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Abstract This study investigates the dynamics of charitable donor co-attendance
networks to help understand fundraising outcomes. We analyze a multi-year net-
work of co-attendance at fundraising events, examining topological structure, node
characteristics, and network properties. Key findings include a 76% increase in
giving value for donors with increased centrality rank and a positive peer effect
indicated by increased co-attendance with high-capacity donors, among donors who
increased or maintained their giving levels. Additionally, we observe assortativity in
giving patterns among co-attending donors, and identify interlinked cliques of com-
munities with varying sizes, with larger communities having a higher proportion
of wealthy donors. Furthermore, we develop a Long Short-Term Memory (LSTM)
network to predict donor propensity, considering node-level features such as assor-
tativity, centrality, clustering coefficient, and exposure to high-capacity donors. Our
results demonstrate that a multi-variate model outperforms baseline statistical mod-
els, enabling outcome assessment before events. These findings have implications
for budget allocation strategies and maximizing fundraising effectiveness.

Keywords Charitable donations, Co-attendance network, Deep Learning, Multi-
variate forecasting model.

1 Introduction

For non-profit organizations, fundraising events serve as platforms for donors and
staff to strengthen or form new connections. The outcomes of such events have been
observed to be influenced by similarities between donors, their relationships with
the recipient organization, and interactions with the soliciting individuals. [11, 27].
We propose a network-theoretic perspective on analyzing such events, exploring
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the extent to which the event co-attendance network influences giving behaviors of
donors.

This chapter expands on our study presented in [31], analyzing multi-year data
(from a large private research university) that includes donations made by individuals
and events attended by those individuals (Section 2). Using this data, we construct
a co-attendance network, where nodes represent donors and edges indicate whether
donors have attended at least one fundraising event together. We recognize that other
factors beyond the co-attendance network also influence giving behavior, such as
undocumented personal relationships, mutual interactions, influence networks, and
recommendations.

Our analysis reveals low-moderate positive assortativity, indicating a tendency
for donors with similar giving behaviors to co-attend events. We observe a positive
correlation between centrality and the amount of giving, consistent with prior stud-
ies [19] in this area. More importantly, our findings indicate that co-attendance with
high-capacity donors correlates with increased donation amounts. We also explore
other network properties that may influence giving behavior, discovering that larger
communities have a greater proportion of above-median and high-giving donors.

In addition to the work presented in [31], this chapter includes the following
additional results.

1. We enhance our formulation for updating edge weights in the network construction
that captures the potential strength of interactions between individuals while co-
attending events with emphasis on event size.

2. We predict donor propensity using node-level features extracted from the co-
attendance network, including assortativity with neighbors, centrality rank, clus-
tering coefficient, and exposure to donors within the local neighborhood and
community.

3. We extend our analysis beyond donors retained between non-overlapped windows
(S = 456) to include all (including irregular) donors, significantly increasing the
sample size (S = 99431). This facilitates exploring a wider range of donor
behaviors, so that we can identify patterns in donations across different donor
segments.

We propose a multivariate forecasting model that significantly outperforms the
baseline in predicting the giving class of an individual in the current time window
based on the co-attendance network node properties in preceding time windows. The
AUC for our model exceeds that of the baseline for both the donor segments. The
node features are perfectly separable in our multi-year analysis, indicated by an AUC
of 1.0 for all three classes. Learning from the network snapshots enhances the model
prediction capability because it incorporates the dynamic nature of the network and
its influence on donor behavior.

The proposed multivariate model outperforms all statistical baselines in terms of
median absolute error (MAE) for both regular and irregular event attendee segments.
Although the performance of statistical models in predicting the donation amount
for regular donors is comparable to that of the proposed multivariate model (in
terms of RMSE), the latter demonstrates superior performance for a filtered set of
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donors (i.e., excluding very high donors). In this segment, the multivariate model
achieves a lower test RMSE of $16874.49 compared to the statistical model’s RMSE
of $22428.29.

Thus, our research presents a new approach to predicting donor propensity by
incorporating network properties, specifically event co-attendance networks, unlike
previous models that have focused on personal traits and other properties. Our
analysis can be useful to nonprofit organizations in identifying potential donors
and donor segments, understanding donation patterns, and optimizing their resource
allocation to various donor segments such as retained donors, new donors, and donors
who changed their behaviors. This helps in improved targeting and thus improves
fundraising outcomes.

