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Abstract
A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate 
across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen 
responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applica
tions. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and 
spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses 
to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its ni
trate-dependent TF nuclear retention, its “hit-and-run” mode of target gene regulation, and temporal transcriptional cascade 
identified by “network walking.” Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots 
and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and 
pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms under
lying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for 
translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental ef
fects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.
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Introduction

This special Plant Cell issue commemorates 100 years of 
the American Society of Plant Biologists. Our review focuses 

on the spatial dynamics of nitrogen sensing and signaling 
networks: it's about time. Aptly, more than 100 years ago, 
Michalis-Menten's classic paper published in 1913 sought 
“to achieve the final aim of kinetic research; namely, to 

https://doi.org/10.1093/plcell/koae038 THE PLANT CELL 2024: 36: 1482–1503

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/36/5/1482/7608181 by N

ew
 York U

niversity - IN
AC

TIVE user on 26 Septem
ber 2025

https://orcid.org/0000-0001-6229-6845
https://orcid.org/0000-0003-1076-1113
https://orcid.org/0000-0002-6081-6103
https://orcid.org/0000-0001-5054-5525
https://orcid.org/0000-0002-5073-7751
https://orcid.org/0000-0002-5651-8349
https://orcid.org/0000-0003-3693-6735
https://orcid.org/0000-0002-5961-5005
https://orcid.org/0000-0003-2608-2166
mailto:gloria.coruzzi@nyu.edu
mailto:rgutierrez@bio.puc.cl
https://creativecommons.org/licenses/by-nc-nd/4.0/


obtain knowledge of the nature of a reaction from a study of 
its progress” (Michaelis and Menten 1913; Michaelis et al. 
2011). Inspired by this, our review focuses on systems biology 
studies conducted in real time and space. Such studies have 
uncovered the mechanisms by which plants sense and re
spond to nitrogen (N) signals within minutes to evoke 
changes in N-signaling networks in specific cell types that in
fluence plant growth and development. Such discoveries of 
N-sensing/signaling reside in Pasteur's quadrant, a field of in
quiry that aims to gain a fundamental understanding of a sci
entific problem while also providing immediate societal 
benefits (Stokes 1997)—in this case, improvements in nitro
gen use efficiency (NUE).

The advent of synthetic fertilizers has brought significant 
advantages to agricultural practices by boosting crop yield, 
but at both economic and environmental costs (Menegat 
et al. 2022). Approximately half of applied fertilizers are ef
fectively used by plants, while the remaining portion is prone 
to runoff, resulting in groundwater contamination and eu
trophication (Bijay-Singh and Craswell 2021). Moreover, ex
cess fertilizer application can lead to the production of 
nitrous oxide, a potent greenhouse gas (Mahmud et al. 
2020; Menegat et al. 2022). Considering these challenges, 
a key objective of nitrogen research is to develop plants 
with enhanced NUE. Achieving this objective would not 
only reduce the need for excessive fertilizer usage but also 
support optimal plant growth in nitrogen-limited soils 
worldwide.

Nitrogen—the rate limiting element for plant growth—is 
often found in the soil as nitrate (NO3

−) and/or ammonium 
(NH4

+). Organic forms such as amino acids and urea can 
also play important roles in specific contexts (Yang et al. 
2021b). Nitrate—the main form of nitrogen found in aerobic 
soils—also acts as a N-signal sensed by a nitrate transceptor 
in roots (Crawford and Forde 2002). As such, nitrate sensing/ 
signaling has been widely studied by using biochemical, mo
lecular genomics, genetics, and systems biology approaches 
(Krouk et al. 2010; Gaudinier et al. 2018; Wang et al. 2018; 
Vidal et al. 2020; Lamig et al. 2022). Herein, we explore studies 
that use systems biology approaches to examine the tem
poral and spatial mechanisms behind nitrogen sensing and 
signaling, largely in the model Arabidopsis. We especially 
highlight progress in this area published after the “Nitrate 
in 2020” Plant Cell Review, which includes an extensive time
line of milestone publications on nitrate signaling up to 2020 
(Vidal et al. 2020). In addition to studies that explore the pri
mary N-response (nitrate sensing/signaling), we include tem
poral studies that examine the plant response to ammonium 
nitrate, the source of nitrogen in the widely used Murashige 
and Skoog cell culture medium (Murashige and Skoog 1962; 
Varala et al. 2018; Brooks et al. 2019; Swift et al. 2020; Alvarez 
et al. 2021). Plants respond differently to sole sources of ni
trate versus ammonium; therefore, we recommend referring 
to the following excellent reviews for details on specific am
monium responses not covered herein (Hachiya and 
Sakakibara 2017; Liu and Von Wirén 2017).

For further insights into advances in nitrogen sensing/sig
naling, we recommend recent reviews that encompass other 
aspects such as nitrogen transport (Tegeder and Masclaux- 
Daubresse 2018; Wang et al. 2018), local and systemic 
nitrogen signaling (Zhang et al. 2020), post-translational mod
ifications and nitrogen signaling components (Muratore et al. 
2021; Wang et al. 2021a), nitrogen-dependent developmental 
responses (Weber and Burow 2018; Fredes et al. 2019), nitro
gen regulation of root system architecture (Jia and von 
Wirén 2020; Hu et al. 2021), nitrogen interactions with other 
nutrients (Oldroyd and Leyser 2020; Li et al. 2021), nitrogen 
and hormone interactions (Sakakibara 2021; Xing et al. 
2023), and nitrogen responses under abiotic stress (Araus 
et al. 2020; Plett et al. 2020).

This review briefly touches on nitrogen response networks 
in crops (Ueda et al. 2020) and translational studies of nitro
gen signaling networks—from model to crop (Obertello et al. 
2015; Cheng et al. 2021). We also recommend more extensive 
recent reviews on crops for a comprehensive understanding 
of nitrogen signaling in agricultural contexts (Jia and von 
Wirén 2020; Hou et al. 2021; Sandhu et al. 2021; Gao et al. 
2022; Hu et al. 2023).

This review focuses on novel insights gained from systems 
biology approaches to uncover the temporal and spatial me
chanisms of nitrogen sensing and signaling. These include the 
discovery that Michaelis-Menten kinetics mediates N-dose 
dependent transcriptome responses (Swift et al. 2020). This 
finding echoes earlier time-based studies that showed that 
Michaelis-Menten kinetics mediate N-dose dependent nitro
gen uptake (Ho et al. 2009; McNickle and Brown 2014) and 
plant growth responses (Lana et al. 2005). Furthermore, we 
examine recent studies that have uncovered the time- 
dependent mechanisms involving the master transcription 
factor (TF) NLP7, as a nitrate sensor (Liu et al. 2022), 
the nitrate-dependent nuclear localization of NLP7/6 
(Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017; 
Cheng et al. 2023), the “hit-and-run” model of transient inter
actions of NLP7-target genes (Alvarez et al. 2020), and the 
regulation that NLP7 exerts over a temporal cascade of 
downstream TF2s—uncovered using a method called “net
work walking” (Alvarez et al. 2020; Brooks et al. 2019, 2020).

We also explore new spatial approaches that can identify 
how nitrogen sensing, transport, and signaling are governed 
by cell type specificity in different organs. This includes the 
cell type-specific signaling responses to nitrate (Chen et al. 
2022; Contreras-López et al. 2022), as well as studies that 
examine nitrate root-to-shoot communication and how 
plants integrate the shoot and root nitrogen status to 
systematically regulate nutrient uptake in the roots 
(Tabata et al. 2014; Ohkubo et al. 2017; Ota et al. 2020; 
Abualia et al. 2022).

To facilitate and inspire future advances in nitrogen re
search in space and time, we review advancements in single- 
cell sequencing technology that can be applied to plant 
N-sensing/signaling (Rich-Griffin et al. 2020; Cole et al. 
2021). For example, the use of single cell (sc) RNA-seq assays 
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could enable (i) tracking of the nitrogen signal from 
root-to-shoot and (ii) determination of cell fate trajectories 
using pseudotime analysis (Denyer et al. 2019; Shahan et al. 
2022; Nolan et al. 2023). Additionally, we explore how to 
use computational methods such as machine learning of 
the gene-to-NUE trait across a model and crop (Cheng 
et al. 2021) and how artificial intelligence (Gao et al. 2021) 
may augment experimental nitrogen research endeavors.

Overall, this ASPB Centennial review provides an overview 
the spatiotemporal dynamics of nitrogen sensing and signal
ing as an integrated system in plants. These temporal based 
systems biology approaches can also be applied to study any 
sensing and signaling network in plant and crop biology.

Nitrogen dose sensing as a function of time
How an organism senses and responds to changes in nitrogen 
nutrient dose is a basic unanswered question in biology with 
special relevance to agriculture. Exploiting time to uncover 
mechanisms underlying N-sensing/signaling in plants derives 
inspiration from the now classic Michaelis-Menten (MM) pa
per, which aimed “to obtain knowledge of the nature of a re
action from a study of its progress” (Michaelis and Menten 
1913; Michaelis et al. 2011). Importantly, MM kinetics have 
also previously been shown to mediate nitrogen uptake 
(Fig. 1A; Ho et al. 2009; McNickle and Brown 2014) and plant 
growth (Fig. 1C; Lana et al. 2005). Inspired by this, Swift et al 
(2020) applied the MM kinetic concept to study the molecu
lar basis for N-dose sensing in Arabidopsis, exposing seedlings 

to a matrix of four increasing N-doses of ammonium nitrate 
over five time points (Ahmed 2020; Akmakjian and 
Bailey-Serres 2020; Swift et al. 2020). Modeling of the result
ing RNA-seq data revealed that 3,818 genes increased or de
creased their expression in proportion to N-dose over time. 
Moreover, they found that for a subset of these genes, the 
N-dose-dependent gene responses mirror simple enzyme ki
netics described by Michaelis-Menten (MM) in 1913, where 
changing levels of enzyme abundance will affect the max
imum rate of reaction (Vmax; Michaelis and Menten 1913; 
Michaelis et al. 2011; Swift et al. 2020). Specifically, N-dose re
sponse genes whose expression pattern significantly fit the 
MM model allowed for estimating the maximum rate of 
transcript change (Vmax), as well as the N-dose at which 
half of Vmax was achieved (Km; Fig. 1B; Swift et al. 2020). 
Indeed, the classic MM kinetic model was able to explain 
the expression of 30% of N-dose responsive genes in 
Arabidopsis (1,153 MM modeled N-dose responsive genes; 
Fig. 1B), whereas the remaining 70% genes could be explained 
by more complex kinetics and/or other regulatory mechan
isms (Swift et al. 2020). This finding suggests that transcrip
tion factors (TFs) that regulate MM response genes can 
be analogized as catalytic enzymes in the MM model since 
they establish the rates at which transcription takes place 
in response to N-dose (Swift et al. 2020). To support this, 
in vivo studies showed that the overexpression of TGA1, an 
early N-responsive TF, led to an increase in Vmax of N-dose 
responsive mRNAs (Fig. 1B), which was translated as an accel
erated plant growth in response to N (Fig. 1C; Swift et al. 

