Nitrogen sensing and regulatory networks: it's about
time and space

Carly M. Shanks ®,"" Karin Rothkegel ®,>*' Matthew D. Brooks (®,* Chia-Yi Cheng ®,’
José M. Alvarez ®,*° Sandrine Ruffel ®,” Gabriel Krouk ®,” Rodrigo A. Gutiérrez 234.¥
and Gloria M. Coruzzi ®"**

1 Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA

2 Agencia Nacional de Investigacidn y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio),
7500565 Santiago, Chile

3 Center for Genome Regulation (CRG), Institute of Ecology and Biodiversity (IEB), Facultad de Ciencias Bioldgicas, Pontificia Universidad Catdlica

de Chile, 8331010 Santiago, Chile

Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA

Department of Life Science, National Taiwan University, Taipei 10663, Taiwan

Centro de Biotecnologia Vegetal, Facultad de Ciencias, Universidad Andrés Bello, 8370035 Santiago, Chile

Institute for Plant Sciences of Montpellier (IPSiM), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour

I'Agriculture, I'Alimentation, et I'Environnement (INRAE), Université de Montpellier, Montpellier 34090, France

N O

*Author for correspondence: gloria.coruzzi@nyu.edu (G.M.C.), rgutierrez@bio.puc.cl (RA.G.)
TCo-first authors.
¥Co-corresponding authors.

Abstract

A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate
across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen
responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applica-
tions. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and
spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses
to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its ni-
trate-dependent TF nuclear retention, its “hit-and-run” mode of target gene regulation, and temporal transcriptional cascade
identified by “network walking.” Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots
and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and
pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms under-
lying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for
translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental ef-
fects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.

Introduction on the spatial dynamics of nitrogen sensing and signaling

networks: it's about time. Aptly, more than 100 years ago,
This special Plant Cell issue commemorates 100 years of  Michalis-Menten's classic paper published in 1913 sought
the American Society of Plant Biologists. Our review focuses “to achieve the final aim of kinetic research; namely, to
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Nitrogen sensing/signaling in time and space

obtain knowledge of the nature of a reaction from a study of
its progress” (Michaelis and Menten 1913; Michaelis et al.
2011). Inspired by this, our review focuses on systems biology
studies conducted in real time and space. Such studies have
uncovered the mechanisms by which plants sense and re-
spond to nitrogen (N) signals within minutes to evoke
changes in N-signaling networks in specific cell types that in-
fluence plant growth and development. Such discoveries of
N-sensing/signaling reside in Pasteur's quadrant, a field of in-
quiry that aims to gain a fundamental understanding of a sci-
entific problem while also providing immediate societal
benefits (Stokes 1997)—in this case, improvements in nitro-
gen use efficiency (NUE).

The advent of synthetic fertilizers has brought significant
advantages to agricultural practices by boosting crop yield,
but at both economic and environmental costs (Menegat
et al. 2022). Approximately half of applied fertilizers are ef-
fectively used by plants, while the remaining portion is prone
to runoff, resulting in groundwater contamination and eu-
trophication (Bijay-Singh and Craswell 2021). Moreover, ex-
cess fertilizer application can lead to the production of
nitrous oxide, a potent greenhouse gas (Mahmud et al.
2020; Menegat et al. 2022). Considering these challenges,
a key objective of nitrogen research is to develop plants
with enhanced NUE. Achieving this objective would not
only reduce the need for excessive fertilizer usage but also
support optimal plant growth in nitrogen-limited soils
worldwide.

Nitrogen—the rate limiting element for plant growth—is
often found in the soil as nitrate (NO3) and/or ammonium
(NHZ). Organic forms such as amino acids and urea can
also play important roles in specific contexts (Yang et al.
2021b). Nitrate—the main form of nitrogen found in aerobic
soils—also acts as a N-signal sensed by a nitrate transceptor
in roots (Crawford and Forde 2002). As such, nitrate sensing/
signaling has been widely studied by using biochemical, mo-
lecular genomics, genetics, and systems biology approaches
(Krouk et al. 2010; Gaudinier et al. 2018; Wang et al. 2018;
Vidal et al. 2020; Lamig et al. 2022). Herein, we explore studies
that use systems biology approaches to examine the tem-
poral and spatial mechanisms behind nitrogen sensing and
signaling, largely in the model Arabidopsis. We especially
highlight progress in this area published after the “Nitrate
in 2020” Plant Cell Review, which includes an extensive time-
line of milestone publications on nitrate signaling up to 2020
(Vidal et al. 2020). In addition to studies that explore the pri-
mary N-response (nitrate sensing/signaling), we include tem-
poral studies that examine the plant response to ammonium
nitrate, the source of nitrogen in the widely used Murashige
and Skoog cell culture medium (Murashige and Skoog 1962;
Varala et al. 2018; Brooks et al. 2019; Swift et al. 2020; Alvarez
et al. 2021). Plants respond differently to sole sources of ni-
trate versus ammonium; therefore, we recommend referring
to the following excellent reviews for details on specific am-
monium responses not covered herein (Hachiya and
Sakakibara 2017; Liu and Von Wirén 2017).
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For further insights into advances in nitrogen sensing/sig-
naling, we recommend recent reviews that encompass other
aspects such as nitrogen transport (Tegeder and Masclaux-
Daubresse 2018; Wang et al. 2018), local and systemic
nitrogen signaling (Zhang et al. 2020), post-translational mod-
ifications and nitrogen signaling components (Muratore et al.
2021; Wang et al. 2021a), nitrogen-dependent developmental
responses (Weber and Burow 2018; Fredes et al. 2019), nitro-
gen regulation of root system architecture (Jia and von
Wirén 2020; Hu et al. 2021), nitrogen interactions with other
nutrients (Oldroyd and Leyser 2020; Li et al. 2021), nitrogen
and hormone interactions (Sakakibara 2021; Xing et al.
2023), and nitrogen responses under abiotic stress (Araus
et al. 2020; Plett et al. 2020).

This review briefly touches on nitrogen response networks
in crops (Ueda et al. 2020) and translational studies of nitro-
gen signaling networks—from model to crop (Obertello et al.
2015; Cheng et al. 2021). We also recommend more extensive
recent reviews on crops for a comprehensive understanding
of nitrogen signaling in agricultural contexts (Jia and von
Wirén 2020; Hou et al. 2021; Sandhu et al. 2021; Gao et al.
2022; Hu et al. 2023).

This review focuses on novel insights gained from systems
biology approaches to uncover the temporal and spatial me-
chanisms of nitrogen sensing and signaling. These include the
discovery that Michaelis-Menten kinetics mediates N-dose
dependent transcriptome responses (Swift et al. 2020). This
finding echoes earlier time-based studies that showed that
Michaelis-Menten kinetics mediate N-dose dependent nitro-
gen uptake (Ho et al. 2009; McNickle and Brown 2014) and
plant growth responses (Lana et al. 2005). Furthermore, we
examine recent studies that have uncovered the time-
dependent mechanisms involving the master transcription
factor (TF) NLP7, as a nitrate sensor (Liu et al. 2022),
the nitrate-dependent nuclear localization of NLP7/6
(Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017;
Cheng et al. 2023), the “hit-and-run” model of transient inter-
actions of NLP7-target genes (Alvarez et al. 2020), and the
regulation that NLP7 exerts over a temporal cascade of
downstream TF2s—uncovered using a method called “net-
work walking” (Alvarez et al. 2020; Brooks et al. 2019, 2020).

We also explore new spatial approaches that can identify
how nitrogen sensing, transport, and signaling are governed
by cell type specificity in different organs. This includes the
cell type-specific signaling responses to nitrate (Chen et al.
2022; Contreras-Lopez et al. 2022), as well as studies that
examine nitrate root-to-shoot communication and how
plants integrate the shoot and root nitrogen status to
systematically regulate nutrient uptake in the roots
(Tabata et al. 2014; Ohkubo et al. 2017; Ota et al. 2020;
Abualia et al. 2022).

To facilitate and inspire future advances in nitrogen re-
search in space and time, we review advancements in single-
cell sequencing technology that can be applied to plant
N-sensing/signaling (Rich-Griffin et al. 2020; Cole et al.
2021). For example, the use of single cell (sc) RNA-seq assays
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Figure 1. The N-dose-dependent regulation of N-uptake, N-signaling, and N-growth follows Michaelis-Menten (MM) kinetics. A) The rate of
N-uptake by NRTs and AMTs is regulated by MM kinetics (Ho et al. 2009; McNickle and Brown 2014). B) Swift et al. (2020) demonstrated that
the transcriptional response to N-dose also follows MM kinetics in Arabidopsis wild-type plants (Swift et al. 2020). Moreover, TGA1 overexpression
and tga1/4 mutant analysis revealed that a portion of this MM-mediated N-dose transcriptional response is mediated by the master transcription
factor TGAT1, which affects plant growth rate (Swift et al. 2020). C) N-dose-regulated growth responses measured by biomass is also regulated by MM
kinetics (Lana et al. 2005). Thus, transcriptome kinetics responding to changes in N-dose has the potential to enhance plant growth. Figure adapted

from Swift et al. (2020). Figure created with BioRender.com.

could enable (i) tracking of the nitrogen signal from
root-to-shoot and (ii) determination of cell fate trajectories
using pseudotime analysis (Denyer et al. 2019; Shahan et al.
2022; Nolan et al. 2023). Additionally, we explore how to
use computational methods such as machine learning of
the gene-to-NUE trait across a model and crop (Cheng
et al. 2021) and how artificial intelligence (Gao et al. 2021)
may augment experimental nitrogen research endeavors.
Overall, this ASPB Centennial review provides an overview
the spatiotemporal dynamics of nitrogen sensing and signal-
ing as an integrated system in plants. These temporal based
systems biology approaches can also be applied to study any
sensing and signaling network in plant and crop biology.