Section 2 describes the properties of the dataset. Section 3 discusses prior work
related to network analysis in fund-raising efforts, as well as the baseline statistical
approach and relevant neural network models. This is followed by Section 4, which
describes our methodology and parameters of the multi-variate model. Next we
present our analysis in Section 5 followed by discussion in Section 6. Conclusions
are presented in Section 7.

2 Dataset Description and Statistics

The dataset used for our study contains over 46,175 (including staff) unique donors
who contributed varying amounts to events and non-event-associated donations.
The data spans over 3000 events organized by a large private research university
from 2014 to 2021. These events include meetings, fundraising campaigns, alumni
engagement programs, networking events, and lectures and donations received by the
university are utilized for endowments, scholarships, and funding various university
facilities.
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Fig. 1 Growth of donors and events Fig. 2 Yearly totals and 3-year moving averages
organized in period 2014-2021 [31] for all donors in period 2014-2021

Fig. 1 shows the retained (existing) donors and newly joined donors for each year,
from 2014 to 2021. We see that each year the events draw a similar number of new
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donors and with time there is an increase in the number of retained donors. Fig. 1
also provides the number of unique events organized each year, which increases with
time. The donors have varying primary constituencies with the University, including
alumni, students, parents or spouses of students/alumni, and staff. For this analysis,
we focus on two types of giving: promised lifetime giving (which includes amounts
that have not yet been given), and the actual amount given each year.

Fig. 2 illustrates the yearly totals, the actual data points that represent the totals for
each years. The moving average curve helps to smooth out short term fluctuations and
shows an upward trend. To enhance the prediction capabilities, we have augmented
our previous dataset with new fields, such as first campaign gifts.

Table 1 Sample size for dataset

Analysis | Attendee type |Individual donors|Sample size
Yearly |Regular attendee (all events) 57 456
Yearly | All attendees (small events) 175 5578

Multi-year| All attendees (all events) 44385 99431

We perform various analyses to forecast donor propensity. Initially, we utilize
the annual co-attendance network to examine two distinct donor segments. The first
segment comprises consistent donors who consistently attend events over the course
of eight years. The second segment consists of both regular and irregular donors
who attend small-sized events.

Additionally, we conduct a multi-year analysis to evaluate the multivariate model’s
performance on donor activities within a rolling window of 3 years. This investi-
gates how the network dynamics potentially influence donor propensity. The sample
sizes representing time series data of individuals attending events and contributing
amounts for all dataset types are listed in Table 1.

3 Background

In this section, we discuss prior research in three areas related to our work. First,
we summarize network analytics work addressing donation data. We then describe
the baseline statistical approach used to evaluate our proposed approach. We then
discuss the use of recent neural network models for forecasting.

3.1 Donation Data Analysis

Prior analyses have shown that effective communication with donors can increase
charitable donations, with people more likely to donate when they perceive sim-
ilarities with fundraisers [7, 30]. Donors also give more often to organizations to
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which they feel connected, such as their alma mater [4]. Overall, research sug-
gests a positive social influence among similar individuals in donor-solicitor and
donor-recipient dyads, while the effects of social influence on charitable giving in
donor-donor dyads can be both positive and negative [25, 29]. Existing research has
found that donor-donor dyads exhibit assortativity, meaning individuals tend to do-
nate similar amounts as their peers [20, 15]. Studies have also examined the extent to
which giving behavior is influenced by similarities in personal characteristics, such
as gender, location, income, age, and relationships with others [32].

Network properties have been used to detect donor influence, particularly on so-
cial media [8, 27, 34]. Studies have found that a Twitter campaign network’s size,
decentralization, and cultural norms are positively correlated with the average dona-
tion amount per day [33]. Authority and centrality within internal social connections
also impact success in fund-raising [12]. Additionally, social connection variables
have been found to improve the performance of algorithms that predict funding
outcomes, with external social connections having a stronger impact compared to
internal connections.

Numerous studies have focused on constructing predictive models to enhance the
effectiveness of fundraising efforts within charitable organizations [23]. These re-
search endeavors have attempted to predict a donor’s giving likelihood (propensity)
[28], and to forecast the specific amount a donor might contribute, based on historical
data. The influence of organizational connections on individuals’ donation propen-
sities has been studied based on the preceding 3 years of donations, considering age,
gender, race/ethnicity, and relational characteristics as features [2].

Research has also focused on identifying individuals who change their giving
behavior over time [26, 1]. Previous research has also explored donor segmentation
based on various factors, including altruism, belief in mission clarity, and suscepti-
bility to external influences [18].

