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Abstract

Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not
well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those
associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the
influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of
soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies
in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought,
allowing us to document how the strength of climate legacies varied with contemporary conditions.We found increased investment in
genes associatedwith resource cyclingwith historically higher precipitation across the gradient, particularly in traits related to resource
transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that
contemporary conditions—particularly, resource stress under water limitation—influences the strength of legacy effects. In contrast,
investment in stress tolerance did not varywith historical precipitation, likely due to frequent periodic drought throughout the gradient.
Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity—potential
enzyme activity—more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term
climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.
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Introduction

Soil microbes are key drivers of biogeochemical cycling, releasing

an estimated 75 Pg of carbon (C) from soil annually through

decomposition [1] as well as creating and stabilizing up to 3.7

Pg C in soil organic matter [2–5]. However, the sensitivity of

soil microbes and their functioning to soil moisture is not well

understood, making it difficult to project changes under novel

precipitation regimes that are expected to occur with climate

change [6]. Moreover, patterns in soil microbial functioning across

environmental conditions can be difficult to generalize due to the

complexity of these communities, their high functional redun-

dancy [7], and variable phylogenetic conservation of traits [8, 9].

Microbial traits, quantified with functional genes, may provide

more tractable microbial community characteristics that drive

rates of ecosystem processes and can be incorporated into mod-

eling efforts [10–15].

Long-term climate may shape the ecological strategies of soil

microbes, and therefore their trait distributions. Theories such

as the Y-A-S framework aim to link environmental gradients to

microbial traits relevant to soil carbon cycling, including resource

acquisition, stress tolerance, and growth yield [13]. If historical

climate creates informational legacies in the form of microbial

trait composition, legacies in microbial community functioning

may persist under novel environmental conditions [16, 17]. For

example, under the same current moisture conditions, microbes

from regions with highermean annual precipitation (MAP) exhibit

higher microbial enzyme activity [18], accelerated decomposition

rates [19], and increased soil C fluxes [20, 21] relative to those

with drier climate histories. Precipitation history can also alter the

sensitivity of ecosystem processes to contemporary conditions,

such as recovery from drought [22]. These historical contingen-

cies in microbial function may occur if long-term differences in
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precipitation (e.g. MAP) lead to local adaptation in the genetic

composition of microbial populations and communities, such as

increased abundance of genes that confer stress tolerance (e.g.

osmolytes, peptidoglycan cell walls, dormancy/sporulation) [23,

24]. Indeed, a recent study [25] found functional legacies across

two aridity gradients, where historically wetter sites were asso-

ciated with higher abundance of genes associated with resource

degradation, motility, and growth yield, whereas historically drier

sites were enriched in stress-related genes.

Climate legacy effects are found widely, but inconsistently

[6, 26], emphasizing the need to explore the drivers of these legacy

effects and the factors that modulate them. If long-term climate

shapes the ecological strategies of microbial communities, partic-

ularly those related to resource acquisition and stress tolerance,

these patterns in microbial traits may exert persistent effects on

the rate and sensitivity of soil C cycling processes—leading to

legacy effects [13]. Alternatively, contemporary conditions may

lead to rapid reassortment of taxa and/or functional genes, under-

mining any legacies in microbial structure and function [27, 28].

Shifts in microbial trait composition resulted in drought legacy

effects in a recent modeling study [29], but more empirical work

is needed to understand when and under which conditions his-

torical precipitation constrains microbial trait distributions.

In this study, we investigated how precipitation history shapes

the abundance and composition of microbial functional genes

along a MAP gradient, as well as whether previously observed

legacies persisted following relief from a prolonged, severe

drought across the region. To do this, we focused on soil microbial

communities across the Edwards Plateau in Texas, USA, which

is a well-studied ecoregion where MAP ranges from 400–900 mm

across ∼400 km. In this region—across which soils, vegetation and

temperature vary minimally—previous studies consistently find

that MAP is the primary driver of soil respiration, extracellular

enzyme activity, and C use efficiency [18, 20, 30]. Moreover,

microbial investment in resource acquisition (total potential

enzyme activity) differed in its sensitivity to soil moisture

across the rainfall gradient [18]. Functional and compositional

differences between sites with different precipitation history

persisted when exposed to novel rainfall treatments, suggesting

that local microbial communities resist turnover and thereby

contribute to the strong climate legacy in ecosystem processes

[31, 32]. Yet the genetic traits underlying these persistent climate

legacies remain unknown. Lower MAP and its associated rainfall

deficits may select for investment in stress-tolerance traits,

at the expense of those related to resource acquisition [13,

23, 33], thereby driving legacies in ecosystem-level processes.

