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Abstract

Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not
well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those
associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the
influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of
soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies
in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought,
allowing us to document how the strength of climate legacies varied with contemporary conditions. We found increased investment in
genes associated with resource cycling with historically higher precipitation across the gradient, particularly in traits related to resource
transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that
contemporary conditions—particularly, resource stress under water limitation—influences the strength of legacy effects. In contrast,
investment in stress tolerance did not vary with historical precipitation, likely due to frequent periodic drought throughout the gradient.
Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity—potential
enzyme activity—more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term
climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.
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Introduction Long-term climate may shape the ecological strategies of soil

Soil microbes are key drivers of biogeochemical cycling, releasing
an estimated 75 Pg of carbon (C) from soil annually through
decomposition [1] as well as creating and stabilizing up to 3.7
Pg C in soil organic matter [2-5]. However, the sensitivity of
soil microbes and their functioning to soil moisture is not well
understood, making it difficult to project changes under novel
precipitation regimes that are expected to occur with climate
change [6]. Moreover, patterns in soil microbial functioning across
environmental conditions can be difficult to generalize due to the
complexity of these communities, their high functional redun-
dancy [7], and variable phylogenetic conservation of traits [8, 9].
Microbial traits, quantified with functional genes, may provide
more tractable microbial community characteristics that drive
rates of ecosystem processes and can be incorporated into mod-
eling efforts [10-15].

microbes, and therefore their trait distributions. Theories such
as the Y-A-S framework aim to link environmental gradients to
microbial traits relevant to soil carbon cycling, including resource
acquisition, stress tolerance, and growth yield [13]. If historical
climate creates informational legacies in the form of microbial
trait composition, legacies in microbial community functioning
may persist under novel environmental conditions [16, 17]. For
example, under the same current moisture conditions, microbes
from regions with higher mean annual precipitation (MAP) exhibit
higher microbial enzyme activity [18], accelerated decomposition
rates [19], and increased soil C fluxes [20, 21] relative to those
with drier climate histories. Precipitation history can also alter the
sensitivity of ecosystem processes to contemporary conditions,
such as recovery from drought [22]. These historical contingen-
cles in microbial function may occur if long-term differences in
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precipitation (e.g. MAP) lead to local adaptation in the genetic
composition of microbial populations and communities, such as
increased abundance of genes that confer stress tolerance (e.g.
osmolytes, peptidoglycan cell walls, dormancy/sporulation) [23,
24]. Indeed, a recent study [25] found functional legacies across
two aridity gradients, where historically wetter sites were asso-
ciated with higher abundance of genes associated with resource
degradation, motility, and growth yield, whereas historically drier
sites were enriched in stress-related genes.

Climate legacy effects are found widely, but inconsistently
[6, 26], emphasizing the need to explore the drivers of these legacy
effects and the factors that modulate them. If long-term climate
shapes the ecological strategies of microbial communities, partic-
ularly those related to resource acquisition and stress tolerance,
these patterns in microbial traits may exert persistent effects on
the rate and sensitivity of soil C cycling processes—leading to
legacy effects [13]. Alternatively, contemporary conditions may
lead to rapid reassortment of taxa and/or functional genes, under-
mining any legacies in microbial structure and function [27, 28].
Shifts in microbial trait composition resulted in drought legacy
effects in a recent modeling study [29], but more empirical work
is needed to understand when and under which conditions his-
torical precipitation constrains microbial trait distributions.

In this study, we investigated how precipitation history shapes
the abundance and composition of microbial functional genes
along a MAP gradient, as well as whether previously observed
legacies persisted following relief from a prolonged, severe
drought across the region. To do this, we focused on soil microbial
communities across the Edwards Plateau in Texas, USA, which
is a well-studied ecoregion where MAP ranges from 400-900 mm
across ~400 km. In this region—across which soils, vegetation and
temperature vary minimally—previous studies consistently find
that MAP is the primary driver of soil respiration, extracellular
enzyme activity, and C use efficiency [18, 20, 30]. Moreover,
microbial investment in resource acquisition (total potential
enzyme activity) differed in its sensitivity to soil moisture
across the rainfall gradient [18]. Functional and compositional
differences between sites with different precipitation history
persisted when exposed to novel rainfall treatments, suggesting
that local microbial communities resist turnover and thereby
contribute to the strong climate legacy in ecosystem processes
[31, 32]. Yet the genetic traits underlying these persistent climate
legacies remain unknown. Lower MAP and its associated rainfall
deficits may select for investment in stress-tolerance traits,
at the expense of those related to resource acquisition [13,
23, 33], thereby driving legacies in ecosystem-level processes.
However, evidence for this tradeoff has been inconsistent [34,
35], and it is not well understood to what extent historical vs.
current environmental conditions affect the distribution of these
traits.

