cerebrospinal fluid, or swal-
lowing (Yiannakas et al., 2012). To address this, we intro-
duced slice-wise (2D) registration, which independently 
aligns each slice of the source volume to the corresponding 
slice of the target volume, thereby correcting for non-
rigid, slice-dependent displacements (Mohammadi, Freund, 
et  al., 2013). For more details on ECMOCO, including 
other recently introduced features (initialized registration 
and exclusion mode), refer to Appendix B.

2.2.2.  Adaptive denoising (msPOAS)

The Multi-shell Position-Orientation Adaptive Smoothing 
(msPOAS) is an iterative adaptive denoising algorithm 
designed to adaptively reduce noise-induced variance in 
dMRI data while preserving tissue boundaries, as illus-
trated in Figure  3 (Becker et  al., 2012, 2014; Tabelow 
et al., 2015). The algorithm adapts to the intensity values 
and their distance in both voxel space and the spherical 
space of diffusion directions, allowing smoothing only 
within spatially homogeneous areas of the DW images. 
One of the key advantages of msPOAS is its compatibil-
ity with all diffusion models as it operates on the raw 
dMRI data. Adjustable parameters include kstar (number 
of iterations that define the image smoothness), lambda 
(adaptation parameter that defines the strength of edge 
detection), kappa (initial ratio of the amount of smoothing 
between the local space of neighboring voxels and the 
spherical space of diffusion gradients), and ncoils (the 
effective number of receiver coils that contributed to the 
measured signal). To distinguish random fluctuations 
from structural differences, msPOAS requires an esti-
mate of SNR, or equivalently the noise standard deviation 
(sigma). A higher kstar leads to greater smoothness within 
homogeneous image regions, while a larger lambda 
results in weaker adaptation and more blurring at tissue 
edges. The optimal kappa depends on the number of 
directions per shell, while ncoils should be the same as 
the value used for noise estimation. When using msPOAS, 
we recommend starting with the default parameters and 
the sigma estimated with the Noise estimation utility 
function (Table 2). In case of insufficient noise reduction, 
parameters should be adjusted according to Appendix D.

2.2.3.  Rician bias correction

The voxel intensities of MRI magnitude images exhibit a 
Rician distribution in case of a single receiver coil 
(Gudbjartsson & Patz, 1995) and a noncentral χ distribu-
tion in case of multiple receiver coils (Aja-Fernández et al., 
2014). When fitting diffusion signal models (Section 2.3), 

this distribution leads to a bias, known as the Rician 
bias, in the estimated tensor (Basser & Pajevic, 2000; 
Gudbjartsson & Patz, 1995; Jones & Basser, 2004) and 
kurtosis parameters (Veraart et al., 2011; Veraart, Rajan, 
et  al., 2013), as well as in biophysical parameter esti-
mates (M. Andersson et  al., 2022; Fan et  al., 2020; 
Howard et al., 2022). This Rician bias is particularly rele-
vant in low SNR situations (Polzehl & Tabelow, 2016). Two 
approaches of Rician bias correction (RBC) are imple-
mented in ACID. The M2 approach, introduced in Miller & 
Joseph (1993), and later extended to multichannel 
receiver coil (André et al., 2014), operates on the dMRI 
data and uses the second moment of the noncentral χ 
distribution of the measured intensities and noise esti-
mates to estimate the true voxel intensities. The second 
approach modifies the parameter estimation by consid-
ering the noncentral χ distribution to account for the 
Rician bias during model fitting (Oeschger et al., 2023a). 
Note that the latter approach assumes uncorrected data, 
therefore, it must not be combined with the first method 
and is currently only available for nonlinear least squares 
fitting. Both methods require an estimate of the noise 
standard deviation, which can be obtained using either 
the standard or the repeated measures method within the 
Noise estimation utility function (Table 2). Details on noise 
estimation are available in Appendix C. In addition, ACID 
offers the Rician bias simulation utility function to deter-
mine the optimal RBC method for the dMRI dataset and 
SNR at hand (Table  2). An example of how RBC influ-
ences the estimation of biophysical parameters is illus-
trated in Appendix Figure F1.

2.2.4.  Susceptibility artifact correction (HySCO)

Hyperelastic Susceptibility Artifact Correction (HySCO) is 
a technique used to correct for geometric distortions 
caused by susceptibility artifacts (Ruthotto et al., 2012, 
2013). These artifacts can occur at interfaces between 
tissues with different magnetic susceptibilities, such as 
those found near paranasal sinuses, temporal bone, and 
vertebral bodies. To correct for these artifacts, HySCO 
estimates the bias field based on a reversed-gradient 
spin-echo echo planar imaging (EPI) acquisition scheme. 
This requires the acquisition of at least one image with 
identical acquisition parameters as the dMRI data but 
with reversed phase-encoding direction, also referred to 
as “blip-up” or “blip-down” acquisitions. The bias field 
map, estimated from the blip-up and blip-down images, 
is applied to the entire dMRI data to unwarp the geomet-
ric distortions (see Fig. 3 for examples). For datasets that 
include full blip-reversed acquisition, that is, each image 
was acquired with two phase-encoding directions (blip-up 
and blip-down), the reverse phase-encoded images can 



5

G. David, B. Fricke, J.M. Oeschger et al.	 Imaging Neuroscience, Volume 2, 2024

Table 2.  List of ACID utility functions.

Function Description

Cropping Crops images to a smaller size for less storage space and faster processing. 
Input: image(s) to crop, new matrix size, and voxel coordinates of the center of cropping. The center of 
cropping can also be selected manually through a pop-up window. 
Output: cropped image(s) and the cropping parameters.
Application: typically in spinal cord dMRI, where the spinal cord occupies a small portion of the image.

Resampling Resamples images to the desired resolution. 
Input: image(s) to be resampled, desired resolution, and type of interpolation (as defined in spm_slice_vol). 
Available types of interpolation: nearest neighbor, trilinear, higher-order Lagrange polynomial (2 to 127), 
and different orders of sinc interpolation (-1 to -127); default: -7, i.e., 7th-order sinc interpolation. 
Output: resampled image(s). 
Application: for example, when performing voxel-wise arithmetic between two or more images with  
different resolutions (e.g., g-ratio mapping).

Slice-wise 
realignment

Enables manual translation and scaling of images along the x and y dimensions on a slice-by-slice basis, 
facilitated by intensity contour lines of the source image superimposed on the target image. 
Input: image to be realigned, target image, and other images to which the realignment parameters are  
applied. 
Output: realigned image(s) and the realignment parameters. 
Application: useful for realigning spinal cord images, where residual misalignments are often slice dependent.

Fusion Merges two images with different field of views (FOV), such as a brain and a spinal cord image, into a 
single combined image (Fig. 5). 
Input: two images to be merged and a target image (typically a structural image with a larger FOV). 
Output: a combined image, resampled onto to the target image. The voxel intensity values in overlapping 
regions are the average of the intensity values in both images. Note that before merging the images, they 
must be in the correct spatial position; if necessary, image realignment can be performed using the SPM 
Realign or the Slice-wise realignment utility function. 
Application: useful for merging a brain and a spinal cord image into a single image before applying a 
warping field obtained from a large-FOV structural image.

Create brain 
mask

Creates a binary brain mask by (i) segmenting the brain image into gray matter, white matter, and  
cerebrospinal fluid using SPM12’s unified segmentation tool (Ashburner & Friston, 2005), (ii) summing 
up the resulting probability maps, and (iii) thresholding it at a certain value (accessible through the script 
acid_local_defaults.m; default: 0.8). 
Input: a single brain image or tissue probability maps for gray matter, white matter, and cerebrospinal fluid, 
and optionally a dMRI dataset to be masked. 
Output: binary brain mask and optionally a masked dMRI dataset. 
Application: to restrict the estimation of DTI, DKI, and biophysical parameters to the brain for increased 
speed and efficiency.

Reliability 
masking

Aims to identify “unreliable” voxels, i.e., voxels irreversibly corrupted by artifacts. Reliability masks are 
generated by thresholding the root-mean-square model-fit error (rms(ε)) map (David et al., 2017). 
Input: rms(ε) maps (output by tensor fitting methods with label: RMS-ERROR) and the desired threshold 
value. The optimal threshold can be determined using the Determine threshold submodule. 
Output: a binary reliability mask. 
Application: Reliability masks can serve as binary masks in region-of-interest-based analyses. In  
principle, reliability masking as an outlier rejection technique is applicable after each model fitting  
method. It is particularly useful in situations where many data points are affected by outliers (often the 
case in spinal cord dMRI), which could otherwise lead to unstable tensor fits and inaccurate tensor  
estimates (see David et al., 2017, for examples).

DWI series 
browser

Enables browsing through the slices of the dMRI data for quality assessment. Slices with low SNR and/or 
artifacts can be identified and labeled. 
Input: the dMRI dataset, b-values, and b-vectors. 
Output: list of labeled slices. 
Application: The saved labels can be used to inform ECMOCO about unreliable slices (see Exclusion 
mode in Appendix B).

DWI series 
movie

Enables simultaneous streaming of images from multiple dMRI datasets in video mode for quality  
assessment. 
Input: a reference image and up to three dMRI datasets. 
Output: a video file containing the image streams. 
Application: useful for visual assessment of a single dMRI dataset or for comparing images before and 
after a specific processing step (e.g., ECMOCO).
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be combined using the submodule HySCO: combine 
blip-up and blip-down images.

2.3.  Diffusion signal models

The dependence of dMRI signal on the direction and 
strength of diffusion weighting is commonly described  
by mathematical models. Two of the most widely used 
models are DTI (Basser et  al., 1994) and DKI (Hansen 
et al., 2016; Jensen et al., 2005).

2.3.1.  Diffusion tensor imaging (DTI)

DTI describes the anisotropic water diffusion in the white 
matter by a diffusion tensor with six independent diffu-
sion parameters. The eigenvalues of the tensor can be 
used to compute rotationally invariant DTI scalar metrics 

including fractional anisotropy (FA) and mean (MD), axial 
(AD), and radial diffusivities (RD). The interpretation of 
DTI assumes that the direction of axial diffusivity is 
aligned with the white matter tracts, which may not be 
the case in complex fiber geometry such as crossing or 
fanning fibers.

ACID provides four algorithms to obtain the diffusion 
tensor (see Appendix E for details). Ordinary least squares 
(OLS) fits the tensor model by minimizing the sum of 
squared model-fit errors, while weighted least squares 
(WLS) minimizes the weighted sum of squared model-fit 
errors, accounting for the distortion of noise distribution 
in the linearized (logarithmic) data. Robust fitting is similar 
to WLS but factorizes the weights into three components 
to account for local and slice-specific artifacts as well, 
while also featuring Tikhonov regularization to handle ill-
conditioned weighting matrices resulting from a high 
occurrence of outliers. Robust fitting is designed to 
down-weight outliers in the model fit, which can other-
wise introduce a bias in the fitted model parameters 

Function Description

Noise  
estimation

Estimates the noise standard deviation (σ) in the dMRI data using either the standard or the repeated  

measures method. The standard method uses the formula σ ≈ Si
2/ 2Ln( )iεmask∑ , where Si  is the  

voxel intensity within a background mask defined outside the body, L is the number of voxels  
within the background mask, and n is the effective number of coil elements that contributed to the 
measured signal (Constantinides et al., 1997). The repeated measures method uses the formula 
σ ≈meani  in ROI stdk S i,k( )( )( ), where S( i,k ) is the voxel intensity at voxel i in the kth repeated image 
(Dietrich et al., 2007). The standard deviation and mean operators are performed across the repetitions 
and voxels, respectively. The set of repeated images can be either the nondiffusion-weighted (b ≈ 0) or 
strongly diffusion-weighted (the highest b-value) images (see Appendix C for recommendations). 
Input: the raw (unprocessed) dMRI dataset, a mask (standard method: background mask; repeated mea-
sures method: see Appendix C), n (for the standard method only), and b-values (for the repeated measures 
method only). 
Output: a single σ (assuming a homogeneous variance). 
Application: σ serves as input for msPOAS, Rician bias correction, and diffusion tensor imaging (for fitting 
methods WLS and robust fitting).