Nitrogen dose sensing as a function of time

How an organism senses and responds to changes in nitrogen
nutrient dose is a basic unanswered question in biology with
special relevance to agriculture. Exploiting time to uncover
mechanisms underlying N-sensing/signaling in plants derives
inspiration from the now classic Michaelis-Menten (MM) pa-
per, which aimed “to obtain knowledge of the nature of a re-
action from a study of its progress” (Michaelis and Menten
1913; Michaelis et al. 2011). Importantly, MM kinetics have
also previously been shown to mediate nitrogen uptake
(Fig. TA; Ho et al. 2009; McNickle and Brown 2014) and plant
growth (Fig. 1C; Lana et al. 2005). Inspired by this, Swift et al
(2020) applied the MM kinetic concept to study the molecu-
lar basis for N-dose sensing in Arabidopsis, exposing seedlings

to a matrix of four increasing N-doses of ammonium nitrate
over five time points (Ahmed 2020; Akmakjian and
Bailey-Serres 2020; Swift et al. 2020). Modeling of the result-
ing RNA-seq data revealed that 3,818 genes increased or de-
creased their expression in proportion to N-dose over time.
Moreover, they found that for a subset of these genes, the
N-dose-dependent gene responses mirror simple enzyme ki-
netics described by Michaelis-Menten (MM) in 1913, where
changing levels of enzyme abundance will affect the max-
imum rate of reaction (V. Michaelis and Menten 1913;
Michaelis et al. 2011; Swift et al. 2020). Specifically, N-dose re-
sponse genes whose expression pattern significantly fit the
MM model allowed for estimating the maximum rate of
transcript change (Vimax), as well as the N-dose at which
half of V.« was achieved (K., Fig. 1B; Swift et al. 2020).
Indeed, the classic MM kinetic model was able to explain
the expression of 30% of N-dose responsive genes in
Arabidopsis (1,153 MM modeled N-dose responsive genes;
Fig. 1B), whereas the remaining 70% genes could be explained
by more complex kinetics and/or other regulatory mechan-
isms (Swift et al. 2020). This finding suggests that transcrip-
tion factors (TFs) that regulate MM response genes can
be analogized as catalytic enzymes in the MM model since
they establish the rates at which transcription takes place
in response to N-dose (Swift et al. 2020). To support this,
in vivo studies showed that the overexpression of TGA1, an
early N-responsive TF, led to an increase in V., of N-dose
responsive mRNAs (Fig. 1B), which was translated as an accel-
erated plant growth in response to N (Fig. 1C; Swift et al.
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Figure 2. Time- and space-dependent modes of action for NLP7 as a master regulator of nitrate signaling. A) NLP7 binds to nitrate and acts as a
nitrate sensor as determined using the genetically encoded split mCitrine-NLP7 nitrate biosensor (sCiNiS) assay (Liu et al. 2022). Fluorescent signal
was detected 5 min after nitrate treatment in both mesophyll and primary root tip cells (Liu et al. 2022). B) Both NLP7 and NLP6 accumulate in the
nucleus in response to nitrate as determined with TF-fusion proteins expressed in their respective mutant backgrounds, showing that accumulation
of either TF in the nucleus is independent of each other, but dependent on nitrate (Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017; Cheng et al.
2023). C) The “hit-and-run” model of transcription posits that a pioneer TF transiently binds to the promoter of a target gene to open the chromatin
and allow for other partner TFs to bind the promoter, thereby making NLP7 available to bind the next target gene (Para et al. 2014; Alvarez et al.
2020). The TARGET assay combined with ChIP-seq and DamID was used to identify these highly transient NLP7 target genes (Alvarez et al. 2020).

Figure created with BioRender.com.

2020). Uncovering the molecular mechanisms that underlie
the transcriptome kinetics responding to changes in
N-dose now connects N-uptake (transport) to output (bio-
mass), and thus has the potential to enhance plant growth
and improve N-use efficiency in crops (Fig. 1).

Time- and space-dependent modes of action
for NLP7 as a master regulator of nitrate
signaling

NLP7 is a master regulator of the early nitrate response, act-
ing as a transcriptional regulator of genes involved with ni-
trate transport, nitrate assimilation, and signal transduction
(Marchive et al. 2013; Alvarez et al. 2020). New time-based
studies have shown that NLP7 is not only a master transcrip-
tion factor for mediating nitrate responses, but it can also
bind nitrate and act as an intracellular nitrate sensor, as iden-
tified using the split mCitrine-NLP7 nitrate biosensor (sCiNiS;
Liu et al. 2022; Fig. 2A). The fluorescence signal for NLP7 bind-
ing of nitrate was detected after 5 min of nitrate treatment in
mesophyll cells of cotyledons and also in primary root tips,
showing that NLP7 acts as an intracellular nitrate sensor to
initiate nitrate responses (Liu et al. 2022). The nitrate-binding

domain on NLP7 is an evolutionarily ancient domain that is
conserved among plant NLPs and bacterial nitrate sensors
such as NreA (Niemann et al. 2014). Nitrate directly interacts
with NLP7 through its amino terminus, inducing its conform-
ational change to activate transcription (Liu et al. 2022;
Fig. 2A).

The role of NLP7 as a nitrate sensor is an additional level of
NLP7 regulation to the known post-translational modifica-
tions that regulate NLP7 in the nucleus in response to nitrate
(Fig. 2B; Marchive et al. 2013; Guan et al. 2017; Liu et al. 2017).
Once nitrate is transported inside the cell by NRT1.1, a rapid
wave of Ca+ 2 causes the activation of group IlI calcium-
sensor protein kinases (CPKs) in seconds, which in turn phos-
phorylates NLP7 to retain it in the nucleus, activating early
nitrate-response genes within minutes (Marchive et al.
2013; Liu et al. 2017; Fig. 2B). A recent study by Cheng
et al. (2023) found that NLP7 and another NLP family mem-
ber, NLP6, are both retained in the nucleus in response to ni-
trate (Cheng et al. 2023; Fig. 2B). Moreover, they showed that
nitrate-dependent nuclear accumulation of NLP7 and NLP6
act independently of each other. To do this, they constructed
translational fusion proteins for both GFP-NLP6 and
GFP-NLP7, expressed in nlp7 or nlp6 mutant background, re-
spectively, accumulated in the nucleus in response to nitrate
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Table 1. Systems biology techniques and tools applied to studying TFs and their targets involved in nitrogen sensing and signaling

Technique/tool

Description

References

TARGET
(TF — direct target

Transient Assay Reporting Genome-wide Effects of Transcription factors
(TARGET) is a plant cell-based assay used to identify direct TF target gene

Bargmann et al. (2013), Brooks et al. (2019),
Alvarez et al. (2020); Brooks et al. (2023)

regulation in plant cells)
DamlID-Seq
(TF — Target interaction in
vivo) interactions.
DAP-seq
(TF — target interaction in
vitro)
Precision/Recall (AUPR)
(Validation of inferred
TF — target interactions)
networks (GRNs) (Fig. 3A).
Network Walking
(TF; — direct TFys —
indirect TF, targets)

DNA affinity purification sequencing (DAP-seq) is a high-throughput
TF-DNA binding assay that uses genomic DNA and TFs expressed in vitro.

interactions with timed nuclear entry of the TF (Fig. 2).
DNA adenine methyltransferase identification (DamID) uses DNA
methylation of promoters to detect highly transient TF-DNA binding

Steensel and Henikoff (2000), Alvarez et al.
(2020)

O’Malley et al. (2016)

Precision/Recall (PR) analysis with area under precision recall (AUPR) curve  Brooks et al. (2019), Shanks et al. (2022),
uses validated TF-target gene data (TF-binding and/or regulation data)
to determine the PR of predicted TF-target genes in gene regulatory

Brooks et al. (2021)

Network walking is a GRN method that charts a path from the direct target  Brooks et al. (2019, 2021)
genes of a TF; to their indirect target genes via a TF, (Fig. 3B).

and in the absence of either endogenous NLP7 or NLP6 pro-
teins (NLP6 experimental setup is shown as an example;
Fig. 2B; Cheng et al. 2023). While previous reports show
that NLP7 and NLP6 heterodimerize in the cytosol in re-
sponse to nitrate (Guan et al. 2017), Cheng et al. (2023)
show that the nuclear retention of NLP7 and NLP6 in re-
sponse to nitrate is independent of each other (Fig. 2B;
Guan et al. 2017; Cheng et al. 2023).

Recent studies also implicate NLP7 in initiating a cascade
of early N-responsive downstream transcription factors
(Alvarez et al. 2020). Specifically, gene expression changes
in response to nitrogen occur rapidly (minutes to hours)
and are divided into primary and secondary responses
(Medici and Krouk 2014; Alvarez et al. 2021). Primary
N-response genes are (i) rapidly induced by nitrate (minutes),
(i) do not require de novo protein synthesis, and (iii) are typ-
ically involved in nitrate transport, assimilation, and signaling
(Medici and Krouk 2014). Secondary N-response genes are in-
duced later (hours) and depend on the transcriptional pro-
ducts of the primary response genes. How the primary and
secondary nitrogen response is regulated was recently re-
vealed to involve rapid, transient protein—-DNA interactions
by TFs that follow the “hit-and-run” model of regulation
(Fig. 2C), which includes the TFs bZIP1 (Para et al. 2014;
Doidy et al. 2016) and NIN LIKE PROTEIN 7 (NLP7; Alvarez
et al. 2020). As a pioneer or triggering TF, NLP7 is at
the top of the nitrate signaling hierarchy following the
“hit-and-run” model of transcriptional control (Fig. 2C). It
was shown that the transient TF2 targets of NLP7 initiate a
temporal cascade of genome-wide changes in the nitrate re-
sponse in planta (Marchive et al. 2013; Alvarez et al. 2021).

