
1

Discrete Shortest Paths in Optimal

Power Flow Feasible Regions
Daniel Turizo, Member, IEEE, Diego Cifuentes, Anton Leykin, and Daniel K. Molzahn, Senior Member, IEEE

Abstract—Optimal power flow (OPF) is a critical optimization
problem for power systems to operate at points where cost
or other operational objectives are optimized. Due to the non-
convexity of the set of feasible OPF operating points, it is non-
trivial to transition the power system from its current operating
point to the optimal one without violating constraints. On top of
that, practical considerations dictate that the transition should
be achieved using a small number of small-magnitude control
actions. To solve this problem, this paper proposes an algorithm
for computing a transition path by framing it as a shortest path
problem. This problem is formulated in terms of a discretized
piece-wise linear path, where the number of pieces is fixed a priori
in order to limit the number of control actions. This formulation
yields a nonlinear optimization problem (NLP) with a sparse
block tridiagonal structure, which we leverage by utilizing a
specialized interior point method. An initial feasible path for our
method is generated by solving a sequence of relaxations which
are then tightened in a homotopy-like procedure. Numerical
experiments illustrate the effectiveness of the algorithm.

Index Terms—Optimal power flow, shortest path, nonlinear
optimization, interior point method

I. INTRODUCTION

THE optimal power flow (OPF) is arguably the most

important problem in steady state power system oper-

ation. OPF is an optimization problem that seeks to minimize

an objective (usually operation cost) subject to the power

flow equations governing the power system behavior and the

engineering and technical constraints associated with physical

operation of the system and its components [1]. A complete

formulation of the OPF problem, called Alternating Current

OPF (ACOPF), is a nonconvex problem with nonlinear equal-

ity constraints and hundreds to thousands of variables.

The optimal operating point from an ACOPF solution

provides values for the variables associated with controllable

resources. Short-term planners and real-time system operators

must determine how to transition the system from the current

operating point to the optimal point. The control variables

may be manipulated physically by, for example, controlling a

floodgate in a hydro plant or the boiler in a thermal plant. As

such, the transition process between values of the controllable

variables must be performed in terms of a sequence of few

simple control actions, as the physical implementation limits

the complexity of the execution. Furthermore, the transition

Daniel Turizo and Daniel K. Molzahn are with the School of
Electrical and Computer Engineering, Georgia Institute of Technology,
{djturizo,molzahn}@gatech.edu. Support from NSF contract #2023140.

Diego Cifuentes is with the H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of Technology, dfc3@gatech.edu.

Anton Leykin is with the School of Mathematics, Georgia Institute of Tech-
nology, leykin@math.gatech.edu. Support from NSF DMS award #2001267.

between operating points should respect the system constraints

in the same way that the optimal solution does.

The problem of state transitioning in terms of few sim-

ple actions is not trivial, but some approaches have been

explored in the literature. Some authors have used linear

OPF approximations to tractably generate the transition as

a sequence of corrective actions involving a small subset of

the controllable variables. References [2] and [3] construct a

mixed-integer linear program (MILP) as an approximation to

the ACOPF, while also adding hard constraints on the num-

ber of controllable variables modified. Reference [4] applies

sparse techniques based on high-dimensional statistics to the

DCOPF formulation to generate sparse solutions with respect

to a base state. These approaches, while tractable, rely on

linear approximations to the original problem, so they do not

guarantee that constraints are not violated during the transition.

Moreover, these linear approximations improve tractability at

the expense of ignoring the non-convex and possibly non-

connected geometry of the feasible space [5]–[11]. In light of

these drawbacks, [12] and [13] extend previous formulations

to consider the full ACOPF, obtaining a mixed-integer nonlin-

ear program (MINLP). These papers approximate the binary

constraints in the MINLP using barrier functions, obtaining a

continuous nonlinear program (NLP). This new approximation

represents the original feasible set more accurately, yet still

does not guarantee feasibility during the transition.

The issue of guaranteeing feasibility during the transition

process has been tackled by recent work in [14] and [15].

Reference [14] proposes a method for iteratively generating a

sequence of convex restrictions (i.e., convex inner approxima-

tions) for the ACOPF feasible set. The sequence of sets are

pairwise connected, and at some point the method generates a

convex restriction containing the optimal operating point. The

output of the method is a finite sequence sequence of operating

points which define a piece-wise linear path connecting the

current operating point and the optimal operating point. This

path is guaranteed to be feasible, as it is contained in a chain

of connected convex restrictions containing both operating

points. Reference [15] proposes an algorithm for iteratively

generating a sequence of feasible operating points using sen-

sitivity information and a Newton iteration. The transition

is constructed using each point in the sequence. The main

drawback of approaches like those of [14] and [15] is that there

is no control over the number of intermediate operating points

generated during the iteration process. That is, while these

methods output a finite sequence of intermediate transition

points, the length of the sequence can be arbitrarily large.

An important issue that, to the authors knowledge, has not

been studied in the literature regards the amplitude, that is, the

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

2

size of of the change each variable undertakes during a control

action (or equivalently, the distance between states before and

after the control action takes place). Even if the transition

can be done using a few control actions involving a small

number of variables, large amplitudes for these actions can

be detrimental. For example, large amplitude control actions

in battery energy storage systems can increase the depth-of-

discharge, thus increasing battery degradation [16]. Ideally,

the best transition path would be the straight line joining the

current and optimal operating points since this path represents

a single control action with the minimal possible amplitude. If

the constraints are violated by the straight line, the transition

path should be modified to avoid constraint violations, thus

increasing the number and amplitude of control actions.

This paper addresses two of the issues of operating point

transitioning: the number and amplitude of control actions. We

formulate the problem of minimizing the amplitude of control

actions as a shortest path problem that seeks to minimize the

length of the path joining the current and optimal operating

points inside the feasible space. To this end, we propose an

algorithm that computes a piece-wise linear approximation of

this shortest path as a discretized path defined in terms of a

chosen number of intermediate operating points. We formulate

the shortest path problem as an NLP where the objective

function is the path length and the optimization variables are

the coordinates of the intermediate operating points, subject

to the ACOPF constraints. The NLP is solved using a feasible

interior point method coupled with an homotopy procedure

to generate an initial feasible path. When the interior point

method is applied to our formulation, the matrices involved

show a sparse block tridiagonal structure. We show how to

exploit this structure to reduce the interior point method’s

computation time, so that each iteration scales linearly with

the number of intermediate operating points. We thus obtain a

scalable algorithm that minimizes the amplitude of control ac-

tions and enables specifying the number of intermediate points.

Numerical experiments on multiple test cases of varying sizes

show the algorithm’s effectiveness in finding a discretized

shortest path for a specific number of points.

To summarize, the main contributions of our paper are:

• A formulation of the transitioning problem by casting it

into a shortest path problem constrained to the ACOPF

feasible region. The shortest path formulation has the

advantage of minimizing the amplitude of control ac-

tions. Moreover, this formulation discretizes the transition

path into a finite, pre-specified number of linear pieces.

Accordingly, the best transition path using exactly the

desired number of control actions is obtained by solving

our formulation.

• An interior point method with sparse block tridiagonal

structure for solving the shortest path problem. The

method includes a homotopy procedure for generating an

initial feasible path, so no path data beyond the endpoints

needs to be provided.

• Experiments with multiple test cases of different scales.

These experiments show the method’s effectiveness.

The rest of the paper is organized as follows. Section II

describes the formulation of the ACOPF problem and the

corresponding shortest path problem. Section III elaborates

on the implementation of a feasible interior point method that

leverages the special structure of the shortest path problem.

Section IV provides a description of the complete algorithm,

including a homotopy procedure for generating an initial

feasible path required to execute the interior point algorithm.

Section V illustrates the numerical experiments we performed.

Section VI discusses conclusions and future work.

II. SHORTEST PATH OPF PROBLEM FORMULATION

We consider an arbitrary power system with two different

operating points of interest. We wish to connect these points

through a continuous path such that every point in the path

is a feasible operating condition with respect to the OPF

constraints. For a power system with n buses, let x ∈ R2n

denote the real and imaginary parts of the voltage phasors for

all buses, i.e., the state vector of the power system. Let u ∈ R2g

denote the vector of controlled variables1, where g f n is the

number of generators. In particular, we denote the points we

want to connect by u0 and u∞ , u0. The relationship between

x and u is given by the power flow equations:

f (x, u) = [f1(x, u), · · · , f2n(x, u)]T
= 0 ∈ R2n,

fk(x, u) =















1
2

xT Hk x + rT
k

x + ck − uk, k f 2g,
1
2

xT Hk x + rT
k

x + ck, k > 2g

(1)

for appropriate symmetric matrices Hk ∈ R
2n×2n (which corre-

spond to the Yk matrices in [17]) and vectors rk ∈ R
2n. The

matrices Hk are highly structured: each can be written as a sum

of a matrix with at most two non-zero rows and its transpose,

and thus each Hk has rank at most 4.