In this study, we extract individual (node)-level features from the co-attendance
network to predict donor propensity. We segment donors based on event attendance
frequency and compare this against baselines. Our approach includes conducting a
multi-year network analysis to study the potential influence of network dynamics
on donor behavior, aiming to predict donor propensity. For classification tasks, we
use simple time series-dependent baselines, while for regression tasks, we employ
more complex statistical methods such as ARIMA modeling. This work contributes
to the limited research on associating fundraising outcomes with longitudinal net-
work analysis and on predicting donor propensity using such data. The following
subsections describe our baselines in more detail.

3.2 Baseline

For our classification task we employ a baseline that predicts the giving class of each
individual for the next time window to be the same as their most recent value. This
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is a simple approach based on the assumption that the future behavior of an entity
will be similar to its past behavior.

We also use two baseline methodologies for regression tasks: Exponential smooth-
ing [10] and Auto-Regressive Integrated Moving Average (ARIMA) models [22].
These approaches offer complementary techniques to tackle the complexities of
forecasting. While exponential smoothing models focus on the seasonal patterns and
trends in the data, the ARIMA model captures the autocorrelation structure inherent
in the dataset. In an autoregressive model (AR (p)) of order p, the variable of interest
is forecast using a linear combination of past values of the variable. A moving aver-
age model of order q (MA (q)), on the other hand, uses past forecasting errors in a
regression-like model. If we combine differencing with autoregression and a moving
average model, we obtain a non-seasonal ARIMA model, expressed as follows.
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3.3 Neural network models for forecasting

Artificial neural networks provide forecasting algorithms that use mathematical
models inspired by biological neural networks and capture nonlinear relationships
between the response variable and its predictors [21]. They were first used for
forecasting in the early 1990s [16, 3] but the recent introduction of well-designed
recurrent neural network (RNN) modules has resulted in extraordinary successes in
forecasting for several practical applications [17]. For our multivariate time series
model, we employ Long Short-Term Memory (LSTM) [14] and Gated Recurrent
Unit (GRU) networks [5].

An LSTM is a type of recurrent neural network (RNN) module designed to learn
long-term dependencies. Unlike traditional RNNs, LSTMs have a cell state to facil-
itate remembering information over extended periods, and use gates to control the
flow of information into and out of the cell state, enabling learning of complex tem-
poral relationships. GRU networks are similar, but use a simpler recurrent network
module. The key differences between LSTM and GRU lie in their architectures and
associated trade-offs. LSTM networks have more gates and parameters, providing
greater flexibility and expressiveness, but requiring higher computational cost and
overfitting risk. GRU networks are simpler and faster since they have fewer gates
and parameters, but don’t always perform as well as LSTM networks. LSTM net-
works maintain separate cell state and output channels, hence storing and outputting
different information, unlike GRUs whose single hidden state may limit its capacity.
Both models exhibit varying sensitivities to hyperparameters such as learning rate,
dropout rate, and sequence length [24].
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4 Methodology

Our primary objective is to understand the relationship between the network prop-
erties of an individual in the dataset and that individual’s giving (propensity and
level) by analyzing longitudinal network data. This information can be valuable in
evaluating the potential effectiveness of fund-raising campaigns. To achieve this, we
construct weighted network snapshots at the end of each specified time window and
measure the co-attendance network properties, using them to predict donors’ giving
propensity for the subsequent time window.

4.1 Network Construction

The usefulness of events for predicting donor behavior declines with time, and donor
participation in recent events is more important than in older events. One possible
way to represent this fact in our updated co-attendance network is by halving the
weight in every successive time slice [31].

Wy = N+ @

Event size matters: in smaller events, individuals have a higher chance of engaging
in conversations and interacting with one another, while in larger gatherings, one-
on-one interactions between two co-attendees is less likely. Equation 3 shows how
we may use the relative strength of possible interactions between two co-attending
individuals to update edge weights, using a slower decay function than Equation 2,
capturing long term dependencies for our multivariate models (Section 5.5 to 5.7).
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4.2 Node features

To predict donor propensity, we leverage network structural characteristics. Since
we focus on individual donations, we consider properties at the node (individual)
level. Our analysis reveals similarity in giving behavior among neighbors of a node,
indicating the impact of assortativity on donor propensity. We observe a positive
peer effect, with increased giving levels among donors who showed increased co-
attendance with high-capacity donors. We hence investigate the influence of an
individual’s local neighborhood and their community (identified using the Louvain
community detection algorithm [1]) on donor propensity. Additionally we consider
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centrality, as more central individuals tend to have higher giving levels supported
by prior studies and our analysis. We also take into account the clustering coef-
ficient, which measures the extent to which nodes cluster together into well-knit
sub-networks.