Rician bias 
simulation

Simulates diffusion-weighted MRI signals at specified SNR values in voxels within the brain white  
and gray matter. The simulated signals are corrected using the specified Rician bias correction (RBC) 
methods (for details, see Oeschger et al., 2023a). 
Input: a voxel from a list of 27 predefined voxels, each with different diffusion and kurtosis tensor  
metrics1 (for details, see Oeschger et al., 2023a), a list of SNR values, and the number of noise samples. 
Output: a figure showing the distance between the estimated metric and the ground truth value for each 
RBC method. 
Application: useful for computing the required SNR for DTI, DKI, and biophysical parameter estimation.

ROI analysis Calculates the mean value within a specified region of interest (ROI). 
Input: list of images and various types of ROIs including (i) global ROIs, applied to all images in the list, (ii) 
subject-specific ROIs, applied only to the corresponding image, and (iii) subject-specific reliability masks, 
again applied only to the corresponding image (see Reliability masking). 
Output: an array containing the mean values within the specified ROIs per subject, ROI, and (optionally) 
slice. When multiple types of ROIs are specified, their intersection is applied. 
Application: the function offers flexibility for a range of ROI-based analyses; for example, ROI-based anal-
ysis in the native space requires a set of subject-specific ROIs, while a single global mask is  
sufficient in the template space (with optional reliability masks in both cases). An example application 
including reliability masks can be found in David et al. (2017).

Table 2.  (Continued)

1  https://github​.com​/quantitative​-mri​-and​-in​-vivo​-histology​/axisymmetric​
_dki​_with​_rician​_bias​_correction​_simulation​_study

https://github.com/quantitative-mri-and-in-vivo-histology/axisymmetric_dki_with_rician_bias_correction_simulation_study
https://github.com/quantitative-mri-and-in-vivo-histology/axisymmetric_dki_with_rician_bias_correction_simulation_study
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(Mohammadi, Freund, et  al., 2013) (Appendix Fig. E1). 
Unlike the linearized models, the nonlinear least squared 
(NLLS) method is based on an implementation (Modersitzki, 
2009) of the Gauss-Newton algorithm and operates on 
the nonlogarithmic data, avoiding the distortion of the 
noise distribution.

2.3.2.  Diffusion kurtosis imaging (DKI)

DKI expands the diffusion tensor model by the kurtosis 
tensor, a fourth-order tensor with 15 independent param-
eters, which captures the effects of non-Gaussian water 
diffusion. From the 15 kurtosis parameters, several kur-
tosis metrics can be estimated including the mean (MK), 
axial (AK), and radial kurtosis (RK), as well as the mean 
(MW), axial (AW), and radial (RW) kurtosis tensor (Tabesh 
et  al., 2011) (Fig.  1). These metrics provide additional 
information about tissue complexity beyond what can be 
captured by diffusion tensor metrics alone. DKI requires 
the acquisition of a second diffusion shell with higher 
b-value (typically between 2000 and 2500 s/mm2). ACID 
also includes the axisymmetric DKI model, a recent 
modification of DKI which reduces the parameter space 
to eight independent parameters by imposing the 
assumption of axisymmetrically distributed axons (Hansen 
et al., 2016). Currently, ACID offers the OLS and NLLS 
algorithms for fitting the kurtosis tensor, and the NLLS 
algorithm for fitting the axisymmetric kurtosis tensor. 
Note that the diffusion tensor parameters from DKI 

might differ from standard DTI parameters. In particular, 
diffusivities (AD, MD, and RD) derived from the DTI 
model are often underestimated compared with those 
derived from the DKI model (referred to as kurtosis bias) 
(Edwards et  al., 2017). By incorporating higher-order 
moments of the diffusion signal, DKI can address kurto-
sis bias, resulting in more accurate diffusivity estimates 
(see Supplementary Fig. S3 in the Supplementary Mate-
rial for a comparison of MD derived from DTI and DKI).

2.4.  Biophysical models

Biophysical models separate the dMRI signal into distinct 
signal components from various tissue compartments, 
each with their own underlying assumptions. Biophysical 
models provide more specific and biologically interpre-
table metrics that are linked to tissue microstructure 
(Jelescu et  al., 2020). The application of biophysical 
models is often referred to as dMRI-based in vivo histol-
ogy (Mohammadi & Callaghan, 2021; Weiskopf et al., 2021) 
or microstructural dMRI (Jelescu et  al., 2020; Novikov, 
2021; Novikov et  al., 2019). In the following, we briefly 
describe the two white matter biophysical models cur-
rently implemented in ACID (WMTI-Watson and NODDI-
DTI), while recommendations on their usage are provided 
in Section 4.2.2. Example maps are shown in Figure 2, 
and specific values obtained from the brain and spinal 
cord are presented and discussed in Supplementary Fig-
ure S5 (Supplementary Material).

Fig. 1.  Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo brain, in vivo spinal cord, and ex vivo 
dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of fractional anisotropy (FA), mean diffusivity 
(MD), axial diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK).
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2.4.1.  WMTI-Watson model

The white matter tract integrity (WMTI)-Watson model as 
an implementation of the Standard Model assumes two 
nonexchanging water compartments (intra- and extra-
axonal tissue water) (Alexander et  al., 2019; Novikov 
et  al., 2019). The model characterizes the intra-axonal 
compartment as “sticks” of zero radius, with an intra-
axonal diffusivity Da and axonal water fraction f . Axonal 
alignment is characterized by the Watson concentration 
parameter κ, where higher values indicate higher axonal 
alignment, and the orientation dispersion index (ODI), 
where higher values indicate lower alignment. While κ 
and ODI are mathematically related (Mollink et al., 2017), 
ACID outputs both for convenience. The extra-axonal 
space is modeled as a homogeneous medium, described 
by an axisymmetric diffusion tensor with parallel (De,!) 
and perpendicular (De,⊥) extra-axonal diffusivities. The 
five biophysical parameters (Da, f , κ , De,!, De,⊥) are 
derived from the axisymmetric DKI tensor metrics (AD, 
RD, MW, AW, RW) according to the formulas described 

in Jespersen et al. (2018) and Novikov et al. (2018). Being 
derived from the biophysical Standard Model, the esti-
mation of WMTI-Watson biophysical parameters is gen-
erally degenerate, which leads to two solutions: the plus 
branch, which assumes Da > De,!, and the minus branch, 
which assumes Da < De,! (Novikov et al., 2018). We rec-
ommend using the plus branch (default in the toolbox), 
as in our experience, and also reported by others (Jelescu 
et al., 2020; Jespersen et al., 2018), the minus branch is 
the biologically invalid solution.

2.4.2.  NODDI-DTI

NODDI-DTI (Edwards et al., 2017) is based on the neurite 
orientation dispersion and density imaging (NODDI) model 
(Zhang et al., 2012). While NODDI is a three-compartment 
biophysical model with intra- and extra-axonal space, 
and cerebrospinal fluid compartments, NODDI-DTI 
assumes that the latter compartment can be neglected 
in normal appearing white matter. NODDI-DTI further 

Fig. 2.  Maps of biophysical parameters derived from the WMTI-Watson model using an in vivo brain, in vivo spinal cord, 
and ex vivo dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of Watson concentration parameter 
(κ), axonal water fraction (f ), parallel and perpendicular extra-axonal diffusivities (De,! and De,⊥), and intra-axonal diffusivity 
(Da). Note that for the in vivo spinal cord dataset, the maximum b-value (b = 1500 s/mm2) was probably too low for an 
accurate estimation of De,!, resulting in voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-
Watson is a white matter biophysical model, the parameter maps were masked for the white matter in the brain dataset. 
For the spinal cord and ex vivo specimen, we refrained from masking for the white matter due to the difficulty of obtaining 
an accurate white matter mask.
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assumes a fixed diffusivity of the intraneurite compartment 
(Da). In our implementation, users can either choose from 
two fixed values tailored for in vivo (Da = 1.7∙10–3 mm2/s) 
and ex vivo (Da = 0.6∙10–3 mm2/s) datasets, or select their 
own value. NODDI-DTI estimates the intraneurite (here: f ) 
and extraneurite (1− f ) signal fraction, as well as the 
Watson concentration parameter κ and the orientation 
dispersion index (ODI), from the FA and MD maps. While 
WMTI-Watson requires specific multishell dMRI data for 
robust parameter estimation, NODDI-DTI parameters can 
also be obtained from single-shell DTI acquisitions.

2.5.  Utilities

ACID utilizes SPM’s utility functions, available under 
SPM -> Util in the SPM12 Batch Editor, for handling and 
manipulating NIfTI images. These functions include 
mathematical operations on single or multiple images, 
reorienting images, and concatenating 3D volumes and 
separating 4D volumes. Additionally, ACID provides its 
own set of utility functions for image manipulation, mask 
generation, quality assessment, and other related tasks 
(refer to Table 2 for more details).

2.6.  External tools

ACID provides the option to integrate external tools from 
other packages, which can be accessed directly from the 
ACID graphical user interface (GUI) (External tools mod-
ule), ensuring a seamless integration into ACID pipelines. 
We included the following external tools in the current 

release: (i) FSL eddy2 (J. L. R. Andersson & Sotiropoulos, 
2016); (ii) FSL topup3 (Smith et al., 2004); (iii) dwidenoise4 
(based on the Marchenko-Pastur principal component 
analysis (MP-PCA), part of the MRtrix toolbox) (Veraart 
et al., 2016); (iv) denoising5 (based on the local principal 
component analysis (LPCA), part of the DWI Denoising 
Software) (Manjón et al., 2013); (v) Koay’s noise estima-
tion6; (vi) mrdegibbs7 for Gibbs ringing removal, part of 
the MRtrix toolbox (Kellner et al., 2016); and (vii) the WMTI 
model (part of the DESIGNER toolbox) (Fieremans et al., 
2011). ACID also allows expert users to incorporate their 
own external tools into the toolbox, using the aforemen-
tioned examples as a template.

2.7.  Output structure and BIDS naming convention

ACID supports the BIDS standard, while also being com-
patible with non-BIDS data. Following BIDS recommen-
dations, ACID appends a label to the output filename’s 
desc field, which indicates the applied processing step 
(refer to Table 3 for a list of labels used in the modules Pre-
processing, Diffusion tensor/kurtosis imaging, and Bio-
physical models). For instance, after applying ECMOCO 
to sub01_dwi.nii, the output file becomes sub01_

2  https://fsl​.fmrib​.ox​.ac​.uk​/fsl​/fslwiki​/eddy
3  https://fsl​.fmrib​.ox​.ac​.uk​/fsl​/fslwiki​/topup
4  https://mrtrix​.readthedocs​.io​/en​/dev​/dwi​_preprocessing​/denoising​.html
5  https://sites​.google​.com​/site​/pierrickcoupe​/softwares​/denoising​/dwi​
-denoising​/dwi​-denoising​-software
6  https://github​.com​/jan​-martin​-mri​/koays​-inversion
7  https://mrtrix​.readthedocs​.io​/en​/dev​/reference​/commands​/mrdegibbs​
.html

Table 3.  List of labels in the output filename’s desc field (not comprehensive).