The “hit-and-run” model suggests that a TF trigger/pioneer
can form a stable transcriptional complex (the “hit”), allow-
ing transcription to continue even after the initiating TF is no
longer bound (the “run”; Fig. 2C; Schaffner 1988; Para et al.
2014; Doidy et al. 2016; Alvarez et al. 2020). Genome-wide
evidence for the “hit-and-run” model of transcription for
transient TF-target gene interactions was validated for

two master TFs involved in the nitrate response, first
identified with bZIP1 and more recent evidence for NLP7
(Para et al. 2014; Doidy et al. 2016; Alvarez et al. 2020).
Time-series ChIP-seq experiments showed that bZIP1 and
NLP7 were transiently bound to early nitrate-response genes,
and 4-thiol-uracil labeling of nacent mMRNA confirmed the ac-
tive transcription of these hit-and-run targets (Para et al.
2014; Doidy et al. 2016; Alvarez et al. 2020).

Importantly, the plant cell-based TARGET assay (Transient
Assay Reporting Genome-wide Effects of Transcription fac-
tors) used in these studies can capture early and transient
TF-target gene regulation events often undetected in planta
(Para et al. 2014; Doidy et al. 2016; Brooks et al. 2019; Alvarez
et al. 2020). The TARGET TF-assay involves transient expres-
sion of a TF fused to a glucocorticoid receptor (GR) in plant
cell protoplasts. The TF-GR protein is held in the cytoplasm
by HSP90 binding to the GR domain (Bargmann et al. 2013;
Fig. 2C, Table 1). The addition of the GR-ligand dexametha-
sone (DEX) displaces HSP90 binding, allowing nuclear entry
of the TF-GR fusion protein. When DEX treatment is per-
formed in the presence of cycloheximide, to inhibit the syn-
thesis of proteins encoded by direct target genes (e.g. TF2),
direct targets of a TF can be identified with RNA-seq, com-
pared to empty vector (Fig. 2C, Table 1; Bargmann et al.
2013; Brooks et al. 2019, 2023).

The plant cell-based TARGET TF perturbation system al-
lowed the identification of transient NLP7 targets that
were undetected by time-series chromatin immunoprecipi-
tation (ChlIP; Alvarez et al. 2020). By coupling the DNA aden-
ine methyltransferase identification (DamID) method
(Gutierrez-Triana et al. 2016) to the TARGET TF perturbation
system, it was possible to capture NLP7 binding to highly
transient targets that were missed by time-course ChIP
(Fig. 2C, Table 1; Alvarez et al. 2020). DamID uses a fusion
protein of DNA adenine methyltransferase (Dam) to detect
TF-DNA binding events by leaving a stable methylation
mark at the adenine base in the GA™TC sequences near
(within 1 kb) to protein-DNA binding sites as soon as the
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TF touches down on the promoter (e.g. even transiently).
This adenine methylation at GA™TC allows for the binding
and DNA cleavage using the Dpnl restriction enzyme. Dpnl
fragments are mapped to the promoter regions to identify
genes “touched” by the TF. Thus, this DNA methylation ap-
proach overcomes the limitations of biochemical methods
such as ChIP-seq and other antibody-based techniques that
are biased for stably bound TF-DNA interactions (Fig. 2C,
Table 1; Steensel and Henikoff 2000; Alvarez et al. 2020).
Using the TARGET and DamID-Seq methods, the study by
Alvarez et al. (2020) confirmed that transient interactions
of NLP7 initiate active transcription of its targets, consistent
with a “hit-and-run” transcription model (Fig. 2; Alvarez et al.
2020). Overall, the multiple levels of NLP7 regulation high-
light the important role of NLP7 in primary nitrate response
to ensure a fast and broad adaptation by the plant to fluctu-
ating nitrate levels (Fig. 2).

Temporal nitrogen response networks:
generation and validation

In addition to the master TFs discussed above, TGA1, bZIP1,
and NLP7, which are critical for signaling N-dose over time,
gene network analysis studies and mutant screens have iden-
tified 40-plus TFs that are involved in propagating the nitrate
signal (for review, see Vidal et al. 2020). Thus, we must under-
stand the temporal regulatory connections between these
TFs and the nitrate-responsive genes they control to obtain
a complete temporal picture of nitrate signaling events.
Combining computational and experimental approaches
that consider time in gene expression analysis has proven
to be a powerful approach to uncovering the temporal me-
chanisms of transcriptional responses in plants.

The goal of gene regulatory network (GRN) inference mod-
els is to connect a regulator (i.e. TF) to each of the genes it
regulates in the genome. As causality moves forward in
time, time-series experiments are a valuable resource to infer
GRN models that can predict TF-target gene relationships at
future untested time points, a main goal of systems biology.
To account for the different times of captured gene regula-
tion in time-series data, specialized network inference algo-
rithms have been developed to account for the added
factor of time in the data and can be based on correlation:
time-lagged, random forest (DynGenie3 and Outpredict),
and other regression models (Huynh-Thu and Geurts 2018;
Nguyen and Braun 2018; Cirrone et al. 2020).

Over the last 10 years, several studies have exploited time-
dependent responses to investigate nitrogen signaling net-
works in Arabidopsis using fine-scale time series (Krouk
et al. 2010; Patterson et al. 2016; Walker et al. 2017; Varala
et al. 2018; Brooks et al. 2019; Alvarez et al. 2021). In multiple
of these time-based N-response network studies, a state-
space model, which is a model that uses first-order differen-
tial or difference equations to describe a system, called
Dynamic Factor Graph, was applied to fine-scale nitrogen
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response time series (i.e. many time points close together)
datasets to predict regulatory interactions between
N-responsive TFs and N-responsive genes in shoots (Varala
et al. 2018) or roots (Krouk et al. 2010; Brooks et al. 2019).
In general, state-space models are algorithms that model dy-
namic data (e.g. gene expression) by assuming that data are
generated from underlying “hidden states” (Krouk et al. 2010;
Brooks et al. 2019). In the case of time series experiments, the
data of gene expression consider several time points (e.g.
every 5 min, from 5 to 20 min) as consecutive hidden states
that form a Markov chain (a mathematical system that stat-
istically modulates random processes). Consequently, each
transition in the Markov chain corresponds to a stationary
(time) dynamic model. The resulting GRNs revealed the tem-
poral networks operating in each tissue and implicated a
hierarchy to the TFs involved (Vidal et al. 2020).

In the first fine-scale time-series study of nitrate signaling,
Krouk et al. examined very early (3 to 20 min) gene expres-
sion responses to nitrate supply in roots (Krouk et al.
2010), whereas 20 min is the earliest time point that had pre-
viously been examined at the genomic level (Wang et al.
2000). The Krouk et al. (2010) study demonstrated that
nitrate-triggered gene expression responses occur within as
early as 3 min, and that transient changes are missed if plants
are only sampled at later time points. In a subsequent study,
Varala et al. performed a time-series experiment that in-
cluded ammonium nitrate treatments across early-to-late
time points (starting from 5 min for up to 120 min) and iden-
tified 2,737 genes responding to nitrogen as a function of
time (NxTime) response genes in shoots (Varala et al.
2018) and 1,458 NxTime response genes in roots (Brooks
et al. 2019). Moreover, the concept of “just-in-time” (JIT) ana-
lysis developed and deployed in these two studies identified
the first time point that a gene was induced >1.4 fold by
N-treatment. The JIT analysis bins NxTime genes that are dif-
ferentially regulated by N for the first time point in the time-
series experiment. Analysis of these JIT genes uncovered not
only a temporal cascade of enriched cis-elements at each
consecutive time point but also GO terms resulting from
N-signaling that evolves over time (Varala et al. 2018;
Brooks et al. 2019).

A strength of the N-response time-series GRN generated in
shoots (Varala et al. 2018) and roots (Brooks et al. 2019) was
in assessing the precision and recall accuracy of the
TF—target gene GRN predictions using AUPR (area under
the precision-recall curve) analysis (Fig. 3A; Table 1). The
benefit of AUPR analysis is that it uses validated TF-target
interactions to empirically determine precision cutoffs for
the TF-target gene predictions in the GRN. By contrast, other
methods arbitrarily select the top 1% to 10% of interactions
—to prune the GRNs for higher-confidence TF-target edge
predictions (Fig. 3A). To conduct the AUPR analysis, the
TF-target gene interactions predicted by the GRN for each
TF and target gene are ranked based on an edge score com-
puted by each network inference method (Fig. 3A). Next,
to determine the accuracy of these predictions, the inferred
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Figure 3. Determining high-confidence GRNs by AUPR and use in network walking. A) (A1) The predicted TF-target gene interactions are first
ranked according to edge score, and then compared to validated TF-target gene interaction data to calculate precision and recall. (A2) The values
are then plotted on the AUPR curve to select a cutoff TF-target edge score. The edges in the predicted network (blue line) were significantly more
likely to be true (i.e. validated) edges than when the edge order ranking was randomized (gray lines). The graph is a screenshot from the automated
AUPR analysis feature in connectf.org (Brooks et al. 2021). (A3) The edge score cutoff is used to “prune” the network for high-confidence interac-
tions. B) Network walking charts a path between direct to indirect target genes of a TF, via TF,s (Brooks et al. 2019, 2021). In this example, the TF
NLP7 directly regulates TF,s as identified with the TARGET cell-based assay (Alvarez et al. 2020). The target genes for each TF, can be determined
using predicted GRN edges from the NxTime network and/or using validation data from methods such as the TF-TARGET assay and/or TF-target
binding by DAP-seq (Table 1). Bottom panel adapted from Brooks et al. (2019).