However, evidence for this tradeoff has been inconsistent [34,

35], and it is not well understood to what extent historical vs.

current environmental conditions affect the distribution of these

traits.

Here, we characterized soils from across the MAP gradient with

shotgun metagenomics to assess how climate legacies shape the

abundance of functional genes related to microbial stress toler-

ance and resource acquisition, two traits important to rates in soil

carbon cycling [13], have been shown to trade off [36], and whose

genetic determinants are sensitive to drought [37]. We focused on

a period in 2015–2016 when wetter conditions induced by an El

Niño event followed a long-termdrought (2011–2015). By sampling

repeatedly over three seasons, we were able to capture a variety

of contemporary soil moisture conditions and contrast how pre-

cipitation history (MAP) versus current soil moisture conditions

drivemicrobial functional potential, as defined by functional gene

relative abundance. Previous work in this study system found

climate legacies for both microbial community structure, and

respiration rates that lasted up to 4.5 years after exposure to

new rainfall regimes [31].We therefore expectedmicrobial genetic

traits to be primarily driven by precipitation history rather than

contemporary soil moisture,with genes related to stress tolerance

dominating historically drier sites and genes for resource acqui-

sition more abundant in historically wetter sites. Local variation

in microbial communities associated with long-term precipita-

tion history could result in distinct community functional poten-

tials that differentially constrain how sites respond to drought

release, which would be indicated by an interaction between

MAP and current moisture. Finally, we expected that functional

genes would explain variation in microbial processes, including

enzyme activity and soil respiration, indicating that differences

in microbial functional potential are relevant for ecosystem-level

fluxes.

Materials and methods
Study system
Soils were collected seasonally from 20 savanna grassland sites

(Table S1) located across a steep precipitation gradient (400–

900 mm MAP; 30-year norms 1981–2010 retrieved from PRISM,

https://prism.oregonstate.edu/normals/) on the Edwards Plateau

in central Texas, USA (Fig. 1A). As described elsewhere [20, 30],

soils on the Edwards Plateau are derived from a single geologic

formation and are all shallow, rocky, calcareous Mollisols. 30-year

mean annual temperature varied from 17.7–20.6◦C across the 20

sites. Previous studies across this gradient [20] did not find a

correlation between soil properties and MAP, allowing us focus on

long-term climate as a primary driver of differences in microbial

traits and functioning across the gradient. The region experienced

a severe multiyear drought between 2011 and October 2015 (i.e.

Palmer Drought Severity Index −4.1 to −0.32011–2014),whichwas

ended by an El Niño Southern Oscillation (ENSO) event in October

2015 through 2016 (PDSI 2.9 to 4.0) (Fig. 1B).

Sample collection and processing
To capture the period of recovery from drought, soils were

collected from the same locations at each of 20 sites at three

dates (seasons): November–December 2015 (fall), March–April

2016 (spring), and June 2016 (summer). At each site, soil samples

were collected from two 20× 20 m plots with at least 50% grass

cover and slope< 2% to minimize differences between sites. To

collect sufficient soil to represent each large plot, subsamples

were collected systematically from 100 points per plot by digging

with a trowel to 15-cm depth systematically across the grid, then

sieved to 1-cm in the field to remove rocks and homogenize. This

resulted in a minimum of 4 L of soil, which was then subsampled

into bags for DNA extraction, biogeochemical analysis, respiration

assays, or enzyme assays, and stored on ice for transport to

the lab.

Shotgun metagenomics
Soils were stored at −80◦C until total genomic DNA was extracted

from 0.25 g from each plot using DNeasy Power Soil Kits (Qiagen,

Germantown,MD,USA). DNA extracts were quantified fluoromet-

rically (AccuClear Ultra High Sensitivity kit, Biotium, Fremont, CA,

USA), and normalized to 0.5 ng/μl, and combined at the site level.

Libraries were prepared as previously described [38] using Nextera

adapters and sequenced (2× 150 bp) on a NovaSeq 6000 System

(Illumina, San Diego, CA, USA) at the NC State University Genome

Sequencing Lab.
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Figure 1. (A) Study sites (n=20) were located across Edwards plateau (black outline) in Texas. (B) Palmer Drought Severity Index for each site based on
monthly values across the Edwards Plateau. Soil sampling occurred in fall 2015, spring 2016, and summer 2016. Drought index data were retrieved
from https://wrcc.dri.edu/wwdt/, accessed 24 September 2024 and are summarized in Supplementary data Sheet 2.