4.2.1 Assortativity:

This property indicates the preference for nodes to attach to others that have similar
characteristics, i.e., whether individuals with similar giving behaviors are more likely
to co-attend the same events. To capture the local assortativity property, we use the
simple and well-known EI homophily index, a measure of in-group (internal) and out-
group (external) preference [6] whose value ranges from -1 (complete homophily) to
1 (complete heterophily), using Equation 4.

3 External — Internal

EI 4)

" External + Internal

4.2.2 Centrality:

The centrality of an individual in a network impacts their access to resources and
opportunities. Central individuals are invited to more events, meet more people,
and benefit from these resources, fostering a sense of gratitude and a desire to give
back to the community. Also, highly influential donors may be specifically invited
to larger gatherings, further increasing their centrality in the network [27]. Here we
consider weighted Eigenvector centrality as well as degree centrality [13].

4.2.3 Clustering coefficient:

This measures the extent to which nodes from tightly knit clusters, providing insights
into the structure of the co-attendance network [13].

4.2.4 Local Exposure:

This refers to the percentage of neighbors of a node that represent donors, and is
important since the effect of co-attending donors may be diluted by the presence of

many co-attending non-donors. Co-attending events with a higher number of donors
can create a greater positive peer effect and increase the likelihood of donating.
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4.2.5 Community Exposure:

Membership in a community (obtained using the Louvain method) with more donors
may be more meaningful than local exposure which may be merely coincidental in a
co-attendance network. We also expect giving behaviors to be positively influenced
if the community to which a node belongs has a greater proportion of high-capacity
donors, who may exert greater influence [11]. Hence we consider two variants of
Community Exposure, respectively referring to the percentage of a node’s community
members that represent (i) donors, and (ii) high-capacity donors.

4.3 Multivariate forecasting model

We split the data into training and testing as described in Section 4.3.1. Then we train
neural network models with the LSTM and GRU modules, using the node features
extracted for each individual based on their previous time window of co-attendance.
The models predict the giving class or donation amount for the test data.
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Fig. 3 Correlation heatmap

4.3.1 Model Parameters:

During model training, we incorporate lagged input features along with other node
features. Specifically, we include lagged EI homophily index, which is positively
correlated with donation likelihood, as shown in Fig. 3, and lagged exposure to high-
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capacity donors, considering the observed correlation between increased giving and
increased co-attendance with high-capacity donors. By incorporating assortativity
as a lagged feature, we capture the dynamic nature of this similarity and its influence
on donor behavior. Additionally, we include a lagged output feature, i.e., giving class
or amount.

We perform cross-validation on time series data, training the model for each
time window and testing it on the subsequent window to prevent leakage of future
data during training [9]. For binary classification, we employ binary cross-entropy
loss with a sigmoid activation function, while for multi-class classification, we use
categorical cross-entropy loss with a softmax activation function. For the regression
task we minimize mean squared error using the ADAM optimizer.

4.3.2 Donor Segments:

Different parts of the donor dataset have different characteristics in event attendance
and donor behavior, and are best understood separately. Hence we segment donors
based on event attendance frequency (regular and irregular donors attending small
events), identifying patterns related to co-attendance and giving.

4.3.3 Multi-year Analysis:

In order to identify network characteristics that drive changes in donor behavior, it is
essential to analyze a multi-year network. To achieve this, we construct weighted net-
work snapshots for a rolling window of three years using Equation 3. By extracting
the aforementioned features from these network snapshots, we can test the multi-
variate model and investigate how network dynamics potentially influence donor
propensity.
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Fig. 4 Comparison of f1-score for the three classes for varying window sizes.
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4.3.4 Choice of Time Window:

We perform sensitivity analysis for various time windows ranging from very short
w =2 tow = 6 and record the Fl-score. The bar plot in Fig. 4 shows the optimal
window (3 years). A small window size is appropriate for our dataset as it spans over
only 8 years. A very short 2-year window is more sensitive to rapid changes in donor
activity and captures the rapid fluctuations in yearly totals as seen in Fig. 2, whereas
more smoothing occurs with a 3-year moving average window.

4.3.5 Balancing classes:

The time-series data for all donor segments exhibits class imbalance due to unequal
numbers of donors and non-donors. The regular attendee segment has a larger set
of donors (23% non-donors and 77% donors), while the irregular attendee segment
shows a contrast (65% non-donors and 35% donors). To address this, we assign higher
weights to the minority class compared to the majority class during loss function
calculation using the inverse class frequency method indicated in Equation 5.