Figure 1. The N-dose-dependent regulation of N-uptake, N-signaling, and N-growth follows Michaelis-Menten (MM) kinetics. A) The rate of 
N-uptake by NRTs and AMTs is regulated by MM kinetics (Ho et al. 2009; McNickle and Brown 2014). B) Swift et al. (2020) demonstrated that 
the transcriptional response to N-dose also follows MM kinetics in Arabidopsis wild-type plants (Swift et al. 2020). Moreover, TGA1 overexpression 
and tga1/4 mutant analysis revealed that a portion of this MM-mediated N-dose transcriptional response is mediated by the master transcription 
factor TGA1, which affects plant growth rate (Swift et al. 2020). C) N-dose-regulated growth responses measured by biomass is also regulated by MM 
kinetics (Lana et al. 2005). Thus, transcriptome kinetics responding to changes in N-dose has the potential to enhance plant growth. Figure adapted 
from Swift et al. (2020). Figure created with BioRender.com.
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2020). Uncovering the molecular mechanisms that underlie 
the transcriptome kinetics responding to changes in 
N-dose now connects N-uptake (transport) to output (bio
mass), and thus has the potential to enhance plant growth 
and improve N-use efficiency in crops (Fig. 1).

Time- and space-dependent modes of action 
for NLP7 as a master regulator of nitrate 
signaling
NLP7 is a master regulator of the early nitrate response, act
ing as a transcriptional regulator of genes involved with ni
trate transport, nitrate assimilation, and signal transduction 
(Marchive et al. 2013; Alvarez et al. 2020). New time-based 
studies have shown that NLP7 is not only a master transcrip
tion factor for mediating nitrate responses, but it can also 
bind nitrate and act as an intracellular nitrate sensor, as iden
tified using the split mCitrine-NLP7 nitrate biosensor (sCiNiS; 
Liu et al. 2022; Fig. 2A). The fluorescence signal for NLP7 bind
ing of nitrate was detected after 5 min of nitrate treatment in 
mesophyll cells of cotyledons and also in primary root tips, 
showing that NLP7 acts as an intracellular nitrate sensor to 
initiate nitrate responses (Liu et al. 2022). The nitrate-binding 

domain on NLP7 is an evolutionarily ancient domain that is 
conserved among plant NLPs and bacterial nitrate sensors 
such as NreA (Niemann et al. 2014). Nitrate directly interacts 
with NLP7 through its amino terminus, inducing its conform
ational change to activate transcription (Liu et al. 2022; 
Fig. 2A).

The role of NLP7 as a nitrate sensor is an additional level of 
NLP7 regulation to the known post-translational modifica
tions that regulate NLP7 in the nucleus in response to nitrate 
(Fig. 2B; Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017). 
Once nitrate is transported inside the cell by NRT1.1, a rapid 
wave of Ca + 2 causes the activation of group III calcium- 
sensor protein kinases (CPKs) in seconds, which in turn phos
phorylates NLP7 to retain it in the nucleus, activating early 
nitrate-response genes within minutes (Marchive et al. 
2013; Liu et al. 2017; Fig. 2B). A recent study by Cheng 
et al. (2023) found that NLP7 and another NLP family mem
ber, NLP6, are both retained in the nucleus in response to ni
trate (Cheng et al. 2023; Fig. 2B). Moreover, they showed that 
nitrate-dependent nuclear accumulation of NLP7 and NLP6 
act independently of each other. To do this, they constructed 
translational fusion proteins for both GFP-NLP6 and 
GFP-NLP7, expressed in nlp7 or nlp6 mutant background, re
spectively, accumulated in the nucleus in response to nitrate 

Figure 2. Time- and space-dependent modes of action for NLP7 as a master regulator of nitrate signaling. A) NLP7 binds to nitrate and acts as a 
nitrate sensor as determined using the genetically encoded split mCitrine-NLP7 nitrate biosensor (sCiNiS) assay (Liu et al. 2022). Fluorescent signal 
was detected 5 min after nitrate treatment in both mesophyll and primary root tip cells (Liu et al. 2022). B) Both NLP7 and NLP6 accumulate in the 
nucleus in response to nitrate as determined with TF-fusion proteins expressed in their respective mutant backgrounds, showing that accumulation 
of either TF in the nucleus is independent of each other, but dependent on nitrate (Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017; Cheng et al. 
2023). C) The “hit-and-run” model of transcription posits that a pioneer TF transiently binds to the promoter of a target gene to open the chromatin 
and allow for other partner TFs to bind the promoter, thereby making NLP7 available to bind the next target gene (Para et al. 2014; Alvarez et al. 
2020). The TARGET assay combined with ChIP-seq and DamID was used to identify these highly transient NLP7 target genes (Alvarez et al. 2020). 
Figure created with BioRender.com.
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and in the absence of either endogenous NLP7 or NLP6 pro
teins (NLP6 experimental setup is shown as an example; 
Fig. 2B; Cheng et al. 2023). While previous reports show 
that NLP7 and NLP6 heterodimerize in the cytosol in re
sponse to nitrate (Guan et al. 2017), Cheng et al. (2023)
show that the nuclear retention of NLP7 and NLP6 in re
sponse to nitrate is independent of each other (Fig. 2B; 
Guan et al. 2017; Cheng et al. 2023).

Recent studies also implicate NLP7 in initiating a cascade 
of early N-responsive downstream transcription factors 
(Alvarez et al. 2020). Specifically, gene expression changes 
in response to nitrogen occur rapidly (minutes to hours) 
and are divided into primary and secondary responses 
(Medici and Krouk 2014; Alvarez et al. 2021). Primary 
N-response genes are (i) rapidly induced by nitrate (minutes), 
(ii) do not require de novo protein synthesis, and (iii) are typ
ically involved in nitrate transport, assimilation, and signaling 
(Medici and Krouk 2014). Secondary N-response genes are in
duced later (hours) and depend on the transcriptional pro
ducts of the primary response genes. How the primary and 
secondary nitrogen response is regulated was recently re
vealed to involve rapid, transient protein–DNA interactions 
by TFs that follow the “hit-and-run” model of regulation 
(Fig. 2C), which includes the TFs bZIP1 (Para et al. 2014; 
Doidy et al. 2016) and NIN LIKE PROTEIN 7 (NLP7; Alvarez 
et al. 2020). As a pioneer or triggering TF, NLP7 is at 
the top of the nitrate signaling hierarchy following the 
“hit-and-run” model of transcriptional control (Fig. 2C). It 
was shown that the transient TF2 targets of NLP7 initiate a 
temporal cascade of genome-wide changes in the nitrate re
sponse in planta (Marchive et al. 2013; Alvarez et al. 2021).

The “hit-and-run” model suggests that a TF trigger/pioneer 
can form a stable transcriptional complex (the “hit”), allow
ing transcription to continue even after the initiating TF is no 
longer bound (the “run”; Fig. 2C; Schaffner 1988; Para et al. 
2014; Doidy et al. 2016; Alvarez et al. 2020). Genome-wide 
evidence for the “hit-and-run” model of transcription for 
transient TF–target gene interactions was validated for 

two master TFs involved in the nitrate response, first 
identified with bZIP1 and more recent evidence for NLP7 
(Para et al. 2014; Doidy et al. 2016; Alvarez et al. 2020). 
Time-series ChIP-seq experiments showed that bZIP1 and 
NLP7 were transiently bound to early nitrate-response genes, 
and 4-thiol-uracil labeling of nacent mRNA confirmed the ac
tive transcription of these hit-and-run targets (Para et al. 
2014; Doidy et al. 2016; Alvarez et al. 2020).

Importantly, the plant cell-based TARGET assay (Transient 
Assay Reporting Genome-wide Effects of Transcription fac
tors) used in these studies can capture early and transient 
TF-target gene regulation events often undetected in planta 
(Para et al. 2014; Doidy et al. 2016; Brooks et al. 2019; Alvarez 
et al. 2020). The TARGET TF-assay involves transient expres
sion of a TF fused to a glucocorticoid receptor (GR) in plant 
cell protoplasts. The TF-GR protein is held in the cytoplasm 
by HSP90 binding to the GR domain (Bargmann et al. 2013; 
Fig. 2C, Table 1). The addition of the GR-ligand dexametha
sone (DEX) displaces HSP90 binding, allowing nuclear entry 
of the TF-GR fusion protein. When DEX treatment is per
formed in the presence of cycloheximide, to inhibit the syn
thesis of proteins encoded by direct target genes (e.g. TF2), 
direct targets of a TF can be identified with RNA-seq, com
pared to empty vector (Fig. 2C, Table 1; Bargmann et al. 
2013; Brooks et al. 2019, 2023).

