
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{S}\mathrm{C}\mathrm{I}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 45, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. \mathrm{S}307--\mathrm{S}328

MGIC: MULTIGRID-IN-CHANNELS NEURAL NETWORK
ARCHITECTURES\ast

MOSHE ELIASOF\dagger , JONATHAN EPHRATH\ddagger , LARS RUTHOTTO\S , AND

ERAN TREISTER\ddagger

Abstract. We present a multigrid-in-channels (MGIC) approach that tackles the quadratic
growth of the number of parameters with respect to the number of channels in standard convolutional
neural networks (CNNs). Thereby our approach addresses the redundancy in CNNs that is also
exposed by the recent success of lightweight CNNs. Lightweight CNNs can achieve comparable
accuracy to standard CNNs with fewer parameters; however, the number of weights still scales
quadratically with the CNN's width. Our MGIC architectures replace each CNN block with an
MGIC counterpart that utilizes a hierarchy of nested grouped convolutions of small group size to
address this. Hence, our proposed architectures scale linearly with respect to the network's width
while retaining full coupling of the channels as in standard CNNs. Our extensive experiments on
image classification, segmentation, and point cloud classification show that applying this strategy
to different architectures like ResNet and MobileNetV3 reduces the number of parameters while
obtaining similar or better accuracy.

Key words. alternative CNN architectures, multilevel neural networks, compact and lightweight
neural networks

MSC codes. 68T07, 65N55, 68T45

DOI. 10.1137/21M1430194

1. Introduction. Convolutional neural networks (CNNs) [43] have achieved im-
pressive accuracy for image classification, semantic segmentation, solution of partial
differential equations, and other tasks [21, 39, 42]. The main idea behind CNNs is to
define the linear operators in the neural network as convolutions with local kernels.
This increases the network's computational efficiency (compared to the original class
of networks) due to the essentially sparse convolution operators and the considerable
reduction in the number of weights. The general trend in the development of CNNs
has been to make deeper, wider, and more complicated networks to achieve higher
accuracy [59].

In practical applications of CNNs, a network's feature maps are divided into
channels, and the number of channels, c, can be defined as the width of the layer.
A standard CNN layer connects any input channel with any output channel. Hence,
the number of convolution kernels per layer is equal to the product of the number
of input channels and output channels. Assuming the number of output channels is

*
Received by the editors June 30, 2021; accepted for publication (in revised form) September 21,

2022; published electronically June 26, 2023.
https://doi.org/10.1137/21M1430194
Funding: This work was supported by the Israel Innovation Authority through the Avatar

consortium and by grant 2018209 from the United States--Israel Binational Science Foundation (BSF),
Jerusalem, Israel. The work of the first author was supported by a Kreitman high-tech scholarship.
The work of the third author was supported by NSF DMS 1751636.

\dagger
Corresponding author. Computer Science Department, Ben-Gurion University of the Negev,

Beer Sheva, 8410501, Israel (eliasof@post.bgu.ac.il).
\ddagger
Computer Science Department, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel

(ephrathj@post.bgu.ac.il, erant@cs.bgu.ac.il).
\S
Departments of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 USA

(lruthotto@emory.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S307

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1430194
mailto:eliasof@post.bgu.ac.il
mailto:ephrathj@post.bgu.ac.il
mailto:erant@cs.bgu.ac.il
mailto:lruthotto@emory.edu

S308 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

proportional to the number of input channels, this \scrO (c2) growth of operations and
parameters causes immense computational challenges. When the number of channels
is large, convolutions are the most computationally expensive part of the training
and inference of CNNs. Wide architectures exacerbate this trend with hundreds or
thousands of channels, which are particularly effective in classification tasks involving
a large number of classes. Increasing the network's width is advantageous in terms of
accuracy and hardware efficiency compared to deeper, narrower networks [73]. How-
ever, the quadratic scaling causes the number of weights to reach hundreds of millions
and beyond [36], and the computational resources (power and memory) needed for
training and making predictions with such CNNs surpasses the resources of common
systems [3]. This motivates the deep learning community to design more efficient
network architectures with competitive performance.

Among the first approaches to reduce the number of parameters in CNNs are
the methods of pruning [27, 28, 44] and sparsity-promoting [10, 26] that aimed to
limit the connectivity between channels and have been typically applied to already
trained networks. Once a network is trained, a substantial number of its weights
can be removed with hardly any degradation of its accuracy. However, the resulting
connectivity of these processes is typically unstructured, which may lead to inefficient
deployment of the networks on hardware. Still, pruning serves as a proof-of-concept
that the full connectivity between channels is superfluous, i.e., there is a redundancy
in CNNs [51]. By contrast, we reduce the network architecture by using structured
convolution operators, to enable efficient, balanced computations during training and
inference.

Another recent effort to reduce the number of parameters of CNNs features light-
weight architectures based on spatial grouped convolutions. The idea is to apply the
more computationally expensive spatial convolutions---those involving larger-than-a
scalar filters, say, 3\times 3 or 5\times 5---in small disjoint groups, creating a block-diagonal
``local"" connectivity between channels (see Figure 1). The extremity of grouped con-
volutions (diagonal connectivity) are the so-called depthwise convolutions which filter
each input channel separately. Such depthwise convolutions have been commonly
used together with pointwise 1 \times 1 convolutions, which couple all the channels but
with a single scalar for each pair of channel interactions instead of larger stencils like
3\times 3 (a 1\times 1 convolution is essentially a simple dense matrix-matrix multiplication).
This way, the popular MobileNets [34, 35, 58] involve significantly fewer parameters
than standard networks, while achieving comparable performance. The majority of

Fig. 1. Standard fully coupled (left), grouped (block-diagonal) convolution operator with two
groups (middle), and a depthwise (diagonal) convolution (right).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S309

the weights in MobileNets are in the pointwise operators, which scale with \scrO (c2).
The strength of MobileNets, and their improvement, EfficientNet [61], is the inverse
bottleneck structure, which takes a narrow network (with relatively few channels) and
expands it by a significant factor to perform the depthwise and nonlinear activation.
This way, although the number of parameters scales quadratically in the width in
the 1\times 1 operators, it aims to maximize the spatial convolutions and activations as
much as possible to increase the expressiveness of the network. The ShuffleNet [49]
reduces the parameters of the pointwise operator by applying 1 \times 1 convolutions to
half of the channels and then shuffling them. Another closely related architecture
is LeanConvNets [19], which employs 3- and 5-point convolution stencils to reduce
computational complexity, together with grouped convolutions. The recent GhostNet
[25] divides the feature space by some hyperparameter (typically, 2 or 4) such that
only a subset of the channels is convolved by a 1 \times 1 convolution, and the remain-
ing channels are obtained from the densely learned portion of the feature space by
depthwise convolutions.

In this work, we aim to obtain full connectivity between the channels of CNNs
using locally grouped convolutions only . To obtain this, we adopt the multigrid ap-
proach [6] that is known to be effective in solving various large problems using local
processing only on a hierarchy of grids or meshes. Such multigrid methods are pri-
marily used to solve differential equations and other graphical problems (e.g., Markov
chains [16]). They are based on a principle that a local iterative solution process on
a fine grid can effectively eliminate errors that involve short distances on the grid
(also known as ``smoothing"") but cannot reduce long-distance errors. Such errors
can be approximated on a coarser grid, leading to two advantages. First, coarse grid
procedures are less expensive than fine grid procedures as they involve fewer grid
points. Second, traversing different scales leads to faster convergence. An alternative
interpretation of this paradigm is that the multigrid hierarchy efficiently transfers
information across all the grid points using local processing only, at a different scale
at each level. Classical multigrid methods rely on the multiscale representation of
functions in space but can also be used to tackle temporal problems [20]. Multigrid
has been abundantly applied in the context of partial differential equations [6], but
also in other areas such as optimization [4, 5, 62], Markov chains [16], and graphs [46,
52]. Multigrid approaches have also been used to warm-start the training of CNNs on
high-resolution images with training on low-resolution images [23], adopting a mul-
tiscale approach in space. Similarly, [29, 38, 56] define multiscale architectures that
extract and combine features from different resolution images scales. The DeepLabV3
architecture for semantic segmentation [12] also exploits multiscale representations.
Other works [11, 14, 64] present different strategies to exploit the spatial multiscale
structure and representation of the feature maps throughout CNNs to improve the
performance of standard networks. Multigrid has also been used in the layer di-
mension for residual networks, e.g., to warm-start the training of a deep network by
interpolating the weights of a trained shallow network with a larger step size [9], and
improving or parallelizing the training through the layers [22, 40]. While the men-
tioned works apply the multigrid idea either in space or in layers (depth), in this work
we use the multigrid idea in the channel space (width).