TF-target gene interactions are compared with validated
TF-target gene interactions, for a subset of TFs in the net-
work, as determined by methods such as DAP-seq for
TF-target binding interactions in vitro (O’Malley et al.
2016) or direct TF-target gene regulation based on the
TARGET TF assay in protoplasts (Table 1, Fig. 3A; Varala
et al. 2018; Brooks et al. 2019). This analysis then determines
which predicted TF-target edges are supported by experi-
mentally validated data. The validation data are then used
to calculate the precision and recall for predicted TF-target
gene interactions in the GRN (Schrynemackers et al. 2013).
These values are used to produce the AUPR curve, which is
then used to select a cutoff edge score for the GRN predic-
tions (Fig. 3A). The selected cutoff edge score from the
AUPR curve is used as a threshold to “prune” for high-
confidence edge predictions in the GRN. Using the above
outlined time-series N response GRNs as examples for
AUPR analysis, ConnecTF (connectf.org) is a web-based
platform that offers automated AUPR functions where re-
searchers can upload their own networks, select a precision
cutoff, and download the high-confidence TF-target gene
predictions (Table 1, Fig. 3A; Brooks et al. 2021).

The use of validated TF-target data to prune GRNs for
high-confidence TF-target gene predictions is important for
identifying key regulatory control points in the absence of
comprehensive validated TF-target data. Although there is
now experimentally validated TF-target gene binding and
regulation data for over 500 Arabidopsis TFs, primarily
from DAP-seq (O’'Malley et al. 2016), this is still only approxi-
mately a quarter of all predicted TFs in Arabidopsis (see data
housed in ConnecTF, Brooks et al 2021). This means that for
any given signaling pathway studied, it is likely that most of
the TFs involved do not have validated target genes. For ex-
ample, the N-response time-course experiments described
above revealed that 326 TFs respond to N-treatment in roots
and/or shoots (Varala et al. 2018), but only 95 of those TFs
have experimentally validated target genes. Furthermore,
for the TFs that lack experimental validation data, it is un-
clear if the TFs are activators or repressors of their target
genes in the network. To address this question, the authors
of Hummel et al. (2023) used synthetic biology approaches
coupled with this systems biology analysis to determine
which TFs in the Varala et al. NxTime GRN are activators
or repressors of N-responses by using the reporter genes,
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nitrate reductase 1 (NR1) and nitrite reductase 1 (NIRT;
Varala et al. 2018; Hummel et al. 2023).

A further complication to interpreting TF signaling path-
ways is that in planta gene expression responses in TF mu-
tants and constitutive TF overexpressors reflect both direct
and indirect effects of the TF being perturbed. To determine
how the N-responsive TFs work to propagate the N signal in a
temporal network, Brooks et al. developed a “network walk-
ing” approach to chart a temporal network path for a TF of
interest (Fig. 3B, Table 1; Brooks et al. 2019, 2021). Network
walking connects direct target genes of a focus TF of interest
(i.e. genes identified in plant cells with the TARGET TF assay)
with their indirect target genes (i.e. genes identified only in
planta) via their directly regulated TF,s (Fig. 3B). In the net-
work walking approach, the TF,s directly regulated by the fo-
cus TF being perturbed are then used to explain the response
of the indirect target genes in planta. Because many of these
TF,s lack experimental data, the high-confidence TF-target
gene predictions from the time-series inferred network are
crucial to identify the most important TF,s that mediate
the N-response signaling pathway and guide further studies
(Fig. 3B; Brooks et al. 2019, 2021). For example, the network
walking approach was used to chart a path between direct
and indirect target genes for the N-response TFs, TGA1
(Brooks et al. 2019), CRF4 (Brooks et al. 2019), and NLP7
(Alvarez et al. 2020; Brooks et al. 2021).

Learning nitrogen-dependent gene regulatory networks at
a temporal level has helped to unravel how shoots integrate
multiple root-derived signals. The fine-scale (i.e. many time-
points close together) time-series N-response data from
Varala et al. have been particularly useful for shoot and
root network comparisons as gene expression was mea-
sured from both organs for the same sets of Arabidopsis
plants (Varala et al. 2018). This study found a significant
overlap between shoot and root N-responsive genes and
TFs, and yet a large set of genes were also specific to
each organ (Varala et al. 2018). The timing of expression
between the overlapping shoot and root genes often
differed, suggesting that the N-responsive signaling net-
works had some degree of organ specificity. Additionally,
a subset of N-responsive TFs displayed organ specificity
in their N-responsive target genes using the TARGET
assay (Brooks et al. 2019). For example, CRF4 regulated
early N-responses specifically in the shoot, whereas LBD37
regulated N-responses specifically in the root (Brooks
et al. 2019). Furthermore, these fine-scale time-series
N-response data (Varala et al. 2018) were used to identify
the causal relationship of N-responsive genes between or-
gans using Granger-causal analysis (Heerah et al. 2021).
Using this analysis, Heerah et al. predicted 1,007 root- and
shoot-expressed genes that influenced gene expression in
the other organ (Heerah et al. 2021). Interestingly, the list
of predicted genes included a significant number (384
genes) of causal genes that are known or predicted mobile
transcripts (Heerah et al. 2021). These GRN findings show a
coordination between root and shoot N-responses that can
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be used to determine how these responses coordinate
physiological outcomes.

The dynamics of nitrogen responses in specific
cell types

The plant's ability to sense and respond to the fluctuat-
ing N status of the soil is governed by cell type-specific
responses (Jia and von Wirén 2020; Liu et al. 2020; Hu
et al. 2021). Three studies have examined cell type-
specific nitrogen responses in roots by treating
GFP-marked cell lines with nitrogen followed by FACS
and transcriptomic analysis (Gifford et al. 2008; Walker
et al. 2017; Contreras-Lopez et al. 2022). Consistently,
these studies found that nitrate responses in the root
are largely cell type-specific and highlight the need for
routine cell type studies, as whole root studies will miss
a significant portion of the plant response to an environ-
mental stimulus such as nitrate.

The most recent study to examine cell type-specific nitrate
responses identified 5,231 differentially expressed genes
and a rapid transcriptome reprogramming, with 1,572
genes responding early 12 min after nitrate treatment
(Contreras-Lopez et al. 2022). Moreover, 42.5% of regulated
genes were localized in the endodermis cell type, suggesting
that the endodermis might have a role as a regulatory hub for
nitrate signaling since it is embedded with the Casparian
strip, being a nutritional checkpoint for the vascular system
(Palmgren 2018; Contreras-Lopez et al. 2022). Analysis of
gene ontology (GO) terms found that nitrate responses ini-
tiate in the epidermis and cortex as outermost cell types, fol-
lowed by innermost cell types in later time points (Fig. 4A),
which is in line with nitrate uptake and transport (O’Brien
et al. 2016; Contreras-Lopez et al. 2022). The first biological
processes to be enriched include “response to carbohydrate
stimulus,” “glycolysis, “response to reactive oxygen species,”
“response to lipid,” “response to abscisic acid,” and “response
to nitrate,” which are initiated from the epidermis and then
move toward inner cells (Fig. 4A). For instance, the nitrate
transceptor NRT1.1/NPF6.3 and NRT2.1 are rapidly induced
by nitrate in the epidermis and then within all cell types at
later time points (Fig. 4B; Contreras-Lopez et al. 2022). This
is in line with previous studies that identified the cell type
specificity of nitrate transporters in the epidermis (Tegeder
and Masclaux-Daubresse 2018; Wang et al. 2018; Lhamo
and Luan 2021; Muratore et al. 2021). At later times, expres-
sion of genes involved in “nitrate assimilation” are enriched
from inner cell types toward the epidermis (Fig. 4B),
while expression of genes involved in “root system develop-
ment” are localized in epidermis and endodermis, consistent
with their role in lateral root growth and root hair
development, showing a localized and transient response
to nitrate (Ramakrishna et al. 2019; Liu et al. 2020; Fig. 4B).
Furthermore, by integrating the spatiotemporal transcrip-
tomic data with TF-target gene interactions, Contreras-
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Figure 4. Spatiotemporal responses after nitrate treatments in Arabidopsis root cells are highly dynamic and localized. A) During nitrate treatments,
the first cell type to respond is epidermis, followed by cortex. Consistent with their outermost location and first layers of nitrate acquisition. At later
times of treatment, nitrate responses are present in all major root cell types (Contreras-Lopez et al. 2022). B) Transverse view of root cells shows gene
ontology (GO) enrichment after nitrate treatments. The first enriched GO term is “response to nitrate,” moving from epidermis toward innermost
cell types. At later times, “nitrate assimilation” and “root system development” go from inner to outermost cell types. Transcriptomic analysis and
GO terms were obtained from sorted root cells by Contreras-Lépez et al. (2022). C) Nitrate-demand signaling model. When roots are grown on
limited nitrate levels, C-terminally encoded peptides (CEPs) and tZ-type cytokinins (CK) are translocated to the shoot, increasing the expression
levels of CEPD1/2 and CEPD-L2. In turn, shoot-derived CEPD1/2 and CEPD-L2 descend back to the root and increase the expression of nitrate trans-
porters NRT3.1 and NRT1.1/NPF6.3 and NRT2.1 to compensate for the lack of nitrate in the soil. This highly coordinated system results in plant
growth adaptation according to the changing nutrient levels (Tabata et al. 2014; Ohkubo et al. 2017; Ota et al. 2020).

Lopez et al. found that 62% of TF-target interactions were
predicted to occur in the endodermis, being an important
cell type for transcriptional regulation. The transcription fac-
tors ABF2 and ABF3, previously investigated for their role
in ABA-mediated signal transduction, were revealed to be
master regulators of nitrogen responses in the endodermis,
displaying lateral root growth inhibition in abf2, abf3, and
abf2/3 plants in response to nitrate (Contreras-Lopez et al.
2022). This phenotype is, in part, due to an altered develop-
ment of lateral root primordium. Overall, these results high-
light the importance of spatiotemporal analysis to uncover
how the nitrate signal is dynamically propagated in the
root and reveal new molecular mechanisms controlling ni-
trogen responses in specific cell types, which otherwise
would be missed.