S|

Wy=— 5
= N =15,D )

Here, the weight for each class w; is computed using the sample size |S|, |[N.|
represents the number of classes for the target, and |S;| is the number of samples
in class j. This approach prevents over-fitting and mitigates the impact of class
imbalance, and is preferable to resampling or generating synthetic samples.
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Fig. 5 Comparison of F1-scores obtained using various class balancing methods

Fig. 5 illustrates that our model’s performance is invariant to the method used for
balancing data of different classes.
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4.3.6 Donor Propensity and Evaluation:

We employ LSTM and GRU models to make predictions for the current time window
based on the data from the previous window. The binary classification models
predict whether an individual will make a donation (Target=1) or not (Target=0),
whereas multi-class classification models predict the giving class of that individual,
and regression models predict the amount that individual is likely to donate. For
classification tasks, we utilize precision, recall, and F1-score as evaluation metrics,
while for regression we use root-mean-squared-error (RMSE) and median-absolute-
error (MAE) to compare the predicted donation amounts with the actual donation
amounts.

5 Analysis

In this section, we present key findings from our study that provide insights for
assessing fundraising based on event participation and structural properties of the
co-attendance network. We gain insights about factors that may influence increased
giving behavior. Furthermore, we leverage node-level features extracted from the
co-attendance network to predict donor propensity for different donor segments.
Further, we utilize a multi-year network to study the influence of network dynamics
on donor behavior.
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Fig. 6 Box plots for event attendees and nonattendees [31]: the upper subplot represents
the distribution of donations > $0 and the lower subplot represents donations >= $500 in
the second subplot.
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5.1 Impact of event attendance

We first examine the impact of event attendance on the donor giving amount and
compare it to the data for non-attendees. The box plot in Fig. 6 demonstrates that
attendees have a higher giving average and median than non-attendees, particularly
for larger donation amounts, as seen in the second subplot with donations of at
least $500. We confirm that our results are statistically significant by performing
Mann-Whitney U test [18] on the bootstrapped samples.

Having established that participation has an impact on the effectiveness of
fundraising, we identify similarities in donor characteristics in this network.

5.2 Evolving Assortativity at Network level

We search for similarities among event co-attendees by measuring the assortativity
of the network, which indicates the preference for nodes to attach to others that have
similar characteristics. We perform our tests on overlapped windows of 3 years, using
the decay function described in [31] . In all cases, assortativity is consistently small
but positive, indicating that individuals have a slight tendency to attend events with
others of similar giving status.
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Fig. 7 Fraction of shift in donors between giving classes [31] listed in Section 5.2
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5.3 Changes in behavior at node level with time

Next, we examine variations in donor behavior from the 2014-2017 period to the
2018-2021 period. We observe that more than half the donors retained between
the two periods showed an increase in centrality and 76% of donors that had an
increased centrality exhibited increased giving. Additionally, more than half of the
donors (54%) that had a decreased or equal rank displayed a decrease in giving. Next,
we examine the extent to which these donations amplify between the two periods.
We label each node based on their donation band [$500, $1000], ($1000, $5000],
($5000, $10000], ($10000, $50000], ($50000, ...) discussed with the fundraising
team [31].

From Fig. 7 we observe that 41% of people shifted from a lower class to a higher
class. Moreover, 35% of those who shifted to a higher giving class or remained in
the same class exhibited increased co-attendance with high-capacity donors. None
of the donors that shifted to lower classes exhibited increased co-attendance.

5.4 Changes in group-level behavior with time

We apply the Louvain community detection algorithm [1] on the weighted co-
attendance networks for a 5-year overlapping window. Fig. 8 shows a clique of
communities that marks strong participation; we observe that community sizes are
moderate to large. In the visualization, node size represents community size, green
color intensity reflects average donation amounts (lighter shades indicate lower do-
nations), while the edges are unweighted. We observe that community sizes increase
over time, larger communities tend to have higher giving levels and the correlation
becomes stronger over time [31]. Here community size represents the number of
co-attendees who attend.
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Fig. 8 Communities for a snapshot of 5 years (2017-2021) [31]; color intensity indicates average
donation amounts, and circle size represents the community size (number of co-attendees).

