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Abstract—Optimal power flow (OPF) is a critical optimization
problem for power systems to operate at points where cost
or other operational objectives are optimized. Due to the non-
convexity of the set of feasible OPF operating points, it is non-
trivial to transition the power system from its current operating
point to the optimal one without violating constraints. On top of
that, practical considerations dictate that the transition should
be achieved using a small number of small-magnitude control
actions. To solve this problem, this paper proposes an algorithm
for computing a transition path by framing it as a shortest path
problem. This problem is formulated in terms of a discretized
piece-wise linear path, where the number of pieces is fixed a priori
in order to limit the number of control actions. This formulation
yields a nonlinear optimization problem (NLP) with a sparse
block tridiagonal structure, which we leverage by utilizing a
specialized interior point method. An initial feasible path for our
method is generated by solving a sequence of relaxations which
are then tightened in a homotopy-like procedure. Numerical
experiments illustrate the effectiveness of the algorithm.

Index Terms—Optimal power flow, shortest path, nonlinear
optimization, interior point method

I. INTRODUCTION

HE optimal power flow (OPF) is arguably the most

important problem in steady state power system oper-
ation. OPF is an optimization problem that seeks to minimize
an objective (usually operation cost) subject to the power
flow equations governing the power system behavior and the
engineering and technical constraints associated with physical
operation of the system and its components [1]. A complete
formulation of the OPF problem, called Alternating Current
OPF (ACOPF), is a nonconvex problem with nonlinear equal-
ity constraints and hundreds to thousands of variables.

The optimal operating point from an ACOPF solution
provides values for the variables associated with controllable
resources. Short-term planners and real-time system operators
must determine how to transition the system from the current
operating point to the optimal point. The control variables
may be manipulated physically by, for example, controlling a
floodgate in a hydro plant or the boiler in a thermal plant. As
such, the transition process between values of the controllable
variables must be performed in terms of a sequence of few
simple control actions, as the physical implementation limits
the complexity of the execution. Furthermore, the transition
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between operating points should respect the system constraints
in the same way that the optimal solution does.

The problem of state transitioning in terms of few sim-
ple actions is not trivial, but some approaches have been
explored in the literature. Some authors have used linear
OPF approximations to tractably generate the transition as
a sequence of corrective actions involving a small subset of
the controllable variables. References [2] and [3] construct a
mixed-integer linear program (MILP) as an approximation to
the ACOPF, while also adding hard constraints on the num-
ber of controllable variables modified. Reference [4] applies
sparse techniques based on high-dimensional statistics to the
DCOPF formulation to generate sparse solutions with respect
to a base state. These approaches, while tractable, rely on
linear approximations to the original problem, so they do not
guarantee that constraints are not violated during the transition.
Moreover, these linear approximations improve tractability at
the expense of ignoring the non-convex and possibly non-
connected geometry of the feasible space [5]-[11]. In light of
these drawbacks, [12] and [13] extend previous formulations
to consider the full ACOPF, obtaining a mixed-integer nonlin-
ear program (MINLP). These papers approximate the binary
constraints in the MINLP using barrier functions, obtaining a
continuous nonlinear program (NLP). This new approximation
represents the original feasible set more accurately, yet still
does not guarantee feasibility during the transition.

The issue of guaranteeing feasibility during the transition
process has been tackled by recent work in [14] and [15].
Reference [14] proposes a method for iteratively generating a
sequence of convex restrictions (i.e., convex inner approxima-
tions) for the ACOPF feasible set. The sequence of sets are
pairwise connected, and at some point the method generates a
convex restriction containing the optimal operating point. The
output of the method is a finite sequence sequence of operating
points which define a piece-wise linear path connecting the
current operating point and the optimal operating point. This
path is guaranteed to be feasible, as it is contained in a chain
of connected convex restrictions containing both operating
points. Reference [15] proposes an algorithm for iteratively
generating a sequence of feasible operating points using sen-
sitivity information and a Newton iteration. The transition
is constructed using each point in the sequence. The main
drawback of approaches like those of [14] and [15] is that there
is no control over the number of intermediate operating points
generated during the iteration process. That is, while these
methods output a finite sequence of intermediate transition
points, the length of the sequence can be arbitrarily large.

An important issue that, to the authors knowledge, has not
been studied in the literature regards the amplitude, that is, the
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size of of the change each variable undertakes during a control
action (or equivalently, the distance between states before and
after the control action takes place). Even if the transition
can be done using a few control actions involving a small
number of variables, large amplitudes for these actions can
be detrimental. For example, large amplitude control actions
in battery energy storage systems can increase the depth-of-
discharge, thus increasing battery degradation [16]. Ideally,
the best transition path would be the straight line joining the
current and optimal operating points since this path represents
a single control action with the minimal possible amplitude. If
the constraints are violated by the straight line, the transition
path should be modified to avoid constraint violations, thus
increasing the number and amplitude of control actions.

This paper addresses two of the issues of operating point
transitioning: the number and amplitude of control actions. We
formulate the problem of minimizing the amplitude of control
actions as a shortest path problem that seeks to minimize the
length of the path joining the current and optimal operating
points inside the feasible space. To this end, we propose an
algorithm that computes a piece-wise linear approximation of
this shortest path as a discretized path defined in terms of a
chosen number of intermediate operating points. We formulate
the shortest path problem as an NLP where the objective
function is the path length and the optimization variables are
the coordinates of the intermediate operating points, subject
to the ACOPF constraints. The NLP is solved using a feasible
interior point method coupled with an homotopy procedure
to generate an initial feasible path. When the interior point
method is applied to our formulation, the matrices involved
show a sparse block tridiagonal structure. We show how to
exploit this structure to reduce the interior point method’s
computation time, so that each iteration scales linearly with
the number of intermediate operating points. We thus obtain a
scalable algorithm that minimizes the amplitude of control ac-
tions and enables specifying the number of intermediate points.
Numerical experiments on multiple test cases of varying sizes
show the algorithm’s effectiveness in finding a discretized
shortest path for a specific number of points.

To summarize, the main contributions of our paper are:

o A formulation of the transitioning problem by casting it
into a shortest path problem constrained to the ACOPF
feasible region. The shortest path formulation has the
advantage of minimizing the amplitude of control ac-
tions. Moreover, this formulation discretizes the transition
path into a finite, pre-specified number of linear pieces.
Accordingly, the best transition path using exactly the
desired number of control actions is obtained by solving
our formulation.

An interior point method with sparse block tridiagonal
structure for solving the shortest path problem. The
method includes a homotopy procedure for generating an
initial feasible path, so no path data beyond the endpoints
needs to be provided.

Experiments with multiple test cases of different scales.
These experiments show the method’s effectiveness.

The rest of the paper is organized as follows. Section II
describes the formulation of the ACOPF problem and the
corresponding shortest path problem. Section III elaborates

on the implementation of a feasible interior point method that
leverages the special structure of the shortest path problem.
Section IV provides a description of the complete algorithm,
including a homotopy procedure for generating an initial
feasible path required to execute the interior point algorithm.
Section V illustrates the numerical experiments we performed.
Section VI discusses conclusions and future work.