The OPF feasible set consists of all pairs (u, x) satisfying

the power flow equations and the OPF constraints gi and hi

(like voltage limits, line flow limits, etc.):

gi(u) f 0, i ∈ U , (2a)

hi(x) f 0, i ∈ X , (2b)

for appropriate disjoint index sets U ,X . We assume that all

OPF constraints inequalities depend on either u (i ∈ U) or x

(i ∈ X), but not both.2 The vector x corresponds to the state

vector associated with u that satisfies (1). The existence of such

x is not trivial, for some values u there exists multiple solutions

or possibly none [18]. From the implicit function theorem [19],

we can specify a branch of the mapping to define a continuous

and injective function φ from u to x in a neighborhood of u, as

long as the Jacobian of (1) with respect to x is non-singular in

said neighborhood (see Fig. 1). We can use this information to

restrict ourselves to a single branch of the mapping. Consider

the pair (u0, x0) where u0 is the starting operating point and x0

is the solution of (1) associated with u0 for the branch we are

interested in. Let J(x) = ∂ f (x, u)/∂x denote the Jacobian of

the power flow equations with respect to the state vector x (the

Jacobian with respect to x is independent of u). If we assume

1Usually the controlled variables of OPF problem are the voltage magnitude
and active power outputs of each generator. Other type of controlled variables
are valid, as long as they fit within the proposed framework.

2In the standard OPF problem the entries of u are the generator voltage
magnitudes and active power of PV buses. As such, gU contains the voltage
limits of generator buses and the active power limits of PV buses. On the
other hand, gX contains the voltage and active power limits of remaining
buses, reactive power limits, line flow limits, and angle difference constraints.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

3

u

u0

x

x0

f(u) ≤ 0
f(ϕ−1(x)) ≤ 0

g(ϕ(u)) ≤ 0
g(x) ≤ 0

x = ϕ(u)

u = ϕ−1(x)

Fig. 1. Variables u and x in a neighborhood of u0 and x0 are related by the
power flow mapping φ. Feasible sets generated by inequalities in x can be
mapped back to feasible sets in u and vice-versa. As the power flow mapping
φ is nonlinear, the geometry of the mapped feasible sets will be altered.

that J(x0) is non-singular, then there exists a continuous and

injective function φ(u) defined by the branch of (1) satisfying

φ(u0) = x0. We impose the additional constraint u ∈ F0 where

F0 is defined as

F0 =

{

u ∈ R2g : J(φ(u)) is not singular
}

, (3a)

F0 =

{

u ∈ R2g : −| det J(φ(u))| < 0
}

. (3b)

To use this formulation, we require some assumptions:

• Assumption 1: The Jacobian J(x0) is non-singular.

• Assumption 2: The function φ(u) can be computed.

• Assumption 3: Both u0 and u∞ belong to the same

connected component of F0.

In particular, u0 and u∞ may be in different connected com-

ponents if their associated states x0 and x∞ belong to different

branches of (1). Under the previous assumptions, we can

define the functions gi for all i ∈ X as

gi(u) = hi(φ(u)). (4)

so that all constraints depend only on u. The power flow

feasible set constraint u ∈ F0 can be written analytically as

gi(u) = −| det J(φ(u))|, i ∈ P , (5)

for some singleton index set P disjoint from U ,X . Define

I = U ∪ X ∪ P . The interior of the power flow feasible set

(gi, i ∈ P) and the OPF constraints’ feasible set (gi, i ∈ U ∪X)

is given by all points u ∈ R2g such that

gi(u) < 0, i ∈ I. (6)

For interior point methods, the distinction between < and f is

inconsequential, as the numerical solution always lies in the

interior of the feasible set.

A. Optimal Control Problem

Finding a path between two points in a set is a classical

optimal control problem. If we seek the shortest path, we

then obtain an optimization problem. We define a continuation

parameter t ∈ [0, 1] and the decision vector u(t) ∈ C[0, 1],

where C[0, 1] denotes the set of continuous functions defined

on the interval [0, 1]. The shortest path problem is

infu

∫ 1

0

(

u′T (t)u′(t)
)1/2

dt

s.t. u(0) = u0, u(1) = u∞,
gi(u(t)) < 0, ∀ t ∈ [0, 1], i ∈ I.

(7)

We note that the problem formulation models OPF constraints,

but neglects the device dynamics involved during the transi-

tioning process. This approximation is justified by the fact

that typical power system dynamics are very fast relative to

the state transitioning process. Also, this approximation is

standard, as it is also adopted in previous work on related

problems [2]–[4], [12]–[15].

The problem described in (7) is a calculus of variations

optimization with constraints. The objective function may not

be differentiable at some points (due to the square root).

Moreover, problem (7) is naturally ill-defined, as even in the

unconstrained case there are infinite gradient maps that yield a

straight line between u0 and u∞. These issues can be avoided

by requiring the gradient map to have constant norm (constant

“speed” of transition along the path), which also simplifies the

objective function. To illustrate this, assume that the path has

constant norm, i.e. ∥u′(t)∥ = · > 0 for all t ∈ [0, 1], then the

objective function becomes
∫ 1

0

(

u′T (t)u′(t)
)1/2

dt =

∫ 1

0

∥u′(t)∥dt =

∫ 1

0

·dt = ·, (8)

so · not only denotes the “speed” of a particle traversing the

path but also the “time” it takes for the particle to go from u0

to u∞. This formulation yields the following eikonal equation

problem in terms of the arclength · (see [20], [21]):

infu,· ·
s.t. u(0) = u0, u(1) = u∞,

∥u′(t)∥ = ·, ∀ t ∈ [0, 1],
gi(u(t)) < 0, i ∈ I.

(9)

Any numerical approach to solving this problem must honor

the feasible set constraints in (6), as there does not exist a state

vector x associated with any u < F0. Also, there is no trivial

feasible starting path available in general. To circumvent this

issue, we next propose a discretized version of the problem.

B. Piece-wise Linear Path Approximation

We restrict the search space from C[0, 1] to the space of

piece-wise linear paths PL[0, 1].3 More specifically, we will

consider the space of piece-wise linear paths with K+1 pieces,

PLK+1[0, 1]. Let the characteristic (sometimes called indicator)

function ÇE(t) be defined as

ÇE(t) =

{

1 t ∈ E,
0 t < E.

(10)

We consider a piece-wise linear path u(t) ∈ PLK+1[0, 1] defined

by K + 2 points {uk}
K+1
k=0

and parameters {tk}
K+1
k=0

:

u(t) = u0Ç{0}(t) +
∑K+1

k=1 ck(t)Ç(tk−1,tk](t),
with ck(t) = uk−1 + (uk − uk−1) t−tk−1

tk−tk−1
.

(11)

The parameter values tk satisfy

t0 = 0 < t1 < · · · < tK < tK+1 = 1. (12)

Additionally, we require that uK+1 = u∞, as the path endpoints

must match the desired endpoints. For convenience, from now

on we shall write uK+1 and u∞ interchangeably. We want to

3Note that PL[0, 1] is dense in C[0, 1] with respect to the uniform norm, as
the Schauder system of C[0,1] is composed of piece-wise linear functions [22].

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

4

compute the path p(t) that minimizes the objective function.

Note that, for fixed values {tk}
K+1
k=0

, u(t) ∈ PLK+1[0, 1] can be

identified with {uk}
K+1
k=0

. Thus, the control problem reduces to

computing the points {uk}
K
k=1

that minimize the objective (recall

that u0 and uK+1 are the path endpoints, and thus they are

known):

infu1,··· ,uK ,· ·
s.t. ∥u′(t)∥ = ·, ∀ t ∈ [0, 1],

gi(u(t)) < 0, i ∈ I.
(13)

We concatenate the points {uk}
K
k=1

into a single vector u⃗ =

[uT
1
, · · · , uT

K
]T ∈ R2gK . Replacing (11) in (13) yields

inf
u⃗,·

·

s.t. ck(u⃗, t) = uk−1 + (uk − uk−1)
t − tk−1

tk − tk−1

,

∥c′k(u⃗, Ä)∥ = ·, ∀Ä ∈ (tk−1, tk] ,

g j(ck(u⃗, Ä)) < 0, j ∈ I,

∀ t ∈ [0, 1], k = 1, . . . ,K + 1. (14)

The optimization problem is now finite dimensional, yet the

constraints are still infinite dimensional. For the purpose of

tractability, we will relax the constraints by only enforcing

them at the corner points uk. This means that the path may

violate constraints in between corner points. However, if

needed, we can add more discretization points to mitigate

this issue. As each piece of the path is linear, the infinite-

dimensional constant speed constraint is equivalent to the finite

dimensional constraint that enforces the slopes of each piece of

the path to be equal in norm. Also note that the constant speed

constraint implies that · g 0, so minimizing · is equivalent to

minimizing ·2. These changes yield the following problem:

inf
u⃗,·

·2

s.t.
∥uk − uk−1∥

tk − tk−1

= ·, k = 1, . . . ,K + 1,

g j(ui) < 0, j ∈ I. (15)

The norm constraints are nonlinear inequalities, and hence

are non-convex. Any solution method for this problem should

be able to at least converge to a local optimum, even in the

presence of non-convexities. To this end, we will reformulate

the problem in a way that is advantageous for the numerical

method we will use. Define the constants

wk =
1

(tk − tk−1)2∥uK+1 − u0∥
2
> 0, (16)

for k = 1, . . . ,K + 1. Then (15) is equivalent to

inf
u⃗

1

K + 1

K+1
∑

k=1

wk∥uk − uk−1∥
2

s.t. wi+1∥ui+1 − ui∥
2
= wi∥ui − ui−1∥

2, i = 1, . . . ,K,

g j(ui) < 0, j ∈ I. (17)

In this formulation, the Hessian of the objective function is

positive definite, which will prove useful for the interior point

iteration described in the next section.