Biogeochemical analysis
Soils were stored at 4◦C for less than 24 h before sieving to 2 mm,

and estimating microbial biomass C via chloroform fumigation

and extraction in 0.5 M K2SO4 [39], as well as pH measurement in

a ratio of 2:1 soil to water (Van Lierop 1990). Air-dried soils were

used for texture determination via the hydrometer method [40].

The remaining sieved soil was oven-dried at 105◦C for at least 48 h

(to constant weight) formeasurement of gravimetric soil moisture

and analysis of soil total organic C and total N via combustion

on a CHNS Analyzer (Perkin Elmer 2400, Waltham, MA, USA).

All biogeochemical measurements were carried out at the plot

level and averaged for site-level analysis (Supplementary data,

Sheet 3).

Microbial respiration
Soils for respiration assays were air dried to 5% gravimetric mois-

ture. To measure CO2 flux under water-replete conditions, we

constructed four replicate microcosms containing 25 g of soil

from each sample. Soils were selected from one plot per site,

chosen by coin flip. Themicrocosms were 60-ml borosilicate glass

tubes (I-Chem, ThermoFisher Scientific, Waltham, MA, USA) with

a septa cap. Soils were adjusted to 18–20% soil moisture with

sterile water and maintained by weight for 8 weeks. To assess

respiration, the microcosm headspace was flushed with CO2-free

air and sealed for 1 h prior to sampling. CO2 was quantified on a

gas chromatograph equipped with a methanizer and FID detector

(SRI Instruments, Torrance, CA,USA). CO2 wasmeasured biweekly

and averaged across time and replicates for site-level analysis (see

Supplementary data, Sheet 4).

Extracellular enzyme activities
Soils for enzyme assays were stored at −20◦C. Hydrolytic

enzyme potential activities were measured for α-glucosidase,

β-glucosidase, β-xylosidase, cellobiohydrolase, N-acetyl glu-

cosaminidase, and acid phosphatase using fluorometric sub-

strates [41, 42]. We focused on hydrolytic enzymes because we

expected that the hydrolysis process would be affected by both

short- and long-term rainfall, which is supported by our previous

work [18]. Briefly, 2 g soil were blended with acetate buffer to

create a slurry, from which eight technical replicates were then

incubated with substrate for 1 h at 26.5◦C. Fluorescence was

measured on a plate reader (Spectromax M3, Molecular Devices,

San Jose, CA, USA) with excitation at 365 nm and emission at

450 nm. For this study, total enzyme activity was calculated as

the log-transformed sum of all enzyme activities, which has

previously been used as a measure of microbial investment in

resource acquisition [18]. Enzyme measurements were made

on soils from each plot and averaged for site-level analysis

(Supplementary data, Sheet 5).

Bioinformatics
After removing three samples with a low read count, the

sequencing depth of the remaining 57 samples ranged from 17.4

million reads to 82.6 million reads. Raw reads were checked

for quality in FASTQC (Andrews 2010), and PhiX reads were

removed using bowtie2 [43]. We removed Nextera adapters and

low-quality sequences in fastp using the default settings (phred

quality >=Q15, unqualified bases limit = 40%), [44]. Coverage of

these trimmed sequences was estimated in R using the nonpareil

package [45]. Reads were assembled into contigs within each

metagenomic sample using SPAdes [46] and evaluated with

MetaQuast [47]; only contigs longer than 1000 bp were retained.

Contigs were annotated using Prokka [48] with the—metagenome

option, and proteins were then functionally annotated using

eggNOG-mapper v2 [49].

Functional regions of interest were identified by KO anno-

tations from the KEGG and CAZy databases. EggNOG entries

assigned to multiple KOs were split into separate entries, as each

KO is associated with a specific protein coding sequence [50]. Our

analyses focus on bacterial and archaeal genes, as fungal and

other eukaryotic genes were too low in abundance to include in

analyses. We categorized genes into functional groups of interest

using the KEGG KO designations used by the microTrait tool in

R, which was created to evaluate functional traits in microbial

genomes [51]. Because themicroTrait tool is designed to run on full

genomes, we instead extracted the lists of KEGG genes associated

with each trait (Supplementary data, Sheet 6). This identified

genes associated with resource acquisition and stress tolerance,

as well as with more specific functions within these broader

categories using the level 1microTrait designations [52]. Using level
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1 maximized KOs with a trait designation, as many genes lacked

a more granular categorization. The trait category “resource use”,

referring to growth yield, was not used in our analyses due to few

genes being assigned to that category.