II. SHORTEST PATH OPF PROBLEM FORMULATION

We consider an arbitrary power system with two different
operating points of interest. We wish to connect these points
through a continuous path such that every point in the path
is a feasible operating condition with respect to the OPF
constraints. For a power system with n buses, let x € R*
denote the real and imaginary parts of the voltage phasors for
all buses, i.e., the state vector of the power system. Let u € R%
denote the vector of controlled variables!, where g < nis the
number of generators. In particular, we denote the points we
want to connect by uy and u. # ug. The relationship between
x and u is given by the power flow equations:

fow) = [fi(xu), -+, fan(x,w)]" = 0 € R,
fuu) = {%xTHkx+er+ck—uk, k <2g, (D
2 (x, 1) =

1.T T
>X Hyx + 1 x + ¢, k>2g

for appropriate symmetric matrices H; € R>>?" (which corre-
spond to the Y; matrices in [17]) and vectors ry € R?". The
matrices Hy are highly structured: each can be written as a sum
of a matrix with at most two non-zero rows and its transpose,
and thus each H; has rank at most 4.

The OPF feasible set consists of all pairs (u, x) satisfying
the power flow equations and the OPF constraints g; and A;
(like voltage limits, line flow limits, etc.):

ielu,
ieX,

gi(u) <0,
hi(x) <0,

(2a)
(2b)

for appropriate disjoint index sets U, X. We assume that all
OPF constraints inequalities depend on either u (i € U) or x
(i € X), but not both.? The vector x corresponds to the state
vector associated with u that satisfies (1). The existence of such
X is not trivial, for some values u there exists multiple solutions
or possibly none [18]. From the implicit function theorem [19],
we can specify a branch of the mapping to define a continuous
and injective function ¢ from u to x in a neighborhood of u, as
long as the Jacobian of (1) with respect to x is non-singular in
said neighborhood (see Fig. 1). We can use this information to
restrict ourselves to a single branch of the mapping. Consider
the pair (u, xo) where iy is the starting operating point and xy
is the solution of (1) associated with uy for the branch we are
interested in. Let J(x) = df(x,u)/0x denote the Jacobian of
the power flow equations with respect to the state vector x (the
Jacobian with respect to x is independent of u). If we assume

!Usually the controlled variables of OPF problem are the voltage magnitude
and active power outputs of each generator. Other type of controlled variables
are valid, as long as they fit within the proposed framework.

’In the standard OPF problem the entries of u are the generator voltage
magnitudes and active power of PV buses. As such, g;s contains the voltage
limits of generator buses and the active power limits of PV buses. On the
other hand, gx contains the voltage and active power limits of remaining
buses, reactive power limits, line flow limits, and angle difference constraints.
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Fig. 1. Variables u and x in a neighborhood of uy and x are related by the
power flow mapping ¢. Feasible sets generated by inequalities in x can be
mapped back to feasible sets in u and vice-versa. As the power flow mapping
¢ is nonlinear, the geometry of the mapped feasible sets will be altered.

that J(xp) is non-singular, then there exists a continuous and
injective function ¢(u) defined by the branch of (1) satisfying
©(up) = x9. We impose the additional constraint u € Fy where
Fo is defined as

Fo = {u € R% : J(e(u)) is not singular},
Fo={ueR¥ : —|det ()] <0}.

(3a)
(3b)

To use this formulation, we require some assumptions:

« Assumption 1: The Jacobian J(xy) is non-singular.

« Assumption 2: The function ¢(u) can be computed.

« Assumption 3: Both uy and u. belong to the same

connected component of Fy.

In particular, uy and u., may be in different connected com-
ponents if their associated states xp and xo, belong to different
branches of (1). Under the previous assumptions, we can
define the functions g; for all i € X as

gi(u) = hi(p(w)). “4)

so that all constraints depend only on u. The power flow
feasible set constraint u € Fy can be written analytically as

gi(u) = —|det J(p(u))l, i€P, ®)

for some singleton index set P disjoint from U, X. Define
T =U U X UP. The interior of the power flow feasible set
(gi»i € P) and the OPF constraints’ feasible set (g;,i € YU X)
is given by all points u € R? such that

gi(u) <0, iel. (6)

For interior point methods, the distinction between < and < is
inconsequential, as the numerical solution always lies in the
interior of the feasible set.

A. Optimal Control Problem

Finding a path between two points in a set is a classical
optimal control problem. If we seek the shortest path, we
then obtain an optimization problem. We define a continuation
parameter ¢ € [0, 1] and the decision vector u(¢) € C[O0, 1],
where C[0, 1] denotes the set of continuous functions defined
on the interval [0, 1]. The shortest path problem is

inf, [ (T ow®) " ar
s.t. w0 =up, u(l)= e, (7N
giu() <0, Vie[0,1], ieT.

We note that the problem formulation models OPF constraints,
but neglects the device dynamics involved during the transi-
tioning process. This approximation is justified by the fact
that typical power system dynamics are very fast relative to
the state transitioning process. Also, this approximation is
standard, as it is also adopted in previous work on related
problems [2]-[4], [12]-[15].

The problem described in (7) is a calculus of variations
optimization with constraints. The objective function may not
be differentiable at some points (due to the square root).
Moreover, problem (7) is naturally ill-defined, as even in the
unconstrained case there are infinite gradient maps that yield a
straight line between u( and u.. These issues can be avoided
by requiring the gradient map to have constant norm (constant
“speed” of transition along the path), which also simplifies the
objective function. To illustrate this, assume that the path has
constant norm, i.e. ||'(?)|| = £ > 0 for all ¢ € [0, 1], then the
objective function becomes

1 12 1 1
fo (@' ) " dr = fo et 0)ldr = fo gr=¢ @)

so ¢ not only denotes the “speed” of a particle traversing the
path but also the “time” it takes for the particle to go from ug
to Us. This formulation yields the following eikonal equation
problem in terms of the arclength ¢ (see [20], [21]):

infu’g g

s.t. u(0) =ug, u(l)= e, )
ll' DIl =¢, Y rel0,1],
gi(u() <0, iel.

Any numerical approach to solving this problem must honor
the feasible set constraints in (6), as there does not exist a state
vector x associated with any u ¢ Fy. Also, there is no trivial
feasible starting path available in general. To circumvent this
issue, we next propose a discretized version of the problem.

B. Piece-wise Linear Path Approximation

We restrict the search space from C[0, 1] to the space of
piece-wise linear paths PL[0, 1].> More specifically, we will
consider the space of piece-wise linear paths with K+ 1 pieces,
PLg 1[0, 1]. Let the characteristic (sometimes called indicator)
function yg(7) be defined as

1) = 1 tekE,
XED =30 1¢E.