III. LOG-BARRIER NEWTON METHOD IMPLEMENTATION

The discretized shortest path problem in (19) has a tridia-

gonal structure which is not leveraged by standard interior

point solvers. For this reason, we developed a specialized

interior point implementation that makes use of the problem

structure to reduce the computational complexity of solving

the problem. This section is dedicated to explaining in detail

the core iterative process behind this specialized solver.

A. Interior Point Iteration

The shortest path problem has a parallel structure since

the constraints do not depend on the full decision vector u⃗,

but only on their associated point ui. The only source of

coupling between points comes from the objective and the

equality constraints, which both have simple block-tridiagonal

structures that can be exploited by a specialized interior point

iteration. To reduce the computation time even further, we

will use an extended formulation of the optimization problem

including the system state xi associated with each control

vector ui via the power flow equations. Specifically, we define

p = [pT
1 , · · · , p

T
K]T , pi = [uT

i , x
T
i]T , i = 1, . . . ,K. (18)

Now we write the optimization problem as

inf
p

1

K + 1

K+1
∑

k=1

wk∥uk − uk−1∥
2 (19a)

s.t. wi+1∥ui+1 − ui∥
2
= wi∥ui − ui−1∥

2, i = 1, . . . ,K, (19b)

f (ui, xi) = 0, (19c)

g j(pi) < 0, j ∈ I. (19d)

This formulation is larger in terms of variables and has

more equality constraints due to the power flow equations.

However, the OPF constraints written in terms of ui and xi

have extremely sparse formulations.

The log-barrier formulation that is central to the interior

point method embeds the inequality constraints into the ob-

jective and then numerically solves the first-order Karush-

Kuhn-Tucker (KKT) equations. We define the index set E =

{1, . . . ,K} and the functions ci as

ci(p) = wi∥ui − ui−1∥
2 − wi+1∥ui+1 − ui∥

2, i ∈ E . (20)

We also define the objective as

ϕ(p) =
1

K + 1

K+1
∑

k=1

wk∥uk − uk−1∥
2. (21)

Define f (pi) = f (ui, xi), so we can reformulate (19) using a

barrier parameter µ > 0 as

inf
p,s
ϕ(p) − µ

K
∑

i=1

∑

j∈I

ln[(s)|I |(i−1)+ j]

s.t. f (pi) = 0, i = 1, . . . ,K,

c j(p) = 0, j ∈ E ,

g j(pi) + (s)|I |(i−1)+ j = 0, j ∈ I, (22)

where s is a vector of size K|I | and (s)k denotes the k-th

entry of s. Note that this formulation is only equivalent to

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

5

(19) when all the entries of s are strictly positive. However,

such constraints are unnecessary, as the logarithmic terms act

as a barrier preventing the entries of s from becoming non-

positive. Define gI(pi) as the vector of inequality constraints

(evaluated at a particular point on the path), cE (p) as the vector

of equality constraints, and let Dp be the Jacobian operator

(with respect to p). Let v ∈ R2nK , y ∈ R|E |, and z ∈ RK|I | be

vectors of Lagrange multipliers of the power flow, equality,

and inequality constraints, respectively. Specifically, we write

vT = [vT1 , . . . , v
T
K], zT

= [zT
1 , . . . , z

T
K], (23)

where vi ∈ R
2n and zi ∈ R

|I | are the vectors of Largrange mul-

tipliers associated with power flow and inequality constraints

evaluated at pi, for i = 1, . . . ,K. The stationarity condition,

split for the derivatives with respect to p and s, is

0 = ∇pϕ(p) +

K
∑

i=1

[Dpi
f (pi)]

T vi + [DpcE (p)]Ty

+

K
∑

i=1

[Dpi
gI(pi)]

T zi, (24a)

0 = −(µ1⃗) º s + z, (24b)

where º denotes element-wise division, 1⃗ is a vector of ones,

and ∇p(Dp) denotes the gradient (Jacobian) with respect to p.

More explicitly, the gradient term is

∇pϕ(p) =

[

∂ϕ(p)

∂pi

]K

i=1

, (25)

where the notation [·]K
i=1

indicates vertical concatenation of

scalars/vectors/matrices indexed by i, along the ordered set

1, . . . ,K. In the same fashion, we can write the Jacobian as

DpcE (p) =
[

∇T
p ci(p)

]

i∈E
. (26)

Define the vectors dk as

dk = [(uk − uk−1)T , 01×2n]T , k = 1, . . . ,K + 1, (27)

then we have that

∂ϕ(p)

∂pT
i

= 2widi − 2wi+1di+1, i = 1, . . . ,K. (28)

We also notice that

Dp f (pi) = [Dp1
f (pi), . . . ,DpK

f (pi)], (29a)

Dp f (pi) = [02n×2(g+n)(i−1),Dpi
f (pi), 02n×2(g+n)(K−i)], (29b)

and similarly

DpgI(pi) = [Dp1
gI(pi), . . . ,DpK

gI(pi)], (30a)

DpgI(pi) = [0|I |×2(g+n)(i−1),Dpi
gI(pi), 0|I |×2(g+n)(K−i)]. (30b)

As a consequence, the stationarity condition becomes

0 = ∇pϕ(p) + ([Dp f (pi)]
K
i=1)T v + [DpcE (p)]Ty

+ ([DpgI(pi)]
K
i=1)T z, (31a)

0 = −(µ1⃗) º s + z. (31b)

The stationarity condition combined with the equality cons-

traints define a set of nonlinear equations that can be solved

numerically to find a KKT point. The Lagrangian of the

problem, excluding the barrier terms, is

L(p, s, v, y, z) = ϕ(p) + vT [f (pi)]
K
i=1 + y

T cE (p)

+ zT ([gI(pi)]
K
i=1 + s), (32)

so the first-order KKT conditions can be written as

0 = ∇pL(p, s, v, y, z), (33a)

0 = s ◦ z − µ1⃗, (33b)

0 = f (pi), i = 1, . . . ,K, (33c)

0 = cE (p), (33d)

0 = gI(pi) + (s)(|I |(i−1)+1):|I |i, i = 1, . . . ,K, (33e)

where ◦ denotes element-wise multiplication. Notice that (33b)

implies that the entries of s and z must have the same sign, so

z must also have positive entries. For brevity, we will rename

some vectors and matrices as

Σ = diag(z º s), cI(p) = [gI(pi)]
K
i=1
,

DE = DpcE , DI = [DpgI(pi)]
K
i=1
,

f (p) = [f (pi)]
K
i=1

D f = [Dp f (pi)]
K
i=1
.

(34)

Applying Newton’s method, and omitting dependencies for

brevity, we obtain the following update equation:

J







































∆p

∆s

∆v
∆y
∆z







































= −









































∇pL

z − (µ1⃗) º s

f (p)

cE
cI(p) + s









































, J =









































∇2
ppL 0 DT

f
DT

E
DT

I

0 Σ 0 0 I

D f 0 0 0 0

DE 0 0 0 0

DI I 0 0 0









































,

(35)

where the second row block has been left-multiplied by

diag(s)−1 to make the matrix symmetric. The rank of the

Newton matrix depends directly on ∇2
ppL, D f , and DE . More

specifically, if ∇2
ppL, D f , and DE are full rank, then the Newton

matrix is invertible. Note that D f is a block diagonal matrix

comprised of the power flow Jacobian at each pi. This means

that D f is full-rank, as the power flow feasibility constraint

guarantees the invertibility of the square block of the power

flow Jacobian associated with xi. Hence, we only need to

concern ourselves with studying the ranks of ∇2
ppL and DE .

We will first provide conditions under which DE has full rank.