Data preparation
To prepare for our analyses, we first assessed soil properties as a

function of MAP and season via linearmodels to ensure that there

was sufficient independent variation in contemporary conditions

to contrast with historical conditions. For these environmental

characterizations, a Bonferroni-corrected alpha of 0.008 was used

to account for multiple testing. Second, for analysis of functional

genes, raw gene counts were converted to relative abundances by

dividing by the total number of KEGG genes across each sample,

and multiplying by 100. When examining different functional

groups of genes, their relative abundances were summed.

Statistics: analysis of historical vs. contemporary
effects on functional genes
We assessed how precipitation history (MAP) influenced micro-

bial functional genes, and how the strength of this effect varied

through time and with contemporary conditions. Although we

were interested in the persistence of this effect with increas-

ing time since release from drought (i.e. sampling season), soil

moisture varied strongly with sampling season. Therefore, we

ran analyses with two full factorial configurations of explanatory

variables to explore how these related, but distinct, drivers inter-

acted with historical climate: MAP ∗ Season, and MAP ∗ Moisture.

We assessed the effect of these drivers on the composition

of overall functional genes, stress tolerance genes, and resource

acquisition genes using the adonis2 and metaMDS functions in the

vegan package [53]; when MAP was significant, distances from

centroid were extracted with betadisper and regressed against

MAP to confirm that dispersion was not driving trends. We ran

simple linear regressions, using both the MAP ∗ Season and MAP

∗ Moisture structures, assessing how historical climate (MAP)

and contemporary conditions (sampling season and soil mois-

ture) affected the relative abundance of resource acquisition and

stress tolerance genes. When MAP and soil moisture showed a

significant interaction, we ran two follow-up models in which

we converted one driver into a categorical variable [MAP: dry

(< 600 mm/yr), mid (600–800 mm/yr), wet (>=800 mm/yr); soil

moisture: low (<= 10%), medium (10–20%), high (>20%)]. These

follow-up models (MAP_Categorical ∗ Moisture, and MAP ∗ Mois-

ture_Categorical) were used to aid interpretation of the intere-

action of the two continuous variables. For these analyses, the

emmeans and joint_tests functions in the emmeans R package were

used for pairwise comparisons between sampling seasons [54].

We determined whether there was evidence of a tradeoff between

the abundance of stress tolerance and resource acquisition genes,

expecting a negative correlation if investment in these traits

involve tradeoffs. For this analysis, we used a Pearson correlation

within each sampling date in the rstatix R package [55].

To analyze specific gene functional categories within the two

broader stress tolerance and resource acquisition functional

groups, we ran multiple linear models using the manylm function

in themvabund R package [56], using the same full factorial model

structures described above (MAP ∗ Season and MAP ∗ Moisture).

We limited our focus to gene subcategories that were represented

in at least 90% of samples, resulting in retention of 13 of the 21

resource-related and five of the seven stress-related functional

subcategories—retaining 18 categories in total. When MAP and

soil moisture significantly interacted to affect gene abundances,

we visualized these relationships with the interactions R package

[57]. For the above analyses, we set alpha at 0.05.

Statistics: Linking gene abundances with
function
If genetic differences underlie climate legacy effects, we expect

the relative abundance of functional genes to explain variation

in CO2 flux and enzyme activity across the rainfall gradient.

Therefore, we assessed the effect of gene functional abundance

on these fluxes and compared this effect to current (soilmoisture)

and historical (MAP) precipitation variables. To investigate linear

relationships between environmental variables and functional

gene categories, we used residual randomization in permuta-

tion procedures (RRPP), a method that performs non-parametric

ANOVA on multivariate data by comparing fitted model coef-

ficients to pseudo values generated from null model residuals

across many permutations, using the lm.rrpp function in the RRPP

R package [58]. We constructed models using the abundances of

themost abundant 18 functional gene categories (see above),MAP,

soil moisture, and sampling season as predictors of CO2 flux and

total enzyme activity (with type III sums of squares and 10000

iterations). To avoid overfitting the models, we did not include

interaction terms; preliminary linear models suggested there was

no significant interaction between MAP and either sampling sea-

son or soil moisture, for either response variable. We compared

the R2 of models with genes only, environment only (MAP, season,

soil moisture), and with both genes and environment combined,

and used the model.comparison function to compare models based

on AIC. The tidyverse [59] and paletteer R packages [60] were used

for data manipulation and visualization.