We consider a piece-wise linear path u(f) € PLk [0, 1] defined

by K +2 points {u}{+' and parameters {7 }f "

(10)

u(?) = uox () + Lh4 cxOx 1 (),

) L 11
with ¢ (f) = g1 + (ug — ”k—l)ti-tﬁ' an
The parameter values #;, satisfy
lh=0<t)<---<tg<tgs =1. (12)

Additionally, we require that g, = U, as the path endpoints
must match the desired endpoints. For convenience, from now
on we shall write ug,; and u. interchangeably. We want to

3Note that PL[0, 1] is dense in C[0, 1] with respect to the uniform norm, as
the Schauder system of C[0,1] is composed of piece-wise linear functions [22].
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compute the path p(f) that minimizes the objective function.
Note that, for fixed values {r};*!, u(t) € PLg, [0, 1] can be
identified with {u}5*'. Thus, the control problem reduces to
computing the points {uk}f:1 that minimize the objective (recall
that uo and ug,; are the path endpoints, and thus they are

known):

inful,...,u,({ g
s.t. lw @Il =¢, VYrelo,1],
gi(u(®) <0, iel.

13)

We concatenate the points {uk}kK:1 into a single vector # =

[ T

ul -+ uk]” € R%K. Replacing (11) in (13) yields
inf ¢
i
t— 1t
st cp(id 1) = wpoy + (g — p_y) ———
ty — g1
lle @, Dl =¢, V1e i ul,
gj(e(il, 7)) <0, jeT,
Ytel[0,1], k=1,...,K+1. (14)

The optimization problem is now finite dimensional, yet the
constraints are still infinite dimensional. For the purpose of
tractability, we will relax the constraints by only enforcing
them at the corner points u;. This means that the path may
violate constraints in between corner points. However, if
needed, we can add more discretization points to mitigate
this issue. As each piece of the path is linear, the infinite-
dimensional constant speed constraint is equivalent to the finite
dimensional constraint that enforces the slopes of each piece of
the path to be equal in norm. Also note that the constant speed
constraint implies that £ > 0, so minimizing ¢ is equivalent to
minimizing /2. These changes yield the following problem:

inf £?
it
sz, k=1,....K+1,
I — k-1
gjw) <0, jel. (15)

The norm constraints are nonlinear inequalities, and hence
are non-convex. Any solution method for this problem should
be able to at least converge to a local optimum, even in the
presence of non-convexities. To this end, we will reformulate
the problem in a way that is advantageous for the numerical
method we will use. Define the constants

! >
(tk = ti—1)?llug+1 — uoll?

for k=1,...,K+ 1. Then (15) is equivalent to

Wk 0, (16)

K+1
inf Zw w — s ||?
nf il — g—1l|
oy
st winlluie — will? = willw; — wia P, i=1,...,K,
g;iw;) <0, jeZI. (17)

In this formulation, the Hessian of the objective function is
positive definite, which will prove useful for the interior point
iteration described in the next section.

III. LOG-BARRIER NEWTON METHOD IMPLEMENTATION

The discretized shortest path problem in (19) has a tridia-
gonal structure which is not leveraged by standard interior
point solvers. For this reason, we developed a specialized
interior point implementation that makes use of the problem
structure to reduce the computational complexity of solving
the problem. This section is dedicated to explaining in detail
the core iterative process behind this specialized solver.

A. Interior Point Iteration

The shortest path problem has a parallel structure since
the constraints do not depend on the full decision vector #,
but only on their associated point u;. The only source of
coupling between points comes from the objective and the
equality constraints, which both have simple block-tridiagonal
structures that can be exploited by a specialized interior point
iteration. To reduce the computation time even further, we
will use an extended formulation of the optimization problem
including the system state x; associated with each control
vector u; via the power flow equations. Specifically, we define

p=Ipl.--pkl"s pi=lul X1, i=1,...,K. (18)
Now we write the optimization problem as
1 K+1
inf —— — w1 19
in K+L;WW%MMH (19a)

i=1,....K, (19b)
(19¢)
(19d)

2 2
s.t. wiprlluisr — wll” = willu; — w1,
f(ui, x) =0,

gi(p) <0, jel

This formulation is larger in terms of variables and has
more equality constraints due to the power flow equations.
However, the OPF constraints written in terms of u#; and x;
have extremely sparse formulations.

The log-barrier formulation that is central to the interior
point method embeds the inequality constraints into the ob-
jective and then numerically solves the first-order Karush-
Kuhn-Tucker (KKT) equations. We define the index set & =
{1,...,K} and the functions c; as

ci(p) = willu; — iy I — wini llugsy —will®, i€& (20)
We also define the objective as
1 K+1
2
= — — w17, 21
#(p) K+L;ww%u“u Q1)

Define f(p;) = f(u;, x;), so we can reformulate (19) using a
barrier parameter u > 0 as

K
d(p)—u Z Z In[($)zii-1)+ ]

inf

ps =1 jeZ

st. f(p)=0, i=1,...,K,
ci(p)=0, jef&,

gi(p) + (zi-n+j =0, JjETI, (22)

where s is a vector of size K|Z| and (s), denotes the k-th
entry of s. Note that this formulation is only equivalent to
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(19) when all the entries of s are strictly positive. However,
such constraints are unnecessary, as the logarithmic terms act
as a barrier preventing the entries of s from becoming non-
positive. Define gz(p;) as the vector of inequality constraints
(evaluated at a particular point on the path), ce(p) as the vector
of equality constraints, and let D, be the Jacobian operator
(with respect to p). Let v € R¥K y € Rl and 7 € RX7I be
vectors of Lagrange multipliers of the power flow, equality,
and inequality constraints, respectively. Specifically, we write

O S N I e e A (23)

where v; € R? and z; € R”! are the vectors of Largrange mul-
tipliers associated with power flow and inequality constraints
evaluated at p;, for i = 1,...,K. The stationarity condition,
split for the derivatives with respect to p and s, is

K
0= V,0(p) + ) Dy f(p)T vi + [Dypce(p)'y
i=1

K
+ ) Dpgz(p 2 (24a)

i=1
0=-wuhos+z (24b)

where @ denotes element-wise division, 1 is a vector of ones,
and V,(D,) denotes the gradient (Jacobian) with respect to p.
More explicitly, the gradient term is

a K
Vp¢(p) = [M}

p; , (25)

i=1
where the notation [~]{i , indicates vertical concatenation of
scalars/vectors/matrices indexed by i, along the ordered set
1,..., K. In the same fashion, we can write the Jacobian as

Dyee(p) = [Vieip)],_, - (26)
Define the vectors dj as
di = [ — i), 015201, k=1,...,K+1, (27)
then we have that
0
YD) sud, - dwndisr, i=1.... K. (28)
ap;
We also notice that
D, f(pi) = [Dp, f(Pi), -, Dy f(P)] (29a)
D, f(pi) = [O2nxaiginyi-1)» Dp, f(Pi)s O2ns2igrmyx—in], ~ (29b)
and similarly
Dyg1(pi) = [Dp,gz(pi), - - -, Dpegz(pi)l, (30a)
D,gz(pi) = [Oz132(g+mi-1)s Dp.gz(Pi)s Ozixaig+myx-n].  (30b)
As a consequence, the stationarity condition becomes
0= V,6(p) + [Dp f(pIIE) v + [Dpee(p]'y
+([Dpgz(PIE) 2, (31a)
0=-uhHos+z (31b)

The stationarity condition combined with the equality cons-
traints define a set of nonlinear equations that can be solved

numerically to find a KKT point. The Lagrangian of the
problem, excluding the barrier terms, is