Leveraging the structural attributes of the network, we develop our multivariate
model and evaluate its performance on different donor segments and conduct a multi-
year analysis. While binary classification yields poor results for both the baseline
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Table 2 Equal size class segments for regular attendees

Donor Classes | Giving range |Class Label
Non donors $0 0
Low capacity donors | [$10, $145) 1
Medium capacity donors|[$145, $900) 2
High capacity donors |[$900, $45k] 3

and multivariate models, multi-class classification results in better performance for
our model compared to the baseline. The regression results for multivariate model
outperformed the baselines for both regular and irregular donors in terms of MAE.
Although the test RMSE values were similar for the baseline and multivariate models,
however, when trained on a filtered dataset excluding high donors, performance in
terms of test RMSE was significantly better for the multivariate model than the
baseline models.

In the multi-class prediction problem, we follow a separate class split for each
case individually. This is necessary because the ratio of donors to non-donors differs
between the sets, and a uniform approach of maintaining equal class sizes is not
suitable. The irregular dataset consists of a higher proportion of smaller donors
compared to very high donors, unlike the regular attendee segment. By adapting the
class splits to the characteristics of each dataset, we can account for the variations in
donor distribution and achieve more effective predictions.

5.5 Forecasting Donor Propensity: Yearly Predictions for Regular
Attendees

Predicting yearly donations allows nonprofits to develop tailored fundraising strate-
gies and identify the most effective approaches to engage donors and design cam-
paigns that resonate with their giving patterns. Training the model on the segmented
data gives accurate predictions.

We first predict the yearly donations for the regular attendees. These are donors
who consistently attended events over the course of eight years. We further refine
the dataset by removing outliers and ensuring that each class has an equal number of
samples, thereby achieving balanced classes. As a result, the sample size decreases
to S = 456.

The ROC curves in Fig. 9 for multi-class classification predict One-Vs-Rest
classes, and demonstrate higher performance (greater AUC) for the LSTM model
across all classes. The precision, recall, and Fl-scores indicate that the classes are
relatively separable for classes 0, 1, and 3 as seen in Table 3. The LSTM model
outperforms the baseline model, with a significant difference in F1-score for class
0 and class 3. However, this difference is smaller for class 1 and 2. Notably, the
precision and F1-score remain low for class 2 in both models. Meanwhile,the GRU



16 Authors Suppressed Due to Excessive Length

Table 3 Classification Report

Model Class|Precision |Recall |F1-score
Regular attendee baseline | 0 0.68 0.54 0.60
1 0.54 0.62 0.58
2 0.43 0.45 0.44
3 0.71 0.81 0.76
Regular attendee LSTM 0 0.94 0.89 0.92
1 0.75 0.46 0.57
2 0.33 0.75 0.46
3 0.83 0.88 0.86
Irregular attendee Baseline| 0 0.78 0.46 0.58
1 0.54 0.77 0.63
2 0.56 0.77 0.65
Irregular attendee LSTM | 0 1.0 1.0 1.0
1 0.75 0.81 0.78
2 0.74 0.67 0.70
Network snapshot Baseline| 0 0.96 0.89 0.92
1 0.60 0.78 0.68
2 0.65 0.85 0.74
Network snapshot LSTM | 0 1.0 1.0 1.0
1 0.92 0.93 0.92
2 0.73 0.71 0.72
Table 4 Regression Results
Type Model Train RMSE |Test RMSE |Train MAE |Test MAE
Regular MA 3560.24 9221.99 200.0 78.12
event ARIMA 3255.10 7979.89 1053.31 280.46
attendee ES 3412.78 8438.86 365.39 280.46
LSTM 6937.15 7873.73 209.59 211.05
GRU 6922.49 7858.51 111.79 90.03
Irregular MA 184480.33 33462.85 925.0 100.0
event ARIMA 108452.34 69808.79 20488.89 20994.67
attendee ES 118368.10 58727.36 16089.77 42077.67
LSTM 110686.14 35487.12 222.10 222.26
GRU 109775.15 24239.65 433.69 94.26
All ARIMA 73111.46 150637.36 0 0
attendee ES 84824.18 145089.20 0 0
(Multi-year) LSTM 88213.66 103038.07 0.20 0.16
GRU 88198.64 103027.14 0.87 0.79
Filtered ARIMA 9652.80 22428.29 0 0
attendee ES 10857.28 20687.33 0 0
(Multi-year) LSTM 18891.85 16874.49 2.09 1.63
GRU 18867.08 16857.38 4.12 4.29
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Fig. 9 Comparison of AUC for the Receiver Operating Characteristic for LSTM vs Baseline 3 for
Regular event attendee

multivariate model performs better than the others in the cases with lowest test
RMSE and MAE values, as seen in Table 4.