In this work we propose a multigrid-in-channels (MGIC) approach for building
network architectures that connect all channels at each layer using local grouped
convolutions only. We achieve this full coupling via a hierarchical structure of the
features in the channel space, and grouped convolutions with relatively small groups
of fixed size at each level of the hierarchy. This yields a computational complexity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S310 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

+

+

Restrict

Restrict

FC CNN
block

Skip connection

Skip connection

CNN
block

CNN
block

Prolong
Residual

Prolong
Residual

xl xl+1

Fig. 2. A three-level multigrid block for 16 input channels and a group size sg = 4. Restrict
and Prolong Residual denote grid transfer operators, which decrease and increase the number of
channels, respectively. All the channels in the block are of the same spatial resolution. Each color
denotes a group of channels that are mixed in a CNN block. The coarsest level uses a fully coupled
CNN block.

that scales linearly with the network's width. That is, for a fixed group size, doubling
the number of channels in the network doubles the number of parameters. This
allows us to use wider, deeper, and ultimately more expressive networks for a given
computational budget.

Our MGIC block, which we show in Figure 2, can replace standard convolutional
blocks in CNNs. At each level of the block, a particular width is considered in the
channel space. Coarser levels in the block are defined by clusters of channels formed by
averaging channels from different groups and therefore have fewer channels. On each
level, we apply grouped convolutions on those clustered channels, which effectively
connect different fine-level groups. We also note that other forms of local convolu-
tions, like a chain or two-dimensional (2D) lattice structure, are also suitable in our
framework, as long as they are of linear complexity. We chose grouped convolutions
as they are the only type of local convolution in the channel space that is supported
in deep learning frameworks.

Even though our MGIC block relies on local grouped convolutions, its multigrid
structure enables communication between all channels. Our experiments on feature
space representation using a MGIC block, as well as implicit function approximation,
suggest that our method is of high capacity and expressiveness achieved in a linear
scaling fashion. Furthermore, in our experiments on image classification, segmenta-
tion, and point cloud classification tasks, the MGIC block achieves competitive or
superior performance with a relatively low number of parameters and FLOPs.

2. Toward efficient convolutions. Typical CNN architectures are composed
of a series of blocks

(2.1) xl+1 =CNN-block(xl),

where xl and xl+1 are the input and output features of the lth block, respectively.
Each CNN block usually contains a sequence of basic layers, with associated weights

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S311

which are omitted in the following. For example, consider the bottleneck ResNet
block [30] that reads

(2.2) xl+1 = xl +Kl3\sigma (\scrN (Kl2\sigma (\scrN (Kl1\sigma (\scrN (xl)))))).

The operators Kl1 and Kl3 are fully coupled 1 \times 1 convolutions, and Kl2 is a 3\times 3
convolution. The function \sigma () is a nonlinear pointwise activation function, typically
the ReLU function \sigma (x) = max(x,0). \scrN is a normalization operator often chosen to
be a batch normalization. Architectures that follow a similar trend are MobileNets
[34, 35, 58] and ResNeXt [70], in which Kl2 is a grouped (or depthwise) convolution
to reduce the number of parameters and increase the ratio between activations and
parameters.

A convolution layer takes cin channels of feature maps and outputs cout such
channels. By definition, a fully coupled convolution is involved with \scrO (cin \cdot cout)
parameters and FLOPs, i.e., both scale quadratically with the width. Since popular
implementations of CNNs often use hundreds or thousands of channels, their full
coupling leads to large computational costs and to millions of parameters for each
layer, which may not be necessary.

To ease the computational costs, all or some of the convolution layers in the CNN
block (2.1) may be grouped, dividing the input channels to several equally sized groups
and applying a separate convolution kernel on each of them. In this work, we denote
the number of channels in a group (its size) by sg. For example, a standard fully
coupled convolution with one group is defined by sg = cin, where cin is the number
of input channels, while a depthwise convolution is achieved by sg = 1. As the group
size gets smaller, the grouped convolutions involve fewer computations, at the cost of
typically less expressive network architectures. That is because information cannot be
shared between different groups in the feature maps during the grouped convolutions.

In this work, we propose to replace the CNN block in (2.1) by a novel multigrid
block to obtain the forward propagation

(2.3) xl+1 =MGIC block(xl,CNN block, sg, sc),

which, as illustrated in Figure 2, uses a hierarchy of grids in the channel space and
applies the original CNN block on the coarsest level. The parameter sg defines the
group size of the convolution operators in these CNN blocks, and sc is the size of the
coarsest grid. As we show in section 3.4, the number of parameters and FLOPs in the
MGIC block scales linearly with respect to the number of channels, assuming that
the group size is fixed. Note that the MGIC block is agnostic to its CNN block and
therefore can be used for various CNN architectures, including future ones.

3. Multigrid-in-channels CNN architectures. In this section, we describe
the MGIC block in detail. We start by defining the multigrid hierarchy. Then, we
define the MGIC block and the grid transfer operators, which are essential to perform
down- and up-sampling of the channel space, followed by a comprehensive description
of the design of such a MGIC block. Finally, we compare the computational cost of a
standard CNN layer with ours.

3.1. The multigrid hierarchy. The key idea of our multigrid architecture is to
design a hierarchy of grids in the channel space (also referred to as ``levels""), where the
number of channels in the finest level corresponds to the original width of the network.
The number of channels is halved between the levels until reaching the coarsest level,
where the number of channels is smaller than or equal to the parameter sc. Our

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S312 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

multigrid architecture is accompanied by a CNN block, like the ResNet block in
(2.2), which is applied on each level. On the finest and intermediate levels, we only
connect disjoint groups of channels using grouped convolutions. These convolutions
have \scrO (sg \cdot cin) parameters, and we keep the group size sg fixed throughout the
network. Hence, as the network widens, the number of groups grows, and the number
of parameters grows linearly. We allow interactions between all the channels on the
coarsest grid, where we use the original CNN block without grouping. Since the
coarsest grid contains only a few channels, this is not a costly operation. We note
that our architecture is capable of performing more convolution layers and nonlinear
activations per MGIC block, which is designed to replace a given CNN block. That is,
our MGIC approach can yield models with higher capacity and expressiveness while
retaining similar or lower computational cost, due to the use of grouped variants of
the original, fully coupled CNN block.

3.2. The multigrid block. For simplicity, we assume that the CNN block and
the MGIC block change neither the number of channels nor the spatial resolution of
the images. That is, both xl and xl+1 in (2.3) have cin channels of the same spatial
resolution. Given a CNN block, a group size sg, and a coarsest grid size sc, we define
the multigrid block in Algorithm 1, and as an example we present and discuss a two-
level version of it below. Here, the two-level hierarchy is denoted by levels 0,1, and
x(0) = xl are the input feature maps at the finest level (level 0). The two-level block
is as follows:

x(1) =R0x
(0),(3.1)

x(1)\leftarrow CNN-block(x(1)),(3.2)

x(0)\leftarrow x(0) +\scrN (P0(x
(1) - R0x

(0))),(3.3)

xl+1 =CNN-block(x(0), sg).(3.4)

We first down-sample the channel dimension of the input feature maps x(0) in
(3.1) by a factor of 2, using a restriction operator R0. This operation creates the
coarse feature maps x(1), which have the same spatial resolution as x(0), but half
the channels. The operator R0 is implemented by a grouped 1 \times 1 convolution; see
a detailed discussion in section 3.3. Then, in (3.2) a nongrouped CNN block is ap-
plied on the coarse feature maps x(1). This block couples all channels but involves
only c2in/4 parameters instead of c2in. Following that, in (3.3) we use a prolongation
operator P0 to up-sample the residual x(1) - R0x