Here, we characterized soils from across the MAP gradient with
shotgun metagenomics to assess how climate legacies shape the
abundance of functional genes related to microbial stress toler-
ance and resource acquisition, two traits important to rates in soil
carbon cycling [13], have been shown to trade off [36], and whose
genetic determinants are sensitive to drought [37]. We focused on
a period in 2015-2016 when wetter conditions induced by an El
Nifo event followed a long-term drought (2011-2015). By sampling
repeatedly over three seasons, we were able to capture a variety
of contemporary soil moisture conditions and contrast how pre-
cipitation history (MAP) versus current soil moisture conditions
drive microbial functional potential, as defined by functional gene
relative abundance. Previous work in this study system found

climate legacies for both microbial community structure, and
respiration rates that lasted up to 4.5 years after exposure to
new rainfall regimes [31]. We therefore expected microbial genetic
traits to be primarily driven by precipitation history rather than
contemporary soil moisture, with genes related to stress tolerance
dominating historically drier sites and genes for resource acqui-
sition more abundant in historically wetter sites. Local variation
in microbial communities associated with long-term precipita-
tion history could result in distinct community functional poten-
tials that differentially constrain how sites respond to drought
release, which would be indicated by an interaction between
MAP and current moisture. Finally, we expected that functional
genes would explain variation in microbial processes, including
enzyme activity and soil respiration, indicating that differences
in microbial functional potential are relevant for ecosystem-level
fluxes.

Materials and methods
Study system

Soils were collected seasonally from 20 savanna grassland sites
(Table S1) located across a steep precipitation gradient (400-
900 mm MAP; 30-year norms 1981-2010 retrieved from PRISM,
https://prism.oregonstate.edu/normals/) on the Edwards Plateau
in central Texas, USA (Fig. 1A). As described elsewhere [20, 30],
soils on the Edwards Plateau are derived from a single geologic
formation and are all shallow, rocky, calcareous Mollisols. 30-year
mean annual temperature varied from 17.7-20.6°C across the 20
sites. Previous studies across this gradient [20] did not find a
correlation between soil properties and MAP, allowing us focus on
long-term climate as a primary driver of differences in microbial
traits and functioning across the gradient. The region experienced
a severe multiyear drought between 2011 and October 2015 (i.e.
Palmer Drought Severity Index —4.1 to —0.32011-2014), which was
ended by an El Nifio Southern Oscillation (ENSO) event in October
2015 through 2016 (PDSI 2.9 to 4.0) (Fig. 1B).

Sample collection and processing

To capture the period of recovery from drought, soils were
collected from the same locations at each of 20 sites at three
dates (seasons): November-December 2015 (fall), March-April
2016 (spring), and June 2016 (summer). At each site, soil samples
were collected from two 20 x 20 m plots with at least 50% grass
cover and slope <2% to minimize differences between sites. To
collect sufficient soil to represent each large plot, subsamples
were collected systematically from 100 points per plot by digging
with a trowel to 15-cm depth systematically across the grid, then
sieved to 1-cm in the field to remove rocks and homogenize. This
resulted in a minimum of 4 L of soil, which was then subsampled
into bags for DNA extraction, biogeochemical analysis, respiration
assays, or enzyme assays, and stored on ice for transport to
the lab.

Shotgun metagenomics

Soils were stored at —80°C until total genomic DNA was extracted
from 0.25 g from each plot using DNeasy Power Soil Kits (Qiagen,
Germantown, MD, USA). DNA extracts were quantified fluoromet-
rically (AccuClear Ultra High Sensitivity kit, Biotium, Fremont, CA,
USA), and normalized to 0.5 ng/ul, and combined at the site level.
Libraries were prepared as previously described [38] using Nextera
adapters and sequenced (2 x 150 bp) on a NovaSeq 6000 System
(Mlumina, San Diego, CA, USA) at the NC State University Genome
Sequencing Lab.
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Figure 1. (A) Study sites (n=20) were located across Edwards plateau (black outline) in Texas. (B) Palmer Drought Severity Index for each site based on
monthly values across the Edwards Plateau. Soil sampling occurred in fall 2015, spring 2016, and summer 2016. Drought index data were retrieved
from https://wrcc.dri.edu/wwdt/, accessed 24 September 2024 and are summarized in Supplementary data Sheet 2.