Complementary with the identification of cell-type tran-
scriptional responses to nitrate over time, the authors of
Chen et al. developed a nitrate biosensor to visualize the spa-
tial and temporal distribution of nitrate in the Arabidopsis
root (Chen et al. 2022). To accomplish this, Férster resonance
energy transfer (FRET) sensors were developed as a (i) fusion
fluorescent protein possessing a sensor domain (FRET ac-
ceptor protein) and a (ii) fused FRET donor fluorescent pro-
tein. Once the donor protein is excited, energy is transferred
to the FRET acceptor protein. When the sensor domain
from the acceptor protein interacts with its target molecule,
a conformational change occurs. This conformational
change, in return, alters the efficiency of energy transferred
from the FRET fusion donor protein to the FRET fusion ac-
ceptor protein. Hence, by measuring the ratio change, as the
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change between the fluorescence intensity of the donor and
the acceptor protein, it is possible to report the concentra-
tion of the target (Chen et al. 2022). The FRET sensor devel-
oped by Chen et al. used the bacterial protein NasR
(NitraMeter3.0), which is a soluble receptor protein con-
taining a nitrate and nitrite sensing domain as a FRET accept-
or protein fused to a modified Aphrodite (edAFP) protein.
On the other hand, a modified cyan fluorescent protein
was used as a FRET donor protein (edeCFP; Chen et al.
2022). When Arabidopsis plants expressing the nitrate bio-
sensor were exposed to exogenous nitrate treatments for
5 min, the fluorescence emission ratios increased in the epi-
dermis, cortex, pericycle, and stele cells, with the highest
emissions ratio increase in the cortex cells, suggesting a high-
er nitrate uptake or transport function in this cell type. These
results are in line with the reports of nitrate import and sig-
naling in multiple root cell types (Gifford et al. 2008; Walker
et al. 2017; Contreras-Lopez et al. 2022). Additionally,
the mutant for the nitrate transceptor, nrt.1.1/nfp6.3,
displayed lower emission ratios in all root zones, supporting
its role as a major nitrate transporter (Chen et al. 2022).
The emissions ratio of the endodermal cell layer remained
high when roots were grown under low nitrate conditions
and increased slowly compared to other cell types, which
coincides with the previous result of the endodermis as a
nitrate regulatory hub for plants to respond and adapt
to their environment (Chen et al. 2022; Contreras-Lopez
et al. 2022).

In addition to cell type-specific nitrate responses in
the root regulating plant growth and development, there
are also nitrate responses localized in the shoot. For example,
NRT1.1/NPF6.3 and NLP7 drive stomatal opening by control-
ling the entry of nitrate into guard cells, resulting in
nitrate-induced depolarization and increased nitrate levels
during stomatal opening (Guo et al. 2003; Castaings et al.
2009). Indeed, nrt1.1/npf6.3 and nlp7 plants are impaired in
nitrate content, reducing stomatal opening and water loss,
resulting in improved drought tolerance (Guo et al. 2003;
Castaings et al. 2009; Araus et al. 2020). However, the role
of nitrate signaling mediated by NRT1.1/NPF6.3 and NLP7
in the control of stomatal opening remains to be elucidated.

These studies have shown us how cell type-specific nitrate
responses can modulate root and shoot growth, raising the
need to implement single-cell level approaches to under-
stand organ-level plasticity. As an in silico approach at single-
cell resolution, Lhamo and Luan (2021) profiled putative
nitrate transporters in root cell types to understand nitrate
uptake and translocation from the soil (Denyer et al. 2019;
Ryu et al. 2019; Lhamo and Luan 2021). The dual-affinity
transporter NRT1.1/NPF6.3 and high-affinity transporters
NRT2.1, NRT2.2, NRT2.4, and NRT2.5 were highly expressed
in epidermis and root cap cells, concomitant with the role
of sensing NO3 changes in soil (Ho et al. 2009) and uptake
function, respectively (Lhamo and Luan 2021). NPF1.1 and
NPF1.2 were expressed in procambium cells, indicating that
they could be participating in loading NO3 to phloem

THE PLANT CELL 2024: 36; 1482-1503 | 1491

and xylem cells in developing roots (Jouannet et al. 2015;
Lhamo and Luan 2021). These results indicate that in the fu-
ture we will be able to generate maps of local and systemic
nitrate sensing/signaling from root to shoot and vice versa
by using single-cell approaches.

Nitrogen responses across organs:
root-to-shoot communication

Because nitrogen availability in the soil changes constantly,
plants have developed communication systems that regulate
nitrate uptake from the root according to the nutritional
state of the soil and the plant. In response to changes in
nitrate availability, the nitrate-response targets the fast
reallocation of resources to rebalance biomass between
below- and above-ground organs, as well as the regulation
of physiological activities such as root nitrate transport. For ex-
ample, heterogeneous nitrate supply leads to greater develop-
ment, growth, and nitrate transport stimulation in the roots
that are locally exposed to nitrate (Ruffel et al. 2011). Such in-
tegrated/adapted responses result from a combination of (i)
continuous and long-distance exchange of signals through
the vascular system and (ii) organ-specific GRNs. Currently,
the challenge is to understand how these multiple signals
interact and converge toward regulating central physiological
and developmental processes in respective organs.

Nitrate-related long-distance signals are just starting to be
understood and as of now belong to the following classes of
molecules: hormones (e.g. root-to-shoot trans-zeatin cytokinin
signal; Poitout et al. 2018), small peptides (e.g. root-to-shoot
C-terminally encoded peptides; CEP; Tabata et al. 2014), and
microRNAs (so far only functionally characterized in legumes
to regulate the nodulation; Gautrat et al. 2021). The coordi-
nation of root/shoot communication and growth responses
may rely on other types of long-distance signals that remain
to be characterized, such as ions or metabolites. However, con-
nections between the known systemic signals and the discov-
ered nitrate-related local and systemic signaling pathways are
starting to be proposed, thereby improving our mechanistic
understanding of the nitrate signaling network. In addition
to the nitrogen-regulated systemic response of root activity,
it has been known for a long time that root nitrate supply is
amain input for shoot growth. Interestingly, recent findings in-
dicate that once again, multiple signals likely co-exist to prop-
erly coordinate the activity of this aerial organ. Several studies
have reported that nitrate in the root induces the synthesis
of cytokinins (CK) like tZ-type, which are then translocated
to the shoot (Osugi et al. 2017; Poitout et al. 2018).
Interestingly, this “CK neo-synthesis” in the root has recently
been shown to be under the control of the master nitrate sig-
naling regulator NLP7, contributing with CK translocation to
the shoot and upregulation of cytokinin response factors
(CRF; Abualia et al. 2022). In this manner, CRFs directly induce
the expression of auxin transporters (PINs), resulting in auxin
transport and shoot growth (Abualia et al. 2022).
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A very sophisticated example of interaction between sys-
temic signals and nitrate signaling is the case of CEP peptides.
CEPs act as root-derived peptides that ascend the nitrate
starving signal to the shoot, where the production of a nitrate
descending signal induces the expression of root nitrate
transporters NRT2.1, NRT3.7 and the transceptor NRT1.1/
NPF6.3 to compensate for the lack of nitrate in the soil
(Fig. 4G Tabata et al. 2014). Years later, Ohkubo et al. iden-
tified the nitrate descending signal as a polypeptide named
CEP Downstream 1 (CEPD1) and CEPD2 (Fig. 4C; Ohkubo
et al. 2017). In 2020, it was also established that CEPD-like
2 (CEPD-L2), together with CEPD1 and CEPD2, contributes
to the nitrate demand systemic signaling (Ota et al. 2020).
Interaction between tZ-type CK and these peptides also oc-
curs as a response to nitrate starvation. Indeed, the presence
of root-synthesized tZ-type CK is necessary in shoots to in-
duce maximal expression levels of shoot-to-root CEPD1/2
and CEPD-L2 peptides, which are mainly induced by the ni-
trate starvation signal (Fig. 4C; Ota et al. 2020). Moreover,
CEPD-L2 positively regulates the expression of high-affinity
nitrate transporters and NRT1.5, which loads nitrate into
the xylem layer, demonstrating that these peptides have
an important role in nitrate uptake and translocation to
the shoot under starving conditions (Ota et al. 2020).
Altogether, these new findings illustrate that shoots can
also perceive and integrate nitrate-related signals, first by re-
ceiving a nitrate status signal (e.g. starvation) from the root
and responding by sending another signal back to the root
(e.g. peptides) to optimize their activity. For future studies,
moving on from organ-specific nitrate-responses to cell-
specific nitrate-response networks using single-cell data will
aid in our understanding of root-shoot-root communication
in response to N.

New aspects of N-response in time and space:
single-cell analysis

Single-cell RNA-sequencing (scRNA-seq) has emerged as an
important tool to better understand dynamic cellular pro-
cesses such as spatiotemporal gene expression and develop-
mental trajectories from heterogeneous cell populations in a
single snapshot (Fig. 5). As outlined above, previous studies
that have examined the response of nitrate in specific cell
types over time have relied on the use of GFP-marked cell
lines followed by bulk RNA-seq (Walker et al. 2017;
Contreras-Lopez et al. 2022). The use of single-cell sequen-
cing over GFP-marked lines offers the following advantages:
(i) to profile nitrate responses in all the cell types composing
an organ, (ii) to track nitrate responses in cell types according
to their developmental time in a single snapshot, (iii) to
examine nitrate responses in all cell types over time in a sin-
gle experiment without the need for individual experiments
for each GFP-marked cell line, and (iv) to examine the effect
of nitrate specific cell types of mutants without the need
to develop multiple mutant lines crossed with specific
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GFP-marked cell lines. Despite these promising advantages,
single-cell (sc) RNA-sequencing data are still highly sparse
due to cell dropouts. To capture the dynamic cell-specific re-
sponse to nitrate that regulates multiple plant developmen-
tal processes, future studies should examine the cell
type-specific responses over multiple time points using
single-cell sequencing.