(0)1 from the coarse level to the fine
level (up-sampling in channel space) and obtain a tensor with cin channels. Adding
the up-sampled residual is common in nonlinear multigrid schemes---we elaborate on
this point below. Finally, in (3.4) we perform a grouped CNN block, which is of
significantly lower computational cost than its nongrouped counterpart for a small
sg. An illustration of this architecture using three levels is presented in Figure 2.
The multilevel block (Algorithm 1) is applied by iteratively reducing the channel di-
mensionality until reaching the coarsest grid size sc. Hence, the number of levels at
each layer is given by nlevels = \lfloor log2(c\mathrm{i}\mathrm{n}sc)\rfloor , and the architecture uses more levels as
the channel space widens. By choosing sg = sc we have grouped convolutions on the
fine and intermediate levels and a fully connected layer only on the coarsest level,

1In the multigrid literature, this term is called a coarse grid correction, because it corrects the fine
level solution using an interpolated coarse error approximation. Here, there is no iterative solution,
as we just propagate feature maps through the network's layer. Hence, we use the term residual that
is common in deep learning literature as the addition to the feature maps in a layer.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S313

which is a natural configuration that is also illustrated in Figure 2. Specifically, in
our experiments we choose sc = sg or sc = 2sg, which can serve as default choices.

By letting the information propagate through the multigrid levels sequentially,
we increase the number of convolutions and nonlinear activations compared to the
original CNN block. Thereby, we aim to increase the expressiveness of our MGIC
block, given a computational budget.

Algorithm 1: Multigrid-in-channels block.

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S7

natural configuration that is also illustrated in Fig. 2. Specifically, in our experiments
we choose sc = sg or sc = 2sg which can serve as default choices.

By letting the information propagate through the multigrid levels sequentially,
we increase the number of convolutions and non-linear activations compared to the
original CNN block. Thereby, we aim to increase the expressiveness of our MGIC-
block, given a computational budget.

Algorithm 1: Multigrid-in-channels block.

Algorithm:
xl+1 = MGIC-block(xl,CNN-block, sg , sc).
Inputs:
xl - input feature maps with cin channels.
sg: group size. sc: coarsest grid size.
CNN-block: A reference CNN block, e.g., Eq. (2.2)

x(0) = xl

nlevels =
⌊
log2(

cin
sc
)
⌋

Going down the levels, starting from xl

for j = 0 : nlevels do
x(j+1) = Rjx

(j)

end
On the coarsest level we perform a non-grouped CNN-block:

x(nlevels) ← CNN-block(x(nlevels))
Going up the levels:
for j = nlevels − 1 : 0 do

x(j) ← x(j) +N
(
Pj(x

(j+1) −Rjx
(j))

)

x(j) ← CNN-block(x(j), group size = sg)

end

return xl+1 = x(0).

3.3. The choice of transfer operators P and R. The transfer operators play
an important role in multigrid methods. In classical methods, the restriction R maps
the fine-level state of the iterative solution onto the coarse grid, and the prolongation
P acts in the opposite direction, interpolating the coarse solution back to the fine grid.
Clearly, in the coarsening process we lose information, since we reduce the dimension
of the problem and the state of the iterate. The key idea is to design P and R such
that the coarse problem captures the subspace that is causing the fine-grid process
to be inefficient. This results in two complementary processes: the fine-level steps
(dubbed as relaxations in multigrid literature), and the coarse grid correction.

To keep the computations low, at the j-th level we choose Rj to be a grouped 1×1
convolution that halves the number of channels of its operand. We choose Pj to have
the transposed structure of Rj . For Rj and Pj we choose the same number of groups as
in the CNN-block , e.g., for R0 it will be cin

sg
groups. The operators Rj take groups of

channels of size sg and using a 1×1 convolution distills the information to
sg
2 channels.

Similarly, the operators Pj interpolate the coarse channels back to the higher channel
dimension using grouped 1 × 1 convolutions. This choice for the transfer operators
corresponds to aggregation-based multigrid coarsening [63], where aggregates (groups)
of variables are averaged to form a coarse grid variable. In section 4.1, we exemplify

3.3. The choice of transfer operators \bfitP and \bfitR . The transfer operators play
an important role in multigrid methods. In classical methods, the restriction R maps
the fine-level state of the iterative solution onto the coarse grid, and the prolongation
P acts in the opposite direction, interpolating the coarse solution back to the fine grid.
Clearly, in the coarsening process we lose information, since we reduce the dimension
of the problem and the state of the iterate. The key idea is to design P and R such
that the coarse problem captures the subspace that is causing the fine-grid process
to be inefficient. This results in two complementary processes: the fine-level steps
(dubbed as relaxations in multigrid literature) and the coarse grid correction.

To keep the computations low, at the jth level we choose Rj to be a grouped 1\times 1
convolution that halves the number of channels of its operand. We choose Pj to have
the transposed structure of Rj . For Rj and Pj we choose the same number of groups
as in the CNN block, e.g., for R0 it will be

c\mathrm{i}\mathrm{n}
sg

groups. The operators Rj take groups of

channels of size sg and using a 1\times 1 convolution distill the information to
sg
2 channels.

Similarly, the operators Pj interpolate the coarse channels back to the higher channel
dimension using grouped 1 \times 1 convolutions. This choice for the transfer operators
corresponds to aggregation-based multigrid coarsening [63], where aggregates (groups)
of variables are averaged to form a coarse grid variable. In section 4.1, we exemplify
that the transfer operators preserve essential information of all channels.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S314 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

The weights of the transfer operators are learned as part of the optimization and
are initialized by positive weights with row-sums of 1. This initialization ensures that
feature maps do not vanish as we multiply them by consecutive restrictions Rj to start
the MGIC block (in the first loop of Algorithm 1) at the beginning of the training
process. From this initialization we optimize the weights during training. This is also
motivated by similar works on trained optimization algorithms [33] and their success
in imaging applications [24].

The importance of up-sampled residuals. Adding the up-sampled residual
in (3.3) is often called a \tau -correction in multigrid literature, and it is the standard way
to apply multigrid methods to solve nonlinear problems [6]. Here, it allows us to have
a skip connection between corresponding levels of the multigrid cycle, introducing an
identity mapping in (3.3) as guided by [30]. Furthermore, at each level j we up-sample
only the difference between feature maps x(j+1) - Rjx

(j) and not the feature map
x(j+1) itself. This helps prevent feature maps summation when adding the up-sampled
residual, which may lead to exploding gradients. By this definition, if the CNN block
has an identity mapping, then so does the whole MGIC block in Algorithm 1.

Changing the channel resolution blocks. The structure of the MGIC block
as in Figure 2 is more natural to equal input and output channel sizes, i.e., cin = cout.
Hence, when we wish to change the number of channels, we define a lightweight short-
cut that is designed to transform a tensor from cin to cout such that our MGIC blocks
will be given an input where cin = cout. Specifically, to obtain low computational
cost, we use a depthwise 3\times 3 convolution, although other alternatives such as a 1\times 1
convolution are also possible. In case we wish to change the spatial dimensions of the
input tensor, we perform the same operation, only with a stride of 2.

3.4. The complexity of the MGIC block. Consider a case where we have
c = cin = cout channels in the network, and we apply a standard convolution layer
using d\times d convolution kernels (e.g., a 3\times 3 kernel). The output consists of c feature
maps, where each one is a sum of the c input maps, each convolved with a kernel.
Hence, such a convolution layer requires \scrO (c2 \cdot d2) parameters, inducing a quadratic
growth in the parameters and FLOPs.

Relaxation cost per level. On each level of an MGIC block, a relaxation step is
performed. At the jth level, this relaxation step is realized by a grouped convolution
of kernel size d \times d, with a group size of sg that divides c

2j (since at each level we
halve the channels space, starting from c channels), yielding c

sg\cdot 2j groups. Therefore,

the number of parameters required for such relaxation step is
sg\cdot c\cdot d2

2j . At the coarsest
level, we have sc channels which perform a fully coupled relaxation step, requiring
sc \cdot d2 parameters.