The plant cell-based TARGET TF perturbation system al
lowed the identification of transient NLP7 targets that 
were undetected by time-series chromatin immunoprecipi
tation (ChIP; Alvarez et al. 2020). By coupling the DNA aden
ine methyltransferase identification (DamID) method 
(Gutierrez-Triana et al. 2016) to the TARGET TF perturbation 
system, it was possible to capture NLP7 binding to highly 
transient targets that were missed by time-course ChIP 
(Fig. 2C, Table 1; Alvarez et al. 2020). DamID uses a fusion 
protein of DNA adenine methyltransferase (Dam) to detect 
TF-DNA binding events by leaving a stable methylation 
mark at the adenine base in the GAmeTC sequences near 
(within 1 kb) to protein-DNA binding sites as soon as the 

Table 1 . Systems biology techniques and tools applied to studying TFs and their targets involved in nitrogen sensing and signaling

Technique/tool Description References

TARGET 
(TF → direct target 
regulation in plant cells)

Transient Assay Reporting Genome-wide Effects of Transcription factors 
(TARGET) is a plant cell-based assay used to identify direct TF target gene 
interactions with timed nuclear entry of the TF (Fig. 2).

Bargmann et al. (2013), Brooks et al. (2019), 
Alvarez et al. (2020); Brooks et al. (2023)

DamID-Seq 
(TF → Target interaction in 
vivo)

DNA adenine methyltransferase identification (DamID) uses DNA 
methylation of promoters to detect highly transient TF-DNA binding 
interactions.

Steensel and Henikoff (2000), Alvarez et al. 
(2020)

DAP-seq 
(TF → target interaction in 
vitro)

DNA affinity purification sequencing (DAP-seq) is a high-throughput 
TF-DNA binding assay that uses genomic DNA and TFs expressed in vitro.

O’Malley et al. (2016)

Precision/Recall (AUPR) 
(Validation of inferred 
TF → target interactions)

Precision/Recall (PR) analysis with area under precision recall (AUPR) curve 
uses validated TF-target gene data (TF-binding and/or regulation data) 
to determine the PR of predicted TF-target genes in gene regulatory 
networks (GRNs) (Fig. 3A).

Brooks et al. (2019), Shanks et al. (2022), 
Brooks et al. (2021)

Network Walking 
(TF1 → direct TF2s →  
indirect TF1 targets)

Network walking is a GRN method that charts a path from the direct target 
genes of a TF1 to their indirect target genes via a TF2 (Fig. 3B).

Brooks et al. (2019, 2021)
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TF touches down on the promoter (e.g. even transiently). 
This adenine methylation at GAmeTC allows for the binding 
and DNA cleavage using the DpnI restriction enzyme. DpnI 
fragments are mapped to the promoter regions to identify 
genes “touched” by the TF. Thus, this DNA methylation ap
proach overcomes the limitations of biochemical methods 
such as ChIP-seq and other antibody-based techniques that 
are biased for stably bound TF-DNA interactions (Fig. 2C, 
Table 1; Steensel and Henikoff 2000; Alvarez et al. 2020). 
Using the TARGET and DamID-Seq methods, the study by 
Alvarez et al. (2020) confirmed that transient interactions 
of NLP7 initiate active transcription of its targets, consistent 
with a “hit-and-run” transcription model (Fig. 2; Alvarez et al. 
2020). Overall, the multiple levels of NLP7 regulation high
light the important role of NLP7 in primary nitrate response 
to ensure a fast and broad adaptation by the plant to fluctu
ating nitrate levels (Fig. 2).

Temporal nitrogen response networks: 
generation and validation
In addition to the master TFs discussed above, TGA1, bZIP1, 
and NLP7, which are critical for signaling N-dose over time, 
gene network analysis studies and mutant screens have iden
tified 40-plus TFs that are involved in propagating the nitrate 
signal (for review, see Vidal et al. 2020). Thus, we must under
stand the temporal regulatory connections between these 
TFs and the nitrate-responsive genes they control to obtain 
a complete temporal picture of nitrate signaling events. 
Combining computational and experimental approaches 
that consider time in gene expression analysis has proven 
to be a powerful approach to uncovering the temporal me
chanisms of transcriptional responses in plants.

The goal of gene regulatory network (GRN) inference mod
els is to connect a regulator (i.e. TF) to each of the genes it 
regulates in the genome. As causality moves forward in 
time, time-series experiments are a valuable resource to infer 
GRN models that can predict TF-target gene relationships at 
future untested time points, a main goal of systems biology. 
To account for the different times of captured gene regula
tion in time-series data, specialized network inference algo
rithms have been developed to account for the added 
factor of time in the data and can be based on correlation: 
time-lagged, random forest (DynGenie3 and Outpredict), 
and other regression models (Huynh-Thu and Geurts 2018; 
Nguyen and Braun 2018; Cirrone et al. 2020).

Over the last 10 years, several studies have exploited time- 
dependent responses to investigate nitrogen signaling net
works in Arabidopsis using fine-scale time series (Krouk 
et al. 2010; Patterson et al. 2016; Walker et al. 2017; Varala 
et al. 2018; Brooks et al. 2019; Alvarez et al. 2021). In multiple 
of these time-based N-response network studies, a state- 
space model, which is a model that uses first-order differen
tial or difference equations to describe a system, called 
Dynamic Factor Graph, was applied to fine-scale nitrogen 

response time series (i.e. many time points close together) 
datasets to predict regulatory interactions between 
N-responsive TFs and N-responsive genes in shoots (Varala 
et al. 2018) or roots (Krouk et al. 2010; Brooks et al. 2019). 
In general, state-space models are algorithms that model dy
namic data (e.g. gene expression) by assuming that data are 
generated from underlying “hidden states” (Krouk et al. 2010; 
Brooks et al. 2019). In the case of time series experiments, the 
data of gene expression consider several time points (e.g. 
every 5 min, from 5 to 20 min) as consecutive hidden states 
that form a Markov chain (a mathematical system that stat
istically modulates random processes). Consequently, each 
transition in the Markov chain corresponds to a stationary 
(time) dynamic model. The resulting GRNs revealed the tem
poral networks operating in each tissue and implicated a 
hierarchy to the TFs involved (Vidal et al. 2020).

In the first fine-scale time-series study of nitrate signaling, 
Krouk et al. examined very early (3 to 20 min) gene expres
sion responses to nitrate supply in roots (Krouk et al. 
2010), whereas 20 min is the earliest time point that had pre
viously been examined at the genomic level (Wang et al. 
2000). The Krouk et al. (2010) study demonstrated that 
nitrate-triggered gene expression responses occur within as 
early as 3 min, and that transient changes are missed if plants 
are only sampled at later time points. In a subsequent study, 
Varala et al. performed a time-series experiment that in
cluded ammonium nitrate treatments across early-to-late 
time points (starting from 5 min for up to 120 min) and iden
tified 2,737 genes responding to nitrogen as a function of 
time (NxTime) response genes in shoots (Varala et al. 
2018) and 1,458 NxTime response genes in roots (Brooks 
et al. 2019). Moreover, the concept of “just-in-time” (JIT) ana
lysis developed and deployed in these two studies identified 
the first time point that a gene was induced >1.4 fold by 
N-treatment. The JIT analysis bins NxTime genes that are dif
ferentially regulated by N for the first time point in the time- 
series experiment. Analysis of these JIT genes uncovered not 
only a temporal cascade of enriched cis-elements at each 
consecutive time point but also GO terms resulting from 
N-signaling that evolves over time (Varala et al. 2018; 
Brooks et al. 2019).

A strength of the N-response time-series GRN generated in 
shoots (Varala et al. 2018) and roots (Brooks et al. 2019) was 
in assessing the precision and recall accuracy of the 
TF→target gene GRN predictions using AUPR (area under 
the precision-recall curve) analysis (Fig. 3A; Table 1). The 
benefit of AUPR analysis is that it uses validated TF–target 
interactions to empirically determine precision cutoffs for 
the TF-target gene predictions in the GRN. By contrast, other 
methods arbitrarily select the top 1% to 10% of interactions 
—to prune the GRNs for higher-confidence TF-target edge 
predictions (Fig. 3A). To conduct the AUPR analysis, the 
TF–target gene interactions predicted by the GRN for each 
TF and target gene are ranked based on an edge score com
puted by each network inference method (Fig. 3A). Next, 
to determine the accuracy of these predictions, the inferred 
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TF–target gene interactions are compared with validated 
TF–target gene interactions, for a subset of TFs in the net
work, as determined by methods such as DAP-seq for 
TF-target binding interactions in vitro (O’Malley et al. 
2016) or direct TF-target gene regulation based on the 
TARGET TF assay in protoplasts (Table 1, Fig. 3A; Varala 
et al. 2018; Brooks et al. 2019). This analysis then determines 
which predicted TF-target edges are supported by experi
mentally validated data. The validation data are then used 
to calculate the precision and recall for predicted TF–target 
gene interactions in the GRN (Schrynemackers et al. 2013). 
These values are used to produce the AUPR curve, which is 
then used to select a cutoff edge score for the GRN predic
tions (Fig. 3A). The selected cutoff edge score from the 
AUPR curve is used as a threshold to “prune” for high- 
confidence edge predictions in the GRN. Using the above 
outlined time-series N response GRNs as examples for 
AUPR analysis, ConnecTF (connectf.org) is a web-based 
platform that offers automated AUPR functions where re
searchers can upload their own networks, select a precision 
cutoff, and download the high-confidence TF-target gene 
predictions (Table 1, Fig. 3A; Brooks et al. 2021).