The root has been widely used as a model for scRNA-seq
due to its wide characterization, availability of reporter lines
and cell type marker genes (Denyer et al. 2019; Jean-Baptiste
et al. 2019; Ryu et al. 2019; Zhang et al. 2019; Shahan et al.
2022). Indeed, the root is distributed in different develop-
mental zones, including the less differentiated meristem
zone, elongation zone, and most differentiated maturation
zone (Fig. 5A). Therefore, we can analyze a gradient of cell dif-
ferentiation from the root in a single experiment (Fig. 5B).
Single-cell transcriptomes offer the unique opportunity
to generate computational “developmental trajectories”
(Fig. 5C), in which we can order cell type progression from
the beginning of cell fate until the final development of ma-
ture cell types. Once the developmental trajectory of a spe-
cific cell type is established, gene expression throughout
development as “pseudotime” can be graphed (Fig. 5D).
For example, Denyer et al. observed that during trichoblast
development, genes expressed at the beginning of cell fate
(e.g. meristematic cells) were enriched for biological pro-
cesses such as DNA replication, cell proliferation, and ribo-
somal functions, whereas more differentiated trichoblast
cells were enriched in expression of genes controlling unidi-
mensional growth, root hair elongation, and maturation
(Fig. 5C; Denyer et al. 2019). Furthermore, pseudotime trajec-
tories coupled with GRNs also contributed to identifying the
developmental time-regulated TFs that modulate the expres-
sion of target genes in a spatiotemporal manner (Denyer
et al. 2019). Using the same trichoblast developmental trajec-
tory, we find that NRT1.1/NPF6.3 expression exhibits a grad-
ual increase as cells become differentiated into mature
trichoblasts, which supports the function of nitrate signaling
and uptake in this cell type (Fig. 5, C and D). These current
single-cell transcriptomic profiles represent plants grown in
standard MS media; therefore, expression profiles under
changing nitrate conditions need to be examined in future
studies.

Multiple studies in Arabidopsis have created root and/or
shoot cell atlases from scRNA-seq data with web-based
platforms to examine the cell-specific expression profile for
genes of interest (Table 2). To develop a comprehensive
Arabidopsis root single-cell expression atlas, Shahan et al.
analyzed single-cell data for 110,427 Arabidopsis root cells,
including root data from previously published single-cell
studies, to determine cell-specific gene expression over devel-
opmental time in each cell type (Table 2; Denyer et al. 2019;
Ryu et al. 2019; Shahan et al. 2022). In addition to single-cell
studies, single-nuclei (sn) sequencing has also been used as an
alternative method to avoid the limitations of developing
protoplasts. To provide a holistic view of the Arabidopsis
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Figure 5. Investigating spatiotemporal gene expression using single-cell RNA sequencing in Arabidopsis thaliana. A) Longitudinal view of the root
shows different developmental zones from young (meristematic) to mature (maturation zone), which is used as a model for single-cell analysis to
construct developmental trajectories in a single experiment (Denyer et al. 2019; Rich-Griffin et al. 2020). B) Thousands of protoplasts or nuclei at
different developmental stages are used for single-cell library construction (Swift et al. 2022). C) Computational analysis of scRNA-data allows the
construction of “developmental trajectories” of root cells expressing a gene of interest (red dots), NRT1.1/NPF6.3 using the Plant scRNA-seq Browser
with representative screenshots from this tool (Denyer et al. 2019; Ma et al. 2020) (Table 2). D) “Pseudotime” expression of NRT1.1/NPF6.3 from
young meristematic cells to mature cells show that NRT1.1 expression is highly expressed in differentiated trichoblast (Denyer et al. 2019;

Ma et al. 2020).

transcriptional response over plant development, Lee et al.
analyzed single-nuclei data for 801,276 nuclei that repre-
sented seed-to-seed development across all major organs
during the Arabidopsis life cycle (Lee et al. 2023; Table 2).
Furthermore, other researchers have developed web-based
interfaces to explore gene expression in smaller-scale single-
cell experiments, which include analysis of hormone-treated
tissues and/or developmental trajectory analysis (Table 2; Ma
et al. 2020; Denyer et al. 2019; Ryu et al. 2019; Wendrich et al.
2020b; Kim et al. 2021; Graeff et al. 2021).

The accessibility to single-cell datasets such as these pro-
vides useful tools to form hypotheses on nitrate signaling
and explore the spatiotemporal profiles of nitrate-responsive
genes in roots/shoots under non-stress cell conditions
(Fig. 5). For instance, to understand nitrate uptake and trans-
location from the soil at single-cell resolution, Lhamo
and Luan profiled putative nitrate transporters in root cell
types using published single-cell transcriptomic data from
Arabidopsis (Denyer et al. 2019; Ryu et al. 2019; Lhamo and
Luan 2021). Additionally, we can use the tools outlined in
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Table 2 . Web browsers available to visualize cell type-specific gene expression from single cell/nuclei datasets in Arabidopsis

Name Description

URL References

Arabi Atlas data Single-cell gene expression in specific root
cell types over developmental time for
each cell type

Single nuclei transcriptome data for cell
type-specific expression of genes

throughout plant development stages

Arabidopsis
Developmental
Atlas Viewer

Plant sc Atlas

single cell datasets in roots and shoots

The Plant scRNA-seq
Browser

Single cell gene expression in roots and
shoot cell types including trichoblast,
atrichoblast, and cortex pseudotime

https://phytozome-next.jgi.doe.gov/
tools/scrna/

http://arabidopsisdevatlas.salk.edu/
Resource and visualization tools for multiple  https://bioit3.irc.ugent.be/plant-sc-

atlas/ (2020b), Graeff et al. (2021), Yang
https://www.zmbp-resources.uni-

tuebingen.de/timmermans/plant-
single-cell-browser/

Denyer et al. (2019), Ryu et al. (2019),
Goodstein et al. (2012) Shahan et al.
(2022)

Lee et al. (2023)

VIB Ghent University, Wendrich et al.
et al. (2021a), Nguyen et al. (2023)

Ma et al. (2020), Denyer et al. (2019),
Kim et al. (2021)

Table 2 to examine the expression profiles of genes of interest
for nitrate response, such as the transceptor NRT1.1/NPF6.3,
in roots (Fig. 5, C and D). We find that NRT1.7/NPF6.3 is ex-
pressed in trichoblast, atrichoblast, and lateral root cap,
which is also supported with previous studies (Guo et al.
2003; Yang et al. 2008; Denyer et al. 2019). This is also in
line with the function of NRT1.1/NPF6.3 in nitrate uptake
and signaling; the location of NRT1.1/NPF6.3 expression in
the outer cell layers allows for easy access to nitrate in the
soil (Contreras-Lopez et al. 2022).

Building on the “pseudotime,” cell type-specific gene ex-
pression can be monitored in “real time” by adding time-
series response data taken throughout development or in
response to environmental stimuli (Swift et al. 2022). For ex-
ample, Nolan et al. generated brassinosteroid (BR) treated
time-series expression data of 210,856 single-cell transcrip-
tomes and used GRNs analysis to identify new TFs that acti-
vate cell wall-regulated genes in cortex cells to promote
elongation (Nolan et al. 2023). Using this approach, it is pos-
sible to determine the dynamic nature of how nitrate regu-
lates developmental processes such as lateral root and root
hair development in time and space. We propose future
studies that incorporate both single-cell profiling and time-
series nitrate response assays. Using time-series nitrogen
response single-cell data can create cell type-specific devel-
opmental trajectories and GRNSs to identify the TFs that regu-
late cell development during early and late nitrate responses,
together with their predicted target genes—thus, enhancing
our understanding of how the plant assimilates and responds
to nitrate supply to engineer plants with enhanced NUE at
the single cell type level.

Following pseudotime and GRN analysis, scRNA-seq of
mutant plants will provide new layers of information on ni-
trate transport and signaling. To date, there are a few studies
including single-cell sequencing of mutants to follow changes
in developmental trajectories from Arabidopsis roots
(Shahan et al. 2022; Nolan et al. 2023). For instance, SHR
and SCR are important TFs for cell identity and differenti-
ation, whereas BRI1 is an important receptor for BR signaling
(Shahan et al. 2022; Nolan et al. 2023). The analysis of shr and
scr single-cell transcriptomes revealed that there is a putative

loss of pericycle identity in shr mutant and a putative trans-
differentiation from cortex to endodermis cells in the scr mu-
tant (Nolan et al. 2023), while Nolan et al. (2023) generated
cell-specific bri1 CRISPR mutants by guiding Cas9 expression
into cortex or epidermis cells using as background a bri1
plant complemented with pBRIT:BRIT:mCitrine. The cortex
mutant lines displayed shorter cortex cells in the mature
zone but not in the meristem zone, whereas the epidermis
mutant lines presented shorter cortex cells in both zones,
suggesting that BR signaling is necessary in both the epider-
mis and cortex to promote cell expansion by modulating cell-
wall genes in the elongation zone (Nolan et al. 2023). These
results demonstrate that scRNA-seq can address cell identity
and signaling pathways in the context of space and time,
being also an interesting approach for future N-response
studies.