The cost of restriction and prolongation. As discussed in section 3.3, the
restriction and prolongation operators are implemented via grouped 1\times 1 convolutions,
halving and doubling the feature space dimension, respectively. Those operators are
learned at each level of our MGIC block. Therefore, the number of parameters for
those operators at the jth level is c

2j . The analysis here is similar to the case of
the relaxation steps, only here d= 1, and we have no fully coupled operators on the
coarsest level.

The total cost of an MGIC block. Combining the analysis from the para-
graphs above, the total number of parameters for an MGIC block with n levels is as
follows:

n - 1\sum

j=0

\biggl(
sg \cdot c \cdot (d2 + 1)

2j

\biggr)
+ s2c \cdot d2 < 2

\bigl(
sg \cdot c \cdot (d2 + 1)

\bigr)
+ s2c \cdot d2.(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S315

If sc is small (typically, we choose sc = sg), we can neglect the term s2c \cdot d2 to obtain
\scrO (sg \cdot c \cdot (d2+1)) parameters. Therefore, since sg and sc are fixed and small, and the
spatial dimension of the learned relaxation step convolution kernel size d is typically
of small size (3, 5, or 7), our method scales linearly with respect to the network's
width. This will be most beneficial if c is large, which is typical and usually required
in order to obtain state-of-the-art performance on various tasks [7, 30] as discussed
in section 1.

Memory footprint. During training, the memory footprint of MGIC is roughly
twice as large as that of a single CNN block since all the maps in the hierarchy
are saved for backpropagation. However, the main motivation for using lightweight
networks is increasing the efficiency of the inference application. This is beneficial
when the trained models are applied over and over again for inference, possibly on
edge devices with fewer computational resources, like autonomous cars and drones.
This typically offsets the increased cost of training, which is typically done once or a
few times. Indeed, during inference the coarser feature maps are released while going
up the hierarchy, so when applying the upmost CNN block, the memory footprint is
identical to a single block. Following the complexity analysis above, all the feature
maps \{ x(l)\} require about \times 2 the memory of x(0), but the memory footprint of a
CNN block can be higher than that. For example, the MobileNets [34] involve an
inverse bottleneck with an expansion of 4 - 6, rendering it more expensive in terms
of peak-memory as the additional MGIC overhead.

4. Experiments. In this section, we report several experiments with our MGIC
approach. We start with two proof-of-concept experiments, measuring how well our
MGIC can compress the channel space, as well as its capacity to approximate implicit
functions. Then, we test our method on image classification and segmentation and
point cloud classification benchmarks. Our goal is to compare how different architec-
tures perform using a relatively small number of parameters, aiming to achieve similar
or better results with fewer parameters and FLOPs. We train all our models using an
NVIDIA Titan RTX and implement our code using PyTorch software [55]. Our code
is available at github.com/BGUCompSci/MultigridInChannelsCNNs.

4.1. Coarse channels representation. Our method aims to reduce parame-
ters by introducing a hierarchical representation of the network's channels, and tra-
verse this hierarchy in the forward pass. In this experiment we wish to quantify the
effectiveness of our channel down- and up-sampling mechanism. Specifically, we wish
to measure how well we can encode feature maps on the coarsest grid, where fully
coupled convolutions are applied, using the transfer operators R and P only. To do
so, we sample 1,024 images from ImageNet, and extract their feature maps from the
first convolutional layer of a pretrained ResNet-50, containing 64 channels. Then, we
encode and decode the feature maps using the restriction and prolongation operators,
respectively. To study the transfer operators in isolation, we remove the CNN blocks
and long skip connections in Figure 2 from the MGIC block. This experiment disen-
tangles the concept of coarse channel representation used in MGIC from the actual
CNN block that is used in the other experiments that we show in this paper. We
experiment with several values of the group size parameter sg and present the mean
squared error (MSE) of the feature maps reconstruction in Table 1. The original
feature maps and their reconstructions are shown in Figure 3. According to this ex-
periment, our method is capable of faithfully representing the original channel space
(obtaining low MSE values), even when it operates on a low-parameters and FLOPs
budget (the values of sg and sc are small compared to 64 channels). Obviously, as we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S316 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

Table 1
Feature maps reconstruction MSE versus sg. sc is fixed to 8. The numbers below are rounded.

sg 32 16 8 4

MSE 0.011 0.013 0.017 0.024
Parameters 3,300 1,800 900 450

Fig. 3. From left to right: Top---input image, one of its feature maps, and its reconstructions
with sg = 32,16,8,4, respectively. sc is kept at 8. Bottom---input feature maps, their coarsest grid
representation, and their reconstruction from our MGIC block with down- and up-sampling only.

use a larger group size, the approximation improves, but not dramatically---it is only
a factor of about 2\times in the MSE between sg = 32 and sg = 4.

4.2. Performance in function approximation. In this experiment we demon-
strate the efficacy in function approximation in a supervised learning setup. This
property is important, especially in applications where we wish to model implicit
functions via a neural networks, such as signed-distance fields for shape reconstruction
and completion [54], and solution of PDEs [2, 47, 53, 57]---these works in particular
approximate functions in an unsupervised manner. Here, we wish to approximate a
family of functions

(4.1) f(x, y, a, b, c) = a cos(bx) sin(cy),

where x, y \in [0,2\pi]a\in [0,1] b\in [1,2] c\in [10,20]. We use three methods---MobileNetV3
[34], GhostNet [25], and our MGIC-MobileNetV3. Since the input is a vector [x, y, a,
b, c]\in R5 (treated as a spatial domain of size 1), the convolution kernels are effectively
1\times 1 convolutions. (Note that in any case these are the dominant operations in all
the networks and are the driving force of neural network in general.) Throughout
all the experiments, we used the network described in Table 2, where CNN block is
replaced with the respective method. The architecture takes a hyperparameter cmax,
which dictates the maximal width of the network. cmax is assumed to be a power
of 2 and larger than 32. Furthermore, we use two CNN blocks for each width. For
instance, when cmax = 128, there are a total of six CNN blocks of the following widths:
\{ 32,32,64,64,128,128\} (these are the cout values). The settings of these experiments
are as follows: we randomly sample 10 million points of the functions defined by f in
(4.1), where 95\% of the points are used for training and the remaining 5\% for testing,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S317

Table 2
Network architecture used in the function approximation experiment, section 4.2.-- denotes a

nonapplicable parameter. BN denotes a batch-normalization operator. For CNN block, we consider
and compare MobileNetV3, GhostNet, and our MGIC-MobileNetV3. cmax is the maximal number
of channels (e.g., 128).

cin Operations Expansion cout

5 1\times 1 Conv, BN, ReLU -- 16

16 CNN block 4 32
32 CNN block 4 32

32 CNN block 4 64
...

cmax CNN block 4 cmax

cmax CNN block 4 cmax

cmax 1\times 1 Conv, BN, ReLU -- 64
64 1\times 1 Conv -- 1

Fig. 4. Approximation error of the function family from (4.1) with MobileNetV3, GhostNet,
and our MGIC. Metric is in MSE as function of number of parameters.

with a 10-fold cross-validation. We train each network for 1,000 epochs with a batch
size of 20,000 points, using the SGD optimizer with a constant learning rate of 0.0001.
The loss function is the MSE. The results, summarized in Figure 4, show that MGIC
yields lower MSE with fewer parameters than MobileNetV3 and GhostNet, suggesting
that at least for the purpose of approximating such functions, our MGIC architecture
has a higher model capacity per number of parameters.

4.3. Image classification. We compare our approach with a variety of popular
and recent networks like ResNet-50 [30], MobileNetV3, [34] and GhostNet [25] for
image classification on the CIFAR10 and ImageNet datasets. We use an SGD opti-
mizer with a mini-batch size of 256 for ImageNet and 128 for CIFAR-10, both for
100 epochs. Our loss function is cross-entropy. The initial learning rates for CIFAR-
10 and ImageNet are 0.001 and 0.1, respectively. We divide them by 10 every 30
epochs. The weight decay is 0.0001, and the momentum is 0.9. As data augmen-
tation, for both datasets, we use standard random horizontal flipping and crops, as
in [30].

