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ABSTRACT

Diffusion MRI (dMRI) has become a crucial imaging technique in the field of neuroscience, with a growing number of
clinical applications. Although most studies still focus on the brain, there is a growing interest in utilizing dMRI to
investigate the healthy or injured spinal cord. The past decade has also seen the development of biophysical models
that link MR-based diffusion measures to underlying microscopic tissue characteristics, which necessitates validation
through ex vivo dMRI measurements. Building upon 13 years of research and development, we present an open-
source, MATLAB-based academic software toolkit dubbed ACID: A Comprehensive Toolbox for Image Processing
and Modeling of Brain, Spinal Cord, and Ex Vivo Diffusion MRI Data. ACID is an extension to the Statistical Paramet-
ric Mapping (SPM) software, designed to process and model dMRI data of the brain, spinal cord, and ex vivo speci-
mens by incorporating state-of-the-art artifact correction tools, diffusion and kurtosis tensor imaging, and biophysical
models that enable the estimation of microstructural properties in white matter. Additionally, the software includes an
array of linear and nonlinear fitting algorithms for accurate diffusion parameter estimation. By adhering to the Brain
Imaging Data Structure (BIDS) data organization principles, ACID facilitates standardized analysis, ensures compati-
bility with other BIDS-compliant software, and aligns with the growing availability of large databases utilizing the BIDS
format. Furthermore, being integrated into the popular SPM framework, ACID benefits from a wide range of segmen-
tation, spatial processing, and statistical analysis tools as well as a large and growing number of SPM extensions. As
such, this comprehensive toolbox covers the entire processing chain from raw DICOM data to group-level statistics,
all within a single software package.
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1. INTRODUCTION

Diffusion MRI (dMRI) exploits the self-diffusion of water
molecules to produce images that are sensitive to tissue
microstructure by measuring the diffusion along various
spatial directions (Callaghan et al., 1988; Le Bihan et al.,
1988; Stejskal & Tanner, 1965). dMRI has been applied to
study a number of phenomena including normal brain
development (Dubois et al., 2014; Miller et al., 2002),
aging (Draganski et al., 2011; Sullivan et al., 2010),
training-induced plasticity (Scholz et al., 2009), and mon-
itoring progression of and recovery from neurological dis-
eases (Farbota et al., 2012; Meinzer et al., 2010). Clinical
applications of dMRI include the diagnosis of ischemic
stroke (Urbach et al., 2000), multiple sclerosis (Horsfield
et al, 1996), cancer and metastases (Gerstner &
Sorensen, 2011), and surgical planning of brain tumors
(Chun et al., 2005). Although the vast majority of dMRI
applications has focused on the brain, there is a growing
interest in spinal cord dMRI, as researchers seek sensi-
tive and predictive markers of spinal cord white matter
damage (Cohen et al., 2017; Martin et al., 2016). Further-
more, an increasing number of studies utilize dMRI on ex
vivo specimens for comparative analysis with other imag-
ing modalities, such as electron microscopy (Barazany
et al., 2009; Kelm et al., 2016; Papazoglou et al., 2024).

To fully utilize the sensitivity of dMRI to tissue micro-
structure, expert knowledge is required to minimize arti-
facts both during acquisition, for example, by cardiac
gating or twice-refocused spin-echo sequences, and
through dedicated retrospective correction methods.
Commonly used retrospective correction techniques
include motion and eddy-current correction (J. L. R.
Andersson & Sotiropoulos, 2016; Mohammadi et al.,
2010), susceptibility distortion correction (Gu & Eklund,
2019; Ruthotto et al., 2012), denoising (Becker et al.,
2014; Veraart et al.,, 2016), Rician bias correction
(Oeschger et al., 2023a; Sijbers et al., 1998), and robust
tensor fitting techniques (Chang et al., 2005; Mohammadi,
Freund, et al., 2013). Retrospective artifact correction
techniques, along with diffusion signal modeling capabil-
ities, are widely available in open-source toolboxes such
as FSL-FDT (Smith et al., 2004), DiPY (Garyfallidis et al.,
2014), DESIGNER (Ades-Aron et al., 2018), ExploreDTI
(Leemans et al., 2009), MRtrix3 (Tournier et al., 2019),
TORTOISE (Pierpaoli et al., 2010), AFNI-FATCAT (Taylor &
Saad, 2013), and others.

While the majority of toolboxes have been designed
for brain dMRI, ACID has introduced several features and
utilities that make it particularly suitable for spinal cord
and ex vivo dMRI as well. Specifically, ACID addresses
the higher level and different nature of artifacts in spinal
cord dMRI (Barker, 2001; Stroman et al., 2014), and the

highly variable geometry and diffusion properties in ex
vivo dMRI (see Sébille et al., 2019 for a list of ex vivo/
postmortem dMRI studies). Although there are some
software options available for processing spinal cord
images, most notably the Spinal Cord Toolbox (De Leener
et al., 2017), these tools lack comprehensive artifact cor-
rection and biophysical modeling capabilities for estima-
tion of dMRI-based metrics related to microscopic tissue
properties. Biophysical modeling estimates microstruc-
tural properties, such as axonal water fraction and orien-
tation dispersion, as aggregated measures on the voxel
level, providing greater specificity than standard diffusion
tensor (DTI) or diffusion kurtosis imaging (DKI). Toolboxes
dedicated for biophysical modeling of the dMRI signal,
such as the NODDI (Zhang et al., 2012) or SMI toolbox
(Coelho et al., 2022), typically do not include a compre-
hensive processing pipeline to correct for artifacts in
dMRI data. In addition, to date, only a few of the dMRI
toolboxes support the Brain Imaging Data Structure
(BIDS; Gorgolewski et al., 2016) standard for organizing
and annotating raw and processed dMRI data. The lack
of standardization not only complicates the sharing and
aggregation of processed dMRI data but also the appli-
cation of automated image analysis tools designed for
big data, such as machine learning techniques. Over the
past two decades, tens of thousands of dMRI datasets
have been made openly available in large neuroimaging
databases (e.g., HCP (Van Essen et al., 2013) and the UK
Biobank (Littlejohns et al., 2020)), underscoring the
importance of consistent data storage practices.
Building upon 13 years of research and development,
we introduce an open-source MATLAB-based extension
to the Statistical Parametric Mapping (SPM) software, the
ACID toolbox: A Comprehensive Toolbox for Image Pro-
cessing and Modeling of Brain, Spinal Cord, and Ex Vivo
Diffusion MRI Data. ACID was initially developed as a col-
lection of artifact correction tools but has now been
extended to a comprehensive toolbox for processing and
modeling of dMRI data. In particular, ACID offers (i) state-
of-the-art image processing tools as well as (i) DTI, DKI,
and white matter biophysical model parameter estimation
methods optimized for brain, spinal cord, and ex vivo
dMRI data. Additionally, (i) ACID adheres to the BIDS
standard for organizing the output, making the processed
images compliant with other BIDS software and facilitat-
ing data sharing. Finally, (iv) ACID is embedded in the
SPM framework to benefit from its established functions
including spatial processing tools and statistical inference
schemes. ACID tools can be combined with other SPM
functions to create pipelines in the SPM batch system,
which offers an all-in-one software solution from conver-
sion of DICOM data to statistical group analysis. ACID
also benefits from a large and growing number of SPM
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Table 1. Peer-reviewed methods used in the ACID toolbox.
Method Publication
ECMOCO: Mohammadi et al. (2010);

Eddy-current and
motion correction
HySCO: Susceptibility
artifact correction
HySCO: Combine
blip-up and blip-down
msPOAS: Adaptive

Mohammadi, Freund, et al. (2013);
Mohammadi, Tabelow, et al. (2015)
Macdonald and Ruthotto (2018);
Ruthotto et al. (2012, 2013)

Clark et al. (2021)

Becker et al. (2014); Tabelow et al.

denoising (2015)

RBC: Rician bias Oeschger et al. (2023a)
correction

DTI using robust Mohammadi, Freund, et al. (2013)
fitting

DKI and axisymmetric
DKI using NLLS
NODDI-DTI
WMTI-Watson
Reliability masking

Oeschger et al. (2023a, 2023b)

Edwards et al. (2017)
Oeschger et al. (2023b)*
David et al. (2017)

DKI, diffusion kurtosis imaging; DT, diffusion tensor imaging;
NLLS, nonlinear least squares; NODDI, neurite orientation
dispersion and density imaging; WMTI, white matter tract integrity.
*The ACID implementation is based on the method introduced by
Jespersen et al. (2018).

extensions. For example, ACID can be combined with the
SPM12-based hMRI toolbox (Tabelow et al., 2019) to per-
form multicontrast analysis of dMRI and other quantitative
MRI data, such as relaxation rates, acquired from the
same subject, all within a single pipeline. Many of the
methods used in the ACID toolbox have already been
published in the scientific dMRI literature (Table 1). In this
paper, we detail the design and function of the ACID mod-
ules and provide guidance on their optimal combination
for brain, spinal cord, and ex vivo applications.

2. METHODS

2.1. Overview

The ACID toolbox is a comprehensive toolbox for pro-
cessing and analyzing dMRI data, built upon the following
four pillars: (1) preprocessing of dMRI data (Pre-processing
module), (2) physical models of the diffusion signal (Diffu-
sion tensor/kurtosis imaging module), (3) white matter
biophysical models of the diffusion signal (Biophysical
models module), and (4) additional features referred to as
Utilities. The Pre-processing module consists of state-of-
the-art methods for retrospective correction of the dMRI
data. The Diffusion tensor/kurtosis imaging module con-
tains tensor and kurtosis models that can be applied to
dMRI data from various tissues or samples, including
gray and white matter, as well as diffusion phantoms
(Woletz et al., 2024). In contrast, the Biophysical models
module can only be applied to samples that fall within

their validity ranges (see Section 4.2.2). The Utilities mod-
ule contains various useful tools, including masking and
noise estimation. The ACID toolbox follows the BIDS
convention and enables the seamless integration of
external tools into its processing pipeline in a modular
fashion (External tools module). More details about the
implementation and organization of ACID are provided in
Appendix A.

2.2. Preprocessing

In this section, we provide brief descriptions of each arti-
fact correction tool currently implemented in ACID. For
detailed recommendations on various dMRI datasets (in
vivo brain, in vivo spinal cord, ex vivo/postmortem), refer
to Sections 3.2 and 4.1, as well as Table 5.

2.2.1. Eddy-current and motion
correction (ECMOCO)

ACID uses the eddy-current and motion correction
(ECMOCO) algorithm (Mohammadi et al., 2010) to correct
for spatial misalignments that may occur between dMRI
volumes. These misalignments can be caused by motion
and eddy currents induced by the rapidly varying field of
the diffusion-sensitizing gradients (Jezzard et al., 1998),
which may lead to biased diffusion estimates (Mohammadi,
Freund, et al., 2013). ECMOCO aligns all source volumes
to a target volume using a coregistration algorithm with an
affine transformation (Friston & Ashburner, 1997) imple-
mented in the SPM function spm_coreg. It was previously
shown that the robustness of registration can be increased
by separately registering diffusion-weighted (DW) and
nondiffusion-weighted (b0) volumes to their correspond-
ing target volumes (Mohammadi, Carey, et al., 2015).
ECMOCO features the multitarget registration mode,
where source volumes from each diffusion shell (b-value)
are coregistered to their shell-specific target volume
(Appendix Fig. B1). ECMOCO rotates the b-vectors by the
obtained rotational parameters; these rotated b-vectors
can be passed on to subsequent processing steps. Of
note, the affine transformation of ECMOCO can only cor-
rect for first-order eddy-current displacements. The
advantages and disadvantages of ECMOCO compared
with other established tools, such as FSL eddy, are dis-
cussed in Section 4.1.

In spinal cord dMRI, eddy-current and motion correc-
tion is more challenging than in brain dMRI due to the
considerably lower number of voxels and lower signal-
to-noise ratio (SNR), particularly in volumes with high
b-values (>1000 s/mm?) or with diffusion-sensitizing gra-
dients parallel to the spinal cord. While movement of the
brain can be considered approximately rigid, the spinal
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cord may experience varying degrees of displacement
along the rostrocaudal axis caused by factors such as
breathing, pulsation of the cerebrospinal fluid, or swal-
lowing (Yiannakas et al., 2012). To address this, we intro-
duced slice-wise (2D) registration, which independently
aligns each slice of the source volume to the corresponding
slice of the target volume, thereby correcting for non-
rigid, slice-dependent displacements (Mohammadi, Freund,
et al., 2013). For more details on ECMOCO, including
other recently introduced features (initialized registration
and exclusion mode), refer to Appendix B.