Recall that

DE = DpcE = [Dp1
cE , . . . ,DpK

cE], (36a)

DE =

[

∂c j

∂pT
i

]

j∈E

, i = 1, . . . ,K, (36b)

∂c j

∂pT
i

=































−2w jd
T
j
, i = j − 1

2w jd
T
j
+ 2w j+1dT

j+1
, i = j

−2w j+1dT
j+1
, i = j + 1

0, else

, (36c)

so DE is a K×2(g+n)K block tridiagonal matrix, with blocks

of size 1 × 2(g + n). Next, we prove the claim.

Theorem 1. For any j = 1, . . . ,K + 1 define b j(p) = w jd j and

assume that b j(p) , 0 for all j = 1, . . . ,K + 1 (this is true if

and only if d j , 0). Let q j be

q j(p) = b j/b
T
j b j, ∀ j = 1, . . . ,K + 1. (37)

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

6

If
∑K+1

j=1 q j(p) , 0, then DE is full rank.

Proof. See Appendix C of the extended version of this paper

in [23]. □

From this result, we can guarantee that DE is full rank as

long as we prevent any d j from becoming 0. We also need

to safeguard the algorithm against cases where
∑K+1

j=1 qk = 0.

This condition is a vector generalization of the condition of

impedance loops not adding to zero in order to guarantee the

invertibility of the admittance matrix in transmission systems

(see [24]). We propose a simple step rejection procedure as

a safeguard; this is detailed in Appendix B of the extended

version of this paper in [23].

The Lagrangian Hessian, ∇2
ppL, may not be invertible, but

it is a very structured matrix. In Appendix A of the extended

version of this paper in [23], we show that ∇2
ppL, ∇2

ppϕ, and

∇2
pp(yT cE) are symmetric and block tridiagonal, ∇2

pp(L − ϕ −

yT cE) is block diagonal (with block sizes 2(g + n) × 2(g + n)

for all matrices), and ∇2
ppL ° 0. Invertibility and other issues

(like indefiniteness) can be easily corrected by leveraging the

block structure of ∇2
ppL and its components, as shown in the

next subsection.

B. Newton Step Correction

To ensure that the Newton step in the primal variables, ∆p,

yields a descent direction, we require ∇2
ppL to be positive

definite in the tangent space of the linearized constraints. The

simplest way to satisfy the condition is to modify ∇2
ppL to

make it positive definite. To this end, notice that

∇2
ppL = ∇2

ppϕ + ∇
2
pp(L − ϕ). (38)

We already know that ∇2
ppϕ ° 0, so any source of indefinite-

ness must come from the Lagrangian terms of the constraints,

L−ϕ. We modify the Hessian by adding to it a diagonal matrix

S such that ∇2
pp(L − ϕ) + S { 0. A strategy for selecting S

with low computational cost is discussed in Appendix B1 of

the extended version of this paper in [23]. The Newton step

with Hessian correction becomes

J′



































∆p
∆s
∆v
∆y
∆z



































= −





































∇pL

z − (µ1⃗) º s
f (p)
cE

cI(p) + s





































, J′ =





































∇2
ppL + S 0 DT

f
DT

E
DT

I

0 Σ 0 0 I
D f 0 0 0 0
DE 0 0 0 0
DI I 0 0 0





































,

(39)

where S = 0 if it is determined that no correction is needed.

Otherwise, S is chosen as described in Appendix B1 of

the extended version of this paper in [23]. A procedure for

determining whether the Hessian needs correction or not is

discussed in a later subsection.

C. Newton Step Permutation

The Newton step computation requires solving the linear

system (35), which has size K(2g + 4n + 2|I | + 1), so a

matrix factorization requires O(K3(n + |I |)3) operations if the

matrix is dense. Fortunately, the Newton matrix J is sparse,

so the linear system can be solved much more quickly using a

sparse linear solver. The performance a sparse solver depends

on the amount of extra entries filled during the factorization

step, which in turn depends on the specific input matrix.

In particular, matrices with low bandwidth4usually generate

very little fill-in during factorization. As a consequence, some

sparse solvers employ techniques like the reverse Cuthill-

McKee (RCM) algorithm to generate a permuted matrix with

reduced bandwidth [25]. However, the minimum bandwidth

permutation of some sparse matrices may still be very large.

Even if there exists a low bandwidth permutation for the

matrix, techniques like RCM are heuristic in nature, so they are

not guaranteed to achieve a significant bandwidth reduction5.

We will show by construction that there exists a permutation

of the Newton matrix that makes it block tridiagonal, with

square blocks of size 2g+4n+2|I |+1 and bandwidth at most

4g + 4n + 2|I | + 1 (in particular, this means that the cost of

solving (35) scales linearly with K). To this end, we recall

that DI , D f , and ∇2
pp(L−ϕ−yT cE) are block diagonal; on the

other hand DE , ∇2
ppϕ, and ∇2

ppy
T cE are block tridiagonal. Let

Ii denote the i× i identity matrix for any i ∈ N. We define the

permutation matrix P as

P = [Pi]
K
i=1, Pi = [Pi j]

5
j=1, (40a)

Pi1 =
[

01×K(2g+4n+|I |), 01×(i−1), 1, 01×(K−i), 01×K|I |

]

, (40b)

Pi2 =
[

02(g+n)×(i−1)2(g+n), I2(g+n), 02(g+n)×(K−i)2(g+n),

02(g+n)×K(2|I |+2n+1)

]

, (40c)

Pi3 =
[

0|I |×2K(g+n), 0|I |×(i−1)|I |, I|I |, 0|I |×(K−i)|I |,

0|I |×K(2n+|I |+1)

]

, (40d)

Pi4 =
[

02n×K(2g+2n+|I |), 02n×(i−1)2n, I2n, 02n×(K−i)2n,

02n×K(|I |+1)

]

, (40e)

Pi5 =
[

0|I |×K(2g+4n+|I |+1), 0|I |×(i−1)|I |, I|I |, 0|I |×(K−i)|I |

]

. (40f)

Next we define Σi = diag(zi º si) for i = 1 . . . ,K and we split

the correction matrix S into blocks as

S =

























S1

. . .

SK

























, Si ∈ R
2(g+n), i = 1, . . . ,K. (41)

Hence, by direct computation, we obtain that

PJ′PT
=









































Φ1,1 −ΦT
2,1

−Φ2,1

. . .
. . .

. . .
. . . −ΦT

2,K−1

−Φ2,K−1 Φ1,K









































, (42)

where Φ1,i and Φ2, j are square matrices of size 2g+4n+2|I |+1,

defined as

Φ1,i =







































0 Dpi
ci(p) 0 0 0

DT
pi

ci(p) ∇2
pi pi

L + Si 0 DT
pi

f (pi) DT
pi
gI(pi)

0 0 Σi 0 I

0 Dpi
f (pi) 0 0 0

0 Dpi
gI(pi) I 0 0







































,

(43a)

4The bandwidth of a symmetric n×n matrix A is the smallest integer b g 0,
if it exists, such that (A)i j = 0 for all i = 1, . . . , n and j = i + b + 1, . . . , n. If
b does not exist, then the bandwidth is n − 1.

5The bandwidth minimization problem for symmetric n × n matrices is
known to be NP-hard (see problem [GT40] in Appendix A1 of [26]). It is
also NP-hard, for any ϵ > 0, to approximate the minimum bandwidth to a
factor of 3/2 − ϵ (see [27]).

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

7

Φ2, j =







































0 Dp j
c j+1(p) 0 0 0

DT
p j

c j+1(p) ∇2
p j+1 p j

(ϕ + yT cE) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







































, (43b)

for i = 1 . . . ,K and j = 1 . . . ,K − 1. Recall that neither cE nor

ϕ depend on any xi, hence

Dp j
c j+1(p) =

[

Du j
c j+1(p) 0

]

, (44a)

∇2
p j+1 p j

(ϕ + yT cE) =

[

∇2
u j+1u j

(ϕ + yT cE) 0

0 0

]

. (44b)

Therefore we can write Φ2, j as

Φ2, j =





















0 Du j
c j+1(p) 0

DT
u j

c j+1(p) ∇2
u j+1u j

(ϕ + yT cE) 0

0 0 0





















, (45)

for j = 1 . . . ,K − 1. From this representation it is clear that

the bandwidth of PJ′PT is at most 4g+ 4n+ 2|I |+ 1. Finally,

we use the fact that P−1
= PT for any permutation matrix to

compute the Newton step by solving

(PJ′PT)À = −P









































∇pL

z − (µ1⃗) º s

f (p)

cE
cI(p) + s









































, À = P







































∆p

∆s

∆v
∆y
∆z







































. (46)

Notice that P is constant across iterations, so it only needs to

be computed once.