Together with scRNA-seq, single-cell sequencing of access-
ible chromatin sites will contribute to more resolutive GRNs
and will shed light on TFs involved in spatial and temporal
regulation during nitrogen responses. Cell type-specific
regulation of gene expression is in part modulated by a dy-
namic chromatin state that responds to development and
environment. Changes in the chromatin landscape are re-
versible and affect the binding of regulatory proteins,
such as TFs, controlling gene expression. With single-cell as-
say for transposase-accessible chromatin (scATAC-seq) as a
strategy to uncover putative TF-binding sites during nitrate
responses, we can obtain highly resolutive GRNs considering
cellular heterogeneity, resulting in cell type-specific accessi-
bility variance and TF-target regulation (Buenrostro et al.
2015). Moreover, together with scRNA-seq approaches, it is
possible to correlate chromatin regulation over gene expres-
sion across cell types as determined recently by the human
ENCODE project and Arabidopsis roots (Buenrostro et al.
2015; Gulko and Siepel 2019; Dorrity et al. 2021; Farmer
et al. 2021). Single-cell ATAC-seq in roots has also revealed
more accessible and dynamic sites than bulk ATAC-seq, sug-
gesting that a more resolutive network needs to be accom-
panied by single-cell expression of TFs (Dorrity et al. 2021).
Indeed, by integrating snATAC-seq and snRNA-seq from
Arabidopsis roots, Farmer et al. led to the identification of
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11,858 genes overlapping with chromatin-accessible sites. A
high correlation (P < 10E—05) was obtained when compar-
ing sn/scRNA-seq and snATAC-seq of root marker genes
(Farmer et al. 2021). Overall, in the future, both open chro-
matin sites and gene expression profiles could be used as bio-
logical markers for cell type identity and differentiation level
under different nitrogen conditions or time series.

Model-to-crop: nitrogen sensing and signaling
and its impact on agricultural outcomes

How can we use results from model species such as
Arabidopsis to have an impact on NUE in crops? In reference
to this question, a follow-up document to the United States
White House's Executive Order 14081, a set of goals for
“Harnessing Research and Development to Further Societal
Goals” was established and includes multiple goals to im-
prove NUE in agricultural practices (The White House
Office of Science and Technology Policy 2023). Specifically,
the goals in the White House report are highly relevant to
current and future NUE studies, which include reducing ni-
trogen emissions in agriculture by engineering plants with in-
creased nitrogen use efficiency, improving fertilizer practices,
and manipulating plant microbiomes to produce plants cap-
able of growing in nutrient-poor land. To accomplish these
goals, we review current research that focuses on (i) how
we can apply our knowledge of nitrogen in the model system
Arabidopsis to crop species and (ii) understanding how mi-
crobial communities affect nitrogen uptake and availability
in agriculture.

Advances in our base knowledge of nitrogen uptake, trans-
port, and signaling have greatly benefited from studies in the
model Arabidopsis; however, we must develop ways to apply
this knowledge base to crops. With the substantial progress
in omics technology and the availability of bulk- and single-
cell RNA-seq datasets accumulated in the past two decades,
cross-species comparisons of genetic information have been
gaining momentum (Table 3; Katari et al. 2010; Alvarez et al.
2021; Chen et al. 2021; Fu et al. 2022; Xu et al. 2022). The
interspecific comparisons, which can be made at the level
of genomic sequences, gene expression, co-expression net-
works, expression atlas, expression quantitative trait loci
(eQTL), and gene regulatory networks, open the possibility
of knowledge transferring from model organisms to eco-
nomically important species. For example, in Obertello
et al, a cross-species N-regulatory network between rice
and Arabidopsis was constructed by (i) identifying the
N-responsive differentially expressed genes in one species
as the starting point; (ii) constructing the edges using
metabolic interactions, protein-protein interactions, and
correlated expression; and (iii) only retaining the nodes
whose orthologs were also N-responsive in another species
(Obertello et al. 2015). The identified rice candidate
TFs targeting the conserved N-regulatory network, including
HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY
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ROOT SHORTENING 1/NITRATE-INDUCIBLE GARP-TYPE
TRANSCRIPTIONAL  REPRESSOR  (HRS1/NIGT1;  HRS1
HOMOLOGs (HHO), OsHHO3 and OsHHO4) and TGA
(OsbZIP11) transcription factors were later functionally vali-
dated as key regulators of N-deficiency responses in planta
(Ueda et al. 2020).

In more recent rice studies, nitrogen-dose sensing in the
field was examined as the interaction between nitrogen
(N) and water (W; Swift et al. 2019). It was discovered that
nitrogen dose is sensed as either moles (N-moles), molarity
(N/W), or the synergistic interaction with nitrogen and water
(N x W; Swift et al. 2019). Notably, it is the interaction
between N and W (N/W or N X W) that positively corre-
lates with phenotypic outcomes such as grain yield and
water-use efficiency in the field (Swift et al. 2019). These
conclusions were determined using linear models that ana-
lyzed RNA-seq and phenotypic data from rice exposed to a
factorial matrix of N-by-W conditions of different rice var-
ieties in both laboratory and field conditions (Swift et al.
2019). Using this N-by-W expression and phenotype data-
set, Shanks et al. 2022 identified the TFs, OsbZIP23, and
Oshox22 as regulators of NUE grain yield (NUEg) by devel-
oping gene regulatory networks that linked TFs to target
genes to field NUEg phenotypes (Swift et al. 2019; Shanks
et al. 2022).

Another widely used approach to uncover gene-to-trait re-
lations from the network perspective is by associating
co-expression network modules with either functional
information or phenotypes. Cross-species weighted gene co-
expression network analysis (WGCNA; Langfelder and
Horvath 2008) has identified an N-regulatory network con-
served between maize and sorghum, despite the difference
in genome size and phylogenetic distance between these
two species (Du et al. 2020). Notably, ZmHPP, a top-ranked
TF in regulating the conserved N-regulatory modules, has
an Arabidopsis homolog ATNITR2;2 (AT3G47980) that is
also a hub gene (nodes with the most edges) in another co-
expression network module for nitrogen signaling (Canales
et al. 2014). Overall, these results consistently support the
importance of conserved N-regulatory networks in regulat-
ing the phenotypic response.

Although tools exist to aid in orthology analysis (Table 3;
Huerta-Cepas et al. 2019), the cross-species analyses are lim-
ited by the ortholog conversion methods, most of which as-
sume the sequence-based orthologs to have similar
functions, the so-called ortholog conjecture, which is argu-
ably applicable to all species as orthology inference tends
to be more complicated than a straightforward one-to-one
relationship due to genome duplication (Gabaldon and
Koonin 2013). This phenomenon is especially prominent in
plant species that follow a pattern of genome evolution in-
volving polyploidization followed by the loss or partial reten-
tion of duplicated genes (Wendel et al. 2016). As a result,
plant genomes have highly complex gene families, making
the identification of a single ortholog conceptually impos-
sible. Considering that gene expression can serve as a proxy
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Table 3 . Web-based platforms for analysis of genomic data across plant species

Name Description URL References

VirtualPlant Resource that integrates plant genomic data with visualization and analysis  http://virtualplant.bio.nyu. Katari et al. (2010)
tools edu/cgi-bin/vpweb/

EggNOG Database for orthology relationships, gene evolutionary relationships and http://eggnog5.embl.de/ Huerta-Cepas et al.
functional annotations for multiple species #/app/home (2019)

ConnecTF Platform that integrates genome-wide studies to develop and validate https://connectf.org Brooks et al. (2021)
networks with AUPR analysis

ChIP-Hub Application to explore the plant regulome and epigenome https://biobigdata.njuedu.cn/  Fu et al. (2022)

Plant Single Cell
Hub
PlantscRNAdb

Single-cell data repository for plant species

Database and browser single-cell expression from multiple species including  http://ibi.zju.edu.cn/
marker gene selection and analysis for specific cell types

ChIPHub/
http://jinlab.hzau.edu.cn/
PsctH/

Xu et al. (2022)

Chen et al. (2021)
plantscrnadb/index.php

for gene function, a novel type of approach has been pro-
posed to classify genes based on not only sequence similarity
(genes in the same orthogroup) but also expression patterns
(Das et al. 2016). Kasianov et al. constructed a pipeline that
trained an XGBoost-based machine learning classifier using
developmental transcriptome profiles and sequence-based
ortholog information and was able to provide functional cor-
respondence between genes from phylogenetically distinct
species (Arabidopsis-maize and Arabidopsis-buckwheat;
Kasianov et al. 2023). This method has the potential to en-
able the selection of functionally similar orthologs, which is
approximated by the expression patterns, even for species
with distinct morphologies. Furthermore, conservative gene
function is not always found between species, which is why
mutant analysis and validation must be performed.

In Cheng et al. (2021), the authors exploited the evolution-
ary conservation of the N-responses across species to identify
genes of importance to NUE in a model (Arabidopsis) and
crop (maize; Cheng et al. 2021). Specifically, this study inte-
grated the sequence-based and expression-based similarity
in orthologs with machine learning modeling to infer
gene-to-NUE phenotype relations in Arabidopsis and maize.
To do this, the N-response differentially expressed genes
(N-DEGs) conserved in Arabidopsis and maize, as deter-
mined by sequenced-based orthology, were used as gene fea-
tures (predictors) in the machine learning, gradient
boosting-based method XGBoost (Chen and Guestrin
2016). The output of XGBoost gives each gene feature an im-
portance score for how that gene contributes to a trait (i.e.
NUE Cheng et al. 2021). The top-ranked TFs in the
XGBoost models that were important in predicting
gene-to-NUE relations were functionally validated using the
T-DNA loss-of-function mutants in Arabidopsis. Remarkably,
a model-to-crop validation was performed using maize nfya3
mutant whose Arabidopsis ortholog NF-YA6 (AT3G14020)
is the top TF in Arabidopsis XGBoost model and displayed en-
hanced grain NUE compared to wild-type counterparts in the
field experiment (Cheng et al. 2021). In addition, the gene
regulatory networks were constructed using a random forest-
based algorithm GENIE3 to identify the TFs regulating the con-
served N-DEGs predictive of NUE. Functional validation using
Arabidopsis mutants defective in the TF hubs (nodes with

the most edges) displayed higher NUE (Cheng et al. 2021).
These results demonstrated the utility of cross-species tran-
scriptome analyses in optimizing machine learning models
and constructing GRNs.