2.2.2. Adaptive denoising (msPOAS)

The Multi-shell Position-Orientation Adaptive Smoothing
(msPOAS) is an iterative adaptive denoising algorithm
designed to adaptively reduce noise-induced variance in
dMRI data while preserving tissue boundaries, as illus-
trated in Figure 3 (Becker et al., 2012, 2014; Tabelow
et al., 2015). The algorithm adapts to the intensity values
and their distance in both voxel space and the spherical
space of diffusion directions, allowing smoothing only
within spatially homogeneous areas of the DW images.
One of the key advantages of msPOAS is its compatibil-
ity with all diffusion models as it operates on the raw
dMRI data. Adjustable parameters include kstar (number
of iterations that define the image smoothness), lambda
(adaptation parameter that defines the strength of edge
detection), kappa (initial ratio of the amount of smoothing
between the local space of neighboring voxels and the
spherical space of diffusion gradients), and ncoils (the
effective number of receiver coils that contributed to the
measured signal). To distinguish random fluctuations
from structural differences, msPOAS requires an esti-
mate of SNR, or equivalently the noise standard deviation
(sigma). A higher kstar leads to greater smoothness within
homogeneous image regions, while a larger lambda
results in weaker adaptation and more blurring at tissue
edges. The optimal kappa depends on the number of
directions per shell, while ncoils should be the same as
the value used for noise estimation. When using msPOAS,
we recommend starting with the default parameters and
the sigma estimated with the Noise estimation utility
function (Table 2). In case of insufficient noise reduction,
parameters should be adjusted according to Appendix D.

2.2.3. Rician bias correction

The voxel intensities of MRI magnitude images exhibit a
Rician distribution in case of a single receiver coil
(Gudbjartsson & Patz, 1995) and a noncentral y distribu-
tion in case of multiple receiver coils (Aja-Fernandez et al.,
2014). When fitting diffusion signal models (Section 2.3),

this distribution leads to a bias, known as the Rician
bias, in the estimated tensor (Basser & Pajevic, 2000;
Gudbjartsson & Patz, 1995; Jones & Basser, 2004) and
kurtosis parameters (Veraart et al., 2011; Veraart, Rajan,
et al., 2013), as well as in biophysical parameter esti-
mates (M. Andersson et al., 2022; Fan et al.,, 2020;
Howard et al., 2022). This Rician bias is particularly rele-
vant in low SNR situations (Polzehl & Tabelow, 2016). Two
approaches of Rician bias correction (RBC) are imple-
mented in ACID. The M2 approach, introduced in Miller &
Joseph (1993), and later extended to multichannel
receiver coil (André et al., 2014), operates on the dMRI
data and uses the second moment of the noncentral y
distribution of the measured intensities and noise esti-
mates to estimate the true voxel intensities. The second
approach modifies the parameter estimation by consid-
ering the noncentral y distribution to account for the
Rician bias during model fitting (Oeschger et al., 2023a).
Note that the latter approach assumes uncorrected data,
therefore, it must not be combined with the first method
and is currently only available for nonlinear least squares
fitting. Both methods require an estimate of the noise
standard deviation, which can be obtained using either
the standard or the repeated measures method within the
Noise estimation utility function (Table 2). Details on noise
estimation are available in Appendix C. In addition, ACID
offers the Rician bias simulation utility function to deter-
mine the optimal RBC method for the dMRI dataset and
SNR at hand (Table 2). An example of how RBC influ-
ences the estimation of biophysical parameters is illus-
trated in Appendix Figure F1.

2.2.4. Susceptibility artifact correction (HySCO)

Hyperelastic Susceptibility Artifact Correction (HySCO) is
a technique used to correct for geometric distortions
caused by susceptibility artifacts (Ruthotto et al., 2012,
2013). These artifacts can occur at interfaces between
tissues with different magnetic susceptibilities, such as
those found near paranasal sinuses, temporal bone, and
vertebral bodies. To correct for these artifacts, HySCO
estimates the bias field based on a reversed-gradient
spin-echo echo planar imaging (EPI) acquisition scheme.
This requires the acquisition of at least one image with
identical acquisition parameters as the dMRI data but
with reversed phase-encoding direction, also referred to
as “blip-up” or “blip-down” acquisitions. The bias field
map, estimated from the blip-up and blip-down images,
is applied to the entire dMRI data to unwarp the geomet-
ric distortions (see Fig. 3 for examples). For datasets that
include full blip-reversed acquisition, that is, each image
was acquired with two phase-encoding directions (blip-up
and blip-down), the reverse phase-encoded images can



G. David, B. Fricke, J.M. Oeschger et al.

Imaging Neuroscience, Volume 2, 2024

Table 2. List of ACID utility functions.

Function

Description

Cropping

Resampling

Slice-wise
realignment

Fusion

Create brain
mask

Reliability
masking

DWI series
browser

DWI series
movie

Crops images to a smaller size for less storage space and faster processing.

Input: image(s) to crop, new matrix size, and voxel coordinates of the center of cropping. The center of
cropping can also be selected manually through a pop-up window.

Output: cropped image(s) and the cropping parameters.

Application: typically in spinal cord dMRI, where the spinal cord occupies a small portion of the image.

Resamples images to the desired resolution.

Input: image(s) to be resampled, desired resolution, and type of interpolation (as defined in spom_slice_vol).
Available types of interpolation: nearest neighbor, trilinear, higher-order Lagrange polynomial (2 to 127),
and different orders of sinc interpolation (-1 to -127); default: -7, i.e., 7th-order sinc interpolation.

Output: resampled image(s).

Application: for example, when performing voxel-wise arithmetic between two or more images with
different resolutions (e.g., g-ratio mapping).

Enables manual translation and scaling of images along the x and y dimensions on a slice-by-slice basis,
facilitated by intensity contour lines of the source image superimposed on the target image.

Input: image to be realigned, target image, and other images to which the realignment parameters are
applied.

Output: realigned image(s) and the realignment parameters.

Application: useful for realigning spinal cord images, where residual misalignments are often slice dependent.

Merges two images with different field of views (FOV), such as a brain and a spinal cord image, into a
single combined image (Fig. 5).

Input: two images to be merged and a target image (typically a structural image with a larger FOV).
Output: a combined image, resampled onto to the target image. The voxel intensity values in overlapping
regions are the average of the intensity values in both images. Note that before merging the images, they
must be in the correct spatial position; if necessary, image realignment can be performed using the SPM
Realign or the Slice-wise realignment utility function.

Application: useful for merging a brain and a spinal cord image into a single image before applying a
warping field obtained from a large-FOV structural image.

Creates a binary brain mask by (i) segmenting the brain image into gray matter, white matter, and
cerebrospinal fluid using SPM12’s unified segmentation tool (Ashburner & Friston, 2005), (ii) summing

up the resulting probability maps, and (jii) thresholding it at a certain value (accessible through the script
acid local defaults.m; default: 0.8).

Input: a single brain image or tissue probability maps for gray matter, white matter, and cerebrospinal fluid,
and optionally a dMRI dataset to be masked.

Output: binary brain mask and optionally a masked dMRI dataset.

Application: to restrict the estimation of DTI, DKI, and biophysical parameters to the brain for increased
speed and efficiency.

Aims to identify “unreliable” voxels, i.e., voxels irreversibly corrupted by artifacts. Reliability masks are
generated by thresholding the root-mean-square model-fit error (rms(g)) map (David et al., 2017).

Input: rms(g) maps (output by tensor fitting methods with label: RMS-ERROR) and the desired threshold
value. The optimal threshold can be determined using the Determine threshold submodule.

Output: a binary reliability mask.

Application: Reliability masks can serve as binary masks in region-of-interest-based analyses. In
principle, reliability masking as an outlier rejection technique is applicable after each model fitting
method. It is particularly useful in situations where many data points are affected by outliers (often the
case in spinal cord dMRI), which could otherwise lead to unstable tensor fits and inaccurate tensor
estimates (see David et al., 2017, for examples).

Enables browsing through the slices of the dMRI data for quality assessment. Slices with low SNR and/or
artifacts can be identified and labeled.

Input: the dMRI dataset, b-values, and b-vectors.

Output: list of labeled slices.

Application: The saved labels can be used to inform ECMOCO about unreliable slices (see Exclusion
mode in Appendix B).

Enables simultaneous streaming of images from multiple dMRI datasets in video mode for quality
assessment.

Input: a reference image and up to three dMRI datasets.

Output: a video file containing the image streams.

Application: useful for visual assessment of a single dMRI dataset or for comparing images before and
after a specific processing step (e.g., ECMOCO).

5
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Table 2. (Continued)

Function

Description

Noise
estimation

Estimates the noise standard deviation (o) in the dMRI data using either the standard or the repeated

measures method. The standard method uses the formula ¢ = \/Zifmask S,-2/(2Ln) , Where S; is the

voxel intensity within a background mask defined outside the body, L is the number of voxels

within the background mask, and n is the effective number of coil elements that contributed to the
measured signal (Constantinides et al., 1997). The repeated measures method uses the formula

G ~mean; i, Ro,(stdk (S(i,k))), where S(i,k) is the voxel intensity at voxel i in the kth repeated image
(Dietrich et al., 2007). The standard deviation and mean operators are performed across the repetitions
and voxels, respectively. The set of repeated images can be either the nondiffusion-weighted (b=0) or
strongly diffusion-weighted (the highest b-value) images (see Appendix C for recommendations).

Input: the raw (unprocessed) dMRI dataset, a mask (standard method: background mask; repeated mea-
sures method: see Appendix C), n (for the standard method only), and b-values (for the repeated measures

method only).

Output: a single 6 (assuming a homogeneous variance).
Application: ¢ serves as input for msPOAS, Rician bias correction, and diffusion tensor imaging (for fitting

methods WLS and robust fitting).
Rician bias
simulation

Simulates diffusion-weighted MRI signals at specified SNR values in voxels within the brain white
and gray matter. The simulated signals are corrected using the specified Rician bias correction (RBC)

methods (for details, see Oeschger et al., 2023a).

Input: a voxel from a list of 27 predefined voxels, each with different diffusion and kurtosis tensor
metrics' (for details, see Oeschger et al., 2023a), a list of SNR values, and the number of noise samples.
Output: a figure showing the distance between the estimated metric and the ground truth value for each

RBC method.

Application: useful for computing the required SNR for DTI, DKI, and biophysical parameter estimation.

ROI analysis

Calculates the mean value within a specified region of interest (ROI).

Input: list of images and various types of ROIs including (i) global ROls, applied to all images in the list, (ii)
subject-specific ROIls, applied only to the corresponding image, and (jii) subject-specific reliability masks,
again applied only to the corresponding image (see Reliability masking).

Output: an array containing the mean values within the specified ROls per subject, ROI, and (optionally)
slice. When multiple types of ROls are specified, their intersection is applied.

Application: the function offers flexibility for a range of ROI-based analyses; for example, ROI-based anal-
ysis in the native space requires a set of subject-specific ROls, while a single global mask is

sufficient in the template space (with optional reliability masks in both cases). An example application
including reliability masks can be found in David et al. (2017).

be combined using the submodule HySCO: combine
blip-up and blip-down images.

2.3. Diffusion signal models

The dependence of dMRI signal on the direction and
strength of diffusion weighting is commonly described
by mathematical models. Two of the most widely used
models are DTI (Basser et al., 1994) and DKI (Hansen
et al., 2016; Jensen et al., 2005).

2.3.1. Diffusion tensor imaging (DTI)

DTl describes the anisotropic water diffusion in the white
matter by a diffusion tensor with six independent diffu-
sion parameters. The eigenvalues of the tensor can be
used to compute rotationally invariant DTI scalar metrics

1 https://github.com/quantitative-mri-and-in-vivo-histology/axisymmetric
_dki_with_rician_bias_correction_simulation_study

including fractional anisotropy (FA) and mean (MD), axial
(AD), and radial diffusivities (RD). The interpretation of
DTl assumes that the direction of axial diffusivity is
aligned with the white matter tracts, which may not be
the case in complex fiber geometry such as crossing or
fanning fibers.