Results
Variation in contemporary conditions
Soil moisture varied strongly across sampling dates (P< .001)

peaking in Fall 2015 (average across sites: 23.6%) and declining

at later dates (Spring 2016=14.7%; Summer 2016=12.5%; Fig. S1).

Soil moisture did not vary significantly with MAP across these

sampling dates (Fig. S2), allowing us to contrast the effects of his-

torical rainfall (MAP) vs. contemporary conditions (soil moisture)

on functional gene abundance (Table S2). When assessing other

edaphic factors, microbial biomass C was higher in the Spring

(0.532mg/g) compared to both Fall 2015 (0.209mg/g) and Summer

2016 (0.288 mg/g; P= .002). Soil pH decreased with MAP (P< .001)

andmeasured values ranged from 6.7 to 8.4, contrasting with pre-

vious characterizations of this rainfall gradient [30]; however, the

relative abundances of stress tolerance genes and resource acqui-

sition genes did not vary significantly with pH (Table S3). Soil C, N,

and texture were unrelated to either MAP or season (Table S2).

Gene composition varied with MAP
Annotated contigs yielded 126 884 bacterial and 38513 archaeal

genes in the KEGG database with at least 10 occurrences, with

3028 unique KEGG KO designations. Overall gene composition

varied minimally with MAP (PERMANOVA: R2 =0.04, P= .001;

Fig. 2A) and did not differ across seasons; when soil moisture

was used as a predictor instead of sampling season, MAP was

also a significant predictor of gene composition (Table S4). We

identified 316 resource acquisition genes and 63 stress tolerance

genes with a minimum of 10 occurrences (Supplementary data,

Sheet 7). Trends were similar when rare genes were retained.

The genetic composition of microbial communities was also

shaped by MAP when aggregated into microTrait level 1 functional



Climate drives microbial trait legacies | 5

Figure 2. NMDS of (A) all KEGG genes, (B) resource acquisition genes,
and (C) stress tolerance genes across the rainfall gradient. Based on
PERMANOVA, the composition of functional genes significantly varied
with MAP (color) for both (A) all KEGG genes, whereas the trend was
similar but not significant for (B) resource acquisition genes and (C)
stress tolerance genes. There were no differences in functional gene
composition among seasons (shape).

categories, although the effect was also limited (PERMANOVA:

R2 =0.05, P= .013; data not shown; Karaoz and Brodie 2022).

Climate legacies in investment in resource
acquisition
Similar to overall gene composition, the composition of resource-

acquisition genes tended to vary with MAP, albeit less strongly

(PERMANOVA R2 =0.03, P= .054, Fig. 2B), but not with sampling

season or with soil moisture (Table S4). The total relative abun-

dance of all genes related to resource acquisition was unaffected

by MAP, sampling season or their interaction in the MAP ∗ Sea-

son linear model. However, there was a significant interaction

between MAP and soil moisture on the abundance of resource-

acquisition genes in the MAP ∗ Moisture model (P= .003, Fig. 3A,

Table S5). To explore this interaction, we ran the same model, but

with these predictors broken up into categories. When sites were

split into threeMAP categories, the relative abundance of resource

acquisition genes increased with soil moisture at the driest sites

(MAP <600, P= .007; Fig. 3C). Similarly, when soil moisture was

split into three categories, resource genes increased with MAP

under the driest conditions (soil moisture <10%, P= .007, Fig. 3D).

MAP was a significant predictor of the relative abundances of

genes in the resource acquisition subcategories in both model

arrangements (seasonal model: P= .040, moisture model: P= .009)

and interacted significantly with soil moisture (P= .045). When

analyzed for patterns in univariate gene categories, genes asso-

ciated with free amino acid transport and carbohydrate transport

showed a tendency to vary with MAP, soil moisture, and their

interaction, similar to the pattern shown with overall resource

acquisition genes (MAP: P= .010 and P= .085; interaction: P= .032

and P= .069, respectively, Fig. 4, Table S6).

Investment in stress tolerance varies with
sampling season but not historical rainfall
The overall composition of stress tolerance genes varied slightly,

but not significantly withMAP (R2 =0.03; P= .066), and did not vary

with either sampling season or soil moisture (Table S4). Relative

abundance of stress tolerance genes did not vary with MAP but

was highest in fall 2015 (P= .016; Fig. 3B); no driver was significant

in the MAP ∗ Moisture model (Table S5). No subcategory of genes

related to different stress tolerance functions varied significantly

with MAP and sampling season, or with MAP and soil moisture

(Fig. S3, Table S7).