The use of validated TF-target data to prune GRNs for 
high-confidence TF-target gene predictions is important for 
identifying key regulatory control points in the absence of 
comprehensive validated TF-target data. Although there is 
now experimentally validated TF-target gene binding and 
regulation data for over 500 Arabidopsis TFs, primarily 
from DAP-seq (O’Malley et al. 2016), this is still only approxi
mately a quarter of all predicted TFs in Arabidopsis (see data 
housed in ConnecTF, Brooks et al 2021). This means that for 
any given signaling pathway studied, it is likely that most of 
the TFs involved do not have validated target genes. For ex
ample, the N-response time-course experiments described 
above revealed that 326 TFs respond to N-treatment in roots 
and/or shoots (Varala et al. 2018), but only 95 of those TFs 
have experimentally validated target genes. Furthermore, 
for the TFs that lack experimental validation data, it is un
clear if the TFs are activators or repressors of their target 
genes in the network. To address this question, the authors 
of Hummel et al. (2023) used synthetic biology approaches 
coupled with this systems biology analysis to determine 
which TFs in the Varala et al. NxTime GRN are activators 
or repressors of N-responses by using the reporter genes, 

Figure 3. Determining high-confidence GRNs by AUPR and use in network walking. A) (A1) The predicted TF–target gene interactions are first 
ranked according to edge score, and then compared to validated TF–target gene interaction data to calculate precision and recall. (A2) The values 
are then plotted on the AUPR curve to select a cutoff TF-target edge score. The edges in the predicted network (blue line) were significantly more 
likely to be true (i.e. validated) edges than when the edge order ranking was randomized (gray lines). The graph is a screenshot from the automated 
AUPR analysis feature in connectf.org (Brooks et al. 2021). (A3) The edge score cutoff is used to “prune” the network for high-confidence interac
tions. B) Network walking charts a path between direct to indirect target genes of a TF1 via TF2s (Brooks et al. 2019, 2021). In this example, the TF 
NLP7 directly regulates TF2s as identified with the TARGET cell-based assay (Alvarez et al. 2020). The target genes for each TF2 can be determined 
using predicted GRN edges from the NxTime network and/or using validation data from methods such as the TF-TARGET assay and/or TF-target 
binding by DAP-seq (Table 1). Bottom panel adapted from Brooks et al. (2019).
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nitrate reductase 1 (NR1) and nitrite reductase 1 (NIR1; 
Varala et al. 2018; Hummel et al. 2023).

A further complication to interpreting TF signaling path
ways is that in planta gene expression responses in TF mu
tants and constitutive TF overexpressors reflect both direct 
and indirect effects of the TF being perturbed. To determine 
how the N-responsive TFs work to propagate the N signal in a 
temporal network, Brooks et al. developed a “network walk
ing” approach to chart a temporal network path for a TF of 
interest (Fig. 3B, Table 1; Brooks et al. 2019, 2021). Network 
walking connects direct target genes of a focus TF of interest 
(i.e. genes identified in plant cells with the TARGET TF assay) 
with their indirect target genes (i.e. genes identified only in 
planta) via their directly regulated TF2s (Fig. 3B). In the net
work walking approach, the TF2s directly regulated by the fo
cus TF being perturbed are then used to explain the response 
of the indirect target genes in planta. Because many of these 
TF2s lack experimental data, the high-confidence TF-target 
gene predictions from the time-series inferred network are 
crucial to identify the most important TF2s that mediate 
the N-response signaling pathway and guide further studies 
(Fig. 3B; Brooks et al. 2019, 2021). For example, the network 
walking approach was used to chart a path between direct 
and indirect target genes for the N-response TFs, TGA1 
(Brooks et al. 2019), CRF4 (Brooks et al. 2019), and NLP7 
(Alvarez et al. 2020; Brooks et al. 2021).

Learning nitrogen-dependent gene regulatory networks at 
a temporal level has helped to unravel how shoots integrate 
multiple root-derived signals. The fine-scale (i.e. many time- 
points close together) time-series N-response data from 
Varala et al. have been particularly useful for shoot and 
root network comparisons as gene expression was mea
sured from both organs for the same sets of Arabidopsis 
plants (Varala et al. 2018). This study found a significant 
overlap between shoot and root N-responsive genes and 
TFs, and yet a large set of genes were also specific to 
each organ (Varala et al. 2018). The timing of expression 
between the overlapping shoot and root genes often 
differed, suggesting that the N-responsive signaling net
works had some degree of organ specificity. Additionally, 
a subset of N-responsive TFs displayed organ specificity 
in their N-responsive target genes using the TARGET 
assay (Brooks et al. 2019). For example, CRF4 regulated 
early N-responses specifically in the shoot, whereas LBD37 
regulated N-responses specifically in the root (Brooks 
et al. 2019). Furthermore, these fine-scale time-series 
N-response data (Varala et al. 2018) were used to identify 
the causal relationship of N-responsive genes between or
gans using Granger-causal analysis (Heerah et al. 2021). 
Using this analysis, Heerah et al. predicted 1,007 root- and 
shoot-expressed genes that influenced gene expression in 
the other organ (Heerah et al. 2021). Interestingly, the list 
of predicted genes included a significant number (384 
genes) of causal genes that are known or predicted mobile 
transcripts (Heerah et al. 2021). These GRN findings show a 
coordination between root and shoot N-responses that can 

be used to determine how these responses coordinate 
physiological outcomes.

The dynamics of nitrogen responses in specific 
cell types
The plant's ability to sense and respond to the fluctuat
ing N status of the soil is governed by cell type-specific 
responses (Jia and von Wirén 2020; Liu et al. 2020; Hu 
et al. 2021). Three studies have examined cell type- 
specific nitrogen responses in roots by treating 
GFP-marked cell lines with nitrogen followed by FACS 
and transcriptomic analysis (Gifford et al. 2008; Walker 
et al. 2017; Contreras-López et al. 2022). Consistently, 
these studies found that nitrate responses in the root 
are largely cell type-specific and highlight the need for 
routine cell type studies, as whole root studies will miss 
a significant portion of the plant response to an environ
mental stimulus such as nitrate.

The most recent study to examine cell type-specific nitrate 
responses identified 5,231 differentially expressed genes 
and a rapid transcriptome reprogramming, with 1,572 
genes responding early 12 min after nitrate treatment 
(Contreras-López et al. 2022). Moreover, 42.5% of regulated 
genes were localized in the endodermis cell type, suggesting 
that the endodermis might have a role as a regulatory hub for 
nitrate signaling since it is embedded with the Casparian 
strip, being a nutritional checkpoint for the vascular system 
(Palmgren 2018; Contreras-López et al. 2022). Analysis of 
gene ontology (GO) terms found that nitrate responses ini
tiate in the epidermis and cortex as outermost cell types, fol
lowed by innermost cell types in later time points (Fig. 4A), 
which is in line with nitrate uptake and transport (O’Brien 
et al. 2016; Contreras-López et al. 2022). The first biological 
processes to be enriched include “response to carbohydrate 
stimulus,” “glycolysis, “response to reactive oxygen species,” 
“response to lipid,” “response to abscisic acid,” and “response 
to nitrate,” which are initiated from the epidermis and then 
move toward inner cells (Fig. 4A). For instance, the nitrate 
transceptor NRT1.1/NPF6.3 and NRT2.1 are rapidly induced 
by nitrate in the epidermis and then within all cell types at 
later time points (Fig. 4B; Contreras-López et al. 2022). This 
is in line with previous studies that identified the cell type 
specificity of nitrate transporters in the epidermis (Tegeder 
and Masclaux-Daubresse 2018; Wang et al. 2018; Lhamo 
and Luan 2021; Muratore et al. 2021). At later times, expres
sion of genes involved in “nitrate assimilation” are enriched 
from inner cell types toward the epidermis (Fig. 4B), 
while expression of genes involved in “root system develop
ment” are localized in epidermis and endodermis, consistent 
with their role in lateral root growth and root hair 
development, showing a localized and transient response 
to nitrate (Ramakrishna et al. 2019; Liu et al. 2020; Fig. 4B). 
Furthermore, by integrating the spatiotemporal transcrip
tomic data with TF-target gene interactions, Contreras- 
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López et al. found that 62% of TF–target interactions were 
predicted to occur in the endodermis, being an important 
cell type for transcriptional regulation. The transcription fac
tors ABF2 and ABF3, previously investigated for their role 
in ABA-mediated signal transduction, were revealed to be 
master regulators of nitrogen responses in the endodermis, 
displaying lateral root growth inhibition in abf2, abf3, and 
abf2/3 plants in response to nitrate (Contreras-López et al. 
2022). This phenotype is, in part, due to an altered develop
ment of lateral root primordium. Overall, these results high
light the importance of spatiotemporal analysis to uncover 
how the nitrate signal is dynamically propagated in the 
root and reveal new molecular mechanisms controlling ni
trogen responses in specific cell types, which otherwise 
would be missed.

Complementary with the identification of cell-type tran
scriptional responses to nitrate over time, the authors of 
Chen et al. developed a nitrate biosensor to visualize the spa
tial and temporal distribution of nitrate in the Arabidopsis 
root (Chen et al. 2022). To accomplish this, Förster resonance 
energy transfer (FRET) sensors were developed as a (i) fusion 
fluorescent protein possessing a sensor domain (FRET ac
ceptor protein) and a (ii) fused FRET donor fluorescent pro
tein. Once the donor protein is excited, energy is transferred 
to the FRET acceptor protein. When the sensor domain 
from the acceptor protein interacts with its target molecule, 
a conformational change occurs. This conformational 
change, in return, alters the efficiency of energy transferred 
from the FRET fusion donor protein to the FRET fusion ac
ceptor protein. Hence, by measuring the ratio change, as the 