ACID provides four algorithms to obtain the diffusion
tensor (see Appendix E for details). Ordinary least squares
(OLS) fits the tensor model by minimizing the sum of
squared model-fit errors, while weighted least squares
(WLS) minimizes the weighted sum of squared model-fit
errors, accounting for the distortion of noise distribution
in the linearized (logarithmic) data. Robust fitting is similar
to WLS but factorizes the weights into three components
to account for local and slice-specific artifacts as well,
while also featuring Tikhonov regularization to handle ill-
conditioned weighting matrices resulting from a high
occurrence of outliers. Robust fitting is designed to
down-weight outliers in the model fit, which can other-
wise introduce a bias in the fitted model parameters
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(Mohammadi, Freund, et al., 2013) (Appendix Fig. E1).
Unlike the linearized models, the nonlinear least squared
(NLLS) method is based on an implementation (Modersitzki,
2009) of the Gauss-Newton algorithm and operates on
the nonlogarithmic data, avoiding the distortion of the
noise distribution.

2.3.2. Diffusion kurtosis imaging (DKI)

DKI expands the diffusion tensor model by the kurtosis
tensor, a fourth-order tensor with 15 independent param-
eters, which captures the effects of non-Gaussian water
diffusion. From the 15 kurtosis parameters, several kur-
tosis metrics can be estimated including the mean (MK),
axial (AK), and radial kurtosis (RK), as well as the mean
(MW), axial (AW), and radial (RW) kurtosis tensor (Tabesh
et al.,, 2011) (Fig. 1). These metrics provide additional
information about tissue complexity beyond what can be
captured by diffusion tensor metrics alone. DKI requires
the acquisition of a second diffusion shell with higher
b-value (typically between 2000 and 2500 s/mm?). ACID
also includes the axisymmetric DKI model, a recent
modification of DKI which reduces the parameter space
to eight independent parameters by imposing the
assumption of axisymmetrically distributed axons (Hansen
et al., 2016). Currently, ACID offers the OLS and NLLS
algorithms for fitting the kurtosis tensor, and the NLLS
algorithm for fitting the axisymmetric kurtosis tensor.
Note that the diffusion tensor parameters from DKI
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might differ from standard DTI| parameters. In particular,
diffusivities (AD, MD, and RD) derived from the DTI
model are often underestimated compared with those
derived from the DKI model (referred to as kurtosis bias)
(Edwards et al., 2017). By incorporating higher-order
moments of the diffusion signal, DKI can address kurto-
sis bias, resulting in more accurate diffusivity estimates
(see Supplementary Fig. S3 in the Supplementary Mate-
rial for a comparison of MD derived from DTl and DKI).

2.4. Biophysical models

Biophysical models separate the dMRI signal into distinct
signal components from various tissue compartments,
each with their own underlying assumptions. Biophysical
models provide more specific and biologically interpre-
table metrics that are linked to tissue microstructure
(Jelescu et al.,, 2020). The application of biophysical
models is often referred to as dMRI-based in vivo histol-
ogy (Mohammadi & Callaghan, 2021; Weiskopf et al., 2021)
or microstructural dMRI (Jelescu et al., 2020; Novikov,
2021; Novikov et al., 2019). In the following, we briefly
describe the two white matter biophysical models cur-
rently implemented in ACID (WMTI-Watson and NODDI-
DTI), while recommendations on their usage are provided
in Section 4.2.2. Example maps are shown in Figure 2,
and specific values obtained from the brain and spinal
cord are presented and discussed in Supplementary Fig-
ure S5 (Supplementary Material).

1 0 [10-3mm?/s] 30 [1073mm?/s] 30 [103mm?/s] 30

Selected maps derived from diffusion kurtosis imaging (DKI) using an in vivo brain, in vivo spinal cord, and ex vivo

dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK).
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Fig. 2. Maps of biophysical parameters derived from the WMTI-Watson model using an in vivo brain, in vivo spinal cord,
and ex vivo dMRI dataset (refer to Table 4 for details on the dataset). Shown are maps of Watson concentration parameter
(x), axonal water fraction (f), parallel and perpendicular extra-axonal diffusivities (D, and D, ,), and intra-axonal diffusivity
(D). Note that for the in vivo spinal cord dataset, the maximum b-value (b = 1500 s/mm?) was probably too low for an
accurate estimation of D, ), resulting in voxels with negative (hence unphysical) values within the spinal cord. Since WMTI-
Watson is a white matter biophysical model, the parameter maps were masked for the white matter in the brain dataset.
For the spinal cord and ex vivo specimen, we refrained from masking for the white matter due to the difficulty of obtaining

an accurate white matter mask.

2.4.1. WMTI-Watson model

The white matter tract integrity (WMTI)-Watson model as
an implementation of the Standard Model assumes two
nonexchanging water compartments (intra- and extra-
axonal tissue water) (Alexander et al., 2019; Novikov
et al., 2019). The model characterizes the intra-axonal
compartment as “sticks” of zero radius, with an intra-
axonal diffusivity D, and axonal water fraction f. Axonal
alignment is characterized by the Watson concentration
parameter K, where higher values indicate higher axonal
alignment, and the orientation dispersion index (ODI),
where higher values indicate lower alignment. While k
and ODI are mathematically related (Mollink et al., 2017),
ACID outputs both for convenience. The extra-axonal
space is modeled as a homogeneous medium, described
by an axisymmetric diffusion tensor with parallel (D,)
and perpendicular (D, ) extra-axonal diffusivities. The
five biophysical parameters (D,, f, K, Dy, D, ) are
derived from the axisymmetric DKI tensor metrics (AD,
RD, MW, AW, RW) according to the formulas described

in Jespersen et al. (2018) and Novikov et al. (2018). Being
derived from the biophysical Standard Model, the esti-
mation of WMTI-Watson biophysical parameters is gen-
erally degenerate, which leads to two solutions: the plus
branch, which assumes D, > De,H! and the minus branch,
which assumes D, < De,|| (Novikov et al., 2018). We rec-
ommend using the plus branch (default in the toolbox),
as in our experience, and also reported by others (Jelescu
et al., 2020; Jespersen et al., 2018), the minus branch is
the biologically invalid solution.

2.4.2. NODDI-DTI

NODDI-DTI (Edwards et al., 2017) is based on the neurite
orientation dispersion and density imaging (NODDI) model
(Zhang et al., 2012). While NODDI is a three-compartment
biophysical model with intra- and extra-axonal space,
and cerebrospinal fluid compartments, NODDI-DTI
assumes that the latter compartment can be neglected
in normal appearing white matter. NODDI-DTI further



G. David, B. Fricke, J.M. Oeschger et al.

Imaging Neuroscience, Volume 2, 2024

Table 3. List of labels in the output flename’s desc field (not comprehensive).

Label Description Label Description
ECMOCO Eddy-Current and Motion Correction Al 1st Eigenvector of the Diffusion Tensor
msPOAS Multi-shell Position-Orientation Adaptive V2 2nd Eigenvector of the Diffusion Tensor
Smoothing
RBC Rician Bias Correction V3 3rd Eigenvector of the Diffusion Tensor
HySCO Hyperelastic Susceptibility Artifact Correction DKI Diffusion Kurtosis Imaging
fmap Off-Resonance Field DKlax Axisymmetric Diffusion Kurtosis Imaging
COMB-WM  Write Combined Weighted Mean MK Mean Kurtosis
COMB-AM  Write Combined Arithmetic Mean AK Axial Kurtosis
DTI Diffusion Tensor Imaging RK Radial Kurtosis
OLS Ordinary Least Squares MW Mean Kurtosis Tensor
WLS Weighted Least Squares AW Axial Kurtosis Tensor
ROB Robust Tensor Fitting RW Radlal Kurtosis Tensor
NLLS Non-linear Least Squares WMTI-W White Matter Tract Integrity - Watson
FA Fractional Anisotropy NODDI-DTI  Neurite Orientation Dispersion and Density-
MD Mean Diffusivity Diffusion Tensor Imaging
AD Axial Diffusivity AWF Axonal Water Fraction
RD Radlal Diffusivity DA Intra-axonal Diffusivity
L1 1st Eigenvalue of the Diffusion Tensor DE-PARA Parallel Extra-axonal Diffusivity
L2 2nd Eigenvalue of the Diffusion Tensor DE-PERP Perpendicular Extra-axonal Diffusivity
L3 3rd Eigenvalue of the Diffusion Tensor KAPPA Watson Concentration Parameter
ODI Orientation Dispersion Index

assumes a fixed diffusivity of the intraneurite compartment
(D). In our implementation, users can either choose from
two fixed values tailored for in vivo (D, = 1.7-10° mm?/s)
and ex vivo (D, = 0.6-10° mm?/s) datasets, or select their
own value. NODDI-DTI estimates the intraneurite (here: f)
and extraneurite (1-f) signal fraction, as well as the
Watson concentration parameter ¥ and the orientation
dispersion index (ODI), from the FA and MD maps. While
WMTI-Watson requires specific multishell dMRI data for
robust parameter estimation, NODDI-DTI parameters can
also be obtained from single-shell DTI acquisitions.

2.5. Utilities

ACID utilizes SPM’s utility functions, available under
SPM -> Util in the SPM12 Batch Editor, for handling and
manipulating NIfTI images. These functions include
mathematical operations on single or multiple images,
reorienting images, and concatenating 3D volumes and
separating 4D volumes. Additionally, ACID provides its
own set of utility functions for image manipulation, mask
generation, quality assessment, and other related tasks
(refer to Table 2 for more details).

2.6. External tools

ACID provides the option to integrate external tools from
other packages, which can be accessed directly from the
ACID graphical user interface (GUI) (External tools mod-
ule), ensuring a seamless integration into ACID pipelines.
We included the following external tools in the current

release: (i) FSL eddy? (J. L. R. Andersson & Sotiropoulos,
2016); (ii) FSL topup? (Smith et al., 2004); (iii) dwidenoise*
(based on the Marchenko-Pastur principal component
analysis (MP-PCA), part of the MRtrix toolbox) (Veraart
et al., 2016); (iv) denoising® (based on the local principal
component analysis (LPCA), part of the DWI Denoising
Software) (Manjon et al., 2013); (v) Koay’s noise estima-
tion®; (vi) mrdegibbs’ for Gibbs ringing removal, part of
the MRitrix toolbox (Kellner et al., 2016); and (vii) the WMTI
model (part of the DESIGNER toolbox) (Fieremans et al.,
2011). ACID also allows expert users to incorporate their
own external tools into the toolbox, using the aforemen-
tioned examples as a template.

2.7. Output structure and BIDS naming convention

ACID supports the BIDS standard, while also being com-
patible with non-BIDS data. Following BIDS recommen-
dations, ACID appends a label to the output filename’s
desc field, which indicates the applied processing step
(refer to Table 3 for a list of labels used in the modules Pre-
processing, Diffusion tensor/kurtosis imaging, and Bio-
physical models). For instance, after applying ECMOCO
to sub0l dwi.nii, the output file becomes sub0l

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup

4 https://mrtrix.readthedocs.io/en/dev/dwi_preprocessing/denoising.html

5 https://sites.google.com/site/pierrickcoupe/softwares/denoising/dwi
-denoising/dwi-denoising-software

6 https://github.com/jan-martin-mri/koays-inversion

7 https://mrtrix.readthedocs.io/en/dev/reference/commands/mrdegibbs
.html
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desc-ECMOCO _dwi.nii. When multiple processing
steps are involved, the labels are concatenated, as in
sub01 desc-ECMOCO-msPOAS dwi.nii. Model fitting
appends three labels indicating the type of diffusion
model, algorithm, and parametric map, such as sub01
desc-ECMOCO-msPOAS-DKI-OLS-FA dwi.nii. For
BIDS-compliant input, ACID generates a bval and bvec
file after each processing step. ACID stores all output in
the derivatives folder, with separate subfolders for
each module’s output (e.g., derivatives/msPOAS-
Run). ACID retains the same folder structure and naming
convention even when non-BIDS input is provided.