There was no significant correlation between stress tolerance

and resource acquisition genes in any sampling season (all P> .2;

Table S8; Fig. S4).

Gene functional potential explains variation in
functional assays
Both soil CO2 flux and total enzyme activity increased with MAP

(P< .001 and P= .007, respectively); enzyme activity also varied

with soil moisture (P> .001; Table S9). For enzyme activity, this

“environment-only” RRPP model including MAP, sampling season,

and soil moisture explained 43% of variation (Table 1; Table S9).

However, the abundance matrix of the 18 functional gene cate-

gories explained more variation (55%) on its own. Including the

genematrix in the full model improved the R2 to 0.67, although an

AIC comparison favored the more parsimonious environmental

model.

Similarly, functional genes explained 47% of variance in CO2

flux, although the overall gene matrix term was only marginally

significant (P= .064, Table S9). An environmental model (MAP +

Season + Moisture) explained only 40% of the variation. Including

the gene matrix in the environmental model increased the R2 to

0.63, although it was not favored by AICmodel comparison,which

heavily penalizes models with more parameters.

Discussion

Microbial functional legacies related to precipitation history limit

our ability to predict future C cycling using current moisture
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Figure 3. (A) Percent of genes associated with resource acquisition across the MAP gradient, with points colored by contemporary soil moisture.
(B) Percent of genes associated with stress tolerance in each sampling season. (C–D) interaction between MAP and soil moisture in resource gene
abundance: There was higher sensitivity to soil moisture in historically dry sites (400–600 mm/yr) than mid (600–800 mm/yr) or high-precipitation
(>800 mm/yr) sites (C). Similarly resource genes increased with MAP under low contemporary soil moisture (< 10%), but not under medium (10–20%)
or high (> 20%) soil moisture conditions (D).

functions [6]. Extreme climate events, such as a regional

multi-year drought, represent a possible tipping point whereby

microbial communities undergo community re-assortment,

overwhelming any legacies from long-term differences in climate

[61]. However, in our study, long-term precipitation history (MAP)

remained a primary driver of microbial functional traits (genes)

despite regional relief from a long-term drought (Fig. 2).We found

that climate history altered the sensitivity of resource acquisition

gene abundance to current soil moisture,with the strongest effect

of MAP under contemporary dry conditions (Fig. 3). Although

investment in resource acquisition varied with both historical

rainfall and current soil moisture, investment in stress tolerance

did not respond to either of these drivers. The relative abundance

of genes associated with these two traits did not correlate

negatively at any sampling season, adding to evidence that Y-A-S

strategies do not consistently trade off in microbial communities,

at least at the genetic level [34, 35]. The composition of functional

genes also explained much of the variation in microbial function,

particularly total potential enzyme activity, suggesting that

microbial genetic legacies underlie patterns in rates of ecosystem

processes across the rainfall gradient.

Climate legacies shape investment in resource
acquisition
Precipitation history (MAP) constrained overall microbial func-

tional gene composition largely through the relative abundance

of genes associated with resource acquisition. Previous work in

this systemdocumented a legacy of highermicrobial extracellular

enzyme activity and accelerated rates of soil respiration from

soils from higher MAP sites, as well as altered sensitivity to

current soil moisture conditions [18, 20]. Similarly, we found that

the abundance of resource-associated functional genes increased

with increasing MAP across the gradient, and that this effect

was mediated by contemporary soil moisture (Fig. 3). Recent work

in other aridity gradients also document more investment in

resource acquisition traits in wetter sites, which they attribute
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Figure 4. Relative abundance of resource genes associated with specific functions, as a function of MAP (x-axis) and soil moisture (point color). Of the
13 most abundant functional categories, free amino acid transport increased with MAP (P= .010, solid black trendline) and was influenced by an
interaction between MAP ∗ moisture (P= .032). A similar but marginally significant interaction was seen with carbohydrate transport (MAP: P= .085,
dotted grey trendline; MAP ∗ moisture P= .069).

Table 1. Comparison of model performance of total potential extracellular enzyme activity and soil CO2 flux rates, with different sets
of predictors. Model compared include those using just gene abundances (Genes), abiotic drivers including MAP, soil moisture and
season (Environment), and the full model containing both of these (Genes + Environment).

Extracellular enzyme activity Soil CO2 f lux

Model R
2

P AIC R
2

P AIC

Genes 0.55 0.009 99.320 0.47 0.064 −169.700

Environment 0.43 <0.001 84.519 0.40 <0.001 −191.425

Genes + Environment 0.68 0.002 89.352 0.63 0.006 −183.173

to more available resources in historically wetter areas [25]. Our

results add to evidence that precipitation history may frequently

shapemicrobial traits via resource availability, while emphasizing

that legacy effects may be hard to consistently detect due to

fluctuating contemporary conditions.