Label Description Label Description

ECMOCO Eddy-Current and Motion Correction V1 1st Eigenvector of the Diffusion Tensor
msPOAS Multi-shell Position-Orientation Adaptive 

Smoothing
V2 2nd Eigenvector of the Diffusion Tensor

RBC Rician Bias Correction V3 3rd Eigenvector of the Diffusion Tensor
HySCO Hyperelastic Susceptibility Artifact Correction DKI Diffusion Kurtosis Imaging
fmap Off-Resonance Field DKIax Axisymmetric Diffusion Kurtosis Imaging
COMB-WM Write Combined Weighted Mean MK Mean Kurtosis
COMB-AM Write Combined Arithmetic Mean AK Axial Kurtosis
DTI Diffusion Tensor Imaging RK Radial Kurtosis
OLS Ordinary Least Squares MW Mean Kurtosis Tensor
WLS Weighted Least Squares AW Axial Kurtosis Tensor
ROB Robust Tensor Fitting RW Radial Kurtosis Tensor
NLLS Non-linear Least Squares WMTI-W White Matter Tract Integrity - Watson
FA Fractional Anisotropy NODDI-DTI Neurite Orientation Dispersion and Density-
MD Mean Diffusivity Diffusion Tensor Imaging
AD Axial Diffusivity AWF Axonal Water Fraction
RD Radial Diffusivity DA Intra-axonal Diffusivity
L1 1st Eigenvalue of the Diffusion Tensor DE-PARA Parallel Extra-axonal Diffusivity
L2 2nd Eigenvalue of the Diffusion Tensor DE-PERP Perpendicular Extra-axonal Diffusivity
L3 3rd Eigenvalue of the Diffusion Tensor KAPPA Watson Concentration Parameter

ODI Orientation Dispersion Index

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
https://mrtrix.readthedocs.io/en/dev/dwi_preprocessing/denoising.html
https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi-denoising/dwi-denoising-software
https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi-denoising/dwi-denoising-software
https://github.com/jan-martin-mri/koays-inversion
https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs.html
https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs.html
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desc-ECMOCO_dwi.nii. When multiple processing 
steps are involved, the labels are concatenated, as in 
sub01_desc-ECMOCO-msPOAS_dwi.nii. Model fitting 
appends three labels indicating the type of diffusion 
model, algorithm, and parametric map, such as sub01_
desc-ECMOCO-msPOAS-DKI-OLS-FA_dwi.nii. For 
BIDS-compliant input, ACID generates a bval and bvec 
file after each processing step. ACID stores all output in 
the derivatives folder, with separate subfolders for 
each module’s output (e.g., derivatives/msPOAS-
Run). ACID retains the same folder structure and naming 
convention even when non-BIDS input is provided.

3.  RESULTS

3.1.  Pipelines

ACID is fully integrated into the SPM12 batch system, 
allowing users to execute its functions individually or 
combined into linear pipelines with multiple steps. Each 
step can receive the output of any of the previous steps 
via flexible and easy-to-use dependencies. While pipe-
lines are typically set up in the SPM batch system, they 
can also be converted into MATLAB code (SPM batch 
script) for automation and further customization. In addi-
tion to its own functions, ACID integrates seamlessly with 
a range of standard SPM features, including segmenta-
tion, coregistration (based on affine transformation), spa-
tial normalization (including nonlinear registration), and 

voxel-based statistical analyses, as well as a growing 
number of SPM extensions.8 For example, combining 
ACID with the hMRI toolbox enables multicontrast analy-
sis of dMRI and other quantitative MRI data, such as 
relaxation rates (Tabelow et al., 2019).

3.2.  Example applications

To demonstrate the application of ACID toolbox on dif-
ferent types of dMRI data, here we provide three exam-
ple pipelines for in vivo brain, in vivo spinal cord, and ex 
vivo dMRI (Fig.  3). Details of these three datasets are 
summarized in Table 4. The gradient schemes used for 
all datasets were based on the configurations proposed 
by Caruyer et al. (2013), available online.9 The design of 
the sampling schemes followed a uniform coverage on a 
sphere. Note that data with reverse phase-encoding 
direction were available for all three datasets, which 
refers to the acquisition of either a single b0 volume or all 
volumes with identical geometry and sequence parame-
ters but opposite phase-encoding direction. All example 
pipelines consist of artifact correction (ECMOCO, msPOAS, 
RBC, HySCO) and model fitting steps. While Gibbs ring-
ing removal is often part of dMRI processing pipelines 
(Ades-Aron et  al., 2018; Kellner et  al., 2016; Tournier 

Fig. 3.  Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal cord, and (C) ex vivo dMRI datasets 
(refer to Table 4 for details on the datasets and Table 5 for details on the pipeline settings). Example batches for each 
type of dMRI data are stored in the Example_Batches folder of the toolbox. The positions of the displayed slices of 
the dMRI data are indicated in purple on the corresponding structural images. For the ex vivo specimen (C), the brain 
region from which the sample was extracted is highlighted in an orange box. Although not explicitly shown here, noise 
estimation should be performed on the unprocessed data (see Appendix C), which serves as input for msPOAS, Rician 
bias correction, and diffusion tensor fitting (for fitting methods WLS and robust fitting). However, in case of substantial 
misalignments across volumes, and when using the repeated measures noise estimation method, it might be beneficial 
to perform this step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual comparison 
is shown between a diffusion-weighted (DW) image before (middle row) and after applying msPOAS (bottom row); 
the msPOAS-corrected image appears less noisy while preserving tissue edges. For HySCO, contour lines of the 
corresponding structural image (displayed as red lines) are overlaid on a zoomed-in DW image both before (middle row) 
and after applying HySCO (bottom row). HySCO improves the alignment between the DW and the structural image. For 
the in vivo brain dMRI dataset (A), an inferior slice is shown that presents high susceptibility-related distortions, making 
the effect of HySCO more visible. For the ex vivo dMRI dataset (C), the effect of HySCO is shown in a slice (illustrated 
in yellow) orthogonal to the original one (illustrated in purple) to better visualize susceptibility-related distortions and 
their correction. Note that HySCO is applied as the final preprocessing step, that is, after applying msPOAS; however, 
the HySCO field map used for “unwarping” the diffusion-weighted images is estimated on the ECMOCO-corrected 
datasets, that is, before applying msPOAS. Rician bias correction (not explicitly shown here) should be applied either 
before (recommended: between msPOAS and HySCO, using the RBC module) or during model fitting (using the Rician 
bias correction option in NLLS). Diffusion signal models are fitted on the processed dataset; here, we display the maps of 
fractional anisotropy (FA) and mean kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The output from DKI can be 
used to compute biophysical parameters of the white matter; shown here is the map of Watson concentration parameter 
(κ) from the WMTI-Watson biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice displayed 
contains relatively little white matter; hence, we refrained from using a white matter mask. The less smooth appearance of 
the κ map is due to the low values in the gray matter.

8  https://www​.fil​.ion​.ucl​.ac​.uk​/spm​/ext/
9  http://www​.emmanuelcaruyer​.com​/q​-space​-sampling​.php

https://www.fil.ion.ucl.ac.uk/spm/ext/
http://www.emmanuelcaruyer.com/q-space-sampling.php
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et al., 2019) and is also available in ACID as an external 
tool, we refrained from including it in the example pipe-
lines because the interaction between denoising and the 
interpolation associated with Gibbs ringing removal is not 
well characterized yet. We emphasize that these example 
pipelines might not be optimal for all cases; users might 
find that another combination of preprocessing steps, 

which might also include Gibbs ringing removal, works 
even better for their data.

While the pipelines for in vivo brain, in vivo spinal 
cord, and ex vivo dMRI follow similar concepts, recom-
mended settings for each region may differ (Table 5). It is 
important to note that the settings listed in Table 5 serve 
as initial values for typical datasets. The optimal settings 



12

G. David, B. Fricke, J.M. Oeschger et al.	 Imaging Neuroscience, Volume 2, 2024

Table 4.  Scan parameters of the in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets used in this paper.

Dataset In vivo brain In vivo spinal cord Ex vivo specimen

Imaged body  
part or tissue

entire brain (including  
cerebellum) of a  
34-year-old healthy  
volunteer

upper cervical cord (appr. 
C1-C4) of a 43-year-old 
healthy volunteer

ex vivo specimen of the  
temporal lobe from a 
46-year-old patient  
diagnosed with drug-resistant 
temporal lobe epilepsy;  
specimen embedded in  
glucose for 2 h and fixed with 
4% paraformaldehyde for  
12 h before measurement

Scanner 3T Siemens Prisma Fit 3T Siemens Prisma Fit 3T Siemens Prisma Fit
Receive coils 64-channel Head/Neck 64-channel Head/Neck 16-channel Hand/Wrist
Sequence 2D single-shot spin-echo EPI 2D single-shot spin-echo EPI pulse gradient spin echo
Volumes and b-values  
[s/mm2] (number of  
gradient directions)

b = 0 (18); b = 600 (30); 
b = 1100 (45); b = 2500 (60)

b = 0 (11); b = 500 (30); 
b = 1000 (30); b = 1500 (30)

b = 0 (36); b = 550 (30); 
b = 1100 (75); b = 2200 (45); 
b = 2500 (60); b = 5000 (60)

Cardiac gating - 2 slices per cardiac cycle, 
trigger delay of 260 ms

-

Number of slices 100 (interleaved, no gap) 14 (interleaved, no gap) 160
Resolution [mm3] 1.7 x 1.7 x 1.7 1.0 x 1.0 x 5.0 0.8 x 0.8 x 0.8
Field of view [mm3] 204 x 170 x 201 128 x 36 x 70 128 x 48 x 48
Echo time 75 ms 73 ms 99 ms
Repetition time 5800 ms pulse-dependent (cardiac 

gated)
8700 ms

Parallel imaging 2x (GRAPPA) - -
Multiband imaging - - -
Phase partial Fourier 7/8 - 7/8
Phase-encoding direction A-P A-P A-P
Readout bandwidth 1842 Hz/pixel 1396 Hz/pixel 802 Hz/pixel
EPI spacing 0.77 ms 0.93 ms 1.37 ms
EPI factor 120 36 60
Acquisition time [min:sec] 17:46 06:51 (nominal) 93:10
Additional data with  
reversed phase-encoding 
direction

a single b0 volume  
acquired with reversed 
phase-encoding direction

full blip-reversed acquisition 
(reversed phase-encoding 
available for each volume)

full blip-reversed acquisition 
(reversed phase-encoding 
available for each volume)

Table 5.  Settings of selected modules for in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets.