L(p, 5,0,y,2) = ¢(p) + V' [f(p)IX, +y" ce(p)

+ 2" (lgz(p)IE, + 9, (32)

so the first-order KKT conditions can be written as
0=V,L(p, s,v,y,2), (33a)
0=so0z—ul, (33b)
0=f(p), i=1,...,K, (33¢)
0=ce(p), (33d)
0 =gz(p) + (qzi-v+yzis  i=1,..., K, (33e)

where o denotes element-wise multiplication. Notice that (33b)
implies that the entries of s and z must have the same sign, so
z must also have positive entries. For brevity, we will rename
some vectors and matrices as

T =diagzos), cz(p) = lgz(p)IX,,

D¢ = Dyce, Dz = [Dygz(p)lE,,

f(p)=1f(p)1E, Dy =[D,f(p)IX,.
Applying Newton’s method, and omitting dependencies for
brevity, we obtain the following update equation:

(34)

Ap V,L vi,L 0 D D{ Dj
As —uhos 0 T 0 0 I
JIAv| = - f(p) , J= Df 0 0 0 0,
Ay ce D¢ 0 0 0 0
Az cz(p) + s Dr I 0 0 O

(35)

where the second row block has been left-multiplied by
diag(s)™' to make the matrix symmetric. The rank of the
Newton matrix depends directly on Vf,pL, Dy, and Dg. More
specifically, if VIZJPL, Dy, and Dg are full rank, then the Newton
matrix is invertible. Note that Dy is a block diagonal matrix
comprised of the power flow Jacobian at each p;. This means
that Dy is full-rank, as the power flow feasibility constraint
guarantees the invertibility of the square block of the power
flow Jacobian associated with x;. Hence, we only need to
concern ourselves with studying the ranks of Vf,pL and Deg.
We will first provide conditions under which D¢ has full rank.
Recall that

D¢ = Dycg = [Dy,ce,...,Dpcel, (36a)
6Cj .
Dg =|— , i=1,...,K, (36b)
api Jje€
~2w;d, i=j-1
ap] —2wj+1dj+1, i=j+1
0, else

so D¢ is a K X2(g+n)K block tridiagonal matrix, with blocks
of size 1 X 2(g + n). Next, we prove the claim.

Theorem 1. For any j=1,...,K+1 define bj(p) = w;d; and
assume that bj(p) # 0 for all j=1,...,K +1 (this is true if
and only if d;j # Q). Let q; be

q,(p) = b;/b}bj, (37)
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If ijll q;j(p) # 0, then D¢ is full rank.

Proof. See Appendix C of the extended version of this paper
in [23]. O

From this result, we can guarantee that D¢ is full rank as
long as we prevent any d; from becoming 0. We also need
to safeguard the algorithm against cases where ijl' qr = 0.
This condition is a vector generalization of the condition of
impedance loops not adding to zero in order to guarantee the
invertibility of the admittance matrix in transmission systems
(see [24]). We propose a simple step rejection procedure as
a safeguard; this is detailed in Appendix B of the extended
version of this paper in [23].

The Lagrangian Hessian, V%FL, may not be invertible, but
it is a very structured matrix. In Appendix A of the extended
version of this paper in [23], we show that Vf,pL, Vf,pqﬁ, and
V2, (4" ce) are symmetric and block tridiagonal, V5 (L — ¢ —
y' cg) is block diagonal (with block sizes 2(g + n) X 2(g + n)
for all matrices), and Vf,pL > 0. Invertibility and other issues
(like indefiniteness) can be easily corrected by leveraging the
block structure of V%,pL and its components, as shown in the
next subsection.

B. Newton Step Correction

To ensure that the Newton step in the primal variables, Ap,
yields a descent direction, we require Vf,pL to be positive
definite in the tangent space of the linearized constraints. The
simplest way to satisfy the condition is to modify Vf,pL to

make it positive definite. To this end, notice that

VL=V 6+V (L-¢) (38)

We already know that Vip(p > 0, so any source of indefinite-
ness must come from the Lagrangian terms of the constraints,
L—¢. We modify the Hessian by adding to it a diagonal matrix
S such that Vf,p(L - ¢)+S > 0. A strategy for selecting S
with low computational cost is discussed in Appendix Bl of
the extended version of this paper in [23]. The Newton step
with Hessian correction becomes

Ap V,L v:,L+S 0 DI Di Dj
As z—whos 0 T 0 0 I
JAv|=—-|  f(p) ., J'=| Dy o 0 0 0],
Ay ce D¢ 0 0 0 0
Az cr(p)+s Dz I 0 0 0

(39)

where § = 0O if it is determined that no correction is needed.
Otherwise, S is chosen as described in Appendix Bl of
the extended version of this paper in [23]. A procedure for
determining whether the Hessian needs correction or not is
discussed in a later subsection.

C. Newton Step Permutation

The Newton step computation requires solving the linear
system (35), which has size K(2g + 4n + 2|Z| + 1), so a
matrix factorization requires O(K>(n + |Z|)*) operations if the
matrix is dense. Fortunately, the Newton matrix J is sparse,
so the linear system can be solved much more quickly using a
sparse linear solver. The performance a sparse solver depends
on the amount of extra entries filled during the factorization

step, which in turn depends on the specific input matrix.
In particular, matrices with low bandwidth*usually generate
very little fill-in during factorization. As a consequence, some
sparse solvers employ techniques like the reverse Cuthill-
McKee (RCM) algorithm to generate a permuted matrix with
reduced bandwidth [25]. However, the minimum bandwidth
permutation of some sparse matrices may still be very large.
Even if there exists a low bandwidth permutation for the
matrix, techniques like RCM are heuristic in nature, so they are
not guaranteed to achieve a significant bandwidth reduction®.

We will show by construction that there exists a permutation
of the Newton matrix that makes it block tridiagonal, with
square blocks of size 2g +4n+2|Z|+ 1 and bandwidth at most
4g + 4n + 2|Z] + 1 (in particular, this means that the cost of
solving (35) scales linearly with K). To this end, we recall
that Dz, Dy, and Vip(L—gb— yTce) are block diagonal; on the
other hand D¢, V%p¢, and Vf,pyTCg are block tridiagonal. Let
I; denote the i X i identity matrix for any i € N. We define the
permutation matrix P as

P=[PIL,, Pi=[P;I, (402)
Pi1 = [Oixkg+an+zh» O1xii=1y> 1, O1xck—iy» O1xkizg s (40b)
Py = [Oo(gemyxii=1y2(g+m)> La(g+nys 02(g+mx(k—iy2(g+n)s

O2(g+mxk@Zi+2n+1)]» (40c)
Piz = [Ozpkigm» Ozixi-nizi» Lizis Oz -iyzis

Orzixk@n+iz11)]» (404d)
Pis = [O2nsck2g+2n41Z1)> 02nx(i=1y21> Lons Q2mcck—iyans

O2nxk(zi+ 1)) (40e)
Pis = [Oizixk2g+4n+iz+ 1) Oizixi-iz)» Dizps Oz —inzy]- - (406)

Next we define %; = diag(z; @ s;) for i = 1...,K and we split
the correction matrix S into blocks as

S
S = , S, eR¥MM =1, .. K. (41)
Sk
Hence, by direct computation, we obtain that
Dy, —(D; 1
prpt=|"P B )
- ' _q):inl
—DOrk-1 DPik

where @ ; and @, ; are square matrices of size 2g+4n+2|Z|+1,
defined as

0 Dyci(p) 0 0 0
Dlci(p) Vi,L+S; 0 DIf(p) DIgz(p)
q)l,i = 0 0 Z,‘ 0 I s
0 D, f(p) 0O 0 0
0 Dpgz(p)) 1 0 0

(43a)

4The bandwidth of a symmetric nXn matrix A is the smallest integer b > 0,
if it exists, such that (A);; =0 foralli=1,...,nand j=i+b+1,...,n If
b does not exist, then the bandwidth is n — 1.