The relative abundance of resource acquisition genes, as well

as several resource transport gene sub-categories, increased with

soil moisture at the driest sites (<600 mm precipitation/year) in

our study, and were resistant to soil moisture changes at middle-

and high-MAP sites (>600- mm precipitation/year, Fig. 3C-D,
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Fig. 4). This suggests that long-term precipitation history mod-

erates the sensitivity of microbial functional potential to dry-

down/wet-up events. Previous work has suggested that long-

term exposure to drought conditions can alter microbial traits

associated with C use, resulting in altered sensitivity of C fluxes

[62]. In the case of our study, historical dry conditions may have

favored populations with high uptake capacity, allowing microbes

to quickly regulate osmotic balance, as well as take advantage of

resource pulses associated with wet-up events [37, 63]. Indeed,

other studies have documented increased potential growth rate

of microbes exposed to a history of water stress [64], a strategy

that would be facilitated by resource acquisition traits. Previous

studies in our system demonstrated that, although the sensitivity

of CO2 flux to soil moisture increased with MAP [20], extracellular

enzyme activity wasmost sensitive at the drier end of the gradient

[18]—a pattern similar to the resource acquisition gene response

in our study (Fig. 3C-D). The patterns in our study, combined

with these similar patterns in extracellular enzyme activity,

point to resource limitation as a primary effect of soil moisture

deficits, as well as a driver of microbial strategy. More generally,

our results show that precipitation history can modify microbial

genetic traits, and that these effect scale up to community-level

functioning.

The interaction between contemporary moisture and MAP

in resource acquisition gene abundance appears to be driven

in part by transporter gene abundance, which also increased

with soil moisture at historically drier sites with lower MAP

(Fig. 4). In the Y-A-S model, the resource acquisition (A) strategy

has been associated with increased resource uptake—which

would favor increased transporter capacity—and/or resource

degradation, which would favor extracellular enzyme production

and depolymerization genes [13]. The responsiveness of transport

functions in our study supports the first strategy. Other work [65]

has suggested that a high abundance of membrane transporter

genes can indicate increased microbial uptake of bioavailable

C and a copiotrophic lifestyle. Microbes in xeric habitats, like

those at the drier sites of our MAP gradient, may invest in

transporters to facilitate rapid uptake of resources upon rewetting

[24, 33]. Consistent with this explanation, previous work in

permafrost cores saw similar rapid increases in functional genes

for carbohydrate and amino acid transporters with freeze/thaw

cycles [66], suggesting that disturbances can quickly alter

microbial uptake capability. Short- and long-term variation in

water availability may have distinct effects on microbial resource

availability. Contemporary soil moisture controls resource

diffusion, microbial release of osmolytes, and cell death, whereas

climate shapes litter quantity and quality, soil organic matter, soil

water-holding capacity, and other factors shaping the long-term

abundance, availability, and mobility of resources [63]. Therefore,

future studies that tease out the effects of contemporary soil

moisture vs. long-term historical precipitation, and each of their

effects on microbial resource availability, may help clarify the

complex effects of how legacy effects in microbial functional

potential are mediated by contemporary conditions.

Stress tolerance investment varied little with
climate history
We found that the abundance of genes associated with stress

tolerance was resistant to differences in both MAP and contem-

porary soil moisture. These results were in contrast with what we

might expect from theory—namely, more genes associated with

stress tolerancewith lower short-term (soilmoisture) and/or long-

term (MAP) water availability [29]—and what was found in other

studies. For example, declining soil moisture during seasonal

drought in grasslands led to short-term elevation of stress

tolerance genes, including those associated with cell wall

peptidoglycan biosynthesis, sporulation, and heat shock proteins

[67]. Over longer (decadal) timescales, across a rainfall gradient,

increasing aridity resulted in more genes associated with

osmoprotection and sporulation [68, 69]. Similar to results fromall

stress genes, we did not find significant trends with soil moisture

or MAP in any specific stress response category.