Biogeochemical analysis

Soils were stored at 4°C for less than 24 h before sieving to 2 mm,
and estimating microbial biomass C via chloroform fumigation
and extraction in 0.5 M K,SO4 [39], as well as pH measurement in
a ratio of 2:1 soil to water (Van Lierop 1990). Air-dried soils were
used for texture determination via the hydrometer method [40].
The remaining sieved soil was oven-dried at 105°C for atleast 48 h
(to constant weight) for measurement of gravimetric soil moisture
and analysis of soil total organic C and total N via combustion
on a CHNS Analyzer (Perkin Elmer 2400, Waltham, MA, USA).
All biogeochemical measurements were carried out at the plot
level and averaged for site-level analysis (Supplementary data,
Sheet 3).

Microbial respiration

Soils for respiration assays were air dried to 5% gravimetric mois-
ture. To measure CO, flux under water-replete conditions, we
constructed four replicate microcosms containing 25 g of soil
from each sample. Soils were selected from one plot per site,
chosen by coin flip. The microcosms were 60-ml borosilicate glass
tubes (I-Chem, ThermoFisher Scientific, Waltham, MA, USA) with
a septa cap. Soils were adjusted to 18-20% soil moisture with
sterile water and maintained by weight for 8 weeks. To assess
respiration, the microcosm headspace was flushed with CO,-free
air and sealed for 1 h prior to sampling. CO, was quantified on a
gas chromatograph equipped with a methanizer and FID detector
(SRIInstruments, Torrance, CA, USA). CO, was measured biweekly
and averaged across time and replicates for site-level analysis (see
Supplementary data, Sheet 4).

Extracellular enzyme activities

Soils for enzyme assays were stored at —20°C. Hydrolytic
enzyme potential activities were measured for a-glucosidase,
B-glucosidase, p-xylosidase, cellobiohydrolase, N-acetyl glu-
cosaminidase, and acid phosphatase using fluorometric sub-
strates [41, 42]. We focused on hydrolytic enzymes because we
expected that the hydrolysis process would be affected by both
short- and long-term rainfall, which is supported by our previous
work [18]. Briefly, 2 g soil were blended with acetate buffer to
create a slurry, from which eight technical replicates were then

incubated with substrate for 1 h at 26.5°C. Fluorescence was
measured on a plate reader (Spectromax M3, Molecular Devices,
San Jose, CA, USA) with excitation at 365 nm and emission at
450 nm. For this study, total enzyme activity was calculated as
the log-transformed sum of all enzyme activities, which has
previously been used as a measure of microbial investment in
resource acquisition [18]. Enzyme measurements were made
on soils from each plot and averaged for site-level analysis
(Supplementary data, Sheet 5).

Bioinformatics

After removing three samples with a low read count, the
sequencing depth of the remaining 57 samples ranged from 17.4
million reads to 82.6 million reads. Raw reads were checked
for quality in FASTQC (Andrews 2010), and PhiX reads were
removed using bowtie2 [43]. We removed Nextera adapters and
low-quality sequences in fastp using the default settings (phred
quality >=Q15, unqualified bases limit=40%), [44]. Coverage of
these trimmed sequences was estimated in R using the nonpareil
package [45]. Reads were assembled into contigs within each
metagenomic sample using SPAdes [46] and evaluated with
MetaQuast [47]; only contigs longer than 1000 bp were retained.
Contigs were annotated using Prokka [48] with the—metagenome
option, and proteins were then functionally annotated using
eggNOG-mapper v2 [49].

Functional regions of interest were identified by KO anno-
tations from the KEGG and CAZy databases. EggNOG entries
assigned to multiple KOs were split into separate entries, as each
KO is associated with a specific protein coding sequence [50]. Our
analyses focus on bacterial and archaeal genes, as fungal and
other eukaryotic genes were too low in abundance to include in
analyses. We categorized genes into functional groups of interest
using the KEGG KO designations used by the microTrait tool in
R, which was created to evaluate functional traits in microbial
genomes [51]. Because the microTrait tool is designed to run on full
genomes, we instead extracted the lists of KEGG genes associated
with each trait (Supplementary data, Sheet 6). This identified
genes associated with resource acquisition and stress tolerance,
as well as with more specific functions within these broader
categories using the level 1 microTrait designations [52]. Using level
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1 maximized KOs with a trait designation, as many genes lacked
a more granular categorization. The trait category “resource use”,
referring to growth yield, was not used in our analyses due to few
genes being assigned to that category.