5The bandwidth minimization problem for symmetric n X n matrices is
known to be NP-hard (see problem [GT40] in Appendix Al of [26]). It is
also NP-hard, for any € > 0, to approximate the minimum bandwidth to a
factor of 3/2 — € (see [27]).
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0 Dycii(p) 0 0 0
Dycii(p) V3, @+y’ce) 0 0 0
D= 0 0 0 0 0f, (43b)
0 0 000
0 0 000

fori=1...,Kand j=1...,K—1. Recall that neither c¢ nor
¢ depend on any x;, hence

Dy,cjni(p) = Ducin(p) 0], (44a)
V2 (@p+ylce) O
Vi.,»+lpf(¢+yrcg>=[ s ¢0 yee ol- (44b)
Therefore we can write @, ; as
0 Du_,-CjJrl(p) 0
Dy =D cini(p) Vi (@+yTce) Of, (45
0 0 0

for j = 1...,K — 1. From this representation it is clear that
the bandwidth of PJ’PT is at most 4g + 4n + 2|Z| + 1. Finally,
we use the fact that P~ = PT for any permutation matrix to
compute the Newton step by solving

V,,L Ap
—whos As
(PI'PYé=-P|  f(p) |, £=P|Av|. (406
ce Ay
cz(p)+s Az

Notice that P is constant across iterations, so it only needs to
be computed once.

The Jacobian structure illustrated by this permutation is very
amenable to parallelism. On one hand each @, ; has at most
6g non-zero entries, so they can be computed in O(g) time. On
the other hand, each of ®y;, V,, L, and cz(pi) can be computed
in parallel, so the cost of the Newton step scales linearly with
the number points divided by the number of parallel workers.

D. Newton Iteration Algorithm

Thus far, we have detailed a procedure for computing the
Newton step in an interior point iteration for solving (19).
However, a robust implementation must also incorporate safe-
guards for issues related to strong non-linearity, indefiniteness,
strict positivity of dual variables, and scale disparity between
primal and dual variables. We discuss these issues and their
solutions, including a procedure for determining if the Hessian
needs correction, in Appendix B of the extended version of
this paper in [23]. Once a complete Newton iteration for the
interior point method is implemented, we can solve the barrier
problem for a fixed barrier parameter u, as long as we are
provided an initial feasible path. Pseudo-code of the procedure
given an initial feasible path p is described in Appendix B4
of the extended version of this paper in [23].

IV. INITIAL FEASIBLE PATH GENERATION

The last missing part of the full algorithm is a procedure
for generating an initial feasible path. In the unconstrained
case, the straight line connecting uy to ug,; is a feasible
path (and, in fact, the shortest one). To include the effect of
constraints, we introduce a homotopy-like procedure: we start

with a relaxed version of the problem where the straight line
is feasible and then we solve increasingly tighter relaxations
until the original problem is recovered. A way to interpret
this procedure is to consider the constraints as continuously
pushing and deforming the straight line until a curved feasible
path is obtained. If the transition problem is infeasible (uq
and ug,; lie in different connected components of the feasible
region), then at some point of the homotopy some constraints
will try to cut the path to get each piece to a different
connected component. If the path’s corners are too close, such
a transformation of the path would violate the constant speed
constraint (19b) and the homotopy would fail (see Fig. 3).

We next formally describe the path generation procedure.
First, we notice that the power flow feasibility constraint
(gi»i € P, see (5)) is a special case as it is not differentiable
on its boundary. This means that there exists no differentiable
relaxation of it. Nevertheless, the power flow feasible region
(i.e., the set of power injections for which a power flow solu-
tion exists) is typically much larger than the OPF constraints’
feasible region, so we can thus assume that the straight line
(in the space of control variables) does not violate the power
flow feasibility constraint:

« Assumption 4: The straight line joining uy and ug.; is

contained in the power flow feasibility set Fy.

Under Assumption 4, we do not need to relax the power
flow feasibility constraint during the homotopy process. The
homotopy procedure for addressing the remaining constraints
is relatively simple. Assume that the user provides a path
spacing {f}&*! satisfying (12). Let p be the current candidate
path. At the start of the procedure, our candidate path will be
a straight line when projected to the space of control variables,
so it satisfies

u = uy + t(ug1 — up), k=0,...,K+1. “n

The corresponding x; are computed by solving the power flow
equations, that is

S, xp) = 0,

and the candidate path is formed by applying (18). Next
we compute the relaxation parameter S as the maximum
violation of any constraint across all path corners (excluding
the endpoints), multiplied by a margin g > 1:

B

k=0,...,K+1, (48)

= max (g;(p)). (49)

.....

The vector of relaxed constraints, gg 7, is defined for any j € 7
and any p; as
gi(pi)

(gﬁ,I(Pt)) ;= { gi(p) — kg,
for a constant margin kz > 1. Consequently, we also define

(D

jeP

else ’ (50)

cp1(p) = lgpz(POIL,-

Clearly the path p is contained in the relaxed feasible set
defined by g 7. More formally, this means that cgz(p) < 0.
If B < O for the straight line path, then no homotopy is
needed at all: the straight line is feasible and optimal. If
B > 0 we exploit the nature of the interior point solver to
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drive the path towards feasibility. If we choose kg close to
(but still greater than) 1, then the boundary of each violated
constraint’s relaxation will be very close to some corner of
p, and the interior path iteration will naturally push the path
towards the interior of the (relaxed) feasible region. By using
a large barrier parameter up;, we can obtain a new path that
will not be close to any boundary of the relaxed constraint
vector gg 7, allowing us to reduce the relaxation parameter (.
Thus, we just need to recompute S and repeat this process
until B is close enough to 0, indicating that the corner points
of the path satisfy the original (non-relaxed) constraints. If
this process stagnates for any reason (S stops decreasing), we
report failure under suspicion that a feasible path may not exist
(see Fig. 3).

Pseudo-code of the complete shortest path algorithm, in-
cluding the generation of a feasible path, is given by Algo-
rithm 1. We reuse the variables of each relaxation step as
a warm start for the next relaxation to reduce computation
time. Upon finding a feasible path, we compute the shortest
path by calling the interior point solver with a small barrier
parameter u. To determine if the algorithm is making enough
progress in decreasing 3, we consider its relative decrease,
0. If at any iteration g is not greater than the user-specified
tolerance €y, the algorithm assumes that 8 has stagnated and
reports failure. Conversely, if 63 > €0 we assume that enough
progress has been made, and we compute new relaxation steps.
In particular, this means that the interior point iteration does
not need to run until full convergence during the homotopy
process; the execution can be interrupted as soon as the new
B has decreased enough.