The observed lack of climate legacies in stress-related genes

adds to findings that long-term precipitation patterns do not

consistently alter functional traits as predicted by theory [34,

35], or can sometimes alter traits in the opposite direction (e.g.

fewer stress response genes with increasing aridity in certain

functions; [68–70]. In part, this variation may be due selection on

microbial taxa in more constant vs. more fluctuating moisture

environments. All sites in our study region experience frequent

drought and high precipitation variability despite differences in

total annual precipitation, so microbial communities may be sim-

ilarly resistant to water stress across the gradient [30]. Previous

work on the Texas rainfall gradient found that most microbial

taxa were habitat generalists and highly persistent—even after

reciprocal transplant across MAP regions—further supporting the

idea that stress tolerance is pervasive in this system [32]. It is also

possible that we found no change in stress-related genes such

as osmolyte production because diffusion limitation in these dry,

mineral soils limits the usefulness of osmoregulation as a stress

response [24].

Gene composition helps explain microbial
functional capacity
Differences in the abundance of soil microbial functional genes

can help explain variation in larger-scale ecosystem processes

across gradients or in response to disturbances [11, 15, 71]. In

our study, both extracellular enzyme activity and soil CO2 flux

increased with MAP (Table S9), consistent with previous results

from this region [20] and with other studies showing that carbon

cycling processes increase with MAP along rainfall gradients [72,

73]. However, our results also suggest that the abundance of

functional genes helped explain patterns in microbial function-

ing, explaining around half of variation in extracellular enzyme

activity—more so than MAP, contemporary soil moisture, and

seasonal effects combined (Table 1). There was a similar pattern

of high variation explained by the gene-only model for soil CO2

flux, though the term was only marginally significant (Table 1).

Previous work has established strong links between activities of

extracellular enzymes and the abundance of their corresponding

functional genes [74]. We extend this result to show that, at a

broader scale, transport and C-degrading genes can help pre-

dict total extracellular enzyme activity as a measure of micro-

bial investment in resource acquisition. We also found a similar

but nonsignificant pattern in soil CO2 flux. Previous work has

described difficulties in linking complex, emergent functions such

as soil respiration to gene abundances [3, 18, 75]. Overall, our

results indicate that more broad characterizations of microbial

community functional potential can be useful predictors of over-

all microbial carbon cycling activity.

Limitations and opportunities
One challenge in detecting patterns in specific functional cate-

gories is the difficulty in categorizing genes. Different osmoreg-

ulation genes, e.g. have previously been found to respond in

opposite directions with MAP [68], perhaps because osmolytes
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are critical for drought tolerance but also have many functions

in microbial cells. In this study, we used a database (microTrait

KEGG tables) linking microbial genes to resource acquisition and

stress tolerance functions based on Y-A-S trait categorizations [33,

51]. This approach allowed us to interpret genes in a functional

context, identify community-level patterns in investment, and

identify tradeoffs among microbial investment in broad strate-

gies. Yet it limited our analysis to traits with well-characterized

genetic determinants, making it difficult to assess patterns such

as growth yield [13, 51] that control the fate of soil C.We also ana-

lyzed relative gene abundances of contigs at the community level

because community-aggregated traits are especially relevant to

ecosystem-level processes and donot require taxa-specific knowl-

edge [11].However, this contig-level analysis prevented identifying

genome-level traits such as growth rate and C use efficiency, as

well aswithin-organism tradeoffs between functional traits.MAG-

based approaches with deeper sequencing, potentially combined

with activity assays such as quantitative stable isotope probing,

could link microbial pathways to specific taxa and link patterns

in functioning to changes in the microbial community [15, 76].

For example, recent work [77] showed that freeze–thaw cycles

change the functional capacity of forest soils via changes in

microbial community composition. Finally, our study focused on

bacterial and archaeal communities due to low fungal sequencing

depth, but fungal functional genes are important drivers of soil C

responses to precipitation [78]. Future work should incorporate

fungi as they control decomposition, build soil C and likely have

distinct responses to soil moisture variability.

Conclusions

Climate can exert functional legacies on soil microbial com-

munities, resulting in altered ecosystem-level processes [20, 79].

Our study suggests long-term precipitation patterns (MAP) alter

the capacity of microbial communities to take up resources via

changes in functional gene abundance. Stress response genes,

in contrast, did not vary significantly across the MAP gradient.

Microbial community investment in resource acquisition and

stress tolerance genes therefore showed no evidence of a tradeoff

in our study. Patterns in functional gene abundances explained

a high percentage of variation in potential enzyme activity,

suggesting that long-term precipitation can shape the genetic

strategies of microbial communities in ways that influence the

rates of microbial-driven soil processes. Our results show that

microbial traits can clarify patterns in soil processes and their

sensitivity to soil moisture, and these traits can help explain

climate legacies in ecosystem processes.
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