Data preparation

To prepare for our analyses, we first assessed soil properties as a
function of MAP and season via linear models to ensure that there
was sufficient independent variation in contemporary conditions
to contrast with historical conditions. For these environmental
characterizations, a Bonferroni-corrected alpha of 0.008 was used
to account for multiple testing. Second, for analysis of functional
genes, raw gene counts were converted to relative abundances by
dividing by the total number of KEGG genes across each sample,
and multiplying by 100. When examining different functional
groups of genes, their relative abundances were summed.

Statistics: analysis of historical vs. contemporary
effects on functional genes

We assessed how precipitation history (MAP) influenced micro-
bial functional genes, and how the strength of this effect varied
through time and with contemporary conditions. Although we
were interested in the persistence of this effect with increas-
ing time since release from drought (i.e. sampling season), soil
moisture varied strongly with sampling season. Therefore, we
ran analyses with two full factorial configurations of explanatory
variables to explore how these related, but distinct, drivers inter-
acted with historical climate: MAP x Season, and MAP x Moisture.

We assessed the effect of these drivers on the composition
of overall functional genes, stress tolerance genes, and resource
acquisition genes using the adonis2 and metaMDS functions in the
vegan package [53]; when MAP was significant, distances from
centroid were extracted with betadisper and regressed against
MAP to confirm that dispersion was not driving trends. We ran
simple linear regressions, using both the MAP x Season and MAP
x Moisture structures, assessing how historical climate (MAP)
and contemporary conditions (sampling season and soil mois-
ture) affected the relative abundance of resource acquisition and
stress tolerance genes. When MAP and soil moisture showed a
significant interaction, we ran two follow-up models in which
we converted one driver into a categorical variable [MAP: dry
(< 600 mm/yr), mid (600-800 mm/yr), wet (>=800 mm/yr); soil
moisture: low (<= 10%), medium (10-20%), high (>20%)]. These
follow-up models (MAP_Categorical * Moisture, and MAP x Mois-
ture_Categorical) were used to aid interpretation of the intere-
action of the two continuous variables. For these analyses, the
emmeans and joint_tests functions in the emmeans R package were
used for pairwise comparisons between sampling seasons [54].
We determined whether there was evidence of a tradeoff between
the abundance of stress tolerance and resource acquisition genes,
expecting a negative correlation if investment in these traits
involve tradeoffs. For this analysis, we used a Pearson correlation
within each sampling date in the rstatix R package [55].

To analyze specific gene functional categories within the two
broader stress tolerance and resource acquisition functional
groups, we ran multiple linear models using the manylm function
in the mvabund R package [56], using the same full factorial model
structures described above (MAP * Season and MAP = Moisture).
We limited our focus to gene subcategories that were represented
in at least 90% of samples, resulting in retention of 13 of the 21
resource-related and five of the seven stress-related functional
subcategories—retaining 18 categories in total. When MAP and
soil moisture significantly interacted to affect gene abundances,

we visualized these relationships with the interactions R package
[57]. For the above analyses, we set alpha at 0.05.

Statistics: Linking gene abundances with
function

If genetic differences underlie climate legacy effects, we expect
the relative abundance of functional genes to explain variation
in CO, flux and enzyme activity across the rainfall gradient.
Therefore, we assessed the effect of gene functional abundance
on these fluxes and compared this effect to current (soil moisture)
and historical (MAP) precipitation variables. To investigate linear
relationships between environmental variables and functional
gene categories, we used residual randomization in permuta-
tion procedures (RRPP), a method that performs non-parametric
ANOVA on multivariate data by comparing fitted model coef-
ficients to pseudo values generated from null model residuals
across many permutations, using the Im.rrpp function in the RRPP
R package [58]. We constructed models using the abundances of
the most abundant 18 functional gene categories (see above), MAP,
soil moisture, and sampling season as predictors of CO, flux and
total enzyme activity (with type III sums of squares and 10000
iterations). To avoid overfitting the models, we did not include
interaction terms; preliminary linear models suggested there was
no significant interaction between MAP and either sampling sea-
son or soil moisture, for either response variable. We compared
the R? of models with genes only, environment only (MAP, season,
soil moisture), and with both genes and environment combined,
and used the model.comparison function to compare models based
on AIC. The tidyverse [59] and paletteer R packages [60] were used
for data manipulation and visualization.