Figure 4. Spatiotemporal responses after nitrate treatments in Arabidopsis root cells are highly dynamic and localized. A) During nitrate treatments, 
the first cell type to respond is epidermis, followed by cortex. Consistent with their outermost location and first layers of nitrate acquisition. At later 
times of treatment, nitrate responses are present in all major root cell types (Contreras-López et al. 2022). B) Transverse view of root cells shows gene 
ontology (GO) enrichment after nitrate treatments. The first enriched GO term is “response to nitrate,” moving from epidermis toward innermost 
cell types. At later times, “nitrate assimilation” and “root system development” go from inner to outermost cell types. Transcriptomic analysis and 
GO terms were obtained from sorted root cells by Contreras-López et al. (2022). C) Nitrate-demand signaling model. When roots are grown on 
limited nitrate levels, C-terminally encoded peptides (CEPs) and tZ-type cytokinins (CK) are translocated to the shoot, increasing the expression 
levels of CEPD1/2 and CEPD-L2. In turn, shoot-derived CEPD1/2 and CEPD-L2 descend back to the root and increase the expression of nitrate trans
porters NRT3.1 and NRT1.1/NPF6.3 and NRT2.1 to compensate for the lack of nitrate in the soil. This highly coordinated system results in plant 
growth adaptation according to the changing nutrient levels (Tabata et al. 2014; Ohkubo et al. 2017; Ota et al. 2020).
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change between the fluorescence intensity of the donor and 
the acceptor protein, it is possible to report the concentra
tion of the target (Chen et al. 2022). The FRET sensor devel
oped by Chen et al. used the bacterial protein NasR 
(NitraMeter3.0), which is a soluble receptor protein con
taining a nitrate and nitrite sensing domain as a FRET accept
or protein fused to a modified Aphrodite (edAFP) protein. 
On the other hand, a modified cyan fluorescent protein 
was used as a FRET donor protein (edeCFP; Chen et al. 
2022). When Arabidopsis plants expressing the nitrate bio
sensor were exposed to exogenous nitrate treatments for 
5 min, the fluorescence emission ratios increased in the epi
dermis, cortex, pericycle, and stele cells, with the highest 
emissions ratio increase in the cortex cells, suggesting a high
er nitrate uptake or transport function in this cell type. These 
results are in line with the reports of nitrate import and sig
naling in multiple root cell types (Gifford et al. 2008; Walker 
et al. 2017; Contreras-López et al. 2022). Additionally, 
the mutant for the nitrate transceptor, nrt.1.1/nfp6.3, 
displayed lower emission ratios in all root zones, supporting 
its role as a major nitrate transporter (Chen et al. 2022). 
The emissions ratio of the endodermal cell layer remained 
high when roots were grown under low nitrate conditions 
and increased slowly compared to other cell types, which 
coincides with the previous result of the endodermis as a 
nitrate regulatory hub for plants to respond and adapt 
to their environment (Chen et al. 2022; Contreras-López 
et al. 2022).

In addition to cell type-specific nitrate responses in 
the root regulating plant growth and development, there 
are also nitrate responses localized in the shoot. For example, 
NRT1.1/NPF6.3 and NLP7 drive stomatal opening by control
ling the entry of nitrate into guard cells, resulting in 
nitrate-induced depolarization and increased nitrate levels 
during stomatal opening (Guo et al. 2003; Castaings et al. 
2009). Indeed, nrt1.1/npf6.3 and nlp7 plants are impaired in 
nitrate content, reducing stomatal opening and water loss, 
resulting in improved drought tolerance (Guo et al. 2003; 
Castaings et al. 2009; Araus et al. 2020). However, the role 
of nitrate signaling mediated by NRT1.1/NPF6.3 and NLP7 
in the control of stomatal opening remains to be elucidated.

These studies have shown us how cell type-specific nitrate 
responses can modulate root and shoot growth, raising the 
need to implement single-cell level approaches to under
stand organ-level plasticity. As an in silico approach at single- 
cell resolution, Lhamo and Luan (2021) profiled putative 
nitrate transporters in root cell types to understand nitrate 
uptake and translocation from the soil (Denyer et al. 2019; 
Ryu et al. 2019; Lhamo and Luan 2021). The dual-affinity 
transporter NRT1.1/NPF6.3 and high-affinity transporters 
NRT2.1, NRT2.2, NRT2.4, and NRT2.5 were highly expressed 
in epidermis and root cap cells, concomitant with the role 
of sensing NO3

− changes in soil (Ho et al. 2009) and uptake 
function, respectively (Lhamo and Luan 2021). NPF1.1 and 
NPF1.2 were expressed in procambium cells, indicating that 
they could be participating in loading NO3

− to phloem 

and xylem cells in developing roots (Jouannet et al. 2015; 
Lhamo and Luan 2021). These results indicate that in the fu
ture we will be able to generate maps of local and systemic 
nitrate sensing/signaling from root to shoot and vice versa 
by using single-cell approaches.

Nitrogen responses across organs: 
root-to-shoot communication
Because nitrogen availability in the soil changes constantly, 
plants have developed communication systems that regulate 
nitrate uptake from the root according to the nutritional 
state of the soil and the plant. In response to changes in 
nitrate availability, the nitrate-response targets the fast 
reallocation of resources to rebalance biomass between 
below- and above-ground organs, as well as the regulation 
of physiological activities such as root nitrate transport. For ex
ample, heterogeneous nitrate supply leads to greater develop
ment, growth, and nitrate transport stimulation in the roots 
that are locally exposed to nitrate (Ruffel et al. 2011). Such in
tegrated/adapted responses result from a combination of (i) 
continuous and long-distance exchange of signals through 
the vascular system and (ii) organ-specific GRNs. Currently, 
the challenge is to understand how these multiple signals 
interact and converge toward regulating central physiological 
and developmental processes in respective organs.

Nitrate-related long-distance signals are just starting to be 
understood and as of now belong to the following classes of 
molecules: hormones (e.g. root-to-shoot trans-zeatin cytokinin 
signal; Poitout et al. 2018), small peptides (e.g. root-to-shoot 
C-terminally encoded peptides; CEP; Tabata et al. 2014), and 
microRNAs (so far only functionally characterized in legumes 
to regulate the nodulation; Gautrat et al. 2021). The coordi
nation of root/shoot communication and growth responses 
may rely on other types of long-distance signals that remain 
to be characterized, such as ions or metabolites. However, con
nections between the known systemic signals and the discov
ered nitrate-related local and systemic signaling pathways are 
starting to be proposed, thereby improving our mechanistic 
understanding of the nitrate signaling network. In addition 
to the nitrogen-regulated systemic response of root activity, 
it has been known for a long time that root nitrate supply is 
a main input for shoot growth. Interestingly, recent findings in
dicate that once again, multiple signals likely co-exist to prop
erly coordinate the activity of this aerial organ. Several studies 
have reported that nitrate in the root induces the synthesis 
of cytokinins (CK) like tZ-type, which are then translocated 
to the shoot (Osugi et al. 2017; Poitout et al. 2018). 
Interestingly, this “CK neo-synthesis” in the root has recently 
been shown to be under the control of the master nitrate sig
naling regulator NLP7, contributing with CK translocation to 
the shoot and upregulation of cytokinin response factors 
(CRF; Abualia et al. 2022). In this manner, CRFs directly induce 
the expression of auxin transporters (PINs), resulting in auxin 
transport and shoot growth (Abualia et al. 2022).
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A very sophisticated example of interaction between sys
temic signals and nitrate signaling is the case of CEP peptides. 
CEPs act as root-derived peptides that ascend the nitrate 
starving signal to the shoot, where the production of a nitrate 
descending signal induces the expression of root nitrate 
transporters NRT2.1, NRT3.1 and the transceptor NRT1.1/ 
NPF6.3 to compensate for the lack of nitrate in the soil 
(Fig. 4C; Tabata et al. 2014). Years later, Ohkubo et al. iden
tified the nitrate descending signal as a polypeptide named 
CEP Downstream 1 (CEPD1) and CEPD2 (Fig. 4C; Ohkubo 
et al. 2017). In 2020, it was also established that CEPD-like 
2 (CEPD-L2), together with CEPD1 and CEPD2, contributes 
to the nitrate demand systemic signaling (Ota et al. 2020). 
Interaction between tZ-type CK and these peptides also oc
curs as a response to nitrate starvation. Indeed, the presence 
of root-synthesized tZ-type CK is necessary in shoots to in
duce maximal expression levels of shoot-to-root CEPD1/2 
and CEPD-L2 peptides, which are mainly induced by the ni
trate starvation signal (Fig. 4C; Ota et al. 2020). Moreover, 
CEPD-L2 positively regulates the expression of high-affinity 
nitrate transporters and NRT1.5, which loads nitrate into 
the xylem layer, demonstrating that these peptides have 
an important role in nitrate uptake and translocation to 
the shoot under starving conditions (Ota et al. 2020). 
Altogether, these new findings illustrate that shoots can 
also perceive and integrate nitrate-related signals, first by re
ceiving a nitrate status signal (e.g. starvation) from the root 
and responding by sending another signal back to the root 
(e.g. peptides) to optimize their activity. For future studies, 
moving on from organ-specific nitrate-responses to cell- 
specific nitrate-response networks using single-cell data will 
aid in our understanding of root-shoot-root communication 
in response to N.

New aspects of N-response in time and space: 
single-cell analysis
Single-cell RNA-sequencing (scRNA-seq) has emerged as an 
important tool to better understand dynamic cellular pro
cesses such as spatiotemporal gene expression and develop
mental trajectories from heterogeneous cell populations in a 
single snapshot (Fig. 5). As outlined above, previous studies 
that have examined the response of nitrate in specific cell 
types over time have relied on the use of GFP-marked cell 
lines followed by bulk RNA-seq (Walker et al. 2017; 
Contreras-López et al. 2022). The use of single-cell sequen
cing over GFP-marked lines offers the following advantages: 
(i) to profile nitrate responses in all the cell types composing 
an organ, (ii) to track nitrate responses in cell types according 
to their developmental time in a single snapshot, (iii) to 
examine nitrate responses in all cell types over time in a sin
gle experiment without the need for individual experiments 
for each GFP-marked cell line, and (iv) to examine the effect 
of nitrate specific cell types of mutants without the need 
to develop multiple mutant lines crossed with specific 

GFP-marked cell lines. Despite these promising advantages, 
single-cell (sc) RNA-sequencing data are still highly sparse 
due to cell dropouts. To capture the dynamic cell-specific re
sponse to nitrate that regulates multiple plant developmen
tal processes, future studies should examine the cell 
type-specific responses over multiple time points using 
single-cell sequencing.