3. RESULTS

3.1. Pipelines

ACID is fully integrated into the SPM12 batch system,
allowing users to execute its functions individually or
combined into linear pipelines with multiple steps. Each
step can receive the output of any of the previous steps
via flexible and easy-to-use dependencies. While pipe-
lines are typically set up in the SPM batch system, they
can also be converted into MATLAB code (SPM batch
script) for automation and further customization. In addi-
tion to its own functions, ACID integrates seamlessly with
a range of standard SPM features, including segmenta-
tion, coregistration (based on affine transformation), spa-
tial normalization (including nonlinear registration), and

voxel-based statistical analyses, as well as a growing
number of SPM extensions.2 For example, combining
ACID with the hMRI toolbox enables multicontrast analy-
sis of dMRI and other quantitative MRI data, such as
relaxation rates (Tabelow et al., 2019).

3.2. Example applications

To demonstrate the application of ACID toolbox on dif-
ferent types of dMRI data, here we provide three exam-
ple pipelines for in vivo brain, in vivo spinal cord, and ex
vivo dMRI (Fig. 3). Details of these three datasets are
summarized in Table 4. The gradient schemes used for
all datasets were based on the configurations proposed
by Caruyer et al. (2013), available online.® The design of
the sampling schemes followed a uniform coverage on a
sphere. Note that data with reverse phase-encoding
direction were available for all three datasets, which
refers to the acquisition of either a single b0 volume or all
volumes with identical geometry and sequence parame-
ters but opposite phase-encoding direction. All example
pipelines consist of artifact correction (ECMOCO, msPOAS,
RBC, HySCO) and model fitting steps. While Gibbs ring-
ing removal is often part of dMRI processing pipelines
(Ades-Aron et al., 2018; Kellner et al., 2016; Tournier

8 https://www.fil.ion.ucl.ac.uk/spm/ext/
9 http://www.emmanuelcaruyer.com/q-space-sampling.php

\/

Fig. 3. Standard processing pipelines for typical (A) in vivo brain, (B) in vivo spinal cord, and (C) ex vivo dMRI datasets
(refer to Table 4 for details on the datasets and Table 5 for details on the pipeline settings). Example batches for each
type of dMRI data are stored in the Example Batches folder of the toolbox. The positions of the displayed slices of

the dMRI data are indicated in purple on the corresponding structural images. For the ex vivo specimen (C), the brain
region from which the sample was extracted is highlighted in an orange box. Although not explicitly shown here, noise
estimation should be performed on the unprocessed data (see Appendix C), which serves as input for msPOAS, Rician
bias correction, and diffusion tensor fitting (for fitting methods WLS and robust fitting). However, in case of substantial
misalignments across volumes, and when using the repeated measures noise estimation method, it might be beneficial
to perform this step after ECMOCO to prevent an overestimation of noise. For msPOAS, a zoomed-in visual comparison
is shown between a diffusion-weighted (DW) image before (middle row) and after applying msPOAS (bottom row);

the msPOAS-corrected image appears less noisy while preserving tissue edges. For HySCO, contour lines of the
corresponding structural image (displayed as red lines) are overlaid on a zoomed-in DW image both before (middle row)
and after applying HySCO (bottom row). HySCO improves the alignment between the DW and the structural image. For
the in vivo brain dMRI dataset (A), an inferior slice is shown that presents high susceptibility-related distortions, making
the effect of HySCO more visible. For the ex vivo dMRI dataset (C), the effect of HySCO is shown in a slice (illustrated

in yellow) orthogonal to the original one (illustrated in purple) to better visualize susceptibility-related distortions and

their correction. Note that HySCO is applied as the final preprocessing step, that is, after applying msPOAS; however,
the HySCO field map used for “unwarping” the diffusion-weighted images is estimated on the ECMOCO-corrected
datasets, that is, before applying msPOAS. Rician bias correction (not explicitly shown here) should be applied either
before (recommended: between msPOAS and HySCO, using the RBC module) or during model fitting (using the Rician
bias correction option in NLLS). Diffusion signal models are fitted on the processed dataset; here, we display the maps of
fractional anisotropy (FA) and mean kurtosis tensor (MW) from diffusion kurtosis imaging (DKI). The output from DKI can be
used to compute biophysical parameters of the white matter; shown here is the map of Watson concentration parameter
(k) from the WMTI-Watson biophysical model. Note that for the in vivo brain dMRI dataset, the inferior slice displayed
contains relatively little white matter; hence, we refrained from using a white matter mask. The less smooth appearance of

the ¥ map is due to the low values in the gray matter.
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et al., 2019) and is also available in ACID as an external
tool, we refrained from including it in the example pipe-
lines because the interaction between denoising and the
interpolation associated with Gibbs ringing removal is not
well characterized yet. We emphasize that these example
pipelines might not be optimal for all cases; users might
find that another combination of preprocessing steps,

A) Pipeline for in vivo brain

300 raw ECMOCO msPOAS

Structural image

B) Pipeline for in vivo spinal cord

raw ECMOCO msPOAS

100

Structural image

C) Pipeline for ex vivo specimen

ECMOCO msPOAS

Structural image

which might also include Gibbs ringing removal, works
even better for their data.

While the pipelines for in vivo brain, in vivo spinal
cord, and ex vivo dMRI follow similar concepts, recom-
mended settings for each region may differ (Table 5). It is
important to note that the settings listed in Table 5 serve
as initial values for typical datasets. The optimal settings
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Table 4. Scan parameters of the in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets used in this paper.

Dataset

In vivo brain

In vivo spinal cord

Ex vivo specimen

Imaged body
part or tissue

Scanner

Receive coils
Sequence

Volumes and b-values
[s/mm?] (number of
gradient directions)
Cardiac gating

Number of slices
Resolution [mm?]
Field of view [mm?®]
Echo time
Repetition time

Parallel imaging
Multiband imaging

Phase partial Fourier
Phase-encoding direction
Readout bandwidth

EPI spacing

EPI factor

Acquisition time [min:sec]
Additional data with
reversed phase-encoding
direction

entire brain (including
cerebellum) of a
34-year-old healthy
volunteer

3T Siemens Prisma Fit
64-channel Head/Neck
2D single-shot spin-echo EPI
b =0 (18); b =600 (30);
b =1100 (45); b = 2500 (60)

100 (interleaved, no gap)
1.7x1.7x1.7

204 x 170 x 201

75 ms

5800 ms

2x (GRAPPA)

7/8

A-P

1842 Hz/pixel

0.77 ms

120

17:46

a single b0 volume
acquired with reversed
phase-encoding direction

upper cervical cord (appr.
C1-C4) of a 43-year-old
healthy volunteer

3T Siemens Prisma Fit
64-channel Head/Neck
2D single-shot spin-echo EPI
b =0 (11); b =500 (30);
b = 1000 (30); b = 1500 (30)

2 slices per cardiac cycle,
trigger delay of 260 ms
14 (interleaved, no gap)
1.0x1.0x5.0

128 x 36 x 70

73 ms

pulse-dependent (cardiac
gated)

A-P

1396 Hz/pixel

0.93 ms

36

06:51 (nominal)

full blip-reversed acquisition
(reversed phase-encoding
available for each volume)

ex vivo specimen of the
temporal lobe from a
46-year-old patient
diagnosed with drug-resistant
temporal lobe epilepsy;
specimen embedded in
glucose for 2 h and fixed with
4% paraformaldehyde for

12 h before measurement

3T Siemens Prisma Fit
16-channel Hand/Wrist

pulse gradient spin echo

b =0 (36); b = 550 (30);

b = 1100 (75); b = 2200 (45);
b = 2500 (60); b = 5000 (60)

160
0.8x0.8x0.8
128 x 48 x 48
99 ms

8700 ms

7/8

A-P

802 Hz/pixel

1.37 ms

60

93:10

full blip-reversed acquisition
(reversed phase-encoding
available for each volume)

Table 5. Settings of selected modules for in vivo brain, in vivo spinal cord, and ex vivo dMRI datasets.

Module Adjustable parameter In vivo brain dMRI In vivo spinal cord dMRI Ex vivo dMRI
ECMOCO type of registration volume-wise volume- and slice-wise volume-wise
degrees of freedom 9 [transl. x, y, z; volume-wise: 4 4 [transl. y; scaling
rotation X, y, z; [transl. x, y, z; scaling y] y; shearing x-y, y-z]
scaling y; slice-wise: 3 per slice
shearing x-y, y-z] [transl. x, y; scaling y]
mask - mask around the spinal cord -
msPOAS Kappa, lambda automatically increase default for low automatically
determined SNR data (e.g., +20%) determined
RBC defaults defaults defaults
HySCO phase-encoding direction;  defaults defaults defaults
Maximal data resolution
DTI Fitting algorithm robust fitting or NLLS  robust fitting or NLLS NLLS
DKIl/axDKI Fitting algorithm NLLS NLLS NLLS
NODDI-DTI Fixed diffusivities In vivo parameters In vivo parameters Ex vivo parameters
WMTI-Watson defaults defaults defaults

In the “degrees of freedom” settings (ECMOCO), x, y, and z represent the frequency-, phase-, and slice-encoding directions, respectively.

12
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for a particular dataset depend on the sequence param-
eters, the subject, and the imaged region. Model fitting
may be followed by spatial processing, such as coregis-
tration to the structural image or spatial normalization to
a template in a standard space (e.g., MNI152 space), and
statistical analysis (e.g., ROI- or voxel-based analysis).

4. DISCUSSION

We have developed the ACID toolbox, which extends the
capabilities of the SPM framework by providing compre-
hensive preprocessing and model fitting techniques for in
vivo brain, spinal cord, and ex vivo dMRI data. Besides
commonly used diffusion signal models such as DTl and
DKI, ACID also offers biophysical models that provide
parameters of white matter tissue microstructure such as
axonal water fraction and axon orientation dispersion.
Being seamlessly integrated into the SPM batch system,
ACID allows for user-friendly access to SPM’s powerful
spatial processing tools and statistical framework. In
addition to offering recommended pipelines for in vivo
brain, spinal cord, and ex vivo dMRI, ACID provides the
flexibility for users to create customized pipelines tailored
to their specific data. Adhering to the BIDS conventions
facilitates data sharing, enhances data comprehension for
investigators, and makes ACID compliant with software
requiring BIDS input (https://bids-apps.neuroimaging.io).

4.1. Preprocessing dMRI data

ACID offers artifact correction steps typically applied to
dMRI data, including image realignment (ECMOCO),
adaptive denoising (msPOAS), Rician bias correction
(RBC), and correction for susceptibility-induced geomet-
ric distortions (HySCO). Here, we discuss specific con-
siderations regarding their use for various applications.

Correcting for displacements within the dMRI data
through image realignment is one of the most important
but also challenging tasks. ECMOCO provides users with
the flexibility to choose the degrees of freedom for image
realignment based on the anticipated type of displace-
ment, but also offers a selection of predefined degrees of
freedom that are optimized for brain, spinal cord, and ex
vivo dMRI.

In brain dMRI, motion can be approximated as a rigid
body displacement with 6 degrees of freedom (DOF).
Eddy-current spatial displacements, to a first-order
approximation, result in translation and scaling along the
phase-encoding direction (typically, the y-axis), and in-
plane and through-plane shearing (Mohammadi et al.,
2010). Since these displacements affect the entire brain,
we recommend employing a 9-DOF volume-wise (vol-
ume to volume) registration with translation and rotation

13

along x, y, and z, scaling along y, and shearing in the x-y
and y-z planes. First-order approximation of eddy-current
displacements might not always be sufficient, as dMRI
data can also be affected by higher-order eddy-current
field inhomogeneities causing nonlinear distortions (J. L.
R. Andersson & Sotiropoulos, 2016; Rohde et al., 2004).
For example, in our observations, ECMOCO was not
effective in removing pronounced eddy-current displace-
ments present in the dMRI data of the Human Connec-
tome Project (Van Essen et al., 2012). In such cases, we
recommend using FSL eddy, which incorporates higher-
order eddy-current correction terms (J. L. R. Andersson &
Sotiropoulos, 2016) and can be called directly from ACID
as an external tool (Section 2.6). In cases where ECMOCO
is sufficient, an advantage of ECMOCO is that its perfor-
mance is largely independent of the number of diffusion
directions, whereas FSL eddy requires a minimum
number of diffusion directions for good performance (see
FSL website'® for recommendations).