Module Adjustable parameter In vivo brain dMRI In vivo spinal cord dMRI Ex vivo dMRI

ECMOCO type of registration  
degrees of freedom

mask

volume-wise 
9 [transl. x, y, z;  
rotation x, y, z; 
scaling y; 
shearing x-y, y-z] 
-

volume- and slice-wise 
volume-wise: 4 
[transl. x, y, z; scaling y] 
slice-wise: 3 per slice 
[transl. x, y; scaling y] 
mask around the spinal cord

volume-wise 
4 [transl. y; scaling 
y; shearing x-y, y-z]

-
msPOAS Kappa, lambda automatically  

determined
increase default for low  
SNR data (e.g., +20%)

automatically  
determined

RBC defaults defaults defaults
HySCO phase-encoding direction; 

Maximal data resolution
defaults defaults defaults

DTI Fitting algorithm robust fitting or NLLS robust fitting or NLLS NLLS
DKI/axDKI Fitting algorithm NLLS NLLS NLLS
NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters
WMTI-Watson defaults defaults defaults

In the “degrees of freedom” settings (ECMOCO), x, y, and z represent the frequency-, phase-, and slice-encoding directions, respectively.
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for a particular dataset depend on the sequence param-
eters, the subject, and the imaged region. Model fitting 
may be followed by spatial processing, such as coregis-
tration to the structural image or spatial normalization to 
a template in a standard space (e.g., MNI152 space), and 
statistical analysis (e.g., ROI- or voxel-based analysis).

4.  DISCUSSION

We have developed the ACID toolbox, which extends the 
capabilities of the SPM framework by providing compre-
hensive preprocessing and model fitting techniques for in 
vivo brain, spinal cord, and ex vivo dMRI data. Besides 
commonly used diffusion signal models such as DTI and 
DKI, ACID also offers biophysical models that provide 
parameters of white matter tissue microstructure such as 
axonal water fraction and axon orientation dispersion. 
Being seamlessly integrated into the SPM batch system, 
ACID allows for user-friendly access to SPM’s powerful 
spatial processing tools and statistical framework. In 
addition to offering recommended pipelines for in vivo 
brain, spinal cord, and ex vivo dMRI, ACID provides the 
flexibility for users to create customized pipelines tailored 
to their specific data. Adhering to the BIDS conventions 
facilitates data sharing, enhances data comprehension for 
investigators, and makes ACID compliant with software 
requiring BIDS input (https://bids​-apps​.neuroimaging​.io).

4.1.  Preprocessing dMRI data

ACID offers artifact correction steps typically applied to 
dMRI data, including image realignment (ECMOCO), 
adaptive denoising (msPOAS), Rician bias correction 
(RBC), and correction for susceptibility-induced geomet-
ric distortions (HySCO). Here, we discuss specific con-
siderations regarding their use for various applications.

Correcting for displacements within the dMRI data 
through image realignment is one of the most important 
but also challenging tasks. ECMOCO provides users with 
the flexibility to choose the degrees of freedom for image 
realignment based on the anticipated type of displace-
ment, but also offers a selection of predefined degrees of 
freedom that are optimized for brain, spinal cord, and ex 
vivo dMRI.

In brain dMRI, motion can be approximated as a rigid 
body displacement with 6 degrees of freedom (DOF). 
Eddy-current spatial displacements, to a first-order 
approximation, result in translation and scaling along the 
phase-encoding direction (typically, the y-axis), and in-
plane and through-plane shearing (Mohammadi et  al., 
2010). Since these displacements affect the entire brain, 
we recommend employing a 9-DOF volume-wise (vol-
ume to volume) registration with translation and rotation 

along x, y, and z, scaling along y, and shearing in the x-y 
and y-z planes. First-order approximation of eddy-current 
displacements might not always be sufficient, as dMRI 
data can also be affected by higher-order eddy-current 
field inhomogeneities causing nonlinear distortions (J. L. 
R. Andersson & Sotiropoulos, 2016; Rohde et al., 2004). 
For example, in our observations, ECMOCO was not 
effective in removing pronounced eddy-current displace-
ments present in the dMRI data of the Human Connec-
tome Project (Van Essen et al., 2012). In such cases, we 
recommend using FSL eddy, which incorporates higher- 
order eddy-current correction terms (J. L. R. Andersson & 
Sotiropoulos, 2016) and can be called directly from ACID 
as an external tool (Section 2.6). In cases where ECMOCO 
is sufficient, an advantage of ECMOCO is that its perfor-
mance is largely independent of the number of diffusion 
directions, whereas FSL eddy requires a minimum 
number of diffusion directions for good performance (see 
FSL website10 for recommendations).

In spinal cord dMRI, volume-wise registration has 
been found to be less effective (Cohen-Adad et al., 2009; 
Mohammadi, Freund, et al., 2013) due to displacements 
that vary along the rostrocaudal axis of the spinal cord. 
These displacements appear mostly in the phase-
encoding direction and are caused by physiological fac-
tors such as respiration and cardiac pulsation (Kharbanda 
et  al., 2006; Summers et  al., 2006). We recommend 
applying volume-wise registration for rough alignment 
and correction of through-slice displacements, followed 
by slice-wise (slice to slice) registration for correcting any 
remaining slice-dependent displacement. This combined 
approach has demonstrated effectiveness in realigning 
not only volumes but also individual slices (Appendix Fig. 
B2), as well as improving the contrast-to-noise ratio 
between gray and white matter and reducing test–retest 
variability in DTI maps of the spinal cord (Mohammadi, 
Freund, et  al., 2013). Eddy-current distortions are typi-
cally less severe in the spinal cord compared with the 
brain, because the in-plane field of view is smaller and 
located near the scanner isocenter. This makes the first-
order approximation of eddy-current displacements, as 
supported by ECMOCO, generally adequate. We rec-
ommend employing a 4-DOF volume-wise registration 
(translation along x, y, z; scaling along y) followed by a 
3-DOF slice-wise registration (translation along x, y; scal-
ing along y). In datasets with low SNR, slice-wise correc-
tion along x can be omitted, given the smaller range of 
movement which makes reliable estimation difficult. We 
advise against correcting for in-plane rotation and shear-
ing, as their expected range is very small. Correction for 
these DOFs might introduce spurious displacements 

10  https://fsl​.fmrib​.ox​.ac​.uk​/fsl​/fslwiki​/eddy

https://bids-apps.neuroimaging.io
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
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during realignment, a risk we consider greater than not 
applying correction at all.

Structures surrounding the spinal cord (bones, liga-
ments, etc.) may move independently from the spinal 
cord, potentially leading to inaccuracies in transformation 
parameters. Moreover, as these structures typically 
occupy a larger portion of the image, they can dominate 
the estimation of transformation parameters. To address 
this challenge, ECMOCO provides the option of specify-
ing a spinal cord mask to restrict the estimation of trans-
formation parameters to the spinal cord and its immediate 
surroundings (Fig. 3). Any residual misalignments can be 
manually corrected using the Slice-wise realignment util-
ity function (Table 2).

In ex vivo dMRI, specimen motion is not anticipated if 
the specimen is appropriately fixed, for instance, by 
using a sample holder or embedding it in agarose. Thus, 
we recommend correcting only for the four first-order 
eddy-current displacements (y-translation, y-scaling, x-y 
shearing, y-z shearing). The first-order approximation is 
typically adequate for small specimens where eddy-
current displacements are not severe.

In general, the performance of msPOAS and HySCO is 
largely independent of the anatomical features present in 
the image; therefore, default parameters are expected to 
work well for in vivo brain, spinal cord, and ex vivo dMRI 
data. Nevertheless, the default regularization parameters 
for HySCO (alpha “diffusion” and beta “Jacobian” regula-
tor), accessible through the script config/local/acid_
local_defaults.m, are optimized for the brain and 
may require adjustment for the spinal cord if performance 
is inadequate.

Applying HySCO is particularly important for acquisi-
tions with severe susceptibility-related distortions, such 
as multiband EPI without parallel imaging, and for multi-
contrast analyses where dMRI data or other quantitative 
maps are combined with structural reference images, for 
example, the dMRI-based axonal water fraction and mag-
netization transfer saturation maps in g-ratio mapping 
(Mohammadi & Callaghan, 2021) or multicontrast MRI in 
the spinal cord (David et al., 2019). In these cases, HySCO 
improves the overlap between the undistorted structural 
image and the dMRI data, improving the performance of 
subsequent coregistration and spatial normalization algo-
rithms. HySCO has also been shown to improve the accu-
racy of g-ratio mapping (Clark et al., 2021; Mohammadi, 
Tabelow, et al., 2015). While HySCO is far more efficient 
than FSL topup in terms of computation time (Macdonald 
& Ruthotto, 2018), it does not integrate movement and 
susceptibility artifact correction into a single model. To 
mitigate the effects of subject movement, we propose 
acquiring images with reversed phase-encoding direction 
(the blip-up and blip-down images) in close succession.

The application of adaptive denoising (msPOAS) is 
important as it reduces the variance and, therefore, 
improves the precision of the tensor and kurtosis param-
eter estimates (see Supplementary Fig. S4 for an exam-
ple illustrating the effect of msPOAS on DKI parameters, 
and refer to Becker et al. (2014) for more examples and 
details). For high-SNR data, denoising might not be 
advantageous; instead, denoising methods could even 
introduce additional error (see analysis in Appendix G). 
For low-SNR data, Rician bias correction (RBC), either 
applied to the dMRI data or during model fitting, must be 
performed in addition to msPOAS to mitigate the Rician 
bias in parameter estimates (see Appendix F for an exam-
ple). An in-depth analysis of the impact of Rician bias 
correction on DKI and axisymmetric DKI can be found in 
Oeschger et al. (2023a).

4.2.  Model fitting on dMRI data

4.2.1.  Physical diffusion models

At a given b-value, the SNR in spinal cord dMRI is typi-
cally lower than in brain dMRI due to (i) the smaller cross-
sectional area that requires higher in-plane resolution 
(see Fig.  4A for a size comparison), (ii) the high signal 
attenuation for diffusion-gradient directions parallel to 
the highly aligned fibers in the head-feet direction (Fig. 4B), 
and (iii) the suboptimal coil configuration in the thoracic 
and lumbar regions, which are not covered by the head 
and neck coil. Lower SNR increases the variance of 
parameter estimates and makes spinal cord dMRI more 
susceptible to Rician bias. Consequently, SNR is often 
prohibitively low at higher b-values necessary for fitting 
the kurtosis tensor, making the application of DKI in the 
spinal cord very challenging.

The bias in parameters estimates induced by signal 
outliers from cardiac, respiratory, and other physiologi-
cal artifacts (Mohammadi, Hutton, et  al., 2013) can be 
mitigated by applying robust fitting as a tensor fitting 
method (Appendix E.3). Given the higher occurrence of 
signal outliers in the spinal cord, robust fitting holds par-
ticular relevance for spinal cord dMRI. In a previous 
study, we demonstrated that robust fitting leads to higher 
FA values within the white matter and lower FA values 
within the gray matter in spinal cord dMRI data, resulting 
in an approximately 8% enhancement in contrast-to-
noise ratio (Mohammadi, Freund, et  al., 2013). While 
robust fitting demonstrated high resistance to contami-
nation (presence of outliers) compared with OLS and 
NLLS estimations, it is important to note that robust fit-
ting requires a sufficiently large number of artifact-free 
data points. Simulations suggested that robust tensor 
estimates begin to break down when the frequencies of 
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moderately intense cardiac pulsation artifacts exceed 
27–30% (Zwiers, 2010, fig. 5).