4.3.1. CIFAR-10. The CIFAR-10 dataset [41] consists of 60K natural images
of size 32\times 32 with labels assigning each image into one of 10 categories. The data is
split into 50K training and 10K test sets. Here, we use a ResNet-56 [30] architecture,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S318 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

which includes ResNet layers of widths 16, 32, and 64 channels. Together with our
MGIC block, with parameters sg = 8, sc = 16, MGIC-ResNet-56 has up to three
levels. We compare our method with other recent and popular architectures such
as AMC-ResNet-56 [31] and Ghost-ResNet-56 [25], and our baseline is the original
ResNet-56. We report our results in Table 3, where we see large improvement over
existing methods, while retaining low number of parameters and FLOPs.

4.3.2. ImageNet. The ImageNet [17] challenge ILSVRC 2012 consists of over
1.28M training images and 50K validation images from 1,000 categories. We resize
the images to 224\times 224 [30]. We perform two experiments.

ResNet-50 compression. We compress the ResNet-50 architecture and com-
pare our MGIC approach with other methods. As the goal of this experiment is to
compress a standard ResNet-50 [30], we follow the exact architecture of the latter,
which includes input feature maps of widths of 256, 512, 1,024, and 2,048 channels. We
only replace each ResNet block layer by an MGIC-ResNet block, denoted as MGIC(\cdot),
as depicted in Table 4. The results are reported in Table 5, where we propose three

Table 3
Comparison of state-of-the-art methods for compressing ResNet-56 on CIFAR-10. - indicates

unavailable results.

Architecture Params [\times 106] FLOPs [\times 106] Test acc.

ResNet-56 [30] 0.85 125 93.0\%

CP-ResNet-56 [32] -- 63 92.0\%

\ell 1 -ResNet-56 [44] 0.73 91 92.5\%
AMC-ResNet-56 [31] -- 63 91.9\%

Ghost-ResNet-56 [25] 0.43 63 92.7\%

MGIC-ResNet-56 (ours) 0.41 60 94.2\%

Table 4
MGIC-ResNet50 architecture. MGIC-ResNet (X) is the MGIC block applied with the ResNet

bottleneck three-convolution block in (2.2), corresponding to the convolution kernel sizes in X as
presented in [30] (i.e., left numbers correspond to either 1\times 1 or 3\times 3 filters of the convolutions,
and the right numbers correspond to the output channels of each convolution). Conv2D is a 2D
convolution layer followed by a BatchNorm operation and a ReLU nonlinear activation. \# Rep is
the number of block repetitions. cout denotes the number of output channels. A maxpool operation
occurs after every convolution and MGIC layer.

Input Layer \# Rep cout

2242 \times 3 Conv2D 7\times 7 1 64

1122 \times 64 Conv2D 3\times 3 1 64

1122 \times 64 MGIC-ResNet

\left(\left[1\times 164
3\times 364

1\times 1256

\right] \right) 3 256

562 \times 256 MGIC-ResNet

\left(\left[1\times 1128

3\times 3128

1\times 1512

\right] \right) 4 512

282 \times 512 MGIC-ResNet

\left(\left[1\times 1256
3\times 3256

1\times 11024

\right] \right) 6 1024

142 \times 1024 MGIC-ResNet

\left(\left[1\times 1512

3\times 3512

1\times 12048

\right] \right) 3 2048

72 \times 2048 AvgPool2D 7\times 7 1 2048
12 \times 2048 FC 1 1000

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S319

Table 5
Comparison of state-of-the-art methods for compressing ResNet-50 on ImageNet dataset.

Params FLOPs Top-1 Top-5
Model [\times 106] [\times 109] Acc.\% Acc.\%

ResNet-50 [30] 25.6 4.1 75.3 92.2

Thinet-ResNet-50 [48] 16.9 2.6 72.1 90.3

NISP-ResNet-50-B [72] 14.4 2.3 -- 90.8
Versatile-ResNet-50 [66] 11.0 3.0 74.5 91.8

SSS-ResNet-50 [37] -- 2.8 74.2 91.9

Ghost-ResNet-50 [25] 13.0 2.2 75.0 92.3
MGIC-ResNet-50 (sg = 32, sc = 64) (ours) 9.4 1.6 75.8 92.9

MGIC-ResNet-50 (sg = 64, sc = 64) (ours) 15.1 2.5 77.9 93.7

Shift-ResNet-50 [68] 6.0 -- 70.6 90.1
Taylor-FO-BN-ResNet-50 [50] 7.9 1.3 71.7 --

Slimmable-ResNet-50 0.5\times [71] 6.9 1.1 72.1 --

MetaPruning-ResNet-50 [45] -- 1.0 73.4 --
Ghost-ResNet-50 (s= 4) [25] 6.5 1.2 74.1 91.9

MGIC-ResNet-50 (sg = 16, sc = 64) (ours) 6.2 1.0 74.3 92.0

variants of our MGIC-ResNet-50 network, differing in the sg parameter. For sc we
chose 64, which lead to three to five levels in our MGIC blocks throughout the network.
Our results outperform the rest of the considered methods, and our network with
sg = 64, sc = 64 also outperforms ResNeXt-50 [70] (25.0M parameters, 4.2B FLOPs,
77.8\% top-1 accuracy), which is not shown in the table because the ResNeXt architec-
ture utilizes more channels than ResNet-50 and therefore is not directly comparable.

ImageNet classification on a budget of FLOPs. In this experiment we com-
pare our approach with recent light networks. In particular, we follow the MobileNetV3-
Large [34] architecture for its efficiency and high accuracy, and replace the standard
MobileNetV3 block with our MGIC block. Our building blocks are MGIC bottlenecks
(dubbed MGIC-bneck). That is, we build a MGIC version of the bottleneck from Mo-
bileNetV3. Our MGIC-MobileNetV3 is given in Table 6. Note that this is the \times 1.0
version and can be modified via the width multiplier \alpha . Our parameter sg controls the
group size---therefore it determines the number of groups in each MGIC bottleneck.
We denote the number of output channels by cout and the number of hidden channels
within a block (the dimension of the square operator Kl2 in the ResNet block (2.2)),
also referred to as the expansion size, by \#exp. In case cout and \#exp are not divisi-
ble by sg, we set sg to the closest (smaller) integer to its intended value such that it
divides them. For example, in our experiments we set sg = 64, and for the network
defined in Table 6, the fifth MGIC-bneck layer has \#exp= 120 and cout = 40, meaning
they do not divide by 64. Therefore we modify sg to be the largest integer that is
smaller than 64 and divides both \#exp and cout, giving sg = 40 in this example. Our
experiment is divided into three scales---small, medium, and large---where we scale
our networks with width factors of 0.6, 1.0, and 1.2, respectively. We find that our
method obtains higher accuracy, with a similar number of FLOPs, as depicted from
the results in Table 7 and Figure 5. Specifically, we compare our methods with and
without the use of the h-swish activation function [34], where we see similar results.
Compared to other popular and recent methods like MobileNetV3, GhostNet, and
ShuffleNetV2, we obtain better accuracy given the same FLOPs.

Inference and training times. We measure the single thread inference times
on one 224 \times 224 image using lightweight models on a Samsung Galaxy S8 mobile

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S320 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

Table 6
MGIC-MobileNetV3 architecture. MGIC-bneck denotes a MGIC-bottleneck. The bottleneck is

the same as in MobileNetV3, only in an MGIC form. Conv2D is a 2D convolution layer followed
by a BatchNorm operation and a ReLU nonlinear activation. \# exp denotes the expansion size.
cout denotes the number of output channels. SE stands for Squeeze-Excite. Pool denotes a maxpool
operation, reducing the spatial size of the input. - denotes a nonapplicable option. \checkmark and \times denote
true and false, respectively.