The root has been widely used as a model for scRNA-seq 
due to its wide characterization, availability of reporter lines 
and cell type marker genes (Denyer et al. 2019; Jean-Baptiste 
et al. 2019; Ryu et al. 2019; Zhang et al. 2019; Shahan et al. 
2022). Indeed, the root is distributed in different develop
mental zones, including the less differentiated meristem 
zone, elongation zone, and most differentiated maturation 
zone (Fig. 5A). Therefore, we can analyze a gradient of cell dif
ferentiation from the root in a single experiment (Fig. 5B). 
Single-cell transcriptomes offer the unique opportunity 
to generate computational “developmental trajectories” 
(Fig. 5C), in which we can order cell type progression from 
the beginning of cell fate until the final development of ma
ture cell types. Once the developmental trajectory of a spe
cific cell type is established, gene expression throughout 
development as “pseudotime” can be graphed (Fig. 5D). 
For example, Denyer et al. observed that during trichoblast 
development, genes expressed at the beginning of cell fate 
(e.g. meristematic cells) were enriched for biological pro
cesses such as DNA replication, cell proliferation, and ribo
somal functions, whereas more differentiated trichoblast 
cells were enriched in expression of genes controlling unidi
mensional growth, root hair elongation, and maturation 
(Fig. 5C; Denyer et al. 2019). Furthermore, pseudotime trajec
tories coupled with GRNs also contributed to identifying the 
developmental time-regulated TFs that modulate the expres
sion of target genes in a spatiotemporal manner (Denyer 
et al. 2019). Using the same trichoblast developmental trajec
tory, we find that NRT1.1/NPF6.3 expression exhibits a grad
ual increase as cells become differentiated into mature 
trichoblasts, which supports the function of nitrate signaling 
and uptake in this cell type (Fig. 5, C and D). These current 
single-cell transcriptomic profiles represent plants grown in 
standard MS media; therefore, expression profiles under 
changing nitrate conditions need to be examined in future 
studies.

Multiple studies in Arabidopsis have created root and/or 
shoot cell atlases from scRNA-seq data with web-based 
platforms to examine the cell-specific expression profile for 
genes of interest (Table 2). To develop a comprehensive 
Arabidopsis root single-cell expression atlas, Shahan et al. 
analyzed single-cell data for 110,427 Arabidopsis root cells, 
including root data from previously published single-cell 
studies, to determine cell-specific gene expression over devel
opmental time in each cell type (Table 2; Denyer et al. 2019; 
Ryu et al. 2019; Shahan et al. 2022). In addition to single-cell 
studies, single-nuclei (sn) sequencing has also been used as an 
alternative method to avoid the limitations of developing 
protoplasts. To provide a holistic view of the Arabidopsis 
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transcriptional response over plant development, Lee et al. 
analyzed single-nuclei data for 801,276 nuclei that repre
sented seed-to-seed development across all major organs 
during the Arabidopsis life cycle (Lee et al. 2023; Table 2). 
Furthermore, other researchers have developed web-based 
interfaces to explore gene expression in smaller-scale single- 
cell experiments, which include analysis of hormone-treated 
tissues and/or developmental trajectory analysis (Table 2; Ma 
et al. 2020; Denyer et al. 2019; Ryu et al. 2019; Wendrich et al. 
2020b; Kim et al. 2021; Graeff et al. 2021).

The accessibility to single-cell datasets such as these pro
vides useful tools to form hypotheses on nitrate signaling 
and explore the spatiotemporal profiles of nitrate-responsive 
genes in roots/shoots under non-stress cell conditions 
(Fig. 5). For instance, to understand nitrate uptake and trans
location from the soil at single-cell resolution, Lhamo 
and Luan profiled putative nitrate transporters in root cell 
types using published single-cell transcriptomic data from 
Arabidopsis (Denyer et al. 2019; Ryu et al. 2019; Lhamo and 
Luan 2021). Additionally, we can use the tools outlined in 

Figure 5. Investigating spatiotemporal gene expression using single-cell RNA sequencing in Arabidopsis thaliana. A) Longitudinal view of the root 
shows different developmental zones from young (meristematic) to mature (maturation zone), which is used as a model for single-cell analysis to 
construct developmental trajectories in a single experiment (Denyer et al. 2019; Rich-Griffin et al. 2020). B) Thousands of protoplasts or nuclei at 
different developmental stages are used for single-cell library construction (Swift et al. 2022). C) Computational analysis of scRNA-data allows the 
construction of “developmental trajectories” of root cells expressing a gene of interest (red dots), NRT1.1/NPF6.3 using the Plant scRNA-seq Browser 
with representative screenshots from this tool (Denyer et al. 2019; Ma et al. 2020) (Table 2). D) “Pseudotime” expression of NRT1.1/NPF6.3 from 
young meristematic cells to mature cells show that NRT1.1 expression is highly expressed in differentiated trichoblast (Denyer et al. 2019; 
Ma et al. 2020).
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Table 2 to examine the expression profiles of genes of interest 
for nitrate response, such as the transceptor NRT1.1/NPF6.3, 
in roots (Fig. 5, C and D). We find that NRT1.1/NPF6.3 is ex
pressed in trichoblast, atrichoblast, and lateral root cap, 
which is also supported with previous studies (Guo et al. 
2003; Yang et al. 2008; Denyer et al. 2019). This is also in 
line with the function of NRT1.1/NPF6.3 in nitrate uptake 
and signaling; the location of NRT1.1/NPF6.3 expression in 
the outer cell layers allows for easy access to nitrate in the 
soil (Contreras-López et al. 2022).

Building on the “pseudotime,” cell type-specific gene ex
pression can be monitored in “real time” by adding time- 
series response data taken throughout development or in 
response to environmental stimuli (Swift et al. 2022). For ex
ample, Nolan et al. generated brassinosteroid (BR) treated 
time-series expression data of 210,856 single-cell transcrip
tomes and used GRNs analysis to identify new TFs that acti
vate cell wall-regulated genes in cortex cells to promote 
elongation (Nolan et al. 2023). Using this approach, it is pos
sible to determine the dynamic nature of how nitrate regu
lates developmental processes such as lateral root and root 
hair development in time and space. We propose future 
studies that incorporate both single-cell profiling and time- 
series nitrate response assays. Using time-series nitrogen 
response single-cell data can create cell type-specific devel
opmental trajectories and GRNs to identify the TFs that regu
late cell development during early and late nitrate responses, 
together with their predicted target genes—thus, enhancing 
our understanding of how the plant assimilates and responds 
to nitrate supply to engineer plants with enhanced NUE at 
the single cell type level.

Following pseudotime and GRN analysis, scRNA-seq of 
mutant plants will provide new layers of information on ni
trate transport and signaling. To date, there are a few studies 
including single-cell sequencing of mutants to follow changes 
in developmental trajectories from Arabidopsis roots 
(Shahan et al. 2022; Nolan et al. 2023). For instance, SHR 
and SCR are important TFs for cell identity and differenti
ation, whereas BRI1 is an important receptor for BR signaling 
(Shahan et al. 2022; Nolan et al. 2023). The analysis of shr and 
scr single-cell transcriptomes revealed that there is a putative 

loss of pericycle identity in shr mutant and a putative trans- 
differentiation from cortex to endodermis cells in the scr mu
tant (Nolan et al. 2023), while Nolan et al. (2023) generated 
cell-specific bri1 CRISPR mutants by guiding Cas9 expression 
into cortex or epidermis cells using as background a bri1 
plant complemented with pBRI1:BRI1:mCitrine. The cortex 
mutant lines displayed shorter cortex cells in the mature 
zone but not in the meristem zone, whereas the epidermis 
mutant lines presented shorter cortex cells in both zones, 
suggesting that BR signaling is necessary in both the epider
mis and cortex to promote cell expansion by modulating cell- 
wall genes in the elongation zone (Nolan et al. 2023). These 
results demonstrate that scRNA-seq can address cell identity 
and signaling pathways in the context of space and time, 
being also an interesting approach for future N-response 
studies.

Together with scRNA-seq, single-cell sequencing of access
ible chromatin sites will contribute to more resolutive GRNs 
and will shed light on TFs involved in spatial and temporal 
regulation during nitrogen responses. Cell type-specific 
regulation of gene expression is in part modulated by a dy
namic chromatin state that responds to development and 
environment. Changes in the chromatin landscape are re
versible and affect the binding of regulatory proteins, 
such as TFs, controlling gene expression. With single-cell as
say for transposase-accessible chromatin (scATAC-seq) as a 
strategy to uncover putative TF-binding sites during nitrate 
responses, we can obtain highly resolutive GRNs considering 
cellular heterogeneity, resulting in cell type-specific accessi
bility variance and TF-target regulation (Buenrostro et al. 
2015). Moreover, together with scRNA-seq approaches, it is 
possible to correlate chromatin regulation over gene expres
sion across cell types as determined recently by the human 
ENCODE project and Arabidopsis roots (Buenrostro et al. 
2015; Gulko and Siepel 2019; Dorrity et al. 2021; Farmer 
et al. 2021). Single-cell ATAC-seq in roots has also revealed 
more accessible and dynamic sites than bulk ATAC-seq, sug
gesting that a more resolutive network needs to be accom
panied by single-cell expression of TFs (Dorrity et al. 2021). 
Indeed, by integrating snATAC-seq and snRNA-seq from 
Arabidopsis roots, Farmer et al. led to the identification of 

Table 2 . Web browsers available to visualize cell type-specific gene expression from single cell/nuclei datasets in Arabidopsis

Name Description URL References

Arabi Atlas data Single-cell gene expression in specific root 
cell types over developmental time for 
each cell type

https://phytozome-next.jgi.doe.gov/ 
tools/scrna/

Denyer et al. (2019), Ryu et al. (2019), 
Goodstein et al. (2012) Shahan et al. 
(2022)

Arabidopsis 
Developmental 
Atlas Viewer

Single nuclei transcriptome data for cell 
type-specific expression of genes 
throughout plant development stages

http://arabidopsisdevatlas.salk.edu/ Lee et al. (2023)

Plant sc Atlas Resource and visualization tools for multiple 
single cell datasets in roots and shoots

https://bioit3.irc.ugent.be/plant-sc- 
atlas/

VIB Ghent University, Wendrich et al. 
(2020b), Graeff et al. (2021), Yang 
et al. (2021a), Nguyen et al. (2023)

The Plant scRNA-seq 
Browser

Single cell gene expression in roots and 
shoot cell types including trichoblast, 
atrichoblast, and cortex pseudotime

https://www.zmbp-resources.uni- 
tuebingen.de/timmermans/plant- 
single-cell-browser/

Ma et al. (2020), Denyer et al. (2019), 
Kim et al. (2021)
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11,858 genes overlapping with chromatin-accessible sites. A 
high correlation (P < 10E−05) was obtained when compar
ing sn/scRNA-seq and snATAC-seq of root marker genes 
(Farmer et al. 2021). Overall, in the future, both open chro
matin sites and gene expression profiles could be used as bio
logical markers for cell type identity and differentiation level 
under different nitrogen conditions or time series.