Some OPF cases have inequalities that are so close that
they roughly behave like equalities, making the feasible region
nearly a lower-dimensional manifold with no interior. In such
cases, the interior point algorithm may present convergence
difficulties or even fail completely. As a safeguard against
these issues, the last solver call uses the relaxed constraints
gp,z with a small relaxation parameter 8 = €.omp. This slightly
increases the size of the feasible region’s interior, so that the
solver has enough “space” in the feasible set to move the
candidate path towards the solution. As a consequence, if
0 < B < €&omp for the straight line, then the algorithm still
treats it as feasible and accepts the path.

V. NUMERICAL EXPERIMENTS

This section describes experiments performed to assess the
performance of the proposed algorithm. We provide a public
implementation of the algorithm, illustrative examples, and
experiments on power systems of different scales.

A. Implementation

We developed a Julia code that implements the shortest path
algorithm. The code is publicly available at the following page:
github.com/djturizo/Shortest-Path-OPF
All experiments were run using Julia 1.10 on a Windows 11
PC with 32GB of RAM and an AMD Ryzen™ PRO 7840U
CPU with 8 physical cores and 16 parallel threads. Unless
specified otherwise, we used the following parameters:

K=09, t = 0.05 - k, k=0,...,K+1,

Algorithm 1 Shortest Path Algorithm (Outer Loop)
1: procedure SHORTESTPATH(f, gz, {tc}ir) s Kg, iy Hios €ols

itermax, T, ¥» 1, V0, Kys €comp> Prmax)
2: compute u; from (47) and compute x; from (48)
3: compute p from (18) and compute 8 from (49)
4: if B < €omp then return p, 8
5: compute gg 7 from (50) and compute cz 7(p) from (51)
6: > default values for barrier problem vars: <
7: v<—0,y<—0,s<——cﬁ,1(p),z<—yf®s
8: while 8 > €.mp do
9: D, 8,0,Y,2 < call BARRIERSOLVE(f, ggz, P,
Mni, -..), but interrupt execution as soon as
max; j (g;(p1) < (1 - €a)B
10: assign B~ « 8 and compute S from (49)
1 5= B -PIB
12: if 03 < €01 and B > €omp then
13: . report failure and break
14: compute gg 7 from (50)
15: if B < €omp then
16: assign B < €omp and compute gg 7 from (50)
17: . D,5,0,Y,2 < BARRIERSOLVE(f, ggz, P> Hios - --)
18: | return p, 8
kg = 1.01, i = 0.05, o = 107,
6ol =107, iterpay = 100, 7 =0.99,
y=0.5, n=107"4 vo=107°,
Ky = 0.1, €comp = 107, 6 = 1072,
Pmax = 100.0.

The power flow equations were solved using the Newton-
Raphson method with a tolerance of 10~® and a limit of
20 iterations (see Step 2 of Algorithm 1). The shortest path
algorithm uses a network model with one generator per
node at most and rectangular coordinates for the voltage
phasors, in order to have quadratic power flow equations and
constraints (except for line flow constraints). Some test cases
have multiple generators in a single node, but it is possible
to compute a single equivalent generator. Angle difference
constraints can be written as quadratic inequalities whenever
the corresponding angle limit lies in the interval (—m/2,7/2)
(see [28]), which is often the case in practice.

During the execution of the experiments, we noticed that
evaluating the power flow feasibility constraint (5) took a sig-
nificant portion of the execution time, but it was never active.
This is consistent with the expectation that the boundary of
the power flow feasibility constraint is significantly larger than
that of all other constraints, so the feasible set ends up being
determined by the standard OPF constraints. This means that
the power flow feasibility constraint has no effect at all on the
results of the shortest path algorithm (and we confirmed this
on the experiments). We thus ignored this constraint in our
experiments to increase the execution speed of the algorithm.

B. Example: Two Variants of the 9-Bus Case

To illustrate how the algorithm works in different situations,
we next use the 9-bus OPF case of MATPOWER [29]. The
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system has three generators, at nodes 1 to 3, with node 1
being the slack node. The control variables are the voltage
magnitudes of the generators (V1, V5, V3) and the active power
of non-slack generators (Pgy, Pg3). We consider two vari-
ants of the 9-bus case obtained by modifying the system
parameters. The first one, called variant 1 from now on,
is modified to introduce an obstacle in the feasible region.
First we set the generator voltage magnitudes to be 1 p.u.
(Vi = Vo, = V3 = 1). The control vector in the subspace
is chosen as u = [Py, Pg3]7. We generate the obstacle by
setting the lower reactive power limit of the generator at bus
3 to —2 MVA (Qg3min = —0.02). For the endpoints we choose
up = [0.5,0.5]7 and u., = [1.5,1.3]7.

We executed the shortest path algorithm, obtaining the
results illustrated in Fig. 2. The feasible region is colored
in green, and the relaxations generated by the algorithm are
colored in red hues. Later iterations have smaller constraint
violations, which lead to tighter relaxations, represented with
darker shades of red. The shortest path is computed for
each relaxation. Paths corresponding to tighter relaxations are
colored with lighter shades of blue for contrast. The figures
shows the continuous deformation of the path as it moves away
from the boundary. After multiple iterations of this process, the
algorithm obtains a feasible path, and then the final iteration
tightens the candidate path while preserving feasibility.

We next consider another modification, called variant 2 from
now on, where no feasible path exists. For this variant we used
the 9-bus OPF case of MATPOWER [29], modified as in [10].
We also fix the generator voltage magnitudes to the following
p-u. values: V| = 0.920,V, = 0.935,V; = 0.943. The control
vector in the subspace is chosen as u = [Ps3, Pga]'. The
endpoints are chosen to be from different connected regions.
Namely, we chose uy = [0.12,0.16]7 and u,, = [1.57,0.24]7.

We executed the shortest path algorithm, obtaining the
results illustrated in Fig. 3. The figure shows how tighter
relaxations become narrower around the center in an attempt
to eventually break into two components. As a result, the
candidate path ends up “choked” in this narrow passage, which
attempts stretch the path, separating the corner points into two
distant clusters. Such a deformation would violate the constant
speed constraints that require the corner points to preserve the
relative distance between them. As a result, the algorithm is
unable to reduce the constraint violations any further, and it
appropriately reports failure to find a feasible path.

As a last experiment for this case, we modified the value
of wy, to observe its effect on the computation of the shortest
path from a given feasible path (Step 17 of Algorithm 1). For
this experiment, we consider the variant 1 of the 9-bus case
and we solve the shortest path problem for multiple values
of u, in the range [107'2,1072]. For each value of sy, we
compute the length of the shortest path found as the percentage
increase over the path length of the unconstrained solution
(i.e., the straight line joining the endpoints). As shown in
Fig. 4, the feasible path generated by the homotopy process
may be significantly larger than the shortest path, warranting
the last optimization process that is executed with a lower
barrier parameter. For small values of uj,, observe that the
solution does not change significantly.