Input Operation \# exp cout SE Pool

2242 \times 3 Conv2D 3\times 3 16 -- \times \checkmark
1122 \times 16 MGIC-bneck 16 16 \times \times
1122 \times 16 MGIC-bneck 48 24 \times \checkmark
562 \times 24 MGIC-bneck 72 24 \times \times
562 \times 24 MGIC-bneck 72 40 \checkmark \checkmark
282 \times 40 MGIC-bneck 120 40 \checkmark \times
282 \times 40 MGIC-bneck 240 80 \times \checkmark
142 \times 80 MGIC-bneck 200 80 \times \times
142 \times 80 MGIC-bneck 184 80 \times \times
142 \times 80 MGIC-bneck 184 80 \times \times
142 \times 80 MGIC-bneck 480 112 \checkmark \times
142 \times 112 MGIC-bneck 672 112 \checkmark \times
142 \times 112 MGIC-bneck 672 160 \checkmark \checkmark
72 \times 160 MGIC-bneck 960 160 \times \times
72 \times 160 MGIC-bneck 960 160 \checkmark \times
72 \times 160 MGIC-bneck 960 160 \times \times
72 \times 160 MGIC-bneck 960 160 \checkmark \times
72 \times 160 Conv2D 1\times 1 -- 960 \times \times
72 \times 960 AvgPool 7\times 7 -- 960 \times \times
12 \times 960 Conv2D 1\times 1 -- 1280 \times \times
12 \times 1280 FC -- 1000 \times \times

device (using the TFLite tool [1]), and an Intel i9-9820X CPU---see Table 8 (aver-
aged over 50 inferences). We observe that at least by these timings, the runtime of
MGIC is on par with the considered architectures while obtaining higher accuracy.
Additionally, we report the training time on a mini-batch of 128, 224 \times 224 sized
images from ImageNet, on an Nvidia Titan RTX GPU. Our MGIC requires slightly
higher training time due to its higher complexity and multilevel channels structure.
However, it yields higher accuracy compared to the considered methods.

4.4. Image semantic segmentation. We compare our method with
MobileNetV3 on semantic segmentation on the Cityscapes [15] dataset. For the en-
coder part of the network, we build large and small variants, based on MobileNetV3-
Large and MobileNetV3-Small, described in Tables 1 and 2 in [34], respectively. We
also utilize the same LR-ASPP segmentation head and follow the observations from
[34]. Namely, we reduce the number of channels in the last block of our networks by
a factor of two and use 128 filters in the segmentation head. For training, we use
the same data augmentation and optimization approach as in [12]. The results are
shown in Table 9, where we report the mean intersection over union (mIoU) metric
of our MGIC-Large with sg = 64 and sg = 32. We note that the results for the former
are slightly better than those of MobileNetV3, while the performance of the latter
are more favorble as they offer similar accuracy for less FLOPs and parameters. In
addition, we read similar accuracy when using our MGIC-Small with sg = 64.

4.5. Point cloud classification. The previous experiments were performed on
structured CNNs, i.e., on 2D images. To further validate our method's generaliza-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S321

Table 7
Comparison of state-of-the-art lightweight networks on ImageNet dataset classification.

Params FLOPs Top-1 Top-5

Model [\times 106] [\times 106] Acc.\% Acc.\%

ShuffleNetV1 0.5\times (g= 8) [74] 1.0 40 58.8 81.0

MobileNetV2 0.35\times [58] 1.7 59 60.3 82.9
ShuffleNetV2 0.5\times [49] 1.4 41 61.1 82.6

MobileNeXt 0.35\times [75] 1.8 80 64.7 --

MobileNetV3-Small 0.75\times [34] 2.4 44 65.4 --
GhostNet 0.5\times [25] 2.6 42 66.2 86.6

MGIC-MobileNetV3 0.6\times (ours) 2.3 48 67.0 87.3

MGIC-MobileNetV3 0.6\times (ours) no h-swish 2.3 45 66.8 86.9

MobileNetV1 0.5\times [35] 1.3 150 63.3 84.9

MobileNetV2 0.6\times [58] 2.2 141 66.7 --
ShuffleNetV1 1.0\times (g= 3) [74] 1.9 138 67.8 87.7

ShuffleNetV2 1.0\times [49] 2.3 146 69.4 88.9

MobileNeXt 0.75\times [75] 2.5 210 72.0 --
MobileNetV3-Large 0.75\times [34] 4.0 155 73.3 --

GhostNet 1.0\times [25] 5.2 141 73.9 91.4

MGIC-MobileNetV3 1.0\times (ours) 5.2 145 74.8 92.0
MGIC-MobileNetV3 1.0\times (ours) no h-swish 5.2 138 74.3 91.6

MobileNetV2 1.0\times [58] 3.5 300 71.8 91.0

ShuffleNetV2 1.5\times [49] 3.5 299 72.6 90.6
FE-Net 1.0\times [13] 3.7 301 72.9 --

FBNet-B [67] 4.5 295 74.1 --

ProxylessNAS [8] 4.1 320 74.6 92.2
MnasNet-A1 [60] 3.9 312 75.2 92.5

MobileNeXt 1.0\times [75] 3.4 300 74.0 --

MobileNetV3-Large [34] 1.0\times 5.4 219 75.2 --
GhostNet 1.3\times [25] 7.3 226 75.7 92.7

MGIC-MobileNetV3 1.2\times (ours) 7.1 233 76.1 93.2
MGIC-MobileNetV3 1.2\times (ours) no h-swish 7.1 217 76.2 93.4

Fig. 5. Top-1 accuracy versus FLOPs on ImageNet dataset.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S322 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

Table 8
Inference runtime of state-of-the-art small networks on a Samsung Galaxy S8 mobile device

and a PC CPU and training time on an Nvidia Titan RTX GPU.

MobileNetV2 MobileNetV3 GhostNet MGIC

Metric 1.0x 0.75x 1.0x MobileNetV3 1.0x

Accuracy [\%] 71.8 73.3 73.9 74.8

Mobile inference [ms] 795 418 487 480
CPU inference [ms] 310 140 170 172

GPU training [s] 0.262 0.215 0.237 0.311

Table 9
Segmentation results on Cityscapes dataset. Metric is in mean intersection over union.

Backbone Params [\times 106] FLOPs [\times 109] mIoU \%

MobileNetV3-Small 0.47 2.90 68.38

MGIC-Small sg = 64 (ours) 0.48 2.73 68.52

MobileNetV3-Large 1.51 9.74 72.64

MGIC-Large sg = 32 (ours) 1.32 8.87 71.02

MGIC-Large sg = 64 (ours) 1.67 9.62 72.69

Table 10
Graph neural network for point cloud classification. G-conv is a graph convolution layer. MLP

is a multilayer perceptron. MaxPool is a global max-pooling layer. cout denotes the number of output
channels. \times denotes the number of repetitions of the respective layer.

Input Operation cout

1024\times 3 G-conv 64

1024\times 64 2 \times G-conv 64
1024\times 64 MLP 64

1024\times 64 3 \times G-conv 64

1024\times 64 MLP 64
1024\times 64 MaxPool 64

1\times 64 3 \times MLP 64

1\times 64 FC 10

tion and usefulness, we incorporate it in graph convolutional networks (GCNs) to
perform point cloud classification. Specifically, we use a smaller version of the ar-
chitecture from [65], where we alter the width of the last three classifier layers from
1024,512,256 to 64 in all of them. We define the architecture in Table 10, where
G-conv denotes a graph convolution layer, according to the methods listed in Table
11, followed by a BatchNorm operation and a ReLU nonlinear activation. MLP is
realized by a simple 1 \times 1 convolution followed by a BatchNorm operation and a
ReLU nonlinear activation. FC is a fully connected layer. In all networks, we define
the adjacency matrix using the k -NN algorithm with k = 10. Then, we replace the
GCN block with each of the backbones listed in Table 11, where we also report their
performance on point-cloud classification on ModelNet-10 [69] benchmark where we
sample 1,024 points from each shape.

4.6. Ablation study. Parameter study. To determine the impact of the hyper-
parameters sg and sc, we experiment on CIFAR-10 and ImageNet datasets for image
classification. On CIFAR-10, we first fix sg to 16 and observe how the number of
parameters, number of FLOPs, and accuracy of MGIC-ResNet-56 change. Second,
we fix sc to 16, while modifying sg, and examine our model's behavior, as reported

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S323

Table 11
ModelNet-10 classification.