Model-to-crop: nitrogen sensing and signaling 
and its impact on agricultural outcomes
How can we use results from model species such as 
Arabidopsis to have an impact on NUE in crops? In reference 
to this question, a follow-up document to the United States 
White House's Executive Order 14081, a set of goals for 
“Harnessing Research and Development to Further Societal 
Goals” was established and includes multiple goals to im
prove NUE in agricultural practices (The White House 
Office of Science and Technology Policy 2023). Specifically, 
the goals in the White House report are highly relevant to 
current and future NUE studies, which include reducing ni
trogen emissions in agriculture by engineering plants with in
creased nitrogen use efficiency, improving fertilizer practices, 
and manipulating plant microbiomes to produce plants cap
able of growing in nutrient-poor land. To accomplish these 
goals, we review current research that focuses on (i) how 
we can apply our knowledge of nitrogen in the model system 
Arabidopsis to crop species and (ii) understanding how mi
crobial communities affect nitrogen uptake and availability 
in agriculture.

Advances in our base knowledge of nitrogen uptake, trans
port, and signaling have greatly benefited from studies in the 
model Arabidopsis; however, we must develop ways to apply 
this knowledge base to crops. With the substantial progress 
in omics technology and the availability of bulk- and single- 
cell RNA-seq datasets accumulated in the past two decades, 
cross-species comparisons of genetic information have been 
gaining momentum (Table 3; Katari et al. 2010; Alvarez et al. 
2021; Chen et al. 2021; Fu et al. 2022; Xu et al. 2022). The 
interspecific comparisons, which can be made at the level 
of genomic sequences, gene expression, co-expression net
works, expression atlas, expression quantitative trait loci 
(eQTL), and gene regulatory networks, open the possibility 
of knowledge transferring from model organisms to eco
nomically important species. For example, in Obertello 
et al., a cross-species N-regulatory network between rice 
and Arabidopsis was constructed by (i) identifying the 
N-responsive differentially expressed genes in one species 
as the starting point; (ii) constructing the edges using 
metabolic interactions, protein-protein interactions, and 
correlated expression; and (iii) only retaining the nodes 
whose orthologs were also N-responsive in another species 
(Obertello et al. 2015). The identified rice candidate 
TFs targeting the conserved N-regulatory network, including 
HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY 

ROOT SHORTENING 1/NITRATE-INDUCIBLE GARP-TYPE 
TRANSCRIPTIONAL REPRESSOR (HRS1/NIGT1; HRS1 
HOMOLOGs (HHO), OsHHO3 and OsHHO4) and TGA 
(OsbZIP11) transcription factors were later functionally vali
dated as key regulators of N-deficiency responses in planta 
(Ueda et al. 2020).

In more recent rice studies, nitrogen-dose sensing in the 
field was examined as the interaction between nitrogen 
(N) and water (W; Swift et al. 2019). It was discovered that 
nitrogen dose is sensed as either moles (N-moles), molarity 
(N/W), or the synergistic interaction with nitrogen and water 
(N × W; Swift et al. 2019). Notably, it is the interaction 
between N and W (N/W or N × W) that positively corre
lates with phenotypic outcomes such as grain yield and 
water-use efficiency in the field (Swift et al. 2019). These 
conclusions were determined using linear models that ana
lyzed RNA-seq and phenotypic data from rice exposed to a 
factorial matrix of N-by-W conditions of different rice var
ieties in both laboratory and field conditions (Swift et al. 
2019). Using this N-by-W expression and phenotype data
set, Shanks et al. 2022 identified the TFs, OsbZIP23, and 
Oshox22 as regulators of NUE grain yield (NUEg) by devel
oping gene regulatory networks that linked TFs to target 
genes to field NUEg phenotypes (Swift et al. 2019; Shanks 
et al. 2022).

Another widely used approach to uncover gene-to-trait re
lations from the network perspective is by associating 
co-expression network modules with either functional 
information or phenotypes. Cross-species weighted gene co- 
expression network analysis (WGCNA; Langfelder and 
Horvath 2008) has identified an N-regulatory network con
served between maize and sorghum, despite the difference 
in genome size and phylogenetic distance between these 
two species (Du et al. 2020). Notably, ZmHPP, a top-ranked 
TF in regulating the conserved N-regulatory modules, has 
an Arabidopsis homolog ATNITR2;2 (AT3G47980) that is 
also a hub gene (nodes with the most edges) in another co- 
expression network module for nitrogen signaling (Canales 
et al. 2014). Overall, these results consistently support the 
importance of conserved N-regulatory networks in regulat
ing the phenotypic response.

Although tools exist to aid in orthology analysis (Table 3; 
Huerta-Cepas et al. 2019), the cross-species analyses are lim
ited by the ortholog conversion methods, most of which as
sume the sequence-based orthologs to have similar 
functions, the so-called ortholog conjecture, which is argu
ably applicable to all species as orthology inference tends 
to be more complicated than a straightforward one-to-one 
relationship due to genome duplication (Gabaldón and 
Koonin 2013). This phenomenon is especially prominent in 
plant species that follow a pattern of genome evolution in
volving polyploidization followed by the loss or partial reten
tion of duplicated genes (Wendel et al. 2016). As a result, 
plant genomes have highly complex gene families, making 
the identification of a single ortholog conceptually impos
sible. Considering that gene expression can serve as a proxy 
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for gene function, a novel type of approach has been pro
posed to classify genes based on not only sequence similarity 
(genes in the same orthogroup) but also expression patterns 
(Das et al. 2016). Kasianov et al. constructed a pipeline that 
trained an XGBoost-based machine learning classifier using 
developmental transcriptome profiles and sequence-based 
ortholog information and was able to provide functional cor
respondence between genes from phylogenetically distinct 
species (Arabidopsis-maize and Arabidopsis-buckwheat; 
Kasianov et al. 2023). This method has the potential to en
able the selection of functionally similar orthologs, which is 
approximated by the expression patterns, even for species 
with distinct morphologies. Furthermore, conservative gene 
function is not always found between species, which is why 
mutant analysis and validation must be performed.

In Cheng et al. (2021), the authors exploited the evolution
ary conservation of the N-responses across species to identify 
genes of importance to NUE in a model (Arabidopsis) and 
crop (maize; Cheng et al. 2021). Specifically, this study inte
grated the sequence-based and expression-based similarity 
in orthologs with machine learning modeling to infer 
gene-to-NUE phenotype relations in Arabidopsis and maize. 
To do this, the N-response differentially expressed genes 
(N-DEGs) conserved in Arabidopsis and maize, as deter
mined by sequenced-based orthology, were used as gene fea
tures (predictors) in the machine learning, gradient 
boosting-based method XGBoost (Chen and Guestrin 
2016). The output of XGBoost gives each gene feature an im
portance score for how that gene contributes to a trait (i.e. 
NUE; Cheng et al. 2021). The top-ranked TFs in the 
XGBoost models that were important in predicting 
gene-to-NUE relations were functionally validated using the 
T-DNA loss-of-function mutants in Arabidopsis. Remarkably, 
a model-to-crop validation was performed using maize nfya3 
mutant whose Arabidopsis ortholog NF-YA6 (AT3G14020) 
is the top TF in Arabidopsis XGBoost model and displayed en
hanced grain NUE compared to wild-type counterparts in the 
field experiment (Cheng et al. 2021). In addition, the gene 
regulatory networks were constructed using a random forest- 
based algorithm GENIE3 to identify the TFs regulating the con
served N-DEGs predictive of NUE. Functional validation using 
Arabidopsis mutants defective in the TF hubs (nodes with 

the most edges) displayed higher NUE (Cheng et al. 2021). 
These results demonstrated the utility of cross-species tran
scriptome analyses in optimizing machine learning models 
and constructing GRNs.

Given the importance of developing high-confidence cross- 
species networks, the ConnecTF platform (connectf.org) was 
developed for researchers to perform interactive and auto
mated precision/recall analysis (AUPR) on their uploaded 
networks, as well as to build and visualize networks and 
compare validated datasets for one or more TFs in 
Arabidopsis, rice, and maize (Table 3) (Brooks et al. 2021). 
To facilitate these analyses, the open-source ConnecTF 
web platform includes the validated TF-target gene data 
generated using the plant cell-based TARGET system, along 
with published in planta TF perturbation data, ChIP-seq, 
and DAP-seq data. Examples of how ConnecTF can be 
used to develop high-confidence networks using AUPR ana
lysis have been published for Arabidopsis (Brooks et al. 
2021) and rice (Shanks et al. 2022).