Peylpou]

Pgylp.u ]

Fig. 2. Variant 1 of the 9-bus case. The straight line path is not feasible, but
the algorithm deforms the path to achieve feasibility.

"0.0 0.5 1.0 1.5
Py p-u]

Fig. 3. Variant 2 of the 9-bus case. The endpoints are disconnected, so the
algorithm fails to find a feasible path.

86.5 -

Extra path length [%]

855 I

—12

Fig. 4. Variant 1 of the 9-bus case. For smaller barrier parameters, the path
length decreases until stabilizing at the shortest path. However, very small
barrier parameters introduce numerical artifacts.
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C. Multiple scale OPF cases

For this experiment, we used multiple OPF benchmark test
cases from the Power Grid Library PGLib [30]. We selected
nine cases of different sizes, ranging from 14 to 118 buses.
Since these cases have high-dimensional feasible spaces that
are hard to visualize, selecting non-trivial endpoints (where
the straight line is not feasible) is not always straightforward.
We therefore follow the heuristic presented in [14]: namely,
we selected the endpoints as the solution of the minimum
loss problem and the OPF solution. For each test case, we
computed the maximum constraint violation (relaxed with
parameter €omp) Over the path points in the starting straight
line (before running the algorithm, in the column called “Max.
con. before”) and over the final path resulting from running the
algorithm (in the column called “Max. con. after”), ignoring
the endpoints (because they are fixed and not modified by the
algorithm). If the maximum constraint violation after running
the algorithm is negative, then the final path found is feasible
and the algorithm has thus identified a shortest path (in a local
sense, at least).

We also computed solution and objective function metrics as
follows: let p() be the piece-wise linear shortest path approx-
imation (as defined in (11)) resulting from the algorithm, and
let L(¢) be the straight line path associated with the endpoints.
With both p and L parameterized by arclength, we computed
the relative difference between the paths as

NGRSO »
o IL@lide

Similarly, we computed the relative objective function in-
crease, or gap, with respect to the value at the straight line:

1 1
dt — L(1)||d
IA ||p(r>||1r o 1L .
o L@\t

The results are reported in Table I. The algorithm succeeded
in finding a locally shortest path on all test cases In particular,
our method found the shortest path for the 57-bus, 89-bus, 162-
bus, 200-bus, 240-bus and 300-bus cases, where the approach
of [14] failed to generate a feasible path (in the sense that this
approach could not drive the optimality gap with respect to
the OPF solution endpoint to a margin below 1%, or diverged
entirely). We also remark that the paths found by our method
are composed of 10 linear pieces, regardless of the system size.
This is by design, as we chose K =9 for the experiments. In
contrast, the feasible paths generated by [15] have linear pieces
equal to the number of controlled variables, which means the
amount of control actions increases with the system size. For
example, for case 300 the approach of [15] generates a feasible
path with 189 linear pieces, whereas our approach generates a
feasible path 10 linear pieces, with the possibility of producing
paths with more or less linear pieces if desired.

In many test cases the straight line is slightly infeasible,
and as a result only small deformations are required to obtain
a feasible path. One notable exception being the 60-bus case
where the straight line has violations as large as is 2.22 p.u.,
but even in that case the difference between the shortest path
and the straight line path is around ~1%. In the 14- and

path-diff% = 00%.

obj-fun-gap% =

30-bus cases, the straight line is feasible, so the algorithm
immediately accepts the straight line without performing the
homotopy process or the final optimization step. These results
suggest that the OPF feasible regions of practical cases are
often “almost” convex, in the sense that if a straight line
joining two feasible points is not feasible, usually a small
modification of the path is all it takes to recover feasibility.
We note that Variant 1 of case 9 is not a typical test case,
as it has been modified to introduce a large obstacle between
the endpoints. Consequently, the shortest path for that case is
much larger than the straight line path.

We also executed the algorithm on eight test cases selected
from [11], which were crafted specifically to be challenging
for OPF solvers. The results for this second batch of test cases
are shown in Table II. As expected, these test cases proved to
be more challenging, as in one of the eight presented cases the
algorithm failed to find a feasible path. We remark that it is
possible that the endpoints of those cases are not connected,
but the algorithm may also fail even if a feasible path exists
(after all, this is a non-convex optimization problem). For the
seven remaining cases the straight line was already feasible in
two of them, and for the other five the algorithm succeeded in
generating a locally shortest path. We observed that the relative
path differences are usually larger than in the PGLib test cases,
and we suspect this tendency is due to more pronounced non-
convexities resulting from the fact that these test cases have
been engineered to challenge OPF solvers.

D. Tests on the number of control actions

As we mentioned in the introduction, each linear segment of
the path represents a single control action, and so the number
of linear segments is equal to the number of control actions.
While it is desirable for the operator to use a path with few
control actions, this increases the risk of violations during the
transition. Thus, there is a trade-off between simplicity and
feasibility that must be considered when choosing the number
of control actions. To study this phenomenon, we performed
an experiment where we executed the shortest path algorithm
on some text cases while varying the number linear segments
(K + 1) geometrically from 2 to 128. The breakpoints were
spaced uniformly for all cases. The results of this experiment
are shown in Table III.

From the results, we see that the outcome of whether the
algorithm finds a feasible path or not remains consistent for
each test case, regardless of the number of segments. This
suggests that our method could be reliably used as an oracle
for the likelihood of the existence of a feasible path between
the endpoints. Another observation is that the path length
increases with K for all test cases. This is to be expected:
as we increase the number of segments, the piecewise linear
path becomes a better approximation of the continuous shortest
path. Table III also reports the number of iterations required
for the algorithm to reach a decision. In particular, apart from
Variant 1 of the 9-bus case, there is a trend where increasing
K leads to an increasing on the number of iterations. This
means that, while the cost per iteration scales linearly with K,
the total execution cost will scale superlinearly. This result
also suggests that the optimization problem becomes more
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challenging as K increases. While we used uniform breakpoint
spacing for this experiment, it is possible to implement better
informed methodologies for breakpoint spacing. An adaptive
spacing technique could possibly allocate more breakpoints to
sections of the feasible path close to strong non-convexities of
the boundary, while using less breakpoints in section of the
path far from the boundary. Development of such techniques
is left for future work.

VI. CONCLUSIONS

In this paper, we developed an algorithm for computing
a discretized feasible path from an initial feasible operating
point to an optimal one (or between any two feasible points
in general), such that the amplitude of the control actions
required to transition from one point to another is minimized.
Minimization of control action amplitude is equivalent to min-
imizing the transition path length, which leads to a discretized
shortest path optimization problem. The path is represented
as a sequence of intermediate feasible points, the number and
relative spacing of which can be specified a priori. The algo-
rithm computes the intermediate points by solving a nonlinear
optimization problem via a specialized interior point method,
provided an initial feasible path is given. By leveraging the
nature of barrier functions in interior point methods, an initial
feasible path is found by solving a sequence of relaxed, but
increasingly tighter relaxations of the shortest path problem,
where in the initial relaxation the straight line joining the
endpoints is feasible. The resulting sequence of shortest paths
converges to a feasible path of the original problem in a finite
number of iterations. The interior point solver for the algorithm
was modified to exploit the sparse block tridiagonal structure
of the shortest path problem. Multiple numerical experiments
show that the proposed algorithm is can effectively compute
a shortest path for a specified number of intermediate points.