Results
Variation in contemporary conditions

Soil moisture varied strongly across sampling dates (P <.001)
peaking in Fall 2015 (average across sites: 23.6%) and declining
at later dates (Spring 2016 = 14.7%; Summer 2016 = 12.5%; Fig. S1).
Soil moisture did not vary significantly with MAP across these
sampling dates (Fig. S2), allowing us to contrast the effects of his-
torical rainfall (MAP) vs. contemporary conditions (soil moisture)
on functional gene abundance (Table S2). When assessing other
edaphic factors, microbial biomass C was higher in the Spring
(0.532 mg/g) compared to both Fall 2015 (0.209 mg/g) and Summer
2016 (0.288 mg/g; P=.002). Soil pH decreased with MAP (P <.001)
and measured values ranged from 6.7 to 8.4, contrasting with pre-
vious characterizations of this rainfall gradient [30]; however, the
relative abundances of stress tolerance genes and resource acqui-
sition genes did not vary significantly with pH (Table S3). Soil C, N,
and texture were unrelated to either MAP or season (Table S2).

Gene composition varied with MAP

Annotated contigs yielded 126 834 bacterial and 38513 archaeal
genes in the KEGG database with at least 10 occurrences, with
3028 unique KEGG KO designations. Overall gene composition
varied minimally with MAP (PERMANOVA: R?=0.04, P=.001;
Fig. 2A) and did not differ across seasons; when soil moisture
was used as a predictor instead of sampling season, MAP was
also a significant predictor of gene composition (Table S4). We
identified 316 resource acquisition genes and 63 stress tolerance
genes with a minimum of 10 occurrences (Supplementary data,
Sheet 7). Trends were similar when rare genes were retained.
The genetic composition of microbial communities was also
shaped by MAP when aggregated into microTrait level 1 functional
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Figure 2. NMDS of (A) all KEGG genes, (B) resource acquisition genes,
and (C) stress tolerance genes across the rainfall gradient. Based on
PERMANOVA, the composition of functional genes significantly varied
with MAP (color) for both (A) all KEGG genes, whereas the trend was
similar but not significant for (B) resource acquisition genes and (C)
stress tolerance genes. There were no differences in functional gene
composition among seasons (shape).

categories, although the effect was also limited (PERMANOVA:
R?=0.05, P=.013; data not shown; Karaoz and Brodie 2022).

Climate legacies in investment in resource
acquisition

Similar to overall gene composition, the composition of resource-
acquisition genes tended to vary with MAP, albeit less strongly
(PERMANOVA R?=0.03, P=.054, Fig. 2B), but not with sampling

season or with soil moisture (Table S4). The total relative abun-
dance of all genes related to resource acquisition was unaffected
by MAP, sampling season or their interaction in the MAP * Sea-
son linear model. However, there was a significant interaction
between MAP and soil moisture on the abundance of resource-
acquisition genes in the MAP % Moisture model (P=.003, Fig. 3A,
Table S5). To explore this interaction, we ran the same model, but
with these predictors broken up into categories. When sites were
splitinto three MAP categories, the relative abundance of resource
acquisition genes increased with soil moisture at the driest sites
(MAP <600, P=.007; Fig. 3C). Similarly, when soil moisture was
split into three categories, resource genes increased with MAP
under the driest conditions (soil moisture <10%, P=.007, Fig. 3D).

MAP was a significant predictor of the relative abundances of
genes in the resource acquisition subcategories in both model
arrangements (seasonal model: P=.040, moisture model: P=.009)
and interacted significantly with soil moisture (P=.045). When
analyzed for patterns in univariate gene categories, genes asso-
clated with free amino acid transport and carbohydrate transport
showed a tendency to vary with MAP, soil moisture, and their
interaction, similar to the pattern shown with overall resource
acquisition genes (MAP: P=.010 and P=.085; interaction: P=.032
and P=.069, respectively, Fig. 4, Table S6).

Investment in stress tolerance varies with
sampling season but not historical rainfall

The overall composition of stress tolerance genes varied slightly,
but not significantly with MAP (R? =0.03; P =.066), and did not vary
with either sampling season or soil moisture (Table S4). Relative
abundance of stress tolerance genes did not vary with MAP but
was highest in fall 2015 (P =.016; Fig. 3B); no driver was significant
in the MAP % Moisture model (Table S5). No subcategory of genes
related to different stress tolerance functions varied significantly
with MAP and sampling season, or with MAP and soil moisture
(Fig. S3, Table S7).