In spinal cord dMRI, volume-wise registration has
been found to be less effective (Cohen-Adad et al., 2009;
Mohammadi, Freund, et al., 2013) due to displacements
that vary along the rostrocaudal axis of the spinal cord.
These displacements appear mostly in the phase-
encoding direction and are caused by physiological fac-
tors such as respiration and cardiac pulsation (Kharbanda
et al., 2006; Summers et al., 2006). We recommend
applying volume-wise registration for rough alignment
and correction of through-slice displacements, followed
by slice-wise (slice to slice) registration for correcting any
remaining slice-dependent displacement. This combined
approach has demonstrated effectiveness in realigning
not only volumes but also individual slices (Appendix Fig.
B2), as well as improving the contrast-to-noise ratio
between gray and white matter and reducing test-retest
variability in DTl maps of the spinal cord (Mohammadi,
Freund, et al., 2013). Eddy-current distortions are typi-
cally less severe in the spinal cord compared with the
brain, because the in-plane field of view is smaller and
located near the scanner isocenter. This makes the first-
order approximation of eddy-current displacements, as
supported by ECMOCO, generally adequate. We rec-
ommend employing a 4-DOF volume-wise registration
(translation along x, y, z; scaling along y) followed by a
3-DOF slice-wise registration (translation along x, y; scal-
ing along y). In datasets with low SNR, slice-wise correc-
tion along x can be omitted, given the smaller range of
movement which makes reliable estimation difficult. We
advise against correcting for in-plane rotation and shear-
ing, as their expected range is very small. Correction for
these DOFs might introduce spurious displacements

10 https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
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during realignment, a risk we consider greater than not
applying correction at all.

Structures surrounding the spinal cord (bones, liga-
ments, etc.) may move independently from the spinal
cord, potentially leading to inaccuracies in transformation
parameters. Moreover, as these structures typically
occupy a larger portion of the image, they can dominate
the estimation of transformation parameters. To address
this challenge, ECMOCO provides the option of specify-
ing a spinal cord mask to restrict the estimation of trans-
formation parameters to the spinal cord and its immediate
surroundings (Fig. 3). Any residual misalignments can be
manually corrected using the Slice-wise realignment util-
ity function (Table 2).

In ex vivo dMRI, specimen motion is not anticipated if
the specimen is appropriately fixed, for instance, by
using a sample holder or embedding it in agarose. Thus,
we recommend correcting only for the four first-order
eddy-current displacements (y-translation, y-scaling, x-y
shearing, y-z shearing). The first-order approximation is
typically adequate for small specimens where eddy-
current displacements are not severe.

In general, the performance of msPOAS and HySCO is
largely independent of the anatomical features present in
the image; therefore, default parameters are expected to
work well for in vivo brain, spinal cord, and ex vivo dMRI
data. Nevertheless, the default regularization parameters
for HySCO (alpha “diffusion” and beta “Jacobian” regula-
tor), accessible through the script config/local/acid
local defaults.m, are optimized for the brain and
may require adjustment for the spinal cord if performance
is inadequate.

Applying HySCO is particularly important for acquisi-
tions with severe susceptibility-related distortions, such
as multiband EPI without parallel imaging, and for multi-
contrast analyses where dMRI data or other quantitative
maps are combined with structural reference images, for
example, the dMRI-based axonal water fraction and mag-
netization transfer saturation maps in g-ratio mapping
(Mohammadi & Callaghan, 2021) or multicontrast MRI in
the spinal cord (David et al., 2019). In these cases, HySCO
improves the overlap between the undistorted structural
image and the dMRI data, improving the performance of
subsequent coregistration and spatial normalization algo-
rithms. HySCO has also been shown to improve the accu-
racy of g-ratio mapping (Clark et al., 2021; Mohammadi,
Tabelow, et al., 2015). While HySCO is far more efficient
than FSL topup in terms of computation time (Macdonald
& Ruthotto, 2018), it does not integrate movement and
susceptibility artifact correction into a single model. To
mitigate the effects of subject movement, we propose
acquiring images with reversed phase-encoding direction
(the blip-up and blip-down images) in close succession.
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The application of adaptive denoising (msPOAS) is
important as it reduces the variance and, therefore,
improves the precision of the tensor and kurtosis param-
eter estimates (see Supplementary Fig. S4 for an exam-
ple illustrating the effect of msPOAS on DKI parameters,
and refer to Becker et al. (2014) for more examples and
details). For high-SNR data, denoising might not be
advantageous; instead, denoising methods could even
introduce additional error (see analysis in Appendix G).
For low-SNR data, Rician bias correction (RBC), either
applied to the dMRI data or during model fitting, must be
performed in addition to msPOAS to mitigate the Rician
bias in parameter estimates (see Appendix F for an exam-
ple). An in-depth analysis of the impact of Rician bias
correction on DKI and axisymmetric DKI can be found in
Oeschger et al. (2023a).

4.2. Model fitting on dMRI data

4.2.1. Physical diffusion models

At a given b-value, the SNR in spinal cord dMRl is typi-
cally lower than in brain dMRI due to (i) the smaller cross-
sectional area that requires higher in-plane resolution
(see Fig. 4A for a size comparison), (i) the high signal
attenuation for diffusion-gradient directions parallel to
the highly aligned fibers in the head-feet direction (Fig. 4B),
and (jii) the suboptimal coil configuration in the thoracic
and lumbar regions, which are not covered by the head
and neck coil. Lower SNR increases the variance of
parameter estimates and makes spinal cord dMRI more
susceptible to Rician bias. Consequently, SNR is often
prohibitively low at higher b-values necessary for fitting
the kurtosis tensor, making the application of DKI in the
spinal cord very challenging.

The bias in parameters estimates induced by signal
outliers from cardiac, respiratory, and other physiologi-
cal artifacts (Mohammadi, Hutton, et al., 2013) can be
mitigated by applying robust fitting as a tensor fitting
method (Appendix E.3). Given the higher occurrence of
signal outliers in the spinal cord, robust fitting holds par-
ticular relevance for spinal cord dMRI. In a previous
study, we demonstrated that robust fitting leads to higher
FA values within the white matter and lower FA values
within the gray matter in spinal cord dMRI data, resulting
in an approximately 8% enhancement in contrast-to-
noise ratio (Mohammadi, Freund, et al., 2013). While
robust fitting demonstrated high resistance to contami-
nation (presence of outliers) compared with OLS and
NLLS estimations, it is important to note that robust fit-
ting requires a sufficiently large number of artifact-free
data points. Simulations suggested that robust tensor
estimates begin to break down when the frequencies of
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Fig. 4.

(A) lllustration of differences in the cross-sectional area between the brain and spinal cord, displaying a single axial

slice of the mean T2-weighted (b0) image (refer to Table 4 for details on the datasets). (B) Schematic visualization of the
spinal cord, highlighting the “butterfly-shaped” gray matter, which is located in the middle of the spinal cord and contains
neuronal cell bodies and loosely aligned fibers, and the surrounding white matter, which contains highly aligned fibers.

moderately intense cardiac pulsation artifacts exceed
27-30% (Zwiers, 2010, fig. 5).

One potential limitation of linearized fitting methods is
their operation on logarithmically transformed signals,
where the assumption of Gaussian (or Rician) error distri-
bution may not hold. The presence of logarithmically dis-
torted Rician noise distribution not only restricts validity
but can also impact the accuracy of the parameter esti-
mates (J. L. R. Andersson, 2008; Chang et al., 2005; Koay
et al., 2006), particularly in the low-SNR regime such as
in spinal cord dMRI. The WLS and robust fitting algo-
rithms incorporate the signal intensity into the weights of
the estimator function (Appendices E.2 and E.3), which
was shown to reduce the effect of log-Rician distortion
(Salvador et al., 2005). Alternatively, the NLLS algorithm
(Appendix E.4) can be used, which circumvents the
distortion of the Rician distribution by operating on the
original (honlogarithmic) signals, and is, therefore, expected
to yield more accurate parameter estimates, provided
that the numerical fitting problem is sufficiently well con-
ditioned.

In summary, for data with relatively high SNR and a
frequent occurrence of outliers, we recommend using
robust fitting to mitigate the influence of outliers. NLLS,
particularly when combined with Rician bias correction,
may be more suitable for dMRI data with lower SNR,
which is often encountered in acquisitions for DKI (refer
to Oeschger et al., 2023a, for recommended minimum
SNR values and the Rician bias simulation utility function
in Table 2 for simulating the Rician bias on dMRI data
with a given SNR). Low-SNR data with a frequent occur-
rence of outliers pose challenges for model fitting, where
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a combination of msPOAS with RBC might reach their
limits. In such cases, reliability masking can assist in
identifying and excluding corrupted, thus unreliable, vox-
els from the parameter maps (David et al., 2017).

4.2.2. Biophysical diffusion models

Of the biophysical models implemented in ACID, WMTI-
Watson relies on DKI metrics (requiring at least two diffu-
sion shells), while NODDI-DTI relies on DTl metrics
(requiring a single diffusion shell only). This implies that
the challenges associated with the estimation of DTl and
DKI metrics, as discussed earlier, also apply to derived
biophysical models. Accurate and precise estimation of
DKI and DTI metrics is essential for the successful appli-
cation of WMTI-Watson and NODDI-DTI, respectively.

In general, we recommend the DKI-based WMTI-
Watson model over NODDI-DTI due to the fewer model
assumptions, allowing it to better capture diffusion
patterns in complex axonal configurations within the brain
white matter. This aligns with the results from our exam-
ple multishell brain dMRI dataset, where WMTI-Watson
yielded more accurate estimates of «k and AWF compared
with NODDI-DTI (Supplementary Fig. S5). For a more in-
depth comparison of biophysically derived values with
histological values, refer to Papazoglou et al. (2024).

On the other hand, complex models are more “data-
hungry” and more susceptible to noise due to the higher
number of fitted parameters, which can lead to poorly
conditioned optimization problems when the amount
and/or the quality of input data are insufficient. There-
fore, for low-SNR data, as is often the case in spinal
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cord dMRI, the less complex but better-conditioned
NODDI-DTI model might be the preferred choice. The
low b-values often used in spinal cord dMRI could lead
to inadequate parameter estimation when using the
WMTI-Watson model. Indeed, NODDI-DTI yielded a
more accurate estimation of « in the example spinal cord
dMRI dataset, whereas WMTI-Watson highly overesti-
mated it (Supplementary Fig. S5). A drawback of the
NODDI-DTI model in the spinal cord is its assumption of
fixed intra- and extracellular diffusivities, which were
optimized for the brain and might not be valid for the
spinal cord. Both low SNR (Veraart et al., 2011) and kur-
tosis bias (Edwards et al., 2017) can lead to an underes-
timation of MD (Supplementary Fig. S3), impacting the
model parameter estimation when MD falls outside the
range where the NODDI-DTI model provides a valid rep-
resentation (refer to Equation (4) in Edwards et al., 2017).
This was evident in the estimation of AWF, which proved
unfeasible in the spinal cord dataset (see Appendix Fig.
F1; Supplementary Fig. S5). We anticipate that future
improvements in acquisition methods will enhance the
SNR in spinal cord dMRI, enabling the acquisition of
higher b-values, which would alleviate many of the
above-mentioned drawbacks.

A compromise between these two models could be
the white matter tract integrity (WMTI) model, which is
included as an external tool in ACID (Section 2.6). WMTI
assumes highly aligned fibers, which holds true in white
matter regions with high fiber alignment, such as the cor-
pus callosum or the spinal cord white matter, but is less
appropriate in regions with more complex axonal config-
urations, such as parts of the superior longitudinal fascic-
ulus.

Ex vivo neuronal tissues exhibit different diffusivities
compared with in vivo tissues due to various factors,
including the effect of fixation, changes in chemical prop-
erties, and differences in temperature and composition of
the embedding fluid. For example, white matter diffusivity
was reported to reduce by approximately 85% from in
vivo to ex vivo conditions, while the ratio between gray
and white matter diffusivities remains similar, around 2-3
(Roebroeck et al., 2019). To accommodate the reduced
diffusivities under ex vivo conditions, ACID offers the option
to utilize compartmental diffusivities tailored for ex vivo
datasets within the NODDI-DTI model. Such an adjustment
is not necessary for WMTI and WMTI-Watson, as their
compartmental diffusivities are fitted rather than fixed.