The algorithm we developed tackles the issues of the num-
ber and amplitude of control actions in the problem of transi-
tioning between operating points. One issue not considered in
this work is feasibility of the path in the continuous sense.
While our algorithm provides a sequence of intermediate
points that are guaranteed to be feasible, the lines joining them
may cross the boundary of the feasible set. Possible avenues
of future work are extending the current algorithm with a
methodology to provide mathematical guarantees that the line
pieces comprising the discrete path are entirely contained in
the feasible set and the development of adaptive, non-uniform
breakpoint spacing strategies.
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TABLE I
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM ON PGLIB TEST CASES

Test case n g Max. con. | Exec. Found Max. con. Path | Ob;j. fun.

before [p.u.] | time [s] | path? after [p.u.] diff. gap
case9 (Variant 1) 9 2 2.79E-2 0.2 Yes -6.26E-7 85.3% 34.4%
casel4_ieee 14 5 -9.94E-7 0.0 Yes -9.94E-7 0.00% 0.00%
case24_ieee_rts 24 11 9.92E-4 4.7 Yes -1.00E-6 2.13% 0.03%
case30_ieee 30 6 -9.92E-7 0.0 Yes -9.92E-7 0.00% 0.00%
case39_epri 39 10 9.66E-2 0.5 Yes -2.97E-3 2.86% 0.06%
caseS7_ieee 57 7 2.50E-3 0.5 Yes -9.99E-7 1.53% 0.02%
case60_c 60 23 2.22E+0 3.6 Yes -1.00E-6 2.98% 0.06%
case73_ieee_rts 73 33 9.59E-4 1.6 Yes -1.00E-6 3.62% 0.10%
case89_pegase 89 12 2.27E-2 | 2.9 Yes -8.59E-4 1.52% 0.02%
casel 18_ieee 118 54 2.42E-2 3.4 Yes -1.00E-6 3.64% 0.09%
casel62_ieee_dtc 162 12 1.36E-4 3.6 Yes -3.63E-5 1.75% 0.02%
case200_activ 200 38 2.20E-2 5.0 Yes -1.00E-6 3.82% 0.10%
case24(_pserc 240 53 6.00E-1 168.4 Yes -1.46E-3 3.02% 0.06%
case300_ieee 300 69 5.93E-2 44.0 Yes -1.00E-6 3.64% 0.10%
case500_goc 500 | 113 1.29E-1 | 69.7 Yes -1.35E-4 | 7.47% 0.40%

“Max. con. before”: Maximum constraint violation over the path points in the starting straight line (before running the algorithm).
“Max. con. after”: Maximum constraint violation for the final path resulting from running the algorithm.

TABLE II
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM ON THE TEST CASES OF [11]
Test case n g Max. con. | Exec. Found Max. con. Path | Ob;j. fun.
before [p.u.] | time [s] | path? after [p.u.] diff. gap
nmwc3acyclic_connected_feasible_space 3 2 -1.85E-2 0.0 Yes -1.85E-2 0.00% 0.00%
nmwec3acyclic_disconnected_feasible_space 3 2 1.96E-5 | 4.3 Yes -3.65E-5 | 0.72% 0.01%
nmwc3cyclic 3 2 9.28E-3 | 0.0 No 3.18E-3 - -
nmwc4 4 2 -2.12E-4 0.0 Yes -2.12E-4 0.00% 0.00%
nmwcS 5 2 2.34E-2 0.0 Yes -1.46E-3 2.57% 0.05%
nmwcl4 14 5 9.26E-4 0.1 Yes -2.31E-5 4.00% 0.11%
nmwc24 24 11 3.71E-3 0.3 Yes -9.92E-7 2.41% 0.04%
nmwc57 57 7 2.90E-3 0.7 Yes -3.75E-5 5.76% 0.23%
TABLE III
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM WITH DIFFERING NUMBERS OF BREAKPOINTS FOR SELECTED TEST CASES

Test case K | # iter. Max. con. | Exec. Found Max. con. Path | Obj. fun.

before [p.u.] | time [s] | path? after [p.u.] diff. gap

1 54 2.79E-2 0.6 Yes -3.91E-7 73.6% 24.2%

3 48 2.79E-2 0.5 Yes -4.64E-7 80.7% 31.6%

case9 (Variant 1) 7 44 2.79E-2 0.6 Yes -5.15E-7 84.9% 34.2%

15 24 2.79E-2 0.9 Yes -9.46E-7 85.7% 34.7%

31 15 2.79E-2 2.1 Yes -1.82E-6 85.9% 34.8%

63 12 2.79E-2 3.1 Yes -1.08E-6 86.0% 34.9%

127 13 2.79E-2 8.1 Yes =7.22E-6 86.0% 34.9%

1 7 2.50E-3 0.1 Yes -9.64E-7 1.11% 0.01%

3 8 2.50E-3 0.2 Yes -9.50E-7 1.60% 0.02%

caseST icee 7 8 2.50E-3 [ 0.3 Yes -9.99E-7 1.35% 0.01%

- 15 9 2.50E-3 0.8 Yes -1.00E-6 1.17% 0.01%

31 12 2.50E-3 2.0 Yes -1.00E-6 1.30% 0.01%

63 13 2.50E-3 5.0 Yes -1.00E-6 1.77% 0.02%

127 14 2.50E-3 13.4 Yes -1.00E-6 2.47% 0.05%

1 8 9.28E-3 0.0 No 3.18E-3 - -

3 8 9.28E-3 0.0 No 3.18E-3 - -

nmwe3cyclic 7 8 9.28E-3 0.0 No 3.18E-3 - -

15 8 9.28E-3 0.0 No 3.18E-3 - -

31 9 9.28E-3 0.1 No 3.18E-3 - -

63 9 9.29E-3 0.2 No 3.19E-3 - -

127 106 9.29E-3 8.7 No 3.19E-3 - -

1 9 2.90E-3 0.1 Yes -1.02E-5 5.31% 0.14%

3 11 2.90E-3 0.2 Yes -1.45E-5 5.40% 0.19%

nmwes7 7 14 2.90E-3 0.5 Yes -3.25E-5 5.59% 0.21%

15 15 2.90E-3 1.0 Yes -2.80E-5 5.91% 0.25%

31 21 2.90E-3 2.9 Yes -1.76E-5 6.49% 0.30%

63 35 2.90E-3 10.7 Yes -8.60E-6 7.66% 0.43%

127 31 2.90E-3 23.8 Yes -4 .55E-6 9.08% 0.60%

[30] IEEE PES Task Force on Benchmarks for Validation of Emerging Power
System Algorithms, “The Power Grid Library for Benchmarking AC
Optimal Power Flow Algorithms,” arXiv:1908.02788v2, Jan. 2021.
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