There was no significant correlation between stress tolerance
and resource acquisition genes in any sampling season (all P> .2;
Table S8; Fig. S4).

Gene functional potential explains variation in
functional assays

Both soil CO, flux and total enzyme activity increased with MAP
(P<.001 and P=.007, respectively); enzyme activity also varied
with soil moisture (P> .001; Table S9). For enzyme activity, this
“environment-only” RRPP model including MAP, sampling season,
and soil moisture explained 43% of variation (Table 1; Table S9).
However, the abundance matrix of the 18 functional gene cate-
gories explained more variation (55%) on its own. Including the
gene matrix in the full model improved the R? to 0.67, although an
AIC comparison favored the more parsimonious environmental
model.

Similarly, functional genes explained 47% of variance in CO,
flux, although the overall gene matrix term was only marginally
significant (P=.064, Table S9). An environmental model (MAP +
Season + Moisture) explained only 40% of the variation. Including
the gene matrix in the environmental model increased the R? to
0.63, although it was not favored by AIC model comparison, which
heavily penalizes models with more parameters.

Discussion

Microbial functional legacies related to precipitation history limit
our ability to predict future C cycling using current moisture
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Figure 3. (A) Percent of genes associated with resource acquisition across the MAP gradient, with points colored by contemporary soil moisture.

(B) Percent of genes associated with stress tolerance in each sampling season. (C-D) interaction between MAP and soil moisture in resource gene
abundance: There was higher sensitivity to soil moisture in historically dry sites (400-600 mm/yr) than mid (600-800 mm/yr) or high-precipitation
(>800 mm/yr) sites (C). Similarly resource genes increased with MAP under low contemporary soil moisture (< 10%), but not under medium (10-20%)

or high (> 20%) soil moisture conditions (D).

functions [6]. Extreme climate events, such as a regional
multi-year drought, represent a possible tipping point whereby
microbial communities undergo community re-assortment,
overwhelming any legacies from long-term differences in climate
[61]. However, in our study, long-term precipitation history (MAP)
remained a primary driver of microbial functional traits (genes)
despite regional relief from a long-term drought (Fig. 2). We found
that climate history altered the sensitivity of resource acquisition
gene abundance to current soil moisture, with the strongest effect
of MAP under contemporary dry conditions (Fig.3). Although
investment in resource acquisition varied with both historical
rainfall and current soil moisture, investment in stress tolerance
did not respond to either of these drivers. The relative abundance
of genes associated with these two traits did not correlate
negatively at any sampling season, adding to evidence that Y-A-S
strategies do not consistently trade off in microbial communities,
atleast at the genetic level [34, 35]. The composition of functional
genes also explained much of the variation in microbial function,

particularly total potential enzyme activity, suggesting that
microbial genetic legacies underlie patterns in rates of ecosystem
processes across the rainfall gradient.

Climate legacies shape investment in resource
acquisition

Precipitation history (MAP) constrained overall microbial func-
tional gene composition largely through the relative abundance
of genes associated with resource acquisition. Previous work in
this system documented a legacy of higher microbial extracellular
enzyme activity and accelerated rates of soil respiration from
soils from higher MAP sites, as well as altered sensitivity to
current soil moisture conditions [18, 20]. Similarly, we found that
the abundance of resource-associated functional genes increased
with increasing MAP across the gradient, and that this effect
was mediated by contemporary soil moisture (Fig. 3). Recent work
in other aridity gradients also document more investment in
resource acquisition traits in wetter sites, which they attribute
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Figure 4. Relative abundance of resource genes associated with specific functions, as a function of MAP (x-axis) and soil moisture (point color). Of the

13 most abundant functional categories, free amino acid transport increased

with MAP (P=.010, solid black trendline) and was influenced by an

interaction between MAP % moisture (P=.032). A similar but marginally significant interaction was seen with carbohydrate transport (MAP: P=.085,

dotted grey trendline; MAP * moisture P=.069).

Table 1. Comparison of model performance of total potential extracellular enzyme activity and soil CO, flux rates, with different sets
of predictors. Model compared include those using just gene abundances (Genes), abiotic drivers including MAP, soil moisture and
season (Environment), and the full model containing both of these (Genes + Environment).

Extracellular enzyme activity

Soil CO; flux

Model R2 P AIC R2 P AIC

Genes 0.55 0.009 99.320 0.47 0.064 —169.700
Environment 0.43 <0.001 84.519 0.40 <0.001 —191.425
Genes + Environment 0.68 0.002 89.352 0.63 0.006 —183.173

to more available resources in historically wetter areas [25]. Our
results add to evidence that precipitation history may frequently
shape microbial traits via resource availability, while emphasizing
that legacy effects may be hard to consistently detect due to
fluctuating contemporary conditions.