The Jacobian structure illustrated by this permutation is very

amenable to parallelism. On one hand each Φ2, j has at most

6g non-zero entries, so they can be computed in O(g) time. On

the other hand, each of Φ1,i, ∇pk
L, and cI(pk) can be computed

in parallel, so the cost of the Newton step scales linearly with

the number points divided by the number of parallel workers.

D. Newton Iteration Algorithm

Thus far, we have detailed a procedure for computing the

Newton step in an interior point iteration for solving (19).

However, a robust implementation must also incorporate safe-

guards for issues related to strong non-linearity, indefiniteness,

strict positivity of dual variables, and scale disparity between

primal and dual variables. We discuss these issues and their

solutions, including a procedure for determining if the Hessian

needs correction, in Appendix B of the extended version of

this paper in [23]. Once a complete Newton iteration for the

interior point method is implemented, we can solve the barrier

problem for a fixed barrier parameter µ, as long as we are

provided an initial feasible path. Pseudo-code of the procedure

given an initial feasible path p is described in Appendix B4

of the extended version of this paper in [23].

IV. INITIAL FEASIBLE PATH GENERATION

The last missing part of the full algorithm is a procedure

for generating an initial feasible path. In the unconstrained

case, the straight line connecting u0 to uK+1 is a feasible

path (and, in fact, the shortest one). To include the effect of

constraints, we introduce a homotopy-like procedure: we start

with a relaxed version of the problem where the straight line

is feasible and then we solve increasingly tighter relaxations

until the original problem is recovered. A way to interpret

this procedure is to consider the constraints as continuously

pushing and deforming the straight line until a curved feasible

path is obtained. If the transition problem is infeasible (u0

and uK+1 lie in different connected components of the feasible

region), then at some point of the homotopy some constraints

will try to cut the path to get each piece to a different

connected component. If the path’s corners are too close, such

a transformation of the path would violate the constant speed

constraint (19b) and the homotopy would fail (see Fig. 3).

We next formally describe the path generation procedure.

First, we notice that the power flow feasibility constraint

(gi, i ∈ P , see (5)) is a special case as it is not differentiable

on its boundary. This means that there exists no differentiable

relaxation of it. Nevertheless, the power flow feasible region

(i.e., the set of power injections for which a power flow solu-

tion exists) is typically much larger than the OPF constraints’

feasible region, so we can thus assume that the straight line

(in the space of control variables) does not violate the power

flow feasibility constraint:

• Assumption 4: The straight line joining u0 and uK+1 is

contained in the power flow feasibility set F0.

Under Assumption 4, we do not need to relax the power

flow feasibility constraint during the homotopy process. The

homotopy procedure for addressing the remaining constraints

is relatively simple. Assume that the user provides a path

spacing {tk}
K+1
k=0

satisfying (12). Let p be the current candidate

path. At the start of the procedure, our candidate path will be

a straight line when projected to the space of control variables,

so it satisfies

uk = u0 + tk(uK+1 − u0), k = 0, . . . ,K + 1. (47)

The corresponding xk are computed by solving the power flow

equations, that is

f (uk, xk) = 0, k = 0, . . . ,K + 1, (48)

and the candidate path is formed by applying (18). Next

we compute the relaxation parameter ´ as the maximum

violation of any constraint across all path corners (excluding

the endpoints), multiplied by a margin »´ > 1:

´ = max
i=1,...,K

j∈I

(

g j(pi)
)

. (49)

The vector of relaxed constraints, g´,I , is defined for any j ∈ I

and any pi as

(

g´,I(pi)
)

j
=

{

g j(pi), j ∈ P

g j(pi) − »´´, else
, (50)

for a constant margin »´ > 1. Consequently, we also define

c´,I(p) = [g´,I(pi)]
K
i=1. (51)

Clearly the path p is contained in the relaxed feasible set

defined by g´,I . More formally, this means that c´,I(p) < 0.

If ´ < 0 for the straight line path, then no homotopy is

needed at all: the straight line is feasible and optimal. If

´ > 0 we exploit the nature of the interior point solver to

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

8

drive the path towards feasibility. If we choose »´ close to

(but still greater than) 1, then the boundary of each violated

constraint’s relaxation will be very close to some corner of

p, and the interior path iteration will naturally push the path

towards the interior of the (relaxed) feasible region. By using

a large barrier parameter µhi, we can obtain a new path that

will not be close to any boundary of the relaxed constraint

vector g´,I , allowing us to reduce the relaxation parameter ´.
Thus, we just need to recompute ´ and repeat this process

until ´ is close enough to 0, indicating that the corner points

of the path satisfy the original (non-relaxed) constraints. If

this process stagnates for any reason (´ stops decreasing), we

report failure under suspicion that a feasible path may not exist

(see Fig. 3).

Pseudo-code of the complete shortest path algorithm, in-

cluding the generation of a feasible path, is given by Algo-

rithm 1. We reuse the variables of each relaxation step as

a warm start for the next relaxation to reduce computation

time. Upon finding a feasible path, we compute the shortest

path by calling the interior point solver with a small barrier

parameter µ. To determine if the algorithm is making enough

progress in decreasing ´, we consider its relative decrease,

¶´. If at any iteration ¶´ is not greater than the user-specified

tolerance ϵtol, the algorithm assumes that ´ has stagnated and

reports failure. Conversely, if ¶´ > ϵtol we assume that enough

progress has been made, and we compute new relaxation steps.

In particular, this means that the interior point iteration does

not need to run until full convergence during the homotopy

process; the execution can be interrupted as soon as the new

´ has decreased enough.

Some OPF cases have inequalities that are so close that

they roughly behave like equalities, making the feasible region

nearly a lower-dimensional manifold with no interior. In such

cases, the interior point algorithm may present convergence

difficulties or even fail completely. As a safeguard against

these issues, the last solver call uses the relaxed constraints

g´,I with a small relaxation parameter ´ = ϵcomp. This slightly

increases the size of the feasible region’s interior, so that the

solver has enough “space” in the feasible set to move the

candidate path towards the solution. As a consequence, if

0 f ´ < ϵcomp for the straight line, then the algorithm still

treats it as feasible and accepts the path.

V. NUMERICAL EXPERIMENTS

This section describes experiments performed to assess the

performance of the proposed algorithm. We provide a public

implementation of the algorithm, illustrative examples, and

experiments on power systems of different scales.

A. Implementation

We developed a Julia code that implements the shortest path

algorithm. The code is publicly available at the following page:

github.com/djturizo/Shortest-Path-OPF

All experiments were run using Julia 1.10 on a Windows 11

PC with 32GB of RAM and an AMD Ryzen™ PRO 7840U

CPU with 8 physical cores and 16 parallel threads. Unless

specified otherwise, we used the following parameters:

K = 9, tk = 0.05 · k, k = 0, . . . ,K + 1,

Algorithm 1 Shortest Path Algorithm (Outer Loop)

1: procedure SHORTESTPATH(f , gI , {tk}
K+1
k=0

, »´, µhi, µlo, ϵtol,

itermax, Ä, µ, ¸, ¿0, »¿, ϵcomp, Ämax)

2: compute uk from (47) and compute xk from (48)

3: compute p from (18) and compute ´ from (49)

4: if ´ < ϵcomp then return p, ´
5: compute g´,I from (50) and compute c´,I(p) from (51)

6: ▷ default values for barrier problem vars: ◁
7: v← 0, y← 0, s← −c´,I(p), z← µ1⃗ º s

8: while ´ g ϵcomp do

9: p, s, v, y, z← call BARRIERSOLVE(f , g´,I , p,

µhi, . . .), but interrupt execution as soon as

maxi, j

(

g j(pi)
)

< (1 − ϵtol)´

10: assign ´− ← ´ and compute ´ from (49)

11: ¶´ = (´− − ´)/´−

12: if ¶´ f ϵtol and ´ g ϵcomp then

13: report failure and break

14: compute g´,I from (50)

15: if ´ < ϵcomp then

16: assign ´← ϵcomp and compute g´,I from (50)

17: p, s, v, y, z← BARRIERSOLVE(f , g´,I , p, µlo, . . .)
18: return p, ´

»´ = 1.01, µhi = 0.05, µlo = 10−5,

ϵtol = 10−3, itermax = 100, Ä = 0.99,

µ = 0.5, ¸ = 10−4, ¿0 = 10−6,

»¿ = 0.1, ϵcomp = 10−6, ϵls = 10−2,

Ämax = 100.0.

The power flow equations were solved using the Newton-

Raphson method with a tolerance of 10−8 and a limit of

20 iterations (see Step 2 of Algorithm 1). The shortest path

algorithm uses a network model with one generator per

node at most and rectangular coordinates for the voltage

phasors, in order to have quadratic power flow equations and

constraints (except for line flow constraints). Some test cases

have multiple generators in a single node, but it is possible

to compute a single equivalent generator. Angle difference

constraints can be written as quadratic inequalities whenever

the corresponding angle limit lies in the interval (−Ã/2, Ã/2)

(see [28]), which is often the case in practice.