One potential limitation of linearized fitting methods is 
their operation on logarithmically transformed signals, 
where the assumption of Gaussian (or Rician) error distri-
bution may not hold. The presence of logarithmically dis-
torted Rician noise distribution not only restricts validity 
but can also impact the accuracy of the parameter esti-
mates (J. L. R. Andersson, 2008; Chang et al., 2005; Koay 
et al., 2006), particularly in the low-SNR regime such as 
in spinal cord dMRI. The WLS and robust fitting algo-
rithms incorporate the signal intensity into the weights of 
the estimator function (Appendices E.2 and E.3), which 
was shown to reduce the effect of log-Rician distortion 
(Salvador et al., 2005). Alternatively, the NLLS algorithm 
(Appendix E.4) can be used, which circumvents the 
distortion of the Rician distribution by operating on the 
original (nonlogarithmic) signals, and is, therefore, expected 
to yield more accurate parameter estimates, provided 
that the numerical fitting problem is sufficiently well con-
ditioned.

In summary, for data with relatively high SNR and a 
frequent occurrence of outliers, we recommend using 
robust fitting to mitigate the influence of outliers. NLLS, 
particularly when combined with Rician bias correction, 
may be more suitable for dMRI data with lower SNR, 
which is often encountered in acquisitions for DKI (refer 
to Oeschger et  al., 2023a, for recommended minimum 
SNR values and the Rician bias simulation utility function 
in Table  2 for simulating the Rician bias on dMRI data 
with a given SNR). Low-SNR data with a frequent occur-
rence of outliers pose challenges for model fitting, where 

a combination of msPOAS with RBC might reach their 
limits. In such cases, reliability masking can assist in 
identifying and excluding corrupted, thus unreliable, vox-
els from the parameter maps (David et al., 2017).

4.2.2.  Biophysical diffusion models

Of the biophysical models implemented in ACID, WMTI-
Watson relies on DKI metrics (requiring at least two diffu-
sion shells), while NODDI-DTI relies on DTI metrics 
(requiring a single diffusion shell only). This implies that 
the challenges associated with the estimation of DTI and 
DKI metrics, as discussed earlier, also apply to derived 
biophysical models. Accurate and precise estimation of 
DKI and DTI metrics is essential for the successful appli-
cation of WMTI-Watson and NODDI-DTI, respectively.

In general, we recommend the DKI-based WMTI-
Watson model over NODDI-DTI due to the fewer model 
assumptions, allowing it to better capture diffusion 
patterns in complex axonal configurations within the brain 
white matter. This aligns with the results from our exam-
ple multishell brain dMRI dataset, where WMTI-Watson 
yielded more accurate estimates of κ and AWF compared 
with NODDI-DTI (Supplementary Fig. S5). For a more in-
depth comparison of biophysically derived values with 
histological values, refer to Papazoglou et al. (2024).

On the other hand, complex models are more “data-
hungry” and more susceptible to noise due to the higher 
number of fitted parameters, which can lead to poorly 
conditioned optimization problems when the amount 
and/or the quality of input data are insufficient. There-
fore, for low-SNR data, as is often the case in spinal 

Fig. 4.  (A) Illustration of differences in the cross-sectional area between the brain and spinal cord, displaying a single axial 
slice of the mean T2-weighted (b0) image (refer to Table 4 for details on the datasets). (B) Schematic visualization of the 
spinal cord, highlighting the “butterfly-shaped” gray matter, which is located in the middle of the spinal cord and contains 
neuronal cell bodies and loosely aligned fibers, and the surrounding white matter, which contains highly aligned fibers.
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cord dMRI, the less complex but better-conditioned 
NODDI-DTI model might be the preferred choice. The 
low b-values often used in spinal cord dMRI could lead 
to inadequate parameter estimation when using the 
WMTI-Watson model. Indeed, NODDI-DTI yielded a 
more accurate estimation of κ in the example spinal cord 
dMRI dataset, whereas WMTI-Watson highly overesti-
mated it (Supplementary Fig.  S5). A drawback of the 
NODDI-DTI model in the spinal cord is its assumption of 
fixed intra- and extracellular diffusivities, which were 
optimized for the brain and might not be valid for the 
spinal cord. Both low SNR (Veraart et al., 2011) and kur-
tosis bias (Edwards et al., 2017) can lead to an underes-
timation of MD (Supplementary Fig. S3), impacting the 
model parameter estimation when MD falls outside the 
range where the NODDI-DTI model provides a valid rep-
resentation (refer to Equation (4) in Edwards et al., 2017). 
This was evident in the estimation of AWF, which proved 
unfeasible in the spinal cord dataset (see Appendix Fig. 
F1; Supplementary Fig.  S5). We anticipate that future 
improvements in acquisition methods will enhance the 
SNR in spinal cord dMRI, enabling the acquisition of 
higher b-values, which would alleviate many of the 
above-mentioned drawbacks.

A compromise between these two models could be 
the white matter tract integrity (WMTI) model, which is 
included as an external tool in ACID (Section 2.6). WMTI 
assumes highly aligned fibers, which holds true in white 
matter regions with high fiber alignment, such as the cor-
pus callosum or the spinal cord white matter, but is less 
appropriate in regions with more complex axonal config-
urations, such as parts of the superior longitudinal fascic-
ulus.

Ex vivo neuronal tissues exhibit different diffusivities 
compared with in vivo tissues due to various factors, 
including the effect of fixation, changes in chemical prop-
erties, and differences in temperature and composition of 
the embedding fluid. For example, white matter diffusivity 
was reported to reduce by approximately 85% from in 
vivo to ex vivo conditions, while the ratio between gray 
and white matter diffusivities remains similar, around 2–3 
(Roebroeck et al., 2019). To accommodate the reduced 
diffusivities under ex vivo conditions, ACID offers the option 
to utilize compartmental diffusivities tailored for ex vivo 
datasets within the NODDI-DTI model. Such an adjustment 
is not necessary for WMTI and WMTI-Watson, as their 
compartmental diffusivities are fitted rather than fixed.

We emphasize that NODDI-DTI, WMTI, and WMTI-
Watson have been developed to characterize diffusion in 
the white matter. Recently, several efforts have been 
made to extend biophysical models to the gray matter 
(Jelescu et  al., 2020). Notable examples include the 
SANDI (Palombo et al., 2020) and NEXI (Jelescu et al., 

2022) biophysical models. However, these models thus 
far, no study using these protocols on a clinical MRI sys-
tem has been published.

4.3.  Studies quantitatively evaluating the 
performance of ACID pipelines

Here, we briefly summarize and discuss the studies that 
quantitatively evaluated the performance of ACID tools 
individually or in comparison with other tools.

4.3.1.  Evaluating preprocessing pipelines

In a previous study, we assessed the performance of 
ECMOCO as well as the combination of ECMOCO and 
msPOAS in simulated high- and low-SNR multishell brain 
dMRI datasets with added motion and eddy-current arti-
facts (i.e., perturbed data) (Mohammadi, Tabelow, et al., 
2015). We found that the performance of ECMOCO in 
correcting the perturbed volumes was dependent on the 
SNR, with the number of incorrectly registered volumes 
increasing at lower SNR (SNR < 16). However, the com-
bined application of msPOAS and ECMOCO effectively 
reduced the number of incorrectly registered volumes 
even at low SNR (fig. 3 in Mohammadi, Tabelow, et al., 
2015). Additionally, correcting the perturbed volumes 
with ECMOCO and msPOAS yielded FA maps closer to 
the “ground truth,” that is, the FA map computed on the 
unperturbed data (fig. 5 in Mohammadi, Tabelow, et al., 
2015). In another study utilizing clinical spinal cord dMRI 
data, we evaluated the impact of ECMOCO on the group 
differences observed in FA between patients with degen-
erative cervical myelopathy and healthy controls (fig. 7 in 
David et al., 2017). Our analysis revealed that ECMOCO 
had only a minimal effect on the two-sample t-score 
computed between the FA values of the two groups.

We also tested the effects of different denoising meth-
ods (msPOAS, LPCA, and MP-PCA) on the accuracy of 
DKI metrics, with the details and results described in 
Appendix G. In short, we found that denoising (using any 
of the three methods) is beneficial only in the low-SNR 
domain (below an SNR of approximately 30). In high-SNR 
data, denoising did not lead to further improvements with 
MP-PCA and even introduced additional errors with 
msPOAS and LPCA. In terms of susceptibility artifacts, 
we previously found in a brain dMRI dataset that FSL 
topup was more efficient in correcting susceptibility-
related distortions than HySCO, even when including a 
motion correction step between the reverse phase-
encoded (blip-up and blip-down) images before running 
HySCO (fig.  3 in Clark et  al., 2021). This is potentially 
because the HySCO pipeline involved multiple interpola-
tion steps, introducing additional blurring effects, while 



17

G. David, B. Fricke, J.M. Oeschger et al.	 Imaging Neuroscience, Volume 2, 2024

FSL topup incorporates motion and susceptibility distor-
tion correction within the same model. The same study 
found that combining reverse phase-encoded images 
using the “weighted average” method (HySCO: combine 
blip-up and blip-down images module), as opposed to 
the “arithmetic average” method, reduces image blurring 
in the corrected brain dMRI data and achieves greater 
overlap between the dMRI data and the corresponding 
structural image. In fact, when using the “weighted aver-
age” method, HySCO performed comparably to FSL 
topup and even outperformed it in regions suffering from 
high levels of distortion (fig. 5 in Clark et al., 2021). In spi-
nal cord dMRI, a previous study found that HySCO is 
comparable with other distortion correction tools such as 
FSL topup (Schilling et al., 2024).

4.3.2.  Evaluating diffusion signal models

In brain dMRI datasets, we found that robust tensor fit-
ting can reduce the effect of signal outliers due to motion, 
eddy-current artifacts, incorrectly registered volumes 
(fig. 5C, D in Mohammadi, Tabelow, et al., 2015), or phys-
iological noise (fig. 9 in Mohammadi, Hutton, et al., 2013). 
In spinal cord dMRI, we quantified the performance of 
robust fitting and showed that it can reduce the bias in 
FA, especially at tissue boundaries (fig. 7 in Mohammadi, 
Freund, et al., 2013). On the other hand, robust fitting had 
only a minor effect on group differences in FA between 
patients with degenerative cervical myelopathy and 
healthy controls, regardless of whether using the ACID 
implementation of robust fitting or using RESTORE (part 
of the CAMINO toolbox; Chang et  al., 2012) (fig.  7 in 
David et al., 2017). However, within the same study, we 
also found that supplementing the pipeline with reliability 
masking to exclude outlier voxels (Table 2) considerably 
increased the statistical differences between patients 
and controls (fig. 7 in David et al., 2017).

4.4.  Applications

For all applications, it is highly recommended to assess the 
data quality before and after each processing step. In addi-
tion to the quality assessment utility functions DWI series 
browser and DWI series movie (Table  2), multiple ACID 
modules generate diagnostic plots to identify the presence 
and type of artifacts in the dMRI data. Example diagnostic 
plots are provided in Supplementary Figures S1 and S2.