We emphasize that NODDI-DTI, WMTI, and WMTI-
Watson have been developed to characterize diffusion in
the white matter. Recently, several efforts have been
made to extend biophysical models to the gray matter
(Jelescu et al.,, 2020). Notable examples include the
SANDI (Palombo et al., 2020) and NEXI (Jelescu et al.,
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2022) biophysical models. However, these models thus
far, no study using these protocols on a clinical MRI sys-
tem has been published.

4.3. Studies quantitatively evaluating the
performance of ACID pipelines

Here, we briefly summarize and discuss the studies that
quantitatively evaluated the performance of ACID tools
individually or in comparison with other tools.

4.3.1. Evaluating preprocessing pipelines

In a previous study, we assessed the performance of
ECMOCO as well as the combination of ECMOCO and
msPOAS in simulated high- and low-SNR multishell brain
dMRI datasets with added motion and eddy-current arti-
facts (i.e., perturbed data) (Mohammadi, Tabelow, et al.,
2015). We found that the performance of ECMOCO in
correcting the perturbed volumes was dependent on the
SNR, with the number of incorrectly registered volumes
increasing at lower SNR (SNR < 16). However, the com-
bined application of msPOAS and ECMOCO effectively
reduced the number of incorrectly registered volumes
even at low SNR (fig. 3 in Mohammadi, Tabelow, et al.,
2015). Additionally, correcting the perturbed volumes
with ECMOCO and msPOAS yielded FA maps closer to
the “ground truth,” that is, the FA map computed on the
unperturbed data (fig. 5 in Mohammadi, Tabelow, et al.,
2015). In another study utilizing clinical spinal cord dMRI
data, we evaluated the impact of ECMOCO on the group
differences observed in FA between patients with degen-
erative cervical myelopathy and healthy controls (fig. 7 in
David et al., 2017). Our analysis revealed that ECMOCO
had only a minimal effect on the two-sample t-score
computed between the FA values of the two groups.

We also tested the effects of different denoising meth-
ods (msPOAS, LPCA, and MP-PCA) on the accuracy of
DKI metrics, with the details and results described in
Appendix G. In short, we found that denoising (using any
of the three methods) is beneficial only in the low-SNR
domain (below an SNR of approximately 30). In high-SNR
data, denoising did not lead to further improvements with
MP-PCA and even introduced additional errors with
msPOAS and LPCA. In terms of susceptibility artifacts,
we previously found in a brain dMRI dataset that FSL
topup was more efficient in correcting susceptibility-
related distortions than HySCO, even when including a
motion correction step between the reverse phase-
encoded (blip-up and blip-down) images before running
HySCO (fig. 3 in Clark et al., 2021). This is potentially
because the HySCO pipeline involved multiple interpola-
tion steps, introducing additional blurring effects, while
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FSL topup incorporates motion and susceptibility distor-
tion correction within the same model. The same study
found that combining reverse phase-encoded images
using the “weighted average” method (HySCO: combine
blip-up and blip-down images module), as opposed to
the “arithmetic average” method, reduces image blurring
in the corrected brain dMRI data and achieves greater
overlap between the dMRI data and the corresponding
structural image. In fact, when using the “weighted aver-
age” method, HySCO performed comparably to FSL
topup and even outperformed it in regions suffering from
high levels of distortion (fig. 5 in Clark et al., 2021). In spi-
nal cord dMRI, a previous study found that HySCO is
comparable with other distortion correction tools such as
FSL topup (Schilling et al., 2024).

4.3.2. Evaluating diffusion signal models

In brain dMRI datasets, we found that robust tensor fit-
ting can reduce the effect of signal outliers due to motion,
eddy-current artifacts, incorrectly registered volumes
(fig. 5C, D in Mohammadi, Tabelow, et al., 2015), or phys-
iological noise (fig. 9 in Mohammadi, Hutton, et al., 2013).
In spinal cord dMRI, we quantified the performance of
robust fitting and showed that it can reduce the bias in
FA, especially at tissue boundaries (fig. 7 in Mohammadi,
Freund, et al., 2013). On the other hand, robust fitting had
only a minor effect on group differences in FA between
patients with degenerative cervical myelopathy and
healthy controls, regardless of whether using the ACID
implementation of robust fitting or using RESTORE (part
of the CAMINO toolbox; Chang et al., 2012) (fig. 7 in
David et al., 2017). However, within the same study, we
also found that supplementing the pipeline with reliability
masking to exclude outlier voxels (Table 2) considerably
increased the statistical differences between patients
and controls (fig. 7 in David et al., 2017).

4.4. Applications

For all applications, it is highly recommended to assess the
data quality before and after each processing step. In addi-
tion to the quality assessment utility functions DW/ series
browser and DWI series movie (Table 2), multiple ACID
modules generate diagnostic plots to identify the presence
and type of artifacts in the dMRI data. Example diagnostic
plots are provided in Supplementary Figures S1 and S2.

4.4.1. Integration with SPM modules

ACID can be readily combined with SPM tools for seg-
mentation, spatial processing, and voxel-based analysis
of parametric maps. Segmenting the brain or spinal cord

17

is often necessary for coregistration, spatial normaliza-
tion, or tissue-specific analyses. In the brain, tissue
probability maps of white matter, gray matter, and cere-
brospinal fluid can be created by unified segmentation,
the default segmentation routine in SPM12 (Ashburner &
Friston, 2005). These tissue probability maps can also be
used to create a binary brain mask using the Create brain
mask utility function (Table 2). To enable SPM’s unified
segmentation in the spinal cord, the brain tissue priors
need to be substituted with the joint brain and spinal cord
tissue priors from the probabilistic brain and spinal cord
atlas (Blaiotta et al., 2017). However, this atlas only cov-
ers the upper cervical cord down to C3; for other spinal
levels, the user is referred to automatic (e.g., deepseg
(Perone et al., 2018)) or semiautomatic (e.g., active surface
method (Horsfield et al., 2010)) segmentation techniques.

Brain dMRI data can be coregistered to the correspond-
ing structural image using spm_coreg. For nonlinear spatial
registration to the MNI space, we recommend SPM DAR-
TEL (Ashburner, 2007) or Geodesic Shooting (Ashburner &
Friston, 2011). As SPM registration tools often rely on brain
tissue priors, they cannot be applied directly on spinal cord
dMRI. For the spinal cord, we recommend utilizing the
PAM50 template (De Leener et al., 2018) and the corre-
sponding normalization tools integrated into the Spinal
Cord Toolbox (De Leener et al., 2017).

While brain and spinal cord images are typically ana-
lyzed separately, there are scenarios where combining
them into a single image can be beneficial. For example,
when registering the brain and spinal cord image to a
joint brain—spinal cord template, such as the probabilistic
atlas of the brain and spinal cord (Blaiotta et al., 2017),
the warping field is often obtained using a structural
image with a large field of view (FOV) covering both
regions (Fig. 5). To apply this warping field to the brain
and spinal cord images, they need to be fused into a sin-
gle image. ACID provides the Fusion utility function
(Table 2) which merges two distinct images, acquired
with different FOV and geometric properties, into a uni-
fied large FOV image (Fig. 5).

ACID benefits from SPM’s rich statistical framework
for voxel-based analysis. SPM’s second-level analysis
tool (SPM -> Specify 2nd-level) performs voxel-
based statistical tests on the parametric maps using
t-test, ANOVA, or general linear model. In the spM >
Results module, the framework also offers (i) multiple
comparison correction in the form of family-wise error
rate and false discovery rate, (ii) thresholding the test sta-
tistics at cluster level and voxel level and providing a list
of significant clusters/voxels, and (jii) various visualization
tools for displaying and saving the significant clusters.
Furthermore, ACID’s ROI analysis utility function (Table 2)
can be used to extract mean metrics within subject-specific



G. David, B. Fricke, J.M. Oeschger et al.

Imaging Neuroscience, Volume 2, 2024

Fractional anisotropy

Fractional anisotropy

o
—
o
o

©

=
(=%
(%]

Reference image

Fig. 5. Merging of two fractional anisotropy (FA) maps, covering the brain and cervical cord, respectively, into a unified
FA map using the Fusion utility function (Table 2). The two images should ideally share an overlapping region, but they may
have different geometric properties such as resolution and number of slices. In the overlapping region, the voxel intensity
values are computed as the average of the intensity values from the two images. The merging process requires a structural
image as the registration target. The combined FA map is resampled onto the higher resolution structural image, resulting

in a smoother appearance.

ROls in the native space or perform atlas-based analysis
in the template space. For atlas-based analysis in the
spinal cord, the user is referred to the PAM50 white and
gray matter atlas (De Leener et al., 2018).

Although ACID does not provide tractography or tract-
based analysis tools, the output of its model fitting meth-
ods can be input into tractography tools such as FSL or
the SPM12-based Fibertools toolbox (see Wiki'' on the
git repository for more details).

4.4.2. Computation time

To speed up the processing and analysis of dMRI data,
parallel computing is implemented wherever applicable.
This technique can substantially accelerate the most
time-consuming ACID modules, including ECMOCO and
DTI/DKI fit. Note that parallel computing requires the Par-
allel Computing Toolbox in MATLAB. Table 6 provides the
computation times for selected ACID modules on a typi-
cal brain and spinal cord dMRI dataset.

4.4.3. Research applications

ACID has been used in a variety of clinical and neuro-
science research, for example, in dMRI studies assessing
cerebral changes in patients with multiple sclerosis
(Deppe, Kramer, et al.,, 2016; Deppe, Tabelow, et al.,
2016; Dossi et al., 2018; Kugler & Deppe, 2018) and

11 https://bitbucket.org/siawoosh/acid-artefact-correction-in-diffusion-mri

/wiki/Home
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Table 6. Computation times of selected ACID modules
on an example in vivo brain and in vivo spinal cord dMRI
dataset (refer to Table 4 for details on the datasets), when
run on a MacBook M1 laptop (4 cores, 16GB RAM).

In vivo brain In vivo spinal

Module dMRI cord dMRI
ECMOCO 9 min 2 min
msPOAS 92 min 1 min
RBC <1 min <1 min
HySCO 2 min 1 min
DKI (using NLLS) 4 min 2 min
WMTI-Watson <1 min 1 min

Parkinson’s disease (Szturm et al., 2021), and to assess
gliomas (Paschoal et al., 2022; Raja et al., 2016). We have
also used ACID to investigate spinal cord white matter
following spinal cord injury (Bleler et al., 2024; David
et al.,, 2019, 2021, 2022; Grabher et al., 2016; Huber
et al., 2018; Seif et al., 2020; Vallotton et al., 2021). A non-
comprehensive list of studies using the ACID toolbox can
be found on the project website.’? Note that certain ACID
functions can be applied to MRI data beyond dMRI as
well; for instance, HySCO has been used to correct brain
fMRI data for susceptibility artifacts (De Groote et al.,
2020). It is important to note that ACID has not been
approved for clinical applications by any health agency
and it comes with no warranty. Therefore, it should not be
used for diagnosis in clinical settings.

12 http://www.diffusiontools.org/sidebar/studies-using-acid.html
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4.5. Limitations and future directions

Comparing the tools within the ACID toolbox with alter-
native implementations in other software presents chal-
lenges because their performance depends on the
specific dMRI data and the chosen parameter settings
from a potentially large parameter space, which necessi-
tates a systematic exploration of the parameter space. In
addition, the evaluation of entire processing pipelines
would drastically increase the number of parameters to
test. While we have outlined the comparisons conducted
so far in Section 4.3, we assert that a thorough quantita-
tive comparison between toolboxes warrants a dedicated
future study. In general, we encourage users to undertake
such comparisons on their own datasets.