During the execution of the experiments, we noticed that

evaluating the power flow feasibility constraint (5) took a sig-

nificant portion of the execution time, but it was never active.

This is consistent with the expectation that the boundary of

the power flow feasibility constraint is significantly larger than

that of all other constraints, so the feasible set ends up being

determined by the standard OPF constraints. This means that

the power flow feasibility constraint has no effect at all on the

results of the shortest path algorithm (and we confirmed this

on the experiments). We thus ignored this constraint in our

experiments to increase the execution speed of the algorithm.

B. Example: Two Variants of the 9-Bus Case

To illustrate how the algorithm works in different situations,

we next use the 9-bus OPF case of MATPOWER [29]. The

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

9

system has three generators, at nodes 1 to 3, with node 1

being the slack node. The control variables are the voltage

magnitudes of the generators (V1,V2,V3) and the active power

of non-slack generators (PG2, PG3). We consider two vari-

ants of the 9-bus case obtained by modifying the system

parameters. The first one, called variant 1 from now on,

is modified to introduce an obstacle in the feasible region.

First we set the generator voltage magnitudes to be 1 p.u.

(V1 = V2 = V3 = 1). The control vector in the subspace

is chosen as u = [PG2, PG3]T . We generate the obstacle by

setting the lower reactive power limit of the generator at bus

3 to −2 MVA (QG3 min = −0.02). For the endpoints we choose

u0 = [0.5, 0.5]T and u∞ = [1.5, 1.3]T .

We executed the shortest path algorithm, obtaining the

results illustrated in Fig. 2. The feasible region is colored

in green, and the relaxations generated by the algorithm are

colored in red hues. Later iterations have smaller constraint

violations, which lead to tighter relaxations, represented with

darker shades of red. The shortest path is computed for

each relaxation. Paths corresponding to tighter relaxations are

colored with lighter shades of blue for contrast. The figures

shows the continuous deformation of the path as it moves away

from the boundary. After multiple iterations of this process, the

algorithm obtains a feasible path, and then the final iteration

tightens the candidate path while preserving feasibility.

We next consider another modification, called variant 2 from

now on, where no feasible path exists. For this variant we used

the 9-bus OPF case of MATPOWER [29], modified as in [10].

We also fix the generator voltage magnitudes to the following

p.u. values: V1 = 0.920,V2 = 0.935,V3 = 0.943. The control

vector in the subspace is chosen as u = [PG3, PG2]T . The

endpoints are chosen to be from different connected regions.

Namely, we chose u0 = [0.12, 0.16]T and u∞ = [1.57, 0.24]T .

We executed the shortest path algorithm, obtaining the

results illustrated in Fig. 3. The figure shows how tighter

relaxations become narrower around the center in an attempt

to eventually break into two components. As a result, the

candidate path ends up “choked” in this narrow passage, which

attempts stretch the path, separating the corner points into two

distant clusters. Such a deformation would violate the constant

speed constraints that require the corner points to preserve the

relative distance between them. As a result, the algorithm is

unable to reduce the constraint violations any further, and it

appropriately reports failure to find a feasible path.

As a last experiment for this case, we modified the value

of µlo to observe its effect on the computation of the shortest

path from a given feasible path (Step 17 of Algorithm 1). For

this experiment, we consider the variant 1 of the 9-bus case

and we solve the shortest path problem for multiple values

of µlo in the range [10−12, 10−2]. For each value of µlo, we

compute the length of the shortest path found as the percentage

increase over the path length of the unconstrained solution

(i.e., the straight line joining the endpoints). As shown in

Fig. 4, the feasible path generated by the homotopy process

may be significantly larger than the shortest path, warranting

the last optimization process that is executed with a lower

barrier parameter. For small values of µlo, observe that the

solution does not change significantly.

Fig. 2. Variant 1 of the 9-bus case. The straight line path is not feasible, but
the algorithm deforms the path to achieve feasibility.

Fig. 3. Variant 2 of the 9-bus case. The endpoints are disconnected, so the
algorithm fails to find a feasible path.

Fig. 4. Variant 1 of the 9-bus case. For smaller barrier parameters, the path
length decreases until stabilizing at the shortest path. However, very small
barrier parameters introduce numerical artifacts.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

10

C. Multiple scale OPF cases

For this experiment, we used multiple OPF benchmark test

cases from the Power Grid Library PGLib [30]. We selected

nine cases of different sizes, ranging from 14 to 118 buses.

Since these cases have high-dimensional feasible spaces that

are hard to visualize, selecting non-trivial endpoints (where

the straight line is not feasible) is not always straightforward.

We therefore follow the heuristic presented in [14]: namely,

we selected the endpoints as the solution of the minimum

loss problem and the OPF solution. For each test case, we

computed the maximum constraint violation (relaxed with

parameter ϵcomp) over the path points in the starting straight

line (before running the algorithm, in the column called “Max.

con. before”) and over the final path resulting from running the

algorithm (in the column called “Max. con. after”), ignoring

the endpoints (because they are fixed and not modified by the

algorithm). If the maximum constraint violation after running

the algorithm is negative, then the final path found is feasible

and the algorithm has thus identified a shortest path (in a local

sense, at least).

We also computed solution and objective function metrics as

follows: let p(t) be the piece-wise linear shortest path approx-

imation (as defined in (11)) resulting from the algorithm, and

let L(t) be the straight line path associated with the endpoints.

With both p and L parameterized by arclength, we computed

the relative difference between the paths as

path-diff% =

∫ 1

0
∥p(t) − L(t)∥dt
∫ 1

0
∥L(t)∥dt

× 100%.

Similarly, we computed the relative objective function in-

crease, or gap, with respect to the value at the straight line:

obj-fun-gap% =

∫ 1

0
∥p(t)∥dt −

∫ 1

0
∥L(t)∥dt

∫ 1

0
∥L(t)∥dt

× 100%.

The results are reported in Table I. The algorithm succeeded

in finding a locally shortest path on all test cases In particular,

our method found the shortest path for the 57-bus, 89-bus, 162-

bus, 200-bus, 240-bus and 300-bus cases, where the approach

of [14] failed to generate a feasible path (in the sense that this

approach could not drive the optimality gap with respect to

the OPF solution endpoint to a margin below 1%, or diverged

entirely). We also remark that the paths found by our method

are composed of 10 linear pieces, regardless of the system size.

This is by design, as we chose K = 9 for the experiments. In

contrast, the feasible paths generated by [15] have linear pieces

equal to the number of controlled variables, which means the

amount of control actions increases with the system size. For

example, for case 300 the approach of [15] generates a feasible

path with 189 linear pieces, whereas our approach generates a

feasible path 10 linear pieces, with the possibility of producing

paths with more or less linear pieces if desired.

In many test cases the straight line is slightly infeasible,

and as a result only small deformations are required to obtain

a feasible path. One notable exception being the 60-bus case

where the straight line has violations as large as is 2.22 p.u.,

but even in that case the difference between the shortest path

and the straight line path is around ~1%. In the 14- and

30-bus cases, the straight line is feasible, so the algorithm

immediately accepts the straight line without performing the

homotopy process or the final optimization step. These results

suggest that the OPF feasible regions of practical cases are

often “almost” convex, in the sense that if a straight line

joining two feasible points is not feasible, usually a small

modification of the path is all it takes to recover feasibility.

We note that Variant 1 of case 9 is not a typical test case,

as it has been modified to introduce a large obstacle between

the endpoints. Consequently, the shortest path for that case is

much larger than the straight line path.

We also executed the algorithm on eight test cases selected

from [11], which were crafted specifically to be challenging

for OPF solvers. The results for this second batch of test cases

are shown in Table II. As expected, these test cases proved to

be more challenging, as in one of the eight presented cases the

algorithm failed to find a feasible path. We remark that it is

possible that the endpoints of those cases are not connected,

but the algorithm may also fail even if a feasible path exists

(after all, this is a non-convex optimization problem). For the

seven remaining cases the straight line was already feasible in

two of them, and for the other five the algorithm succeeded in

generating a locally shortest path. We observed that the relative

path differences are usually larger than in the PGLib test cases,

and we suspect this tendency is due to more pronounced non-

convexities resulting from the fact that these test cases have

been engineered to challenge OPF solvers.

D. Tests on the number of control actions

As we mentioned in the introduction, each linear segment of

the path represents a single control action, and so the number

of linear segments is equal to the number of control actions.

While it is desirable for the operator to use a path with few

control actions, this increases the risk of violations during the

transition. Thus, there is a trade-off between simplicity and

feasibility that must be considered when choosing the number

of control actions. To study this phenomenon, we performed

an experiment where we executed the shortest path algorithm

on some text cases while varying the number linear segments

(K + 1) geometrically from 2 to 128. The breakpoints were

spaced uniformly for all cases. The results of this experiment

are shown in Table III.