4.4.1.  Integration with SPM modules

ACID can be readily combined with SPM tools for seg-
mentation, spatial processing, and voxel-based analysis 
of parametric maps. Segmenting the brain or spinal cord 

is often necessary for coregistration, spatial normaliza-
tion, or tissue-specific analyses. In the brain, tissue 
probability maps of white matter, gray matter, and cere-
brospinal fluid can be created by unified segmentation, 
the default segmentation routine in SPM12 (Ashburner & 
Friston, 2005). These tissue probability maps can also be 
used to create a binary brain mask using the Create brain 
mask utility function (Table  2). To enable SPM’s unified 
segmentation in the spinal cord, the brain tissue priors 
need to be substituted with the joint brain and spinal cord 
tissue priors from the probabilistic brain and spinal cord 
atlas (Blaiotta et al., 2017). However, this atlas only cov-
ers the upper cervical cord down to C3; for other spinal 
levels, the user is referred to automatic (e.g., deepseg 
(Perone et al., 2018)) or semiautomatic (e.g., active surface 
method (Horsfield et al., 2010)) segmentation techniques.

Brain dMRI data can be coregistered to the correspond-
ing structural image using spm_coreg. For nonlinear spatial 
registration to the MNI space, we recommend SPM DAR-
TEL (Ashburner, 2007) or Geodesic Shooting (Ashburner & 
Friston, 2011). As SPM registration tools often rely on brain 
tissue priors, they cannot be applied directly on spinal cord 
dMRI. For the spinal cord, we recommend utilizing the 
PAM50 template (De Leener et  al., 2018) and the corre-
sponding normalization tools integrated into the Spinal 
Cord Toolbox (De Leener et al., 2017).

While brain and spinal cord images are typically ana-
lyzed separately, there are scenarios where combining 
them into a single image can be beneficial. For example, 
when registering the brain and spinal cord image to a 
joint brain–spinal cord template, such as the probabilistic 
atlas of the brain and spinal cord (Blaiotta et al., 2017), 
the warping field is often obtained using a structural 
image with a large field of view (FOV) covering both 
regions (Fig. 5). To apply this warping field to the brain 
and spinal cord images, they need to be fused into a sin-
gle image. ACID provides the Fusion utility function 
(Table  2) which merges two distinct images, acquired 
with different FOV and geometric properties, into a uni-
fied large FOV image (Fig. 5).

ACID benefits from SPM’s rich statistical framework 
for voxel-based analysis. SPM’s second-level analysis 
tool (SPM -> Specify 2nd-level) performs voxel-
based statistical tests on the parametric maps using  
t-test, ANOVA, or general linear model. In the SPM -> 
Results module, the framework also offers (i) multiple 
comparison correction in the form of family-wise error 
rate and false discovery rate, (ii) thresholding the test sta-
tistics at cluster level and voxel level and providing a list 
of significant clusters/voxels, and (iii) various visualization 
tools for displaying and saving the significant clusters. 
Furthermore, ACID’s ROI analysis utility function (Table 2) 
can be used to extract mean metrics within subject-specific 
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ROIs in the native space or perform atlas-based analysis 
in the template space. For atlas-based analysis in the 
spinal cord, the user is referred to the PAM50 white and 
gray matter atlas (De Leener et al., 2018).

Although ACID does not provide tractography or tract-
based analysis tools, the output of its model fitting meth-
ods can be input into tractography tools such as FSL or 
the SPM12-based Fibertools toolbox (see Wiki11 on the 
git repository for more details).

4.4.2.  Computation time

To speed up the processing and analysis of dMRI data, 
parallel computing is implemented wherever applicable. 
This technique can substantially accelerate the most 
time-consuming ACID modules, including ECMOCO and 
DTI/DKI fit. Note that parallel computing requires the Par-
allel Computing Toolbox in MATLAB. Table 6 provides the 
computation times for selected ACID modules on a typi-
cal brain and spinal cord dMRI dataset.

4.4.3.  Research applications

ACID has been used in a variety of clinical and neuro-
science research, for example, in dMRI studies assessing 
cerebral changes in patients with multiple sclerosis 
(Deppe, Krämer, et  al., 2016; Deppe, Tabelow, et  al., 
2016; Dossi et  al., 2018; Kugler & Deppe, 2018) and 

Parkinson’s disease (Szturm et al., 2021), and to assess 
gliomas (Paschoal et al., 2022; Raja et al., 2016). We have 
also used ACID to investigate spinal cord white matter 
following spinal cord injury (Büeler et  al., 2024; David 
et  al., 2019, 2021, 2022; Grabher et  al., 2016; Huber 
et al., 2018; Seif et al., 2020; Vallotton et al., 2021). A non-
comprehensive list of studies using the ACID toolbox can 
be found on the project website.12 Note that certain ACID 
functions can be applied to MRI data beyond dMRI as 
well; for instance, HySCO has been used to correct brain 
fMRI data for susceptibility artifacts (De Groote et  al., 
2020). It is important to note that ACID has not been 
approved for clinical applications by any health agency 
and it comes with no warranty. Therefore, it should not be 
used for diagnosis in clinical settings.

Fig. 5.  Merging of two fractional anisotropy (FA) maps, covering the brain and cervical cord, respectively, into a unified 
FA map using the Fusion utility function (Table 2). The two images should ideally share an overlapping region, but they may 
have different geometric properties such as resolution and number of slices. In the overlapping region, the voxel intensity 
values are computed as the average of the intensity values from the two images. The merging process requires a structural 
image as the registration target. The combined FA map is resampled onto the higher resolution structural image, resulting 
in a smoother appearance.

11  https://bitbucket​.org​/siawoosh​/acid​-artefact​-correction​-in​-diffusion​-mri​
/wiki​/Home 12  http://www​.diffusiontools​.org​/sidebar​/studies​-using​-acid​.html

Table 6.  Computation times of selected ACID modules 
on an example in vivo brain and in vivo spinal cord dMRI 
dataset (refer to Table 4 for details on the datasets), when 
run on a MacBook M1 laptop (4 cores, 16GB RAM).

Module
In vivo brain 

dMRI
In vivo spinal  
cord dMRI

ECMOCO 9 min 2 min
msPOAS 92 min 1 min
RBC <1 min <1 min
HySCO 2 min 1 min
DKI (using NLLS) 4 min 2 min
WMTI-Watson <1 min 1 min

https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home
https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri/wiki/Home
http://www.diffusiontools.org/sidebar/studies-using-acid.html
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4.5.  Limitations and future directions

Comparing the tools within the ACID toolbox with alter-
native implementations in other software presents chal-
lenges because their performance depends on the 
specific dMRI data and the chosen parameter settings 
from a potentially large parameter space, which necessi-
tates a systematic exploration of the parameter space. In 
addition, the evaluation of entire processing pipelines 
would drastically increase the number of parameters to 
test. While we have outlined the comparisons conducted 
so far in Section 4.3, we assert that a thorough quantita-
tive comparison between toolboxes warrants a dedicated 
future study. In general, we encourage users to undertake 
such comparisons on their own datasets.

The ACID toolbox is the result of a collaborative effort 
to extend the SPM ecosystem with state-of-the-art pro-
cessing and modeling tools for dMRI data. Our aim is to 
make the toolbox widely accessible, leveraging SPM’s 
large and vibrant community. Users can submit their 
questions, bug reports, and suggestions via the dedi-
cated mailing list or by opening an issue on the git web-
site. This paper offers an overview of the current state of 
the toolbox, with several ongoing developments not 
covered here. The modularity of the toolbox allows for 
integration of newly developed methods, even when 
used concurrently with old ones. Biophysical modeling is 
an emerging field, and we expect many methodological 
advancements to occur in the coming years. To align 
with this ongoing development, our goal is to consis-
tently integrate state-of-the art biophysical models into 
ACID. We also plan to add the Rician maximum likeli-
hood estimator (Sijbers et al., 1998) as an alternative to the 
existing quasi-likelihood estimators (Polzehl & Tabelow, 
2016).

5.  CONCLUSION

ACID is an open-source extension to SPM12 that pro-
vides a comprehensive framework for processing and 
analyzing in vivo brain, spinal cord, and ex vivo dMRI 
data. The toolbox was developed to meet the increasing 
demand for studies involving spinal cord dMRI, research 
employing biophysical models, and validation studies uti-
lizing ex vivo dMRI. ACID leverages the core SPM tools 
and other SPM extensions, which can be easily inte-
grated into the ACID pipeline.

DATA AND CODE AVAILABILITY

The source code of ACID is freely available at https://
bitbucket​.org​/siawoosh​/acid​-artefact​-correction​-in​
-diffusion​-mri​/src​/master/. The authors will make the raw 

data used for the visualizations in this article available in 
an associate publication.
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APPENDIX A.  IMPLEMENTATION AND  
ORGANIZATION

APPENDIX A.1.  INSTALLATION AND TOOLBOX 
DOCUMENTATION

The ACID toolbox is an extension of SPM12 that requires 
existing MATLAB and SPM12 installations. To run the 
toolbox without a Matlab license, ACID is also available as 
a compiled standalone version which only requires MAT-
LAB Runtime (David et al., 2024). The toolbox has been 
developed and tested with MATLAB versions R2017b to 
R2024a, and SPM12 from versions r6906 onward. It is 
recommended to use the latest SPM release, which can 
be downloaded from the SPM website,13 as develop-
ments in ACID are synchronized with those in SPM.

Information about the toolbox can be found on the main 
project website.14 The source code is available on Bit-
bucket,15 where the latest version as well as all previous 
versions of the toolbox can be downloaded. There are four 
ways to install the toolbox: (i) by cloning the repository (rec-
ommended for staying up-to-date with the latest release), 
(ii) by downloading the toolbox as a zip file and placing the 
unzipped directory into the spm12/toolbox directory, (iii) 
by downloading the toolbox as a zip file and using a redi-
rection script that enables switching between different local 
versions of ACID, or (iv) by downloading the compiled 
standalone version. The full documentation of the toolbox 
is available as a Wiki on the git repository,16 which provides 
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detailed installation instructions, module descriptions, and 
step-by-step instructions for typical analysis pipelines.

ACID is free but copyrighted software, distributed 
under the terms of the GNU General Public License as 
published by the Free Software Foundation (either ver-
sion 2 of the License or, at your option, any later version). 
Further details on “copyleft” can be found at the GNU 
website.17 It should be noted that ACID is supplied as is 
and no formal support or maintenance is provided. The 
toolbox was developed for academic research purposes 
only and comes with no warranty, nor is it intended for 
clinical and diagnostics use.

Appendix A.2.  Organization of the toolbox

The ACID modules can be found in the SPM12 Batch 
Editor by navigating to SPM -> Tools -> ACID Tool-
box. The toolbox is divided into six modules, as shown in 
Appendix Figure A1: Startup, Pre-processing, Diffusion 
tensor/kurtosis imaging, Biophysical models, Utilities, 
and External tools.

Appendix A.3.  Startup

The ACID modules rely on a set of default settings, which 
were selected to yield reasonable results for typical dMRI 
data. However, adjustments may be necessary depend-
ing on the specific dataset (see Section 3.2 for recom-
mendations). For convenience, the module’s graphical 

user interface (GUI) only presents the settings that are 
likely to be modified. Advanced users can access and 
modify all settings through the script config/local/
acid_local_defaults.m. To use modified settings, 
the Startup module must be executed with the custom-
ized file provided as input; these settings will remain in 
effect even after restarting SPM or MATLAB until new 
settings are specified.