5.6 Forecasting Donor Propensity: Yearly Predictions for Small-Sized
Event Attendees

We employ the same approach as Section 5.5 on a different segment that includes
individuals who do not attend events consistently (irregular attendees). We focus
on filtering donor attendees of small-sized events, as these events are indicative of
their co-attendance behavior. Based on discussions with the fundraising team, events
with 20 or fewer attendees are classified as small-sized events. Class O represents
non-donors who attend events, Class 1 represents donors who donate between $0
and $1000, and Class 2 represents donors who donate more than $1000. These
particular bands are chosen because irregular donors typically contribute lower
amounts, often influenced by spontaneous decisions or witnessing fellow donors’
contributions. Given the significantly larger number of samples in classes 0 and 1,
and the relatively smaller number in class 2, further dividing them would result in
fewer samples for the model to learn from, inhibiting the model’s ability to capture
patterns and make accurate predictions. The LSTM model outperforms the baseline
model because its network properties effectively handle the temporal irregularities
present in the data.

When considering all donors (S = 5578) including those with more irregular
attendance patterns, the baseline model’s precision and F1-score decrease to 0.20
and 0.31 for class 1, and 0.22 and 0.33 for class 2, respectively. In contrast, the
LSTM model significantly outperforms the baseline, achieving precision and F1-
scores of 0.75 and 0.76 for class 1, and 0.74 and 0.72 for class 2. However, when
we focus on a subset of donors who have attended events consecutively for over two
years (S = 589), we observe an improvement in the baseline model’s performance.
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Nevertheless, the LSTM model still outperforms the baseline for all classes as seen
in Fig. 10 and Table 3. With respect to the regression task, LSTM multivariate model
outperformed all the other models with lowest train and test MAE values (222.10
and 222.26).

5.7 Multi-Year Analysis: Learning from Network Snapshots for
Long-Term Trends

Rolling window network characteristics provide insights into the evolving relation-
ships and interactions among donors and nonprofits can identify long-term trends and
seasonal trends in donor behavior. We observe improved model performance when
trained with weighted network snapshots and an increased sample size (S = 99431).
The LSTM model achieves complete separability for the classes, as illustrated in
Fig. 11, outperforming the baseline model.

From Table 4 we observe lowest test RMSE for the multivariate GRU model,
and the MAE values are fairly close to 0. We observe improved performance for the
regression task, and the LSTM and GRU models outperform the statistical models in
terms of test RMSE, despite having comparable training losses. This pattern persists
when the donors are filtered by removing extremely high donors (those who donate
more than a million dollars) with test RMSE significantly reduced.

6 Discussion

The data we examine suggests that the relevant fund-raising team successfully orga-
nized engaging events, as evidenced by the growth in donor participation over time
(Fig. 1). We observe an upward trend in annual donations (Fig. 2), suggesting that the
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Network snapshots for a rolling window of 3 years.

team effectively utilized their professional networks and attracted more high-giving
donors, since our analysis indicates a statistically significant relationship between
event attendance and donor giving.

As we seek to identify structural characteristics that correlate with fund-raising
outcomes, we draw upon prior research indicating that donor-donor dyads can in-
fluence donor behavior. We identify similarities in individual characteristics for our
dataset, observing positive assortativity of co-attendees with respect to their giving
values. A low-to-moderate assortativity in co-attendance is beneficial for fund-raising
networks and suggests the success of event organization and attendee placement. In
contrast, a high assortativity value would hinder new connections and diminish the
positive peer pressure effect. This is backed by studies that show individuals being
influenced to match or exceed the generosity of their fellow attendees, resulting in
higher overall donation amounts [30, 20].

It is important to assess how donor characteristics change with time. We find
that 76% of donors that had increased centrality also showed increase in giving
amounts, and more than half of the donors that displayed an equal or lesser centrality
decreased their giving. Increased centrality indicates that donors are actively co-
attending more events or are co-attending with other high-centrality donors. Fig. 7
shows the shift in giving class (of a donor) and its relationship with co-attendance.
Overall, 41.37% donors increased their giving class, 37.53% maintained the same
class, and the remaining decreased their giving level. Moreover, we observe that
35% that remained in the same class or shifted to an upper giving class showed
an increased co-attendance with high-giving donors, while none of the donors that
shifted to a lower class exhibited increased co-attendance.