In addition to cross-species networks and machine learn
ing, single-cell RNA-seq data can be used to uncover con
served regulatory programs and key regulators in specific 
cell types between species (Table 3; Chen et al. 2021; Xu 
et al. 2022). Cell type-specific N-responses in crops have 
been examined on plants grown under low N stress condi
tions using single-cell RNA-sequencing (scRNA-seq). Like 
Arabidopsis, studies in crops such as maize and rice also 
show cell type-specific responses to N in the root using 
single-cell sequencing technology (Wang et al. 2021b; Li 
et al. 2022). For example, in maize studies, the nitrate assimi
lation genes such as ZmGS2 (glutamine synthetase 2) and 
ZmNAR2.1 (high-affinity nitrate transporter) were induced 
specifically in the epidermis (Li et al. 2022). One limitation 
of single-cell studies in crop species compared to 
Arabidopsis is the lack of well-defined cell-specific marker 
genes derived from cell type-specific studies and transcrip
tomes. To address this issue, databases that include single- 
cell studies in multiple plant species offer tools to identify 
marker genes for specific cell types in multiple crop species 
(Table 3; Chen et al. 2021; Xu et al. 2022). Additionally, the 
new PHYTOMap (plant hybridization-based targeted obser
vation of gene expression map) technique was developed as a 

Table 3 . Web-based platforms for analysis of genomic data across plant species

Name Description URL References

VirtualPlant Resource that integrates plant genomic data with visualization and analysis 
tools

http://virtualplant.bio.nyu. 
edu/cgi-bin/vpweb/

Katari et al. (2010)

EggNOG Database for orthology relationships, gene evolutionary relationships and 
functional annotations for multiple species

http://eggnog5.embl.de/ 
#/app/home

Huerta-Cepas et al. 
(2019)

ConnecTF Platform that integrates genome-wide studies to develop and validate 
networks with AUPR analysis

https://connectf.org Brooks et al. (2021)

ChIP-Hub Application to explore the plant regulome and epigenome https://biobigdata.nju.edu.cn/ 
ChIPHub/

Fu et al. (2022)

Plant Single Cell 
Hub

Single-cell data repository for plant species http://jinlab.hzau.edu.cn/ 
PsctH/

Xu et al. (2022)

PlantscRNAdb Database and browser single-cell expression from multiple species including 
marker gene selection and analysis for specific cell types

http://ibi.zju.edu.cn/ 
plantscrnadb/index.php

Chen et al. (2021)
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fluorescence in situ hybridization method for whole-mount 
tissue that can be applied to single-cell data for spatial ana
lysis of gene expression and to define marker genes for spe
cific cell types (Nobori et al. 2023). This technique 
developed in Arabidopsis has the potential to be applied 
to crops to assist in cluster gene annotation from single-cell 
studies and marker gene validation without the need to de
velop time-consuming transgenic reporter lines (Nobori et al. 
2023). Furthermore, this method is developing rapidly and 
can be applied to identify the spatial cell type-specific nitro
gen response. How plant host–microbe interactions are af
fected by nitrogen levels in the soil is another area of 
nitrogen research that can benefit from single-cell technol
ogy as the colonization of microbes is a cell type-specific re
sponse (Cole et al. 2021). For example, multiple studies have 
examined how nodulation in legumes is initiated in the cor
tex cells (Walker et al. 2017; Mahmud et al. 2020). During 
nodulation, legumes will recruit microbes that can perform 
biological nitrogen fixation (BNF), in which microbes use 
the enzyme nitrogenase to catalyze the conversion of abun
dant N2 gas in the atmosphere into ammonia that can be as
similated by the host plant via glutamine synthase to form 
glutamine (Gautrat et al. 2021). To reduce the reliance on ex
cess synthetic fertilizers, future research is examining how to 
harness nitrogen fixation by microbes and apply this process 
to benefit non-legume crops such as maize, rice, and wheat 
(Mahmud et al. 2020; Wen et al. 2021). One way this can 
be accomplished is by engineering non-legumes to form no
dules with N-fixing bacteria (Mahmud et al. 2020; Wen et al. 
2021). Alternatively, crops can be engineered to secrete spe
cific root exudates, which is a mixture of sugars, amino acids, 
fatty acids, and vitamins, to either recruit beneficial microbes 
that help improve nitrogen acquisition or to inhibit the col
onization of microbes that might compete with nutrient ac
quisition (Hartman and Tringe 2019). In addition to 
engineering the crop itself, there is also an effort to use spe
cific microbial inoculants as biofertilizers (Klimasmith and 
Kent 2022). This can be done either by adding microbes in 
the soil that will form endosymbiotic relationships with the 
plant to increase nitrogen fixation or by adding free-living 
microbes that offer greater nitrogen availability to the plant 
in the soil (Cole et al. 2021; Klimasmith and Kent 2022).

Nitrogen research in the age of artificial 
intelligence (AI)
Since Alan Turing first proposed the concept of machines 
capable of self-learning and self-instruction in 1950, the field 
of artificial intelligence (AI) has experienced explosive 
growth. AI, in general, refers to the ability of machines to 
simulate the intelligence observed in complex organisms.

Increasingly, AI is intersecting with the field of biology. 
Machine learning and in particular AI, mainly in the form 
of Deep Neural Net (DNN; Lecun et al. 2015), are transform
ing the way science is performed. Although traditional 

model-driven methods still play a valuable role in analyzing 
biological data, they often lack the capacity to effectively har
ness vast amounts of available data, including big data, to ex
tract information, forecast data behavior, and comprehend 
complex data relationships. Particularly over the last decade, 
we have seen a dramatic increase in the number of large, 
highly complex datasets being generated from biological ex
periments, quantifying molecular variables such as gene, pro
tein, and metabolite abundance, microbiome composition, 
and population-wide genetic variation, to name just a few. 
Community efforts across research disciplines are regularly 
generating petabytes of data. The nitrogen signaling field 
has been very active to use and develop new algorithms to 
decipher the obvious complexity of the nitrogen signaling 
pathway even before the rise of the DNN. The nitrogen com
munity has been particularly keen on using several mathem
atical models to decipher and predict the actual interactions 
between transcription factors and their target genes or to 
model solute transport and developmental processes. 
These approaches ranged from linear models (Gutiérrez 
et al. 2007; Krouk et al. 2009; Ristova et al. 2016), state-space 
modeling (Krouk et al. 2010; Brooks et al. 2019; Alvarez et al. 
2020), to “ordinary differential equations” (ODEs) embedded 
in organ and tissue models (Boer et al. 2020; Ötvös et al. 
2021). DNNs are very good at image classification and seg
mentation as they were originally developed for computer vi
sion (Lecun et al. 2015). This is why an important trend 
is now rising as it relates to the measure of N content on 
plants from image analysis. Most of the time these 
approaches use multispectral images to classify the N con
tent of different crops, including maize (Nguyen et al. 2023; 
Wijewardane et al. 2023), cotton (Xiao et al. 2022), or sor
ghum (Wijewardane et al. 2023).

Impressive advancements in AI in biology have been 
made, for example, in precise identification of the three- 
dimensional structure of biological molecules, such as 
AlphaFold, a critical task with significant implications for bio
logical research (Jumper et al. 2021; Lin et al. 2023) and now 
widely used in biology. But the potential for AI to replicate 
the capacities of living systems, particularly human intelli
gence, represents a significant achievement and a turning 
point in how science is performed. AI is now capable of ob
ject recognition and decision-making, using cognitive and 
perceptual abilities akin to those observed in biological sys
tems. A relatively more recent branch of neural networks 
called “natural language processing” (NLP), originally devel
oped to understand human languages (including translating 
one language into another), has been applied to biological 
questions and to published articles or written information 
and sequence-related data, including DNA or protein se
quences. In the context of NLP, self-supervised large language 
models, such as “generative pre-trained transformer 3” 
(GPT-3; Brown et al. 2020) or “pathways language model” 
(PaLM; Chowdhery et al. 2022), have demonstrated impres
sive abilities to extract meaningful pieces of world knowledge 
from being exposed to an extremely large quantity of 
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text (billions of words). A relevant challenge is related to how 
to access the knowledge encoded by the internal representa
tion of a large AI model. Surprisingly, recent research (Gao 
et al. 2021) has found that it is possible to steer these large 
models to output relevant knowledge from a novel target 
task using just a prompt. Specifically, by using a prompt 
that provides the model with a human language description 
or several examples of what one wants them to do, the model 
can output meaningful knowledge related to a target task. 
This learning strategy, referred to as contextual prompting, 
offers a new degree of control to selectively access the knowl
edge encoded in the internal representations of a large lan
guage model. Nevertheless, it remains to be assessed how 
useful and in which way tools such as NLP models or 
ChatGPT, trained specifically with scientific literature, will 
be for scientific research.

AI-based algorithms and programs continue to emerge 
with diverse applications from basic research to precision 
farming. Precision farming has the potential to revolutionize 
various agricultural practices, ranging from soil management 
and water analysis to accurate modeling of fertilizer require
ments, as well as the optimization of pesticides, insecticides, 
herbicides, yield projections, and overall crop management. 
These advancements in AI intervention can play a pivotal 
role in meeting the increasing demands for food from a grow
ing global population. Early prediction and identification of 
agricultural problems, as well as optimization of production 
practices, are key areas that can greatly benefit from AI appli
cations. Such approaches not only have the potential to save 
significant costs but also mitigate environmental impacts, 
leading to more sustainable agricultural practices.

Conclusions
In this review, we examine how studies of nitrogen sensing 
and signaling over time and space have begun to uncover 
the underlying dynamic regulatory networks that mediate 
changes in plant metabolism and development. We also ex
plore how emerging experimental and computational tech
niques can be applied to advance nitrogen research. This 
includes leveraging new experimental approaches such as 
single-cell sequencing to unravel the relay of nitrogen signal
ing in specific cell types over time and its effect on crucial 
processes, such as cell differentiation, to modulate organ de
velopment. On the other hand, computational methods 
such as machine learning and artificial intelligence will aug
ment experimental nitrogen research endeavors to uncover 
the mechanisms by which plants sense and respond to nitro
gen sources in their environment. We also highlight how 
model-to-crop translational studies can be used for practical 
gain in enhancing NUE in agriculture.
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