ACID requires all input images to be in NIfTI format 
(either NIfTI-1 or NIfTI-2), with dMRI data required to be 
in 4D NIfTI format. ACID also supports compressed NIfTI 
images with the extension .nii.gz and outputs com-
pressed images for compressed input and uncompressed 
images for uncompressed input. Users can convert from 
DICOM to NIfTI format using SPM’s DICOM Import func-
tion, which can also export metadata into JSON files if 
the “Export metadata” option is enabled. To bring dMRI 
data into the required format, the Startup module can be 
utilized to (i) convert a set of 3D NIfTI files into a single 4D 
NIfTI file, (ii) generate corresponding bval/bvec files from 
the JSON files (if not already available), (iii) create an 
additional metadata file containing the most commonly 
reported subject and acquisition parameters (such as TE 
and TR) to provide a concise overview of the dataset, and 
(iv) set an output directory alternative to the default one. 
The output from Startup can be automatically passed to 
subsequent processing steps through dependencies.

APPENDIX B.  DETAILS ON ECMOCO

ECMOCO consists of four steps (Appendix Fig. B1):

Appendix Fig. A1.  The left panel shows the location of the ACID toolbox in the SPM Batch Editor after successful 
installation (SPM -> Tools). The toolbox is organized into six modules, each of which may be further divided into 
submodules. The right panel provides an example of a submodule (Diffusion Tensor Imaging within the Diffusion tensor/
kurtosis imaging module). Each (sub-) module requires at least one mandatory input, indicated by “X,” as well as several 
optional inputs and parameter settings, which can be adjusted for customization. Recommended settings for typical in 
vivo brain, in vivo spinal cord, and ex vivo dMRI datasets are presented in Table 5.

17  http://www​.gnu​.org​/copyleft/

http://www.gnu.org/copyleft/
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Appendix Fig. B1.  Registration scheme for an example dMRI dataset, which consists of two sets of nondiffusion-
weighted (b0) volumes (n volumes each) and two sets of diffusion-weighted (DW) volumes (N volumes each) interspersed 
with each other. The b0 and DW volumes form separate registration groups and are registered to their corresponding 
target volumes. First, the b0 volumes are registered using the rigid-body components of the specified degrees of freedom 
(DOF), followed by the registration of the DW volumes using all specified DOF. The parameter iteration for a given b0 or 
DW can be initialized using previously obtained transformation parameters (initialized registration).

	 1	� The type of registration (slice-wise or volume-wise) 
and the degrees of freedom (DOF) for the affine 
transformation are specified by the user.

	 2	� Shell-specific target volumes are generated, and 
transformation parameters are obtained between 
all nondiffusion-weighted (b0) volumes and their 
corresponding target. The parameter iteration for a 
given b0 volume can be initialized by the transfor-
mation parameters of the preceding b0 volume 
(initialized registration, see details below). Only the 
DOF associated with rigid-body transformation are 
estimated for b0 volumes, as eddy currents are 
expected to be negligible in b0 volumes due to the 
absence of diffusion-sensitizing gradients.

	 3	� Transformation parameters are obtained between 
all diffusion-weighted (DW) volumes and their 
corresponding target. The parameter iteration for 
a given DW volume can be initialized by the inter-
polated transformation parameters from the b0 
volumes (initialized registration, see details below).

	 4	� The obtained transformation parameters are applied 
to reslice all volumes.

In addition to slice-wise registration, introduced in 
Section 2.2.1 and demonstrated in Appendix Figure B2, 
ACID incorporates two additional recent features: initialized 

registration and exclusion mode. Initialized registration is 
based on the observation that transformation parame-
ters obtained from high-SNR b0 volumes tend to be 
more accurate than those obtained from low-SNR DW 
volumes. With initialized registration, the parameter iter-
ation for each b0 volume starts with the transformation 
parameters obtained from the preceding b0 volume. 
Once all the b0 volumes have been registered, their 
rigid-body transformation parameters are interpolated to 
the positions of the DW volumes situated between the 
b0 volumes. Subsequently, the parameter iteration for 
each DW starts with these interpolated values. If interpo-
lation is not feasible (e.g., the DW volume is situated 
before the first or after the last b0 volume), the parameter 
iteration starts with the parameters obtained from the 
nearest b0 volume. This approach is particularly useful 
for correcting slow spatial drifts across volumes.

The exclusion mode is designed to address volumes 
with very low SNRs, which can make obtaining reliable 
transformation parameters difficult. Volumes that are 
considered not feasible for registration can be identified 
through visual inspection, for example, using the DWI 
series browser utility function, and can be input into 
ECMOCO. For these volumes, the rigid-body transforma-
tion parameters from the preceding nonexcluded volume 
are applied instead.
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APPENDIX C.  REGIONS FOR NOISE ESTIMATION

For optimal denoising (msPOAS, Section  2.2.2) and 
Rician bias correction (Section 2.2.3), it is crucial to accu-
rately estimate the image noise within the appropriate 
region of interest. Noise measurements taken from regions 
outside the body are often suboptimal due to the lower 
parallelization factor (g-factor) at the edge compared with 
the center of the field of view. Instead, we recommend 
estimating the noise by considering two distinct scenar-
ios, employing the repeated measures method in each 
case (see Noise estimation in Table 2). In datasets affected 
by (temporally varying) physiological artifacts, such as in 
in vivo brain and spinal cord datasets, we recommend 
estimating the noise across images with high b-values 
and within regions where the signal reaches the noise 
plateau (i.e., within cerebrospinal fluid compartments). 
For automatic ventricle segmentation within the brain, 
ACID provides an example segmentation batch located 
at ACID_TPM/acid-ventricles-batch.m, which uti-
lizes the spm_segment function. In datasets unaffected 
by physiological artifacts, such as in ex vivo dMRI, we 
recommend estimating the noise across nondiffusion-
weighted (b0) images within either the entire specimen or a 
specific part. The latter recommendation, however, requires 
repeated measurements of b0 images. Example noise 
regions are shown in Appendix Figure C1.

APPENDIX D.  RECOMMENDATIONS FOR  
ADAPTIVE DENOISING (MSPOAS)

If the overall noise reduction is insufficient, kstar can 
be  increased at the cost of longer computation time 

Appendix Fig. B2.  Qualitative comparison of different motion correction techniques including no correction, volume-
wise ECMOCO, and the combination of volume- and slice-wise ECMOCO. The plots show the concatenation of 1D  
cross-sections along the phase-encoding (PE) direction (anterior-posterior), extracted at fixed x- and z-coordinates 
from each of the 120 diffusion-weighted (DW) volumes in an in vivo spinal cord dMRI dataset. Additionally, zoomed-in 
views of a subset of DW volumes are provided to facilitate the assessment of improvements by ECMOCO. Substantial 
motion along the y-direction was initially observed, which was notably reduced after applying ECMOCO. Importantly, 
volume-wise ECMOCO did not entirely correct for spatial misalignments in all volumes (an example of failed correction is 
indicated by the red arrow). Conversely, the combination of volume- and slice-wise ECMOCO effectively corrected spatial 
misalignments in all DW volumes.

Appendix Fig. C1.  Definition of noise regions of interest 
(ROI) for the repeated measures noise estimation method 
(see Noise estimation in Table 2). Binary noise ROIs are 
outlined in red. For in vivo brain and spinal cord dMRI, we 
recommend creating a noise ROI within the cerebrospinal 
fluid (CSF), such as the lateral ventricles in the brain and the 
subarachnoid space in the spinal cord, on the b0 images. 
Subsequently, we recommend estimating the noise on the 
images with the highest b-value (ideally above 1500 s/mm2) 
within the CSF mask. For ex vivo dMRI, the noise ROI is 
recommended to encompass the specimen itself, but noise 
estimation should be applied only on the b0 images. Since 
ex vivo dMRI is not affected by physiological artifacts, signal 
variations across the b0 images are considered noise.
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(Tabelow et al., 2015). It is important to note that msPOAS 
assumes a single global value of sigma, which may not 
always hold. If sigma is correctly estimated, the default 
lambda value will ensure optimal adaptation. Incorrect 
estimation of sigma can be compensated by the choice 
of lambda, which makes msPOAS robust against mis-
specification of sigma (Becker et al., 2014). We recom-
mend determining kappa automatically based on the 
number of diffusion directions (Tabelow et  al., 2015). 
However, manual adjustment of kappa may be neces-
sary in cases where the SNR is low (e.g., for spinal cord 
dMRI) or if the dataset has more images with high b-val-
ues than with low b-values. The effective number of coils 
(ncoils) is 1 when using SENSE1 reconstructions (Polzehl 
& Tabelow, 2016; Sotiropoulos et al., 2013), but the cor-
rect value is more difficult to determine when using mul-
tiple receiver channels (Aja-Fernández et al., 2014). It is 
important to use the same ncoils for the estimation of 
sigma and in msPOAS to ensure the same number of 
degrees of freedom.

APPENDIX E.  MODEL FITTING METHODS  
IMPLEMENTED IN ACID

Appendix E.1.  Ordinary least squares

Tensor fitting involves solving the linear regression prob-
lem y = Bαα + εε, where y contains the logarithmic sig-
nals, B (b-matrix) contains the gradient directions and 
strengths, αα contains the elements of the diffusion ten-
sor, and εε contains the model-fit errors (the difference 
between the actual and fitted signal). The ordinary least 
squares (OLS) approach employs the estimator function 
ρ(ε i ) = ε i

2, where ε i represents the model-fit error of 
acquisition i. The solution is obtained by minimizing Σ iε i

2, 
yielding ααols = BTB( )−1BT y .

Appendix E.2.  Weighted least squares

The weighted least squares (WLS) approach addresses 
the heteroscedasticity of the logarithmic data by assigning 
individual weights to each image in the form of ω i = Ŝi /σ i, 

Appendix Fig. E1.  Schematic illustration of how robust fitting down-weights outliers in the model fit. The scatter 
plot shows the logarithm of diffusion-weighted voxel intensities against the squared cosine of the angle ψ between 
the diffusion gradient direction (bvec) and the direction of the first eigenvector in a corpus callosum voxel (see blue 
crosshairs for location). Blue crosses in the scatter plot indicate data points not affected by artifacts (“No outliers”), 
while cyan crosses indicate data points affected by strong artifacts (“Outliers”). Outliers were generated by removing 
the center of the k-space of the original image to illustrate the effect of strong motion artifacts. Two example images 
corresponding to a nonartifactual (“No outlier,” top image) and an artifactual data point (“Outlier,” bottom image) 
are shown on the right. During the model fit, a linear curve is fitted to the logarithmic voxel intensities. The presence 
of outlier data points leads to a biased model fit (red line) and consequently biased tensor estimates when using 
ordinary least squares (OLS) model fitting. In contrast, robust fitting down-weights the influence of outliers, leading 
to a more accurate model fit (orange line) which is closer to the ground truth (green line) obtained by an OLS fit to the 
nonartifactual data points (blue crosses) only.
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where Ŝi represents the unknown true signal (without 
noise) and σ i is the background noise for acquisition i. The 
estimator function now becomes ρ(ε i ) = (ω iε i )

2, yielding 

the solution ααwls = WTBTWB( )−1WTBTWy, with W  being 
the diagonal matrix of ω i . Note that OLS is a special case 
of WLS, where ω i = 1 for all i. A practical consideration in 
obtaining ααwls is related to estimating Ŝi. One approach is 
to use the measured noisy signal Si as an estimate of Ŝi. 
Another approach is to start with the OLS solution and use 
the fitted signal as an estimate of Ŝi, which was shown to 
be more accurate (Veraart, Sijbers, et al., 2013).