From the results, we see that the outcome of whether the

algorithm finds a feasible path or not remains consistent for

each test case, regardless of the number of segments. This

suggests that our method could be reliably used as an oracle

for the likelihood of the existence of a feasible path between

the endpoints. Another observation is that the path length

increases with K for all test cases. This is to be expected:

as we increase the number of segments, the piecewise linear

path becomes a better approximation of the continuous shortest

path. Table III also reports the number of iterations required

for the algorithm to reach a decision. In particular, apart from

Variant 1 of the 9-bus case, there is a trend where increasing

K leads to an increasing on the number of iterations. This

means that, while the cost per iteration scales linearly with K,

the total execution cost will scale superlinearly. This result

also suggests that the optimization problem becomes more

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

11

challenging as K increases. While we used uniform breakpoint

spacing for this experiment, it is possible to implement better

informed methodologies for breakpoint spacing. An adaptive

spacing technique could possibly allocate more breakpoints to

sections of the feasible path close to strong non-convexities of

the boundary, while using less breakpoints in section of the

path far from the boundary. Development of such techniques

is left for future work.

VI. CONCLUSIONS

In this paper, we developed an algorithm for computing

a discretized feasible path from an initial feasible operating

point to an optimal one (or between any two feasible points

in general), such that the amplitude of the control actions

required to transition from one point to another is minimized.

Minimization of control action amplitude is equivalent to min-

imizing the transition path length, which leads to a discretized

shortest path optimization problem. The path is represented

as a sequence of intermediate feasible points, the number and

relative spacing of which can be specified a priori. The algo-

rithm computes the intermediate points by solving a nonlinear

optimization problem via a specialized interior point method,

provided an initial feasible path is given. By leveraging the

nature of barrier functions in interior point methods, an initial

feasible path is found by solving a sequence of relaxed, but

increasingly tighter relaxations of the shortest path problem,

where in the initial relaxation the straight line joining the

endpoints is feasible. The resulting sequence of shortest paths

converges to a feasible path of the original problem in a finite

number of iterations. The interior point solver for the algorithm

was modified to exploit the sparse block tridiagonal structure

of the shortest path problem. Multiple numerical experiments

show that the proposed algorithm is can effectively compute

a shortest path for a specified number of intermediate points.

The algorithm we developed tackles the issues of the num-

ber and amplitude of control actions in the problem of transi-

tioning between operating points. One issue not considered in

this work is feasibility of the path in the continuous sense.

While our algorithm provides a sequence of intermediate

points that are guaranteed to be feasible, the lines joining them

may cross the boundary of the feasible set. Possible avenues

of future work are extending the current algorithm with a

methodology to provide mathematical guarantees that the line

pieces comprising the discrete path are entirely contained in

the feasible set and the development of adaptive, non-uniform

breakpoint spacing strategies.

REFERENCES

[1] M. L. Crow, Computational Methods for Electric Power Systems, 3rd ed.
CRC Press, 2015.

[2] F. Capitanescu and L. Wehenkel, “Optimal power flow computations
with a limited number of controls allowed to move,” IEEE Transactions
on Power Systems, vol. 25, no. 1, pp. 586–587, 2010.

[3] ——, “Redispatching active and reactive powers using a limited number
of control actions,” IEEE Transactions on Power Systems, vol. 26, no. 3,
pp. 1221–1230, 2011.

[4] D. T. Phan and X. A. Sun, “Minimal impact corrective actions in
security-constrained optimal power flow via sparsity regularization,”
IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 1947–1956,
2015.

[5] B. C. Lesieutre and I. A. Hiskens, “Convexity of the set of feasible
injections and revenue adequacy in FTR markets,” IEEE Transactions
on Power Systems, vol. 20, no. 4, pp. 1790–1798, November 2005.

[6] Y. V. Makarov, Z. Y. Dong, and D. J. Hill, “On convexity of power flow
feasibility boundary,” IEEE Transactions on Power Systems, vol. 23,
no. 2, pp. 811–813, May 2008.

[7] W. A. Bukhsh, A. Grothey, K. I. M. McKinnon, and P. A. Trodden,
“Local solutions of the optimal power flow problem,” IEEE Transactions
on Power Systems, vol. 28, no. 4, pp. 4780–4788, 2013.

[8] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, “Investigation of
non-zero duality gap solutions to a semidefinite relaxation of the power
flow equations,” in 47th Hawaii International Conference on Systems
Sciences (HICSS), January 2014, pp. 2325–2334.

[9] D. Lee, H. D. Nguyen, K. Dvijotham, and K. Turitsyn, “Convex
restriction of power flow feasibility sets,” IEEE Transactions on Control
of Network Systems, vol. 6, no. 3, pp. 1235–1245, 2019.

[10] D. K. Molzahn, “Computing the feasible spaces of optimal power flow
problems,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp.
4752–4763, 2017.

[11] M. R. Narimani, D. K. Molzahn, D. Wu, and M. L. Crow, “Empiri-
cal investigation of non-convexities in optimal power flow problems,”
American Control Conference (ACC), June 2018.

[12] F. Capitanescu, “Suppressing ineffective control actions in optimal
power flow problems,” IET Generation, Transmission & Distribution,
vol. 14, no. 13, pp. 2520–2527, 2020.

[13] I.-I. Avramidis, G. Cheimonidis, and P. Georgilakis, “Ineffective con-
trol actions in OPF problems: Identification, suppression and security
aspects,” Electric Power Systems Research, vol. 212, p. 108228, 2022.

[14] D. Lee, K. Turitsyn, D. K. Molzahn, and L. A. Roald, “Feasible path
identification in optimal power flow with sequential convex restriction,”
IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3648–3659,
September 2020.

[15] R. Martins Barros, G. Guimarães Lage, and R. de Andrade Lira Rabêlo,
“Sequencing paths of optimal control adjustments determined by the
optimal reactive dispatch via Lagrange multiplier sensitivity analysis,”
European Journal of Operational Research, vol. 301, no. 1, pp. 373–385,
2022.

[16] J.-O. Lee and Y.-S. Kim, “Novel battery degradation cost formulation
for optimal scheduling of battery energy storage systems,” International
Journal of Electrical Power & Energy Systems, vol. 137, p. 107795,
2022.

[17] B. Ghaddar, J. Marecek, and M. Mevissen, “Optimal power flow as
a polynomial optimization problem,” IEEE Transactions on Power
Systems, vol. 31, no. 1, pp. 539–546, 2016.

[18] C. J. Tavora and O. J. M. Smith, “Equilibrium analysis of power
systems,” IEEE Transactions on Power Apparatus and Systems, vol.
PAS-91, no. 3, pp. 1131–1137, 1972.

[19] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, 1st ed. Academic Press, Inc., 1970.

[20] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman Equations, 1st ed. Springer,
1997.

[21] Z. Clawson, A. Chacon, and A. Vladimirsky, “Causal domain restriction
for eikonal equations,” SIAM Journal on Scientific Computing, vol. 36,
no. 5, pp. A2478–A2505, 2014.

[22] C. Heil, A Basis Theory Primer, 1st ed. Springer, 2011.

[23] D. Turizo, D. Cifuentes, A. Leykin, and D. K. Molzahn, “Discrete
shortest paths in optimal power flow feasible regions,” 2024. [Online].
Available: https://arxiv.org/abs/2408.02172

[24] D. Turizo and D. K. Molzahn, “Invertibility conditions for the admittance
matrices of balanced power systems,” IEEE Transactions on Power
Systems, vol. 38, no. 4, pp. 3841–3853, 2023.

[25] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The reverse Cuthill-
McKee algorithm in distributed-memory,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2017, pp. 22–31.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1979.

[27] G. Blache, M. Karpinski, and J. Wirtgen, “On approximation intractabil-
ity of the bandwidth problem,” Electron. Colloquium Comput. Complex.,
vol. TR98, 1997.

[28] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, “The QC relaxation:
A theoretical and computational study on optimal power flow,” IEEE
Transactions on Power Systems, vol. 31, no. 4, pp. 3008–3018, 2016.