In addition to individual characteristics associated with increased giving, we
also analyze group-level characteristics that may contribute to this change. Fig.
8 provides a structural visualization of communities of co-attendees, showing a
clique of communities that mark active participation of donors. The donor-attendee
community analyses enable organizations to examine donor engagement and identify
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major donor prospects. This information can be used to strengthen relationships and
maximize event impact. We further observe:

* Increased community sizes over the years;

» Larger and more tightly-knit participation of donors over time; and

¢ Increase (with time) in the correlation between fraction of above-median donors
and community size.

Our results are partially explained by the fact that larger communities have many
donors that benefit from resources such as business opportunities, and professional
networks. Individuals who have gained from these resources may feel a sense of
gratitude and a desire to give back to the community that provided them with such
advantages [15].

Having gained insights into the network characteristics associated with fundrais-
ing outcomes, we construct a multivariate model by extracting features from the
network. These features include assortativity (similarity) at the individual level, ex-
posure to high-capacity donors, exposure to donors who can potentially influence
non-donors, the structural positions of individuals in the network, and their levels of
potential interactions with their local neighborhoods.

Our multivariate model outperforms baselines for both classification and re-
gression tasks across various donor segments. Notably, the multivariate models’
precision, recall, and F1-score are significantly better than the baselines when tested
on irregular event attendees, and using multi-year analysis, as seen from Table 3.
Figures 9, 10, and 11 show that the AUC for our model is consistently higher than the
baseline for all three analysis. Moreover, the node features become perfectly separa-
ble when considering network snapshots for a window size of 3 years, as indicated
by an AUC of 1.0 for all three classes.

When predicting the donation amount for regular donors, we find that the mul-
tivariate model performs better than the baselines, as evidenced by test RMSE and,
train and test MAE(median absolute error) for the two donor segments in Table. 4.
Significant differences in test RMSE and MAE values are observed for the irregular
attendee segment and the multi-year network.

The enhanced performance of the multivariate model can be attributed to the
following factors. First, statistical baselines encounter difficulties in handling missing
data, which is prevalent in cases where users have donated in the past few years and
may donate in the future. Second, there is a scarcity of known data about new
donors, making it challenging for statistical models to draw accurate inferences.
Third, donors who attend events regularly tend to be more loyal to the recipient
organization. Their donation behavior may be influenced by external factors such
as donor-solicitor and donor-recipient dyads, including communication with the
fundraising team, beyond just donor-donor dyads. While these donors contribute
annually, their giving potential may primarily reflect their long-term commitments.

Our analysis predicting donor propensity can be highly valuable for fund-raisers,
asitenables them to identify potential donors and donor segments well in advance. By
understanding the regularity in donation patterns and optimizing resource allocation
to various donor segments, such as retained donors, new donors, and donors who have
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changed their behavior, fund-raisers can improve targeting and ultimately improve
fund-raising outcomes.

One of the limitations of our work is the inability to model causal relationships
linking network properties to giving outcomes. With respect to predicting donor
propensity, our dataset appears to be insufficient for accurate binary classification as
both the baseline model and the multivariate model failed to effectively identify the
non-donors. The best performance was achieved using cross-validation, suggesting
that the models do not necessarily benefit by learning from extensive historical data.

7 Conclusion

This study highlights the potential of utilizing donor co-attendance networks for
understanding fund-raising outcomes and how network features can be harnessed
for donor propensity prediction. Our analyses show that people who attended more
events donated more often and greater amounts. We identified that there is a low-to-
moderate similarity in the giving characteristics of co-attendees. We also observe that
donors who occupied central positions had increased giving as well as increased co-
attendance with high-capacity donors over the periods increased their giving class
membership. The community structure also revealed strong connections that are
beneficial for maximizing the effectiveness of their resource allocation strategies.
By incorporating these network features into our multivariate model, we achieve
accurate predictions of the giving class and donation amount, outperforming baseline
models for all three analyses.

This study contributes to the body of knowledge on assessing fundraising out-
comes by utilizing the dynamics of the co-attendance network. Our research demon-
strates the enhanced predictive capability of incorporating event co-attendance net-
works in predicting donor propensity. This can be used by fundraisers in assessing
outcomes, making informed decisions and develop tailored strategies to enhance
fundraising outcomes.

Our results have relied on limited information readily available from the donor
history database. With access to more data, we can consider interactions influenced
by co-location, organizational co-affiliation, and other factors. Future work can also
attempt to distinguish between correlation and causation in the relationships between
network properties and fundraising outcomes. Finer-grained analysis is also needed
to explain the divergence of behaviors of subsets of individuals that are initially
similar, identifying the extent to which co-attendance may explain the divergence.
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