Appendix E.3.  Robust fitting

The concept behind robust fitting is to assign lower 
weights to data points with higher model-fit errors during 
the fitting process (Mangin et al., 2002). The robust fitting 
method implemented in ACID is based on the “Patching 

ArTefacts from Cardiac and Head motion” (PATCH) tech-
nique introduced by Zwiers (2010). While the form of the 
estimator function is similar to that of WLS, PATCH factor-
izes the weighting function ω i into three components as 
ω i = ω i1ω i2ω i3, where each component is designed to 
address different types of artifacts: ω i1 and ω i2 account for 
regional and slice-wise artifacts, respectively, while ω i3 is 
identical to the weight term in WLS. ω i1 and ω i2 are expo-

nentially decaying functions of ε i :
 
ω i1 = exp − A1ε i

C1
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⎣
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⎤
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ω i2 = exp −
A2ε i,sl
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, where ε i,sl =

ε ik
nk=1

n∑  is the 

slice-average model-fit error, with n  being the number of 
voxels within the slice. A1 and A2 are model parameters, by 
default set to 0.3 and 0.1, respectively, with higher values 
resulting in a faster exponential decay. C1 and C2 are 
estimates of the standard deviation of ε i  and ε i,sl, res
pectively, in the absence of outliers, and are computed  

Appendix Fig. F1.  The impact of Rician bias correction (RBC) on maps of biophysical parameter estimates, derived from 
the NODDI-DTI and WMTI-Watson models, including Watson concentration parameter (κ) and axonal water fraction (AWF), 
in an in vivo brain and spinal cord dataset (refer to Table 4 for details on the datasets). Being derived from white matter 
biophysical models, the parameter maps were masked for the white matter in the brain dataset. For the spinal cord, we 
refrained from masking due to the difficulty of obtaining an accurate white matter mask. These maps were computed both 
without (left column) and with (middle column) RBC; their voxel-wise difference, referred to as the Rician bias, is shown in 
the right column. RBC slightly decreased the mean of the kurtosis tensor in both the brain and spinal cord, which resulted 
in an increase in κ. The estimation of AWF using the NODDI-DTI model was not feasible in the spinal cord, as the mean 
diffusivity (MD) values derived from DTI fell below the range where the NODDI-DTI model provides a valid representation 
(refer to Equation (4) in Edwards et al., 2017). This discrepancy could be attributed to either the underestimation of MD 
due to kurtosis bias (Supplementary Fig. S3) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI model.
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as C1 = 1.4826·median ε i( ) and C2 = 1.4826·median ε i,sl( ) 
(Hampel, 1974; Rousseeuw & Croux, 1993). Note that 
accurate estimation of C1 and C2 is crucial for effectively 
down-weighting outliers. This holds true as long as outli-
ers are sparsely distributed and the median of the 
model-fit errors remains unaffected. However, a frequent 
occurrence of outliers can increase C, leading to a less 
effective down-weighting of outliers.

While OLS and WLS independently fit the tensor in 
each voxel, PATCH makes use of the observation that 
physiological noise represents a structured, spatially 
correlated noise. To accommodate the anticipated 
smoothness of C1, the median operator is spatially 
smoothed using a 2D Gaussian kernel before computing 
C1 (Zwiers, 2010).

As a modification to PATCH, the robust fitting  
method incorporates Tikhonov regularization to handle 
ill-conditioned weighting matrices resulting from a high 

occurrence of outliers. This leads to the solution 
ααλλ = WTBTWB + λBTB⎡⎣ ⎤⎦

−1
WTBTWy , where W rep-

resents the diagonal matrix of factorized weights, and  
λ is the Tikhonov regularization factor. Notably, in the two 
extreme cases, the Tikhonov solution either becomes 
αwls (albeit with a different W) (λ = 0) or converges to ααols 
(λ→ ∞). The above equation cannot be solved readily, as 
W  is a function of ε, which is only available after obtain-
ing the solution. This is addressed by using an iteratively 
reweighted least squares (IRLS) algorithm. In the first iter-
ation, ω i is set to 1 for all i  to obtain the OLS solution ααols 
and the initial εε. In the second iteration, an updated W is 
computed based on the initial ε, which is then used to 
compute ααλλ. In each further iteration, εε from the preced-
ing iteration is used to update W, which is in turn used to 
compute the updated ααλλ. This iterative process is 
repeated until convergence or until the predefined num-
ber of iterations is exceeded.

Appendix E.4.  Nonlinear least squares

The nonlinear least squares (NLLS) method solves  

the optimization problem ααnlls = argmin
αα

Sb,
!
g −m α( )( )2i∑ , 

where m represents the signal model (DTI or DKI), α the 
model parameters (elements of the diffusion and/or 
kurtosis tensors), and Sb,

!
g the measured signal intensi-

ties for a specific diffusion weighting b  and diffusion 
gradient direction 

!
g. The NLLS optimization problem is 

solved using a Gauss–Newton algorithm.

APPENDIX F.  EFFECT OF RICIAN BIAS  
CORRECTION ON BIOPHYSICAL  
PARAMETER ESTIMATES

Here, we demonstrate the influence of Rician bias correc-
tion on the estimation of Watson concentration parame-
ter (κ) and axonal water fraction (AWF) (Appendix Fig. F1). 
These biophysical parameters were estimated on the fully 
processed dataset using either the NODDI-DTI model 
applied on a single (lower b-value) shell or the WMTI-
Watson model applied on two shells. For an in-depth 
analysis of the impact of Rician bias correction on DKI 
and axisymmetric DKI, refer to Oeschger et al. (2023a).

APPENDIX G.  EVALUATING DENOISING  
METHODS

Several denoising methods have been developed, 
including the Multi-shell Position-Orientation Adaptive 
Smoothing (msPOAS; Section  2.2.2) (Becker et  al., 
2014), as well as methods based on local principal 
component analysis (LPCA) (Manjón et  al., 2013) and 

Appendix Fig. G1.  Qualitative illustration of the effect of 
denoising on maps derived from diffusion kurtosis imaging 
(DKI). Shown are maps of axial diffusivity (AD), radial 
diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis 
tensor (AW), and radial kurtosis tensor (RW). The maps 
were obtained by fitting the kurtosis model to simulated 
noisy dMRI data (signal + noise) with a signal-to-noise ratio 
(SNR) of 5, both before (no denoising) and after employing 
different denoising methods (msPOAS, LPCA, MP-PCA). 
The DKI metric maps obtained from the simulated noise-
free dMRI data (signal only) are also shown for comparison 
(ground truth). The white matter mask used for calculating 
the normalized root-mean-square error (NRMSE) between 
the obtained DKI metrics and the ground truth is overlaid as 
a red segmentation line on the ground truth maps.
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Appendix Fig. G2.  Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging 
(DKI) (one noise realization). The plots show the normalized root-mean-square error (NRMSE) between (i) DKI metrics 
obtained from simulated noisy dMRI data (signal + noise) with varying signal-to-noise ratios (SNR), both before (no 
denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA), and (ii) DKI metrics obtained 
from noise-free dMRI data (signal only). NRMSE was computed across white matter voxels (see Appendix Fig. G1 for the 
white matter mask) for the following DKI metrics: axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor (MW), 
axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising methods reduced NRMSE from the ground truth 
compared with the “no denoising” scenario only in the low-SNR domain, although not consistently for all DKI metrics. At 
high SNRs (above 30–40), denoising increased NRMSE for all DKI metrics, except for the MP-PCA method, which yielded 
results comparable with the “no denoising” scenario.
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Appendix Fig. G3.  Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging 
(DKI). The plots show the relative difference in DKI metrics obtained from simulated noisy dMRI data (signal + noise) with 
varying signal-to-noise ratios (SNR) after employing different denoising methods (msPOAS, LPCA, MP-PCA) to those 
obtained without denoising (one noise realization). The relative difference was computed across white matter voxels (see 
Appendix Fig. G1 for the white matter mask) for the following DKI metrics: axial diffusivity (AD), radial diffusivity (RD), 
mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising introduced substantial 
improvements in the investigated DKI metrics only in the low-SNR domain, although not consistently across all DKI metrics. 
When using msPOAS and LPCA, the relative differences were greater compared with using MP-PCA, with msPOAS 
introducing the highest bias. At high SNRs (above 30–40), the relative difference to the “no denoising” scenario was 
negligible for MP-PCA.



34

G. David, B. Fricke, J.M. Oeschger et al.	 Imaging Neuroscience, Volume 2, 2024

Marchenko-Pastur principal component analysis (MP-
PCA) (Veraart et  al., 2016). Here, we evaluated these 
three denoising methods using a simulated dMRI data-
set of the human brain. Specifically, we fitted the kurto-
sis model to an in vivo brain dMRI dataset (refer to 
Table  4 for details on the dataset) and considered the 
fitted dMRI signal as the “noise-free” ground truth. Then, 
we added varying amounts of noise to the ground truth, 
drawn from a circularly symmetric complex normal dis-

tribution CN (0, σ2) with σ = S0
SNR

, using the same set of 

SNR values (SNR = 5, 15, 30, 39, 52, 100) as in our pre-
vious study (Oeschger et al., 2023b). The code for the 
simulation is available online.18 For each SNR, the kurto-
sis model was fitted to the noisy magnitude dMRI data, 
both before (no denoising) and after denoising (msPOAS, 
LPCA, MP-PCA), using the nonlinear least squares (NLLS) 
algorithm implemented in ACID. Slices of axial diffusivity 
(AD), radial diffusivity (RD), mean kurtosis tensor (MW), 
axial kurtosis tensor (AW), and radial kurtosis tensor (RW) 
maps obtained from the dMRI data with the lowest SNR 
(SNR = 5) are shown in Appendix Figure G1. Deviations 
from the ground truth were quantified by computing the 
normalized root-mean-square error (NRMSE) between 
the obtained DKI metrics and the ground truth across 

white matter voxels for one noise realization (Appendix 
Fig. G2). The white matter mask applied is overlaid on 
the ground truth DKI metric maps in Appendix Figure G1.

In general, denoising methods proved beneficial in 
reducing NRMSE from the ground truth compared with 
the “no denoising” scenario in the low-SNR domain, 
although not consistently across all DKI metrics. Spe-
cifically, denoising reduced NRMSE for RD and RW 
below an SNR of 15, and for AW below an SNR of 30. 
However, it did not reduce NRMSE for AD, and the 
trend was not clear for MW. At higher SNRs (above 30–40), 
denoising increased NRMSE for all DKI metrics com-
pared with the nondenoised data, except for the MP-PCA 
denoising method, which yielded results comparable 
with the nondenoised scenario. The relative difference 
between the maps generated using denoising and 
those generated without denoising is shown in Appen-
dix Figure G3. These results suggest that denoising 
(using any of the three methods) is beneficial for 
increasing the similarity to ground truth DKI metrics 
only in the low-SNR domain. In the high-SNR domain, 
denoising either does not lead to further improvements 
(MP-PCA) or even introduces additional errors (msPOAS 
and LPCA).

18  https://github​.com​/quantitative​-mri​-and​-in​-vivo​-histology​/esmrmb2024

https://github.com/quantitative-mri-and-in-vivo-histology/esmrmb2024