Backbone Params [\times 106] FLOPs [\times 106] Accuracy \%

DGCNN [65] 0.16 125 91.6
diffGCN [18] 0.57 64 92.5

MGIC-diffGCN (ours) 0.11 13.7 92.9

Table 12
Influence of sc and sg in our MGIC framework on ResNet-56 architecture and CIFAR-10

dataset. sg is fixed to 16.

sc sg Params [\times 106] FLOPs [\times 106] Accuracy \%

64 16 0.53 91 94.7

32 16 0.5 76 94.6
16 16 0.47 65 94.3

16 32 0.79 100 94.8
16 16 0.53 85 94.7

16 8 0.41 60 94.2

16 4 0.29 45 92.8

Table 13
Hyperparameter study on ImageNet.

sc sg Params [\times 106] Accuracy \%

64 2 4.2 70.2

64 4 4.2 70.6

64 8 4.3 71.6
64 16 4.5 71.9

64 32 4.8 73.2
64 64 5.2 74.8

2 2 4.2 69.9

4 4 4.2 70.5
8 8 4.3 70.9

16 16 4.5 71.6

32 32 4.9 72.7

in Tables 12 and 13. On ImageNet, we examine two types of configurations using our
MGIC-MobileNetV3 1.0x. In the first, we get sc = 64 and experiment with different
values of sg. This experiment reveals the significance of the group size. Namely, it
shows that as the group size grows, better accuracy is obtained (since it induces an
increased channels connectivity), at the cost of more parameters. The second type of
experiments considers various values of sc = sg, from 2 to 64. Like in the former, it
can be concluded that increasing the coarsest grid size and the channel connectivity
yields higher accuracy. Our conclusion from the results reported in Tables 12 and 13
is that a growth of sg or sc yields better accuracy at the cost of more parameters and
FLOPs, since an increased communication between the channels is allowed. However,
by reducing sg and sc, we obtain almost optimal accuracy at dramatically reduced
costs, also as depicted in the experiments in sections 4.1 and 4.2.

Training of MGIC. Another interesting aspect is whether the performance im-
provement of MGIC over MobileNetV3 stems from higher efficacy of MGIC (per
parameter or FLOP) or an easier and better training. In the case of the latter, it
is expected that training MobileNetV3 for more epochs will lead to a smaller perfor-
mance gap compared to our MGIC. In Figure 6, we present the obtained accuracy

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S324 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

Fig. 6. Per-epoch accuracy (\%) on ImageNet classification. With MobileNetV3 the best ac-
curacy is 73.34\% and 73.36\% throughout the first 100 and 150 epochs, respectively. With MGIC-
MobileNetV3, the corresponding accuracy reads are 75.02\% and 75.08\%, respectively.

per epoch on the ImageNet dataset with 150 epochs (as opposed to the 100-epochs
results that are reported in Table 5). It can be seen from Figure 6 that adding more
epochs, using the same training policy, does not improve performance for any of the
methods. Therefore, it seems that given our training policy (which is identical to
the one used in MobileNetV3), our MGIC shows better efficacy rather than easier or
better training.

5. Conclusion. We present a novel multigrid-in-channels (MGIC) approach
that improves the efficiency of convolutional neural networks (CNN) in both param-
eters and FLOPs, while using easy-to-implement structured grouped convolutions in
the channel space. Applying MGIC, we achieve full coupling through a multilevel
hierarchy of the channels, at only \scrO (c) cost, unlike standard convolution layers that
require \scrO (c2). This property is significant and desired to reduce both training and
inference times, which also translates to a reduction in energy consumption. We
also note that MGIC is most beneficial for wide networks, which are usually favored
for state-of-the-art accuracy and performance. Our experiments for various tasks
suggest that MGIC achieves accuracy comparable to or superior than other recent
lightweight architectures at a given budget. Our MGIC block offers a universal ap-
proach for producing lightweight versions of networks suitable for different kinds of
CNNs, GCNs, and traditional NNs, where fully connected layers are applied. Fur-
thermore, it is future-ready, meaning it can also compress future architectures when
available.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
Tensorflow: A system for large-scale machine learning , in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation, 2016, pp. 265--283.

[2] L. Bar and N. Sochen, Strong solutions for PDE-based tomography by unsupervised learning ,
SIAM J. Imaging Sci., 14 (2021), pp. 128--155.

[3] M. Bianchini and F. Scarselli, On the complexity of neural network classifiers: A comparison
between shallow and deep architectures , IEEE Trans. Neural Netw. Learn. Syst., 25 (2014),
pp. 1553--1565.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S325

[4] A. Borzi and V. Schulz, Multigrid methods for PDE optimization , SIAM Rev., 51 (2009),
pp. 361--395.

[5] A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies , in Multilevel
Optimization in VLSICAD, Springer, New York, 2003, pp. 1--69.

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial , SIAM, Philadel-
phia, 2000.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei, Language models are few-shot learners , Adv.
Neural Inf. Process. Syst., 33 (2020), pp. 1877--1901.

[8] H. Cai, L. Zhu, and S. Han, ProxylessNAS: Direct neural architecture search on target task
and hardware, in Proceedings of the International Conference on Learning Representations,
2019.

[9] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert, Multi-Level Residual Net-
works from Dynamical Systems View , preprint, https://arxiv.org/abs/arXiv:1710.10348,
2017.

[10] S. Changpinyo, M. Sandler, and A. Zhmoginov, The Power of Sparsity in Convolutional
Neural Networks, https://arxiv.org/abs/1702.06257, 2017.

[11] C.-F. R. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. Feris, Big-little net: An effi-
cient multi-scale feature representation for visual and speech recognition , in Proceedings of
the International Conference on Learning Representations, 2019, https://openreview.net/
forum?id=HJMHpjC9Ym.

[12] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, Rethinking Atrous Convolution for
Semantic Image Segmentation , preprint, https://arxiv.org/abs/1706.05587, 2017.

[13] W. Chen, D. Xie, Y. Zhang, and S. Pu, All you need is a few shifts: Designing efficient con-
volutional neural networks for image classification , in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 7241--7250.

[14] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and J. Feng, Drop
an Octave: Reducing spatial redundancy in convolutional neural networks with octave con-
volution, in Proceedings of the IEEE International Conference on Computer Vision, 2019,
pp. 3435--3444.

[15] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele, The cityscapes dataset for semantic urban scene understanding ,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[16] H. De Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen, and J. Ruge, Multilevel
adaptive aggregation for markov chains, with application to web ranking , SIAM J. Sci.
Comput., 30 (2008), pp. 2235--2262.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F. F. Li, ImageNet: A large-acale
hierarchical image database , in Proceedings of CVPR09, 2009.

[18] M. Eliasof and E. Treister, DiffGCN: Graph convolutional networks via differential oper-
ators and algebraic multigrid pooling , in Proceedings of Advances in Neural Information
Processing Systems, 2020.

[19] J. Ephrath, M. Eliasof, L. Ruthotto, E. Haber, and E. Treister, LeanConvNets: Low-
cost yet effective convolutional neural networks , IEEE J. Sel. Top. Signal Process., 14
(2020), pp. 894--904.

[20] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder,
Parallel time integration with multigrid , SIAM J. Sci. Comput., 36 (2014), pp.
C635--C661.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation , in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 580--587.

[22] S. G\"unther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger, Layer-parallel
training of deep residual neural networks , SIAM J. Math. Data Sci., 2 (2020), pp. 1--23.

[23] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun, Learning across scales---multiscale
methods for convolution neural networks , in Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 2018.

[24] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F.
Knoll, Learning a variational network for reconstruction of accelerated MRI data , Magn.
Reson. Med., 79 (2018), pp. 3055--3071.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/arXiv:1710.10348
https://arxiv.org/abs/1702.06257
https://openreview.net/forum?id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}HJMHpjC9Ym
https://openreview.net/forum?id$=$\gdef \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}HJMHpjC9Ym
https://arxiv.org/abs/1706.05587

S326 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

[25] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, GhostNet: More features from cheap
operations, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 1580--1589.

[26] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda, M. Paluri, J.
Tran, B. Catanzaro, and W. J. Dally, DSD: Dense-sparse-dense training for deep neu-
ral networks, in Proceedings of the International Conference on Learning Representations,
2017.

[27] S. Han, J. Pool, J. Tran, and W. J. Dally, Learning both weights and connections for
efficient neural network , Int. J. Comput. Vis., 5 (2015), pp. 1135--1143.