The relative abundance of resource acquisition genes, as well
as several resource transport gene sub-categories, increased with
soil moisture at the driest sites (<600 mm precipitation/year) in
our study, and were resistant to soil moisture changes at middle-
and high-MAP sites (>600- mm precipitation/year, Fig. 3C-D,
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Fig. 4). This suggests that long-term precipitation history mod-
erates the sensitivity of microbial functional potential to dry-
down/wet-up events. Previous work has suggested that long-
term exposure to drought conditions can alter microbial traits
associated with C use, resulting in altered sensitivity of C fluxes
[62]. In the case of our study, historical dry conditions may have
favored populations with high uptake capacity, allowing microbes
to quickly regulate osmotic balance, as well as take advantage of
resource pulses associated with wet-up events [37, 63]. Indeed,
other studies have documented increased potential growth rate
of microbes exposed to a history of water stress [64], a strategy
that would be facilitated by resource acquisition traits. Previous
studies in our system demonstrated that, although the sensitivity
of CO; flux to soil moisture increased with MAP [20], extracellular
enzyme activity was most sensitive at the drier end of the gradient
[18]—a pattern similar to the resource acquisition gene response
in our study (Fig. 3C-D). The patterns in our study, combined
with these similar patterns in extracellular enzyme activity,
point to resource limitation as a primary effect of soil moisture
deficits, as well as a driver of microbial strategy. More generally,
our results show that precipitation history can modify microbial
genetic traits, and that these effect scale up to community-level
functioning.

The interaction between contemporary moisture and MAP
in resource acquisition gene abundance appears to be driven
in part by transporter gene abundance, which also increased
with soil moisture at historically drier sites with lower MAP
(Fig. 4). In the Y-A-S model, the resource acquisition (A) strategy
has been associated with increased resource uptake—which
would favor increased transporter capacity—and/or resource
degradation, which would favor extracellular enzyme production
and depolymerization genes [13]. The responsiveness of transport
functions in our study supports the first strategy. Other work [65]
has suggested that a high abundance of membrane transporter
genes can indicate increased microbial uptake of bioavailable
C and a copiotrophic lifestyle. Microbes in xeric habitats, like
those at the drier sites of our MAP gradient, may invest in
transporters to facilitate rapid uptake of resources upon rewetting
[24, 33]. Consistent with this explanation, previous work in
permafrost cores saw similar rapid increases in functional genes
for carbohydrate and amino acid transporters with freeze/thaw
cycles [66], suggesting that disturbances can quickly alter
microbial uptake capability. Short- and long-term variation in
water availability may have distinct effects on microbial resource
availability. Contemporary soil moisture controls resource
diffusion, microbial release of osmolytes, and cell death, whereas
climate shapes litter quantity and quality, soil organic matter, soil
water-holding capacity, and other factors shaping the long-term
abundance, availability, and mobility of resources [63]. Therefore,
future studies that tease out the effects of contemporary soil
moisture vs. long-term historical precipitation, and each of their
effects on microbial resource availability, may help clarify the
complex effects of how legacy effects in microbial functional
potential are mediated by contemporary conditions.

Stress tolerance investment varied little with
climate history

We found that the abundance of genes associated with stress
tolerance was resistant to differences in both MAP and contem-
porary soil moisture. These results were in contrast with what we
might expect from theory—namely, more genes associated with
stress tolerance with lower short-term (soil moisture) and/or long-
term (MAP) water availability [29]—and what was found in other

studies. For example, declining soil moisture during seasonal
drought in grasslands led to short-term elevation of stress
tolerance genes, including those associated with cell wall
peptidoglycan biosynthesis, sporulation, and heat shock proteins
[67]. Over longer (decadal) timescales, across a rainfall gradient,
increasing aridity resulted in more genes associated with
osmoprotection and sporulation [68, 69]. Similar to results from all
stress genes, we did not find significant trends with soil moisture
or MAP in any specific stress response category.