[29] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower
user’s manual,” 2020. [Online]. Available: https://matpower.org/docs/
MATPOWER-manual-7.1.pdf

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

12

TABLE I
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM ON PGLIB TEST CASES

Test case n g Max. con. Exec. Found Max. con. Path Obj. fun.
before [p.u.] time [s] path? after [p.u.] diff. gap

case9 (Variant 1) 9 2 2.79E-2 0.2 Yes -6.26E-7 85.3% 34.4%

case14 ieee 14 5 -9.94E-7 0.0 Yes -9.94E-7 0.00% 0.00%

case24 ieee rts 24 11 9.92E-4 4.7 Yes -1.00E-6 2.13% 0.03%

case30 ieee 30 6 -9.92E-7 0.0 Yes -9.92E-7 0.00% 0.00%

case39 epri 39 10 9.66E-2 0.5 Yes -2.97E-3 2.86% 0.06%

case57 ieee 57 7 2.50E-3 0.5 Yes -9.99E-7 1.53% 0.02%

case60 c 60 23 2.22E+0 3.6 Yes -1.00E-6 2.98% 0.06%

case73 ieee rts 73 33 9.59E-4 1.6 Yes -1.00E-6 3.62% 0.10%

case89 pegase 89 12 2.27E-2 2.9 Yes -8.59E-4 1.52% 0.02%

case118 ieee 118 54 2.42E-2 3.4 Yes -1.00E-6 3.64% 0.09%

case162 ieee dtc 162 12 1.36E-4 3.6 Yes -3.63E-5 1.75% 0.02%

case200 activ 200 38 2.20E-2 5.0 Yes -1.00E-6 3.82% 0.10%

case240 pserc 240 53 6.00E-1 168.4 Yes -1.46E-3 3.02% 0.06%

case300 ieee 300 69 5.93E-2 44.0 Yes -1.00E-6 3.64% 0.10%

case500 goc 500 113 1.29E-1 69.7 Yes -1.35E-4 7.47% 0.40%

“Max. con. before”: Maximum constraint violation over the path points in the starting straight line (before running the algorithm).
“Max. con. after”: Maximum constraint violation for the final path resulting from running the algorithm.

TABLE II
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM ON THE TEST CASES OF [11]

Test case n g Max. con. Exec. Found Max. con. Path Obj. fun.
before [p.u.] time [s] path? after [p.u.] diff. gap

nmwc3acyclic connected feasible space 3 2 -1.85E-2 0.0 Yes -1.85E-2 0.00% 0.00%

nmwc3acyclic disconnected feasible space 3 2 1.96E-5 4.3 Yes -3.65E-5 0.72% 0.01%

nmwc3cyclic 3 2 9.28E-3 0.0 No 3.18E-3 - -

nmwc4 4 2 -2.12E-4 0.0 Yes -2.12E-4 0.00% 0.00%

nmwc5 5 2 2.34E-2 0.0 Yes -1.46E-3 2.57% 0.05%

nmwc14 14 5 9.26E-4 0.1 Yes -2.31E-5 4.00% 0.11%

nmwc24 24 11 3.71E-3 0.3 Yes -9.92E-7 2.41% 0.04%

nmwc57 57 7 2.90E-3 0.7 Yes -3.75E-5 5.76% 0.23%

TABLE III
RESULTS OF RUNNING THE SHORTEST PATH ALGORITHM WITH DIFFERING NUMBERS OF BREAKPOINTS FOR SELECTED TEST CASES

Test case K # iter. Max. con. Exec. Found Max. con. Path Obj. fun.
before [p.u.] time [s] path? after [p.u.] diff. gap

case9 (Variant 1)

1 54 2.79E-2 0.6 Yes -3.91E-7 73.6% 24.2%

3 48 2.79E-2 0.5 Yes -4.64E-7 80.7% 31.6%

7 44 2.79E-2 0.6 Yes -5.15E-7 84.9% 34.2%

15 24 2.79E-2 0.9 Yes -9.46E-7 85.7% 34.7%

31 15 2.79E-2 2.1 Yes -1.82E-6 85.9% 34.8%

63 12 2.79E-2 3.1 Yes -1.08E-6 86.0% 34.9%

127 13 2.79E-2 8.1 Yes -7.22E-6 86.0% 34.9%

case57 ieee

1 7 2.50E-3 0.1 Yes -9.64E-7 1.11% 0.01%

3 8 2.50E-3 0.2 Yes -9.50E-7 1.60% 0.02%

7 8 2.50E-3 0.3 Yes -9.99E-7 1.35% 0.01%

15 9 2.50E-3 0.8 Yes -1.00E-6 1.17% 0.01%

31 12 2.50E-3 2.0 Yes -1.00E-6 1.30% 0.01%

63 13 2.50E-3 5.0 Yes -1.00E-6 1.77% 0.02%

127 14 2.50E-3 13.4 Yes -1.00E-6 2.47% 0.05%

nmwc3cyclic

1 8 9.28E-3 0.0 No 3.18E-3 - -

3 8 9.28E-3 0.0 No 3.18E-3 - -

7 8 9.28E-3 0.0 No 3.18E-3 - -

15 8 9.28E-3 0.0 No 3.18E-3 - -

31 9 9.28E-3 0.1 No 3.18E-3 - -

63 9 9.29E-3 0.2 No 3.19E-3 - -

127 106 9.29E-3 8.7 No 3.19E-3 - -

nmwc57

1 9 2.90E-3 0.1 Yes -1.02E-5 5.31% 0.14%

3 11 2.90E-3 0.2 Yes -1.45E-5 5.40% 0.19%

7 14 2.90E-3 0.5 Yes -3.25E-5 5.59% 0.21%

15 15 2.90E-3 1.0 Yes -2.80E-5 5.91% 0.25%

31 21 2.90E-3 2.9 Yes -1.76E-5 6.49% 0.30%

63 35 2.90E-3 10.7 Yes -8.60E-6 7.66% 0.43%

127 31 2.90E-3 23.8 Yes -4.55E-6 9.08% 0.60%

[30] IEEE PES Task Force on Benchmarks for Validation of Emerging Power
System Algorithms, “The Power Grid Library for Benchmarking AC
Optimal Power Flow Algorithms,” arXiv:1908.02788v2, Jan. 2021.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

13

Daniel Turizo (M’20) received the B.S. and M.S.
degrees in Electrical Engineering from the Univer-
sidad del Norte, Barranquilla, Colombia in 2016
and 2018, respectively. From 2018-2020 he was an
Adjunct Professor of Electrical Engineering at the
Universidad del Norte, Barranquilla, Colombia. He
is currently a Fulbright fellow enrolled as a Ph.D.
student at the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta,
GA, USA. In 2023 Daniel was awarded the Georgia
Tech ECE INSPIRE fellowship for interdisciplinary

research.

Diego Cifuentes earned his Ph.D. and M.S. in Elec-
trical Engineering and Computer Science from MIT,
and his B.S. in Mathematics and B.S. in Electronics
Engineering from Universidad de los Andes. He
served as an applied math instructor in MIT and as a
postdoctoral researcher in the Max Planck Institute
for Mathematics in the Sciences. He is currently an
Assistant Professor in the H. Milton Stewart School
of Industrial and Systems Engineering at Georgia
Tech. He received the Early Career Award in the
SIAM Algebraic Geometry activity group.

Anton Leykin studied mathematics at Kharkiv Uni-
versity, Kharkiv, Ukraine, as an undergraduate and
completed his PhD studies at the University of Min-
nesota, Twin Cities, MN, USA. After postdoctoral
appointments at the University of Illinois at Chicago,
IL, USA, and the Institute for Mathematics and
its Applications, Minneapolis, MN, USA, he joined
Georgia Tech, Atlanta, GA, USA, and now is a Pro-
fessor at the School of Mathematics. Among other
awards, he was the recipient of the NSF CAREER
Award in 2012 and Simons Fellowship in 2025.

Daniel K. Molzahn (Senior Member, IEEE) re-
ceived the B.S., M.S., and Ph.D. degrees in elec-
trical engineering and the Masters of Public Affairs
degree from the University of Wisconsin-Madison,
Madison, WI, USA. He is an Associate Professor
with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta,
GA, USA, and also holds an appointment as a
Computational Engineer with the Energy Systems
Division, Argonne National Laboratory. He was a
Dow Postdoctoral Fellow in sustainability with the

University of Michigan, Ann Arbor, MI, USA and a National Science
Foundation Graduate Research Fellow with the University of Wisconsin-
Madison. He was the recipient of the IEEE Power and Energy Society’s
Outstanding Young Engineer Award in 2021, the NSF CAREER Award in
2022, and Georgia Tech’s Class of 1940 W. Roane Beard Outstanding Teacher
Award in 2024.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3581453

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 26,2025 at 18:33:47 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Shortest Path OPF Problem Formulation
	Optimal Control Problem
	Piece-wise Linear Path Approximation

	Log-Barrier Newton Method Implementation
	Interior Point Iteration
	Newton Step Correction
	Newton Step Permutation
	Newton Iteration Algorithm

	Initial Feasible Path Generation
	Numerical Experiments
	Implementation
	Example: Two Variants of the 9-Bus Case
	Multiple scale OPF cases
	Tests on the number of control actions

	Conclusions
	References
	Biographies
	Daniel Turizo
	Diego Cifuentes
	Anton Leykin
	Daniel K. Molzahn