The ACID toolbox is the result of a collaborative effort
to extend the SPM ecosystem with state-of-the-art pro-
cessing and modeling tools for dMRI data. Our aim is to
make the toolbox widely accessible, leveraging SPM’s
large and vibrant community. Users can submit their
questions, bug reports, and suggestions via the dedi-
cated mailing list or by opening an issue on the git web-
site. This paper offers an overview of the current state of
the toolbox, with several ongoing developments not
covered here. The modularity of the toolbox allows for
integration of newly developed methods, even when
used concurrently with old ones. Biophysical modeling is
an emerging field, and we expect many methodological
advancements to occur in the coming years. To align
with this ongoing development, our goal is to consis-
tently integrate state-of-the art biophysical models into
ACID. We also plan to add the Rician maximum likeli-
hood estimator (Sijbers et al., 1998) as an alternative to the
existing quasi-likelihood estimators (Polzehl & Tabelow,
2016).

5. CONCLUSION

ACID is an open-source extension to SPM12 that pro-
vides a comprehensive framework for processing and
analyzing in vivo brain, spinal cord, and ex vivo dMRI
data. The toolbox was developed to meet the increasing
demand for studies involving spinal cord dMRI, research
employing biophysical models, and validation studies uti-
lizing ex vivo dMRI. ACID leverages the core SPM tools
and other SPM extensions, which can be easily inte-
grated into the ACID pipeline.

DATA AND CODE AVAILABILITY

The source code of ACID is freely available at https://
bitbucket.org/siawoosh/acid-artefact-correction-in
-diffusion-mri/src/master/. The authors will make the raw
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data used for the visualizations in this article available in
an associate publication.
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Appendix Fig. A1.

The left panel shows the location of the ACID toolbox in the SPM Batch Editor after successful

installation (SPM -> Tools). The toolbox is organized into six modules, each of which may be further divided into
submodules. The right panel provides an example of a submodule (Diffusion Tensor Imaging within the Diffusion tensor/
kurtosis imaging module). Each (sub-) module requires at least one mandatory input, indicated by “X,” as well as several
optional inputs and parameter settings, which can be adjusted for customization. Recommended settings for typical in
vivo brain, in vivo spinal cord, and ex vivo dMRI datasets are presented in Table 5.

detailed installation instructions, module descriptions, and
step-by-step instructions for typical analysis pipelines.

ACID is free but copyrighted software, distributed
under the terms of the GNU General Public License as
published by the Free Software Foundation (either ver-
sion 2 of the License or, at your option, any later version).
Further details on “copyleft” can be found at the GNU
website.'” It should be noted that ACID is supplied as is
and no formal support or maintenance is provided. The
toolbox was developed for academic research purposes
only and comes with no warranty, nor is it intended for
clinical and diagnostics use.

Appendix A.2. Organization of the toolbox

The ACID modules can be found in the SPM12 Batch
Editor by navigating to SPM -> Tools -> ACID Tool-
box. The toolbox is divided into six modules, as shown in
Appendix Figure A1: Startup, Pre-processing, Diffusion
tensor/kurtosis imaging, Biophysical models, Ultilities,
and External tools.

Appendix A.3. Startup

The ACID modules rely on a set of default settings, which
were selected to yield reasonable results for typical dMRI
data. However, adjustments may be necessary depend-
ing on the specific dataset (see Section 3.2 for recom-
mendations). For convenience, the module’s graphical

17 http://www.gnu.org/copyleft/

user interface (GUI) only presents the settings that are
likely to be modified. Advanced users can access and
modify all settings through the script config/local/
acid local defaults.m. To use modified settings,
the Startup module must be executed with the custom-
ized file provided as input; these settings will remain in
effect even after restarting SPM or MATLAB until new
settings are specified.

ACID requires all input images to be in NIfTl format
(either NIfTI-1 or NIfTI-2), with dMRI data required to be
in 4D NIfTI format. ACID also supports compressed NIfTI
images with the extension .nii.gz and outputs com-
pressed images for compressed input and uncompressed
images for uncompressed input. Users can convert from
DICOM to NIfTI format using SPM’s DICOM Import func-
tion, which can also export metadata into JSON files if
the “Export metadata” option is enabled. To bring dMRI
data into the required format, the Startup module can be
utilized to (i) convert a set of 3D NIfTl files into a single 4D
NIfTI file, (ii) generate corresponding bval/bvec files from
the JSON files (if not already available), (i) create an
additional metadata file containing the most commonly
reported subject and acquisition parameters (such as TE
and TR) to provide a concise overview of the dataset, and
(iv) set an output directory alternative to the default one.
The output from Startup can be automatically passed to
subsequent processing steps through dependencies.

APPENDIX B. DETAILS ON ECMOCO
ECMOCO consists of four steps (Appendix Fig. B1):
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Registration scheme for an example dMRI dataset, which consists of two sets of nondiffusion-

weighted (b0) volumes (n volumes each) and two sets of diffusion-weighted (DW) volumes (N volumes each) interspersed
with each other. The b0 and DW volumes form separate registration groups and are registered to their corresponding
target volumes. First, the b0 volumes are registered using the rigid-body components of the specified degrees of freedom
(DOF), followed by the registration of the DW volumes using all specified DOF. The parameter iteration for a given b0 or

DW can be initialized using previously obtained transformation

1 The type of registration (slice-wise or volume-wise)
and the degrees of freedom (DOF) for the affine
transformation are specified by the user.
Shell-specific target volumes are generated, and
transformation parameters are obtained between
all nondiffusion-weighted (b0) volumes and their
corresponding target. The parameter iteration for a
given b0 volume can be initialized by the transfor-
mation parameters of the preceding b0 volume
(initialized registration, see details below). Only the
DOF associated with rigid-body transformation are
estimated for bO volumes, as eddy currents are
expected to be negligible in b0 volumes due to the
absence of diffusion-sensitizing gradients.
Transformation parameters are obtained between
all diffusion-weighted (DW) volumes and their
corresponding target. The parameter iteration for
a given DW volume can be initialized by the inter-
polated transformation parameters from the b0
volumes (initialized registration, see details below).
The obtained transformation parameters are applied
to reslice all volumes.

In addition to slice-wise registration, introduced in
Section 2.2.1 and demonstrated in Appendix Figure B2,

ACID incorporates two additional recent features: initialized
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parameters (initialized registration).

registration and exclusion mode. Initialized registration is
based on the observation that transformation parame-
ters obtained from high-SNR b0 volumes tend to be
more accurate than those obtained from low-SNR DW
volumes. With initialized registration, the parameter iter-
ation for each b0 volume starts with the transformation
parameters obtained from the preceding b0 volume.
Once all the b0 volumes have been registered, their
rigid-body transformation parameters are interpolated to
the positions of the DW volumes situated between the
b0 volumes. Subsequently, the parameter iteration for
each DW starts with these interpolated values. If interpo-
lation is not feasible (e.g., the DW volume is situated
before the first or after the last b0 volume), the parameter
iteration starts with the parameters obtained from the
nearest b0 volume. This approach is particularly useful
for correcting slow spatial drifts across volumes.

The exclusion mode is designed to address volumes
with very low SNRs, which can make obtaining reliable
transformation parameters difficult. Volumes that are
considered not feasible for registration can be identified
through visual inspection, for example, using the DW/
series browser utility function, and can be input into
ECMOCO. For these volumes, the rigid-body transforma-
tion parameters from the preceding nonexcluded volume
are applied instead.
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Appendix Fig. B2. Qualitative comparison of different motion correction techniques including no correction, volume-
wise ECMOCO, and the combination of volume- and slice-wise ECMOCO. The plots show the concatenation of 1D
cross-sections along the phase-encoding (PE) direction (anterior-posterior), extracted at fixed x- and z-coordinates

from each of the 120 diffusion-weighted (DW) volumes in an in vivo spinal cord dMRI dataset. Additionally, zoomed-in
views of a subset of DW volumes are provided to facilitate the assessment of improvements by ECMOCO. Substantial
motion along the y-direction was initially observed, which was notably reduced after applying ECMOCO. Importantly,
volume-wise ECMOCO did not entirely correct for spatial misalignments in all volumes (an example of failed correction is
indicated by the red arrow). Conversely, the combination of volume- and slice-wise ECMOCO effectively corrected spatial

misalignments in all DW volumes.

APPENDIX C. REGIONS FOR NOISE ESTIMATION

For optimal denoising (msPOAS, Section 2.2.2) and
Rician bias correction (Section 2.2.3), it is crucial to accu-
rately estimate the image noise within the appropriate
region of interest. Noise measurements taken from regions
outside the body are often suboptimal due to the lower
parallelization factor (g-factor) at the edge compared with
the center of the field of view. Instead, we recommend
estimating the noise by considering two distinct scenar-
ios, employing the repeated measures method in each
case (see Noise estimation in Table 2). In datasets affected
by (temporally varying) physiological artifacts, such as in
in vivo brain and spinal cord datasets, we recommend
estimating the noise across images with high b-values
and within regions where the signal reaches the noise
plateau (i.e., within cerebrospinal fluid compartments).
For automatic ventricle segmentation within the brain,
ACID provides an example segmentation batch located
at ACID TPM/acid-ventricles-batch.m, which uti-
lizes the spm_segment function. In datasets unaffected
by physiological artifacts, such as in ex vivo dMRI, we
recommend estimating the noise across nondiffusion-
weighted (b0) images within either the entire specimen or a
specific part. The latter recommendation, however, requires
repeated measurements of b0 images. Example noise
regions are shown in Appendix Figure C1.

APPENDIX D. RECOMMENDATIONS FOR
ADAPTIVE DENOISING (MSPOAS)

If the overall noise reduction is insufficient, kstar can
be increased at the cost of longer computation time
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Appendix Fig. C1. Definition of noise regions of interest
(ROI) for the repeated measures noise estimation method
(see Noise estimation in Table 2). Binary noise ROls are
outlined in red. For in vivo brain and spinal cord dMRI, we
recommend creating a noise ROI within the cerebrospinal
fluid (CSF), such as the lateral ventricles in the brain and the
subarachnoid space in the spinal cord, on the b0 images.
Subsequently, we recommend estimating the noise on the
images with the highest b-value (ideally above 1500 s/mm?)
within the CSF mask. For ex vivo dMRI, the noise ROl is
recommended to encompass the specimen itself, but noise
estimation should be applied only on the b0 images. Since
ex vivo dMRl is not affected by physiological artifacts, signal
variations across the b0 images are considered noise.
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Schematic illustration of how robust fitting down-weights outliers in the model fit. The scatter

plot shows the logarithm of diffusion-weighted voxel intensities against the squared cosine of the angle y between
the diffusion gradient direction (bvec) and the direction of the first eigenvector in a corpus callosum voxel (see blue
crosshairs for location). Blue crosses in the scatter plot indicate data points not affected by artifacts (“No outliers”),
while cyan crosses indicate data points affected by strong artifacts (“Outliers”). Outliers were generated by removing
the center of the k-space of the original image to illustrate the effect of strong motion artifacts. Two example images
corresponding to a nonartifactual (“No outlier,” top image) and an artifactual data point (“Outlier,” bottom image)

are shown on the right. During the model fit, a linear curve is fitted to the logarithmic voxel intensities. The presence
of outlier data points leads to a biased model fit (red line) and consequently biased tensor estimates when using
ordinary least squares (OLS) model fitting. In contrast, robust fitting down-weights the influence of outliers, leading
to a more accurate model fit (orange line) which is closer to the ground truth (green line) obtained by an OLS fit to the

nonartifactual data points (blue crosses) only.

(Tabelow et al., 2015). It is important to note that msPOAS
assumes a single global value of sigma, which may not
always hold. If sigma is correctly estimated, the default
lambda value will ensure optimal adaptation. Incorrect
estimation of sigma can be compensated by the choice
of lambda, which makes msPOAS robust against mis-
specification of sigma (Becker et al., 2014). We recom-
mend determining kappa automatically based on the
number of diffusion directions (Tabelow et al., 2015).
However, manual adjustment of kappa may be neces-
sary in cases where the SNR is low (e.g., for spinal cord
dMRI) or if the dataset has more images with high b-val-
ues than with low b-values. The effective number of coils
(ncoils) is 1 when using SENSE1 reconstructions (Polzehl
& Tabelow, 2016; Sotiropoulos et al., 2013), but the cor-
rect value is more difficult to determine when using mul-
tiple receiver channels (Aja-Fernandez et al., 2014). It is
important to use the same ncoils for the estimation of
sigma and in msPOAS to ensure the same number of
degrees of freedom.
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APPENDIX E. MODEL FITTING METHODS
IMPLEMENTED IN ACID

Appendix E.1. Ordinary least squares

Tensor fitting involves solving the linear regression prob-
lem y =Ba+¢€, where y contains the logarithmic sig-
nals, B (b-matrix) contains the gradient directions and
strengths, & contains the elements of the diffusion ten-
sor, and € contains the model-fit errors (the difference
between the actual and fitted signal). The ordinary least
squares (OLS) approach employs the estimator function
p(e,-)=e,-2, where ¢€; represents the model-fit error of
acquisition i. The solu}ion is obtained by minimizing 2,3,2,
yielding ety = (BTB) BTy.