Given the importance of developing high-confidence cross-
species networks, the ConnecTF platform (connectf.org) was
developed for researchers to perform interactive and auto-
mated precision/recall analysis (AUPR) on their uploaded
networks, as well as to build and visualize networks and
compare validated datasets for one or more TFs in
Arabidopsis, rice, and maize (Table 3) (Brooks et al. 2021).
To facilitate these analyses, the open-source ConnecTF
web platform includes the validated TF-target gene data
generated using the plant cell-based TARGET system, along
with published in planta TF perturbation data, ChlIP-seq,
and DAP-seq data. Examples of how ConnecTF can be
used to develop high-confidence networks using AUPR ana-
lysis have been published for Arabidopsis (Brooks et al.
2021) and rice (Shanks et al. 2022).

In addition to cross-species networks and machine learn-
ing, single-cell RNA-seq data can be used to uncover con-
served regulatory programs and key regulators in specific
cell types between species (Table 3; Chen et al. 2021; Xu
et al. 2022). Cell type-specific N-responses in crops have
been examined on plants grown under low N stress condi-
tions using single-cell RNA-sequencing (scRNA-seq). Like
Arabidopsis, studies in crops such as maize and rice also
show cell type-specific responses to N in the root using
single-cell sequencing technology (Wang et al. 2021b; Li
et al. 2022). For example, in maize studies, the nitrate assimi-
lation genes such as ZmGS2 (glutamine synthetase 2) and
ZmNAR2.1 (high-affinity nitrate transporter) were induced
specifically in the epidermis (Li et al. 2022). One limitation
of single-cell studies in crop species compared to
Arabidopsis is the lack of well-defined cell-specific marker
genes derived from cell type-specific studies and transcrip-
tomes. To address this issue, databases that include single-
cell studies in multiple plant species offer tools to identify
marker genes for specific cell types in multiple crop species
(Table 3; Chen et al. 2021; Xu et al. 2022). Additionally, the
new PHYTOMap (plant hybridization-based targeted obser-
vation of gene expression map) technique was developed as a
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fluorescence in situ hybridization method for whole-mount
tissue that can be applied to single-cell data for spatial ana-
lysis of gene expression and to define marker genes for spe-
cific cell types (Nobori et al. 2023). This technique
developed in Arabidopsis has the potential to be applied
to crops to assist in cluster gene annotation from single-cell
studies and marker gene validation without the need to de-
velop time-consuming transgenic reporter lines (Nobori et al.
2023). Furthermore, this method is developing rapidly and
can be applied to identify the spatial cell type-specific nitro-
gen response. How plant host-microbe interactions are af-
fected by nitrogen levels in the soil is another area of
nitrogen research that can benefit from single-cell technol-
ogy as the colonization of microbes is a cell type-specific re-
sponse (Cole et al. 2021). For example, multiple studies have
examined how nodulation in legumes is initiated in the cor-
tex cells (Walker et al. 2017, Mahmud et al. 2020). During
nodulation, legumes will recruit microbes that can perform
biological nitrogen fixation (BNF), in which microbes use
the enzyme nitrogenase to catalyze the conversion of abun-
dant N, gas in the atmosphere into ammonia that can be as-
similated by the host plant via glutamine synthase to form
glutamine (Gautrat et al. 2021). To reduce the reliance on ex-
cess synthetic fertilizers, future research is examining how to
harness nitrogen fixation by microbes and apply this process
to benefit non-legume crops such as maize, rice, and wheat
(Mahmud et al. 2020; Wen et al. 2021). One way this can
be accomplished is by engineering non-legumes to form no-
dules with N-fixing bacteria (Mahmud et al. 2020; Wen et al.
2021). Alternatively, crops can be engineered to secrete spe-
cific root exudates, which is a mixture of sugars, amino acids,
fatty acids, and vitamins, to either recruit beneficial microbes
that help improve nitrogen acquisition or to inhibit the col-
onization of microbes that might compete with nutrient ac-
quisition (Hartman and Tringe 2019). In addition to
engineering the crop itself, there is also an effort to use spe-
cific microbial inoculants as biofertilizers (Klimasmith and
Kent 2022). This can be done either by adding microbes in
the soil that will form endosymbiotic relationships with the
plant to increase nitrogen fixation or by adding free-living
microbes that offer greater nitrogen availability to the plant
in the soil (Cole et al. 2021; Klimasmith and Kent 2022).

Nitrogen research in the age of artificial
intelligence (Al)

Since Alan Turing first proposed the concept of machines
capable of self-learning and self-instruction in 1950, the field
of artificial intelligence (Al) has experienced explosive
growth. Al, in general, refers to the ability of machines to
simulate the intelligence observed in complex organisms.
Increasingly, Al is intersecting with the field of biology.
Machine learning and in particular Al, mainly in the form
of Deep Neural Net (DNN; Lecun et al. 2015), are transform-
ing the way science is performed. Although traditional
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model-driven methods still play a valuable role in analyzing
biological data, they often lack the capacity to effectively har-
ness vast amounts of available data, including big data, to ex-
tract information, forecast data behavior, and comprehend
complex data relationships. Particularly over the last decade,
we have seen a dramatic increase in the number of large,
highly complex datasets being generated from biological ex-
periments, quantifying molecular variables such as gene, pro-
tein, and metabolite abundance, microbiome composition,
and population-wide genetic variation, to name just a few.
Community efforts across research disciplines are regularly
generating petabytes of data. The nitrogen signaling field
has been very active to use and develop new algorithms to
decipher the obvious complexity of the nitrogen signaling
pathway even before the rise of the DNN. The nitrogen com-
munity has been particularly keen on using several mathem-
atical models to decipher and predict the actual interactions
between transcription factors and their target genes or to
model solute transport and developmental processes.
These approaches ranged from linear models (Gutiérrez
et al. 2007; Krouk et al. 2009; Ristova et al. 2016), state-space
modeling (Krouk et al. 2010; Brooks et al. 2019; Alvarez et al.
2020), to “ordinary differential equations” (ODEs) embedded
in organ and tissue models (Boer et al. 2020; Otvos et al.
2021). DNNs are very good at image classification and seg-
mentation as they were originally developed for computer vi-
sion (Lecun et al. 2015). This is why an important trend
is now rising as it relates to the measure of N content on
plants from image analysis. Most of the time these
approaches use multispectral images to classify the N con-
tent of different crops, including maize (Nguyen et al. 2023;
Wijewardane et al. 2023), cotton (Xiao et al. 2022), or sor-
ghum (Wijewardane et al. 2023).

Impressive advancements in Al in biology have been
made, for example, in precise identification of the three-
dimensional structure of biological molecules, such as
AlphaFold, a critical task with significant implications for bio-
logical research (Jumper et al. 2027; Lin et al. 2023) and now
widely used in biology. But the potential for Al to replicate
the capacities of living systems, particularly human intelli-
gence, represents a significant achievement and a turning
point in how science is performed. Al is now capable of ob-
ject recognition and decision-making, using cognitive and
perceptual abilities akin to those observed in biological sys-
tems. A relatively more recent branch of neural networks
called “natural language processing” (NLP), originally devel-
oped to understand human languages (including translating
one language into another), has been applied to biological
questions and to published articles or written information
and sequence-related data, including DNA or protein se-
quences. In the context of NLP, self-supervised large language
models, such as “generative pre-trained transformer 3"
(GPT-3; Brown et al. 2020) or “pathways language model”
(PaLM; Chowdbhery et al. 2022), have demonstrated impres-
sive abilities to extract meaningful pieces of world knowledge
from being exposed to an extremely large quantity of
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text (billions of words). A relevant challenge is related to how
to access the knowledge encoded by the internal representa-
tion of a large Al model. Surprisingly, recent research (Gao
et al. 2021) has found that it is possible to steer these large
models to output relevant knowledge from a novel target
task using just a prompt. Specifically, by using a prompt
that provides the model with a human language description
or several examples of what one wants them to do, the model
can output meaningful knowledge related to a target task.
This learning strategy, referred to as contextual prompting,
offers a new degree of control to selectively access the knowl-
edge encoded in the internal representations of a large lan-
guage model. Nevertheless, it remains to be assessed how
useful and in which way tools such as NLP models or
ChatGPT, trained specifically with scientific literature, will
be for scientific research.

Al-based algorithms and programs continue to emerge
with diverse applications from basic research to precision
farming. Precision farming has the potential to revolutionize
various agricultural practices, ranging from soil management
and water analysis to accurate modeling of fertilizer require-
ments, as well as the optimization of pesticides, insecticides,
herbicides, yield projections, and overall crop management.
These advancements in Al intervention can play a pivotal
role in meeting the increasing demands for food from a grow-
ing global population. Early prediction and identification of
agricultural problems, as well as optimization of production
practices, are key areas that can greatly benefit from Al appli-
cations. Such approaches not only have the potential to save
significant costs but also mitigate environmental impacts,
leading to more sustainable agricultural practices.

Conclusions

In this review, we examine how studies of nitrogen sensing
and signaling over time and space have begun to uncover
the underlying dynamic regulatory networks that mediate
changes in plant metabolism and development. We also ex-
plore how emerging experimental and computational tech-
niques can be applied to advance nitrogen research. This
includes leveraging new experimental approaches such as
single-cell sequencing to unravel the relay of nitrogen signal-
ing in specific cell types over time and its effect on crucial
processes, such as cell differentiation, to modulate organ de-
velopment. On the other hand, computational methods
such as machine learning and artificial intelligence will aug-
ment experimental nitrogen research endeavors to uncover
the mechanisms by which plants sense and respond to nitro-
gen sources in their environment. We also highlight how
model-to-crop translational studies can be used for practical
gain in enhancing NUE in agriculture.
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