[28] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal brain
surgeon reconstruction , Int. J. Comput. Vis., 5 (1992), pp. 164--171.

[29] J. He and J. Xu, MgNet: A unified framework of multigrid and convolutional neural network ,
Sci. China Math., 62 (2019), pp. 1331--1354.

[30] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition , in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770--778.

[31] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, AMC: AutoML for model compres-
sion and acceleration on mobile devices , in Proceedings of the European Conference on
Computer Vision, 2018, pp. 784--800.

[32] Y. He, X. Zhang, and J. Sun, Channel pruning for accelerating very deep neural networks ,
in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1389--
1397.

[33] S. Hochreiter, A. Younger, and P. Conwell, Learning to learn using gradient de-
scent , in Artificial Neural Networks --- ICANN 2001, Springer, Berlin, 2001, pp. 87--94,
https://doi.org/10.1007/3-540-44668-0 13

[34] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R.
Pang, V. Vasudevan, Q. V. Lee, and H. Adam, Searching for MobileNetv3, in Proceed-
ings of the IEEE International Conference on Computer Vision, 2019, pp. 1314--1324.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications , preprint, https://arxiv.org/abs/1704.04861.

[36] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q.
V. Le, Y. Wu, and Z. Chen, GPipe: Efficient training of giant neural networks us-
ing pipeline parallelism , in Advances in Neural Information Processing Systems, 2019,
pp. 103--112.

[37] Z. Huang and N. Wang, Data-driven sparse structure selection for deep neural networks , in
Proceedings of the European Conference on Computer Vision, 2018, pp. 304--320.

[38] T.-W. Ke, M. Maire, and S. X. Yu, Multigrid neural architectures , in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 6665--6673.

[39] Y. Khoo and L. Ying, SwitchNet: A neural network model for forward and inverse scattering
problems, SIAM J. Sci. Comput., 41 (2019), pp. A3182--A3201.

[40] A. Kopani\v c\'akov\'a and R. Krause, Globally Convergent Multilevel Training of Deep Residual
Networks, preprint, https://arxiv.org/abs/2107.07572, 2017.

[41] A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features from Tiny Images ,
https://www.cs.toronto.edu/\~kriz/learning-features-2009-TR.pdf, 2009.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep con-
volutional neural networks , in Proceedings of Advances in Neural Information Processing
Systems, 2012, pp. 1097--1105.

[43] Y. LeCun, B. E. Boser, and J. S. Denker, Handwritten digit recognition with a back-
propagation network , in Proceedings of Advances in Neural Information Processing Sys-
tems, 1990, pp. 396--404.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for efficient
ConvNets, in Proceedings of the International Conference on Learning Representations,
2017.

[45] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun, Metapruning:
Meta learning for automatic neural network channel pruning , in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 3296--3305.

[46] O. E. Livne and A. Brandt, Lean algebraic multigrid (LAMG): Fast graph laplacian linear
solver , SIAM J. Sci. Comput., 34 (2012), pp. B499--B522.

[47] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, DeepXDE: A deep learning library for
solving differential equations , SIAM Rev., 63 (2021), pp. 208--228.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1007/3-540-44668-0_13
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2107.07572
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

MULTIGRID-IN-CHANNELS NEURAL NETWORK ARCHITECTURES S327

[48] J.-H. Luo, J. Wu, and W. Lin, ThiNet: A filter level pruning method for deep neural network
compression , in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 5058--5066.

[49] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ShuffleNet V 2: Practical guidelines for efficient
CNN architecture design , in Proceedings of the European Conference on Computer Vision,
2018, pp. 116--131.

[50] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, Importance estimation for
neural network pruning , in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11264--11272.

[51] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, Pruning convolutional neu-
ral networks for resource efficient transfer learning , in Proceedings of the International
Conference on Learning Representations, 2017.

[52] A. Napov and Y. Notay, An efficient multigrid method for graph laplacian systems II: Robust
aggregation , SIAM J. Sci. Comput., 39 (2017), pp. S379--S403.

[53] G. Pang, L. Lu, and G. E. Karniadakis, fPINNs: Fractional physics-informed neural net-
works, SIAM J. Sci. Comput., 41 (2019), pp. A2603--A2626.

[54] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, DeepSDF: Learn-
ing continuous signed distance functions for shape representation , in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165--174.

[55] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, Automatic differentiation in PyTorch , in Proceedings of
Advances in Neural Information Processing Systems, 2017.

[56] D. M. Pelt and J. A. Sethian, A mixed-scale dense convolutional neural network for image
analysis, Proc. Natl. Acad. Sci. USA, 115 (2018), pp. 254--259.

[57] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations , J. Comput. Phys., 378 (2019), pp. 686--707.

[58] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, MobileNetV 2: Inverted
residuals and linear bottlenecks , in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4510--4520.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going deeper with convolutions , in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 1--9.

[60] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le, Mnas-
Net: Platform-aware neural architecture search for mobile , in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820--2828.

[61] M. Tan and Q. V. Le, EfficientNet: Rethinking model scaling for convolutional neural net-
works, in Proceedings of the International Conference on Machine Learning, 2019.

[62] E. Treister, J. S. Turek, and I. Yavneh, A multilevel framework for sparse optimization
with application to inverse covariance estimation and logistic regression , SIAM J. Sci.
Comput., 38 (2016), pp. S566--S592.

[63] P. Van\v ek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems , Computing, 56 (1996), pp. 179--196.

[64] H. Wang, A. Kembhavi, A. Farhadi, A. L. Yuille, and M. Rastegari, Elastic: Improving
CNNS with dynamic scaling policies , in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2258--2267.

[65] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, Dynamic
graph CNN for learning on point clouds , ACM Trans. Graph., 38 (2019), pp. 1--12.

[66] Y. Wang, C. Xu, C. Xu,C. Xu, and D. Tao, Learning versatile filters for efficient convo-
lutional neural networks , in Proceedings of Advances in Neural Information Processing
Systems, 2018, pp. 1608--1618.

[67] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer, FBNet: Hardware-aware efficient ConvNet design via differentiable neu-
ral architecture search , in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10734--10742.

[68] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad, J. Gonzalez,
and K. Keutzer, Shift: A zero flop, zero parameter alternative to spatial convolutions , in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9127--9135.

[69] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, 3D shapenets: A deep
representation for volumetric shapes , in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 1912--1920.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

S328 ELIASOF, EPHRATH, RUTHOTTO, AND TREISTER

[70] S. Xie, R. Girshick, P. Doll\'ar, Z. Tu, and K. He, Aggregated residual transformations for
deep neural networks , in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1492--1500.

[71] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, Slimmable Neural Networks , preprint,
https://arxiv.org/abs/1812.08928, 2018.

[72] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L.
S. Davis, NISP: Pruning networks using neuron importance score propagation , in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9194--9203.

[73] S. Zagoruyko and N. Komodakis, Wide residual networks , in Proceedings of the British
Machine Vision Conference, E. R. H. Richard, C. Wilson, and W. A. P. Smith, eds., BMVA
Press, Durham, UK, 2016, pp. 87.1--87.12, https://dx.doi.org/10.5244/C.30.87.

[74] X. Zhang, X. Zhou, M. Lin, and J. Sun, ShuffleNet: An extremely efficient convolutional
neural network for mobile devices , in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 6848--6856.

[75] D. Zhou, Q. Hou, Y. Chen, J. Feng, and S. Yan, Rethinking bottleneck structure for efficient
mobile network design , in Proceedings of ECCV, 2020.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

6/
25

 to
 1

70
.1

40
.1

42
.2

52
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/1812.08928
https://dx.doi.org/10.5244/C.30.87

	Introduction
	Toward efficient convolutions
	Multigrid-in-channels CNN architectures
	The multigrid hierarchy
	The multigrid block
	The choice of transfer operators <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	P?></0:tex-math></0:inline-formula> and <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	R?></0:tex-math></0:inline-formula>
	The complexity of the MGIC block

	Experiments
	Coarse channels representation
	Performance in function approximation
	Image classification
	CIFAR-10
	ImageNet

	Image semantic segmentation
	Point cloud classification
	Ablation study

	Conclusion
	References