Appendix E.2. Weighted least squares

The weighted least squares (WLS) approach addresses
the heteroscedasticity of the logarithmic data by assigning
individual weights to each image in the form of w; = S;/c;,
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The impact of Rician bias correction (RBC) on maps of biophysical parameter estimates, derived from

the NODDI-DTI and WMTI-Watson models, including Watson concentration parameter (k) and axonal water fraction (AWF),
in an in vivo brain and spinal cord dataset (refer to Table 4 for details on the datasets). Being derived from white matter
biophysical models, the parameter maps were masked for the white matter in the brain dataset. For the spinal cord, we
refrained from masking due to the difficulty of obtaining an accurate white matter mask. These maps were computed both
without (left column) and with (middle column) RBC; their voxel-wise difference, referred to as the Rician bias, is shown in
the right column. RBC slightly decreased the mean of the kurtosis tensor in both the brain and spinal cord, which resulted
in an increase in k. The estimation of AWF using the NODDI-DTI model was not feasible in the spinal cord, as the mean
diffusivity (MD) values derived from DTI fell below the range where the NODDI-DTI model provides a valid representation
(refer to Equation (4) in Edwards et al., 2017). This discrepancy could be attributed to either the underestimation of MD
due to kurtosis bias (Supplementary Fig. S3) or the invalidity of fixed compartmental diffusivities in the NODDI-DTI model.

where é,- represents the unknown true signal (without
noise) and o, is the background noise for acquisition i. The
estimator function now becomes p(g;) =(0),-8,-)2, yielding
the solution o, = (WTBTWB)_1 wTBTWy, with W being
the diagonal matrix of ®@;. Note that OLS is a special case
of WLS, where w; =1 for all i. A practical consideration in
obtaining o, is related to estimating é,. One approach is
to use the measured noisy signal S; as an estimate of é,-.
Another approach is to start with the OLS solution and use
the fitted signal as an estimate of é,-, which was shown to
be more accurate (Veraart, Sijbers, et al., 2013).

Appendix E.3. Robust fitting

The concept behind robust fitting is to assign lower
weights to data points with higher model-fit errors during
the fitting process (Mangin et al., 2002). The robust fitting
method implemented in ACID is based on the “Patching
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ArTefacts from Cardiac and Head motion” (PATCH) tech-
nique introduced by Zwiers (2010). While the form of the
estimator function is similar to that of WLS, PATCH factor-
izes the weighting function o; into three components as
®; = ®;10;o0;3, Where each component is designed to
address different types of artifacts: w;; and w;, account for
regional and slice-wise artifacts, respectively, while w5 is
identical to the weight term in WLS. w;; and m;, are expo-

@ﬂ

nentially decaying functions of €;: w4 =exp[{ C
)
is the

2
Agg; .
Wjp = exp{— {—ZC"S' } ] where g;g= 2::1_8'2
2 v

slice-average model-fit error, with 1 being the number of
voxels within the slice. A and A, are model parameters, by
default set to 0.3 and 0.1, respectively, with higher values
resulting in a faster exponential decay. C; and C, are
estimates of the standard deviation of ¢; and g;, res-
pectively, in the absence of outliers, and are computed
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Appendix Fig. G1. Qualitative illustration of the effect of
denoising on maps derived from diffusion kurtosis imaging
(DKI). Shown are maps of axial diffusivity (AD), radial
diffusivity (RD), mean kurtosis tensor (MW), axial kurtosis
tensor (AW), and radial kurtosis tensor (RW). The maps
were obtained by fitting the kurtosis model to simulated
noisy dMRI data (signal + noise) with a signal-to-noise ratio
(SNR) of 5, both before (no denoising) and after employing
different denoising methods (msPOAS, LPCA, MP-PCA).
The DKI metric maps obtained from the simulated noise-
free dMRI data (signal only) are also shown for comparison
(ground truth). The white matter mask used for calculating
the normalized root-mean-square error (NRMSE) between
the obtained DKI metrics and the ground truth is overlaid as
a red segmentation line on the ground truth maps.

as Cy =1.4826-median(|¢;|) and C, = 1.4826-median|&; s/
(Hampel, 1974; Rousseeuw & Croux, 1993). Note that
accurate estimation of C; and C, is crucial for effectively
down-weighting outliers. This holds true as long as outli-
ers are sparsely distributed and the median of the
model-fit errors remains unaffected. However, a frequent
occurrence of outliers can increase C, leading to a less
effective down-weighting of outliers.

While OLS and WLS independently fit the tensor in
each voxel, PATCH makes use of the observation that
physiological noise represents a structured, spatially
correlated noise. To accommodate the anticipated
smoothness of C;, the median operator is spatially
smoothed using a 2D Gaussian kernel before computing
C, (Zwiers, 2010).

As a modification to PATCH, the robust fitting
method incorporates Tikhonov regularization to handle
ill-conditioned weighting matrices resulting from a high
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occurrence of outliers. 1'I'his leads to the solution
a, =[WB"WB+1B"B] WTB"Wy, where W rep-
resents the diagonal matrix of factorized weights, and
A is the Tikhonov regularization factor. Notably, in the two
extreme cases, the Tikhonov solution either becomes
ous (albeit with a different W) (L = 0) or converges to 0.5
(A — ). The above equation cannot be solved readily, as
W is a function of €, which is only available after obtain-
ing the solution. This is addressed by using an iteratively
reweighted least squares (IRLS) algorithm. In the first iter-
ation, w; is set to 1 for all j to obtain the OLS solution o
and the initial €. In the second iteration, an updated W is
computed based on the initial €, which is then used to
compute a . In each further iteration, € from the preced-
ing iteration is used to update W, which is in turn used to
compute the updated a,. This iterative process is
repeated until convergence or until the predefined num-
ber of iterations is exceeded.

Appendix E.4. Nonlinear least squares

The nonlinear least squares (NLLS) method solves

2
the optimization problem o, = argminzi(sb‘g - m(oc)) ,
04

where m represents the signal model (DTl or DKI), a the
model parameters (elements of the diffusion and/or
kurtosis tensors), and S, 5 the measured signal intensi-
ties for a specific diffusion weighting b and diffusion
gradient direction g. The NLLS optimization problem is
solved using a Gauss—Newton algorithm.

APPENDIX F. EFFECT OF RICIAN BIAS
CORRECTION ON BIOPHYSICAL
PARAMETER ESTIMATES

Here, we demonstrate the influence of Rician bias correc-
tion on the estimation of Watson concentration parame-
ter (k) and axonal water fraction (AWF) (Appendix Fig. F1).
These biophysical parameters were estimated on the fully
processed dataset using either the NODDI-DTI model
applied on a single (lower b-value) shell or the WMTI-
Watson model applied on two shells. For an in-depth
analysis of the impact of Rician bias correction on DKI
and axisymmetric DKI, refer to Oeschger et al. (2023a).

APPENDIX G. EVALUATING DENOISING
METHODS

Several denoising methods have been developed,
including the Multi-shell Position-Orientation Adaptive
Smoothing (msPOAS; Section 2.2.2) (Becker et al.,
2014), as well as methods based on local principal
component analysis (LPCA) (Manjon et al., 2013) and
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Appendix Fig. G2. Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging
(DKI) (one noise realization). The plots show the normalized root-mean-square error (NRMSE) between (i) DKI metrics
obtained from simulated noisy dMRI data (signal + noise) with varying signal-to-noise ratios (SNR), both before (no
denoising) and after employing different denoising methods (msPOAS, LPCA, MP-PCA), and (ii) DKI metrics obtained
from noise-free dMRI data (signal only). NRMSE was computed across white matter voxels (see Appendix Fig. G1 for the
white matter mask) for the following DKI metrics: axial diffusivity (AD), radial diffusivity (RD), mean kurtosis tensor (MW),
axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising methods reduced NRMSE from the ground truth
compared with the “no denoising” scenario only in the low-SNR domain, although not consistently for all DKI metrics. At
high SNRs (above 30-40), denoising increased NRMSE for all DKI metrics, except for the MP-PCA method, which yielded

results comparable with the “no denoising” scenario.
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Appendix Fig. G3. Quantitative illustration of the effect of denoising on maps derived from diffusion kurtosis imaging
(DKI). The plots show the relative difference in DKI metrics obtained from simulated noisy dMRI data (signal + noise) with
varying signal-to-noise ratios (SNR) after employing different denoising methods (msPOAS, LPCA, MP-PCA) to those
obtained without denoising (one noise realization). The relative difference was computed across white matter voxels (see
Appendix Fig. G1 for the white matter mask) for the following DKI metrics: axial diffusivity (AD), radial diffusivity (RD),
mean kurtosis tensor (MW), axial kurtosis tensor (AW), and radial kurtosis tensor (RW). Denoising introduced substantial

improvements in the investigated DKI metrics only in the low-SNR domain, although not consistently across all DKI metrics.

When using msPOAS and LPCA, the relative differences were greater compared with using MP-PCA, with msPOAS
introducing the highest bias. At high SNRs (above 30-40), the relative difference to the “no denoising” scenario was

negligible for MP-PCA.
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Marchenko-Pastur principal component analysis (MP-
PCA) (Veraart et al., 2016). Here, we evaluated these
three denoising methods using a simulated dMRI data-
set of the human brain. Specifically, we fitted the kurto-
sis model to an in vivo brain dMRI dataset (refer to
Table 4 for details on the dataset) and considered the
fitted dMRI signal as the “noise-free” ground truth. Then,
we added varying amounts of noise to the ground truth,
drawn from a circularly symmetric complex normal dis-

tribution CN (0, 62) with & = So

SN
SNR values (SNR = 5, 15, 30, 39, 52, 100) as in our pre-
vious study (Oeschger et al., 2023b). The code for the
simulation is available online.'® For each SNR, the kurto-
sis model was fitted to the noisy magnitude dMRI data,
both before (no denoising) and after denoising (msPOAS,
LPCA, MP-PCA), using the nonlinear least squares (NLLS)
algorithm implemented in ACID. Slices of axial diffusivity
(AD), radial diffusivity (RD), mean kurtosis tensor (MW),
axial kurtosis tensor (AW), and radial kurtosis tensor (RW)
maps obtained from the dMRI data with the lowest SNR
(SNR = 5) are shown in Appendix Figure G1. Deviations
from the ground truth were quantified by computing the
normalized root-mean-square error (NRMSE) between
the obtained DKI metrics and the ground truth across

, using the same set of

18 https://github.com/quantitative-mri-and-in-vivo-histology/esmrmb2024
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white matter voxels for one noise realization (Appendix
Fig. G2). The white matter mask applied is overlaid on
the ground truth DKI metric maps in Appendix Figure G1.

In general, denoising methods proved beneficial in
reducing NRMSE from the ground truth compared with
the “no denoising” scenario in the low-SNR domain,
although not consistently across all DKI metrics. Spe-
cifically, denoising reduced NRMSE for RD and RW
below an SNR of 15, and for AW below an SNR of 30.
However, it did not reduce NRMSE for AD, and the
trend was not clear for MW. At higher SNRs (above 30-40),
denoising increased NRMSE for all DKI metrics com-
pared with the nondenoised data, except for the MP-PCA
denoising method, which yielded results comparable
with the nondenoised scenario. The relative difference
between the maps generated using denoising and
those generated without denoising is shown in Appen-
dix Figure G3. These results suggest that denoising
(using any of the three methods) is beneficial for
increasing the similarity to ground truth DKI metrics
only in the low-SNR domain. In the high-SNR domain,
denoising either does not lead to further improvements
(MP-PCA) or even introduces additional errors (msPOAS
and LPCA).
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