The observed lack of climate legacies in stress-related genes
adds to findings that long-term precipitation patterns do not
consistently alter functional traits as predicted by theory [34,
35], or can sometimes alter traits in the opposite direction (e.g.
fewer stress response genes with increasing aridity in certain
functions; [68-70]. In part, this variation may be due selection on
microbial taxa in more constant vs. more fluctuating moisture
environments. All sites in our study region experience frequent
drought and high precipitation variability despite differences in
total annual precipitation, so microbial communities may be sim-
ilarly resistant to water stress across the gradient [30]. Previous
work on the Texas rainfall gradient found that most microbial
taxa were habitat generalists and highly persistent—even after
reciprocal transplant across MAP regions—further supporting the
idea that stress tolerance is pervasive in this system [32]. It is also
possible that we found no change in stress-related genes such
as osmolyte production because diffusion limitation in these dry,
mineral soils limits the usefulness of osmoregulation as a stress
response [24].

Gene composition helps explain microbial
functional capacity

Differences in the abundance of soil microbial functional genes
can help explain variation in larger-scale ecosystem processes
across gradients or in response to disturbances [11, 15, 71]. In
our study, both extracellular enzyme activity and soil CO, flux
increased with MAP (Table S9), consistent with previous results
from this region [20] and with other studies showing that carbon
cycling processes increase with MAP along rainfall gradients [72,
73]. However, our results also suggest that the abundance of
functional genes helped explain patterns in microbial function-
ing, explaining around half of variation in extracellular enzyme
activity—more so than MAP, contemporary soil moisture, and
seasonal effects combined (Table 1). There was a similar pattern
of high variation explained by the gene-only model for soil CO,
flux, though the term was only marginally significant (Table 1).
Previous work has established strong links between activities of
extracellular enzymes and the abundance of their corresponding
functional genes [74]. We extend this result to show that, at a
broader scale, transport and C-degrading genes can help pre-
dict total extracellular enzyme activity as a measure of micro-
bial investment in resource acquisition. We also found a similar
but nonsignificant pattern in soil CO, flux. Previous work has
described difficulties in linking complex, emergent functions such
as soil respiration to gene abundances [3, 18, 75]. Overall, our
results indicate that more broad characterizations of microbial
community functional potential can be useful predictors of over-
all microbial carbon cycling activity.

Limitations and opportunities

One challenge in detecting patterns in specific functional cate-
gories is the difficulty in categorizing genes. Different osmoreg-
ulation genes, e.g. have previously been found to respond in
opposite directions with MAP [68], perhaps because osmolytes
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are critical for drought tolerance but also have many functions
in microbial cells. In this study, we used a database (microTrait
KEGG tables) linking microbial genes to resource acquisition and
stress tolerance functions based on Y-A-S trait categorizations [33,
51]. This approach allowed us to interpret genes in a functional
context, identify community-level patterns in investment, and
identify tradeoffs among microbial investment in broad strate-
gles. Yet it limited our analysis to traits with well-characterized
genetic determinants, making it difficult to assess patterns such
as growth yield [13, 51] that control the fate of soil C. We also ana-
lyzed relative gene abundances of contigs at the community level
because community-aggregated traits are especially relevant to
ecosystem-level processes and do not require taxa-specific knowl-
edge [11]. However, this contig-level analysis prevented identifying
genome-level traits such as growth rate and C use efficiency, as
well as within-organism tradeoffs between functional traits. MAG-
based approaches with deeper sequencing, potentially combined
with activity assays such as quantitative stable isotope probing,
could link microbial pathways to specific taxa and link patterns
in functioning to changes in the microbial community [15, 76].
For example, recent work [77] showed that freeze-thaw cycles
change the functional capacity of forest soils via changes in
microbial community composition. Finally, our study focused on
bacterial and archaeal communities due to low fungal sequencing
depth, but fungal functional genes are important drivers of soil C
responses to precipitation [78]. Future work should incorporate
fungi as they control decomposition, build soil C and likely have
distinct responses to soil moisture variability.

Conclusions

Climate can exert functional legacies on soil microbial com-
munities, resulting in altered ecosystem-level processes [20, 79].
Our study suggests long-term precipitation patterns (MAP) alter
the capacity of microbial communities to take up resources via
changes in functional gene abundance. Stress response genes,
in contrast, did not vary significantly across the MAP gradient.
Microbial community investment in resource acquisition and
stress tolerance genes therefore showed no evidence of a tradeoff
in our study. Patterns in functional gene abundances explained
a high percentage of variation in potential enzyme activity,
suggesting that long-term precipitation can shape the genetic
strategies of microbial communities in ways that influence the
rates of microbial-driven soil processes. Our results show that
microbial traits can clarify patterns in soil processes and their
sensitivity to soil moisture, and these traits can help explain
climate legacies in ecosystem processes.
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