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Decentralized Sparse Matrix Multiplication Under
Byzantine Attacks
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Abstract—Distributed computations, such as distributed
matrix multiplication, can be vulnerable to significant security
issues, notably Byzantine attacks. These attacks may target
either worker nodes or servers, potentially leading to faulty
results that can significantly degrade the overall performance.
Therefore, detecting Byzantine attackers and mitigating their
effects are crucial in such systems. Motivated by the goal of
establishing a secure decentralized matrix-multiplication system,
we first introduce a verification method named Common Tag,
inspired by the well-known Freivalds’ algorithm, able to verify
the multiplication results independent of their associated input
matrices. Then, we propose two schemes for sparse matrix
multiplication where a group of nodes collaboratively performs
a computation task over a logical ring. We consider a subset of
Byzantine nodes in the system that may arbitrarily corrupt either
their result or any other result passing through them. In Scheme
I considering the highly sparse nature of input matrices, we
assume that each node has sufficient capacity to store the entire
input matrices, and the nodes forward the read-only versions
of their computed blocks so that other nodes cannot corrupt
them. In Scheme II, we relax the above assumptions, firstly, by
considering a limited storage capacity for each node. Secondly,
we introduce more powerful adversaries capable of corrupting
other nodes’ results by relaxing the read-only assumption. The
results demonstrate the feasibility of both schemes and show
a significant improvement in terms of distortion over the case
where no detection happens. The results also provide a trade-off
between the computational complexity required at each node and
the reconstruction distortion in both schemes.

Index Terms—Distributed matrix multiplication, decentralized
computation, sparse matrices, Byzantine attacks.

I. INTRODUCTION
A. Motivation and Problem Definition

ECENTLY, tensor operations such as matrix multi-
plication have emerged as an important ingredient in
numerous signal processing and machine learning applications.
These operations are often complex due to the large size of
the associated matrices, even if these matrices in many cases
are sparse, as, €.g., in recommender systems [1]. Thus, due to
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limited memory size and restricted computational capabilities,
a server often is not able to perform these computations
on its own. Therefore, the server typically partitions the
input matrices into submatrices, encodes them, and offloads
them to a set of worker nodes in the cloud. In such a
system, the worker nodes compute their assigned task(s) in
parallel and return it to the server, where the results are
aggregated, decoded and the multiplication result is obtained
(2], [3].

As these worker nodes are often cloud-based and thus may
not be trusted, there exists the threat of Byzantine attackers
interfering arbitrarily with the computation of these worker
nodes [4], [5], [6]. This represents an important security
bottleneck in distributed computation systems. Additionally,
the centralized architecture poses some scalability limitations.
For example, scaling the network size loads extra computa-
tional complexity on the server to verify the results and to
identify the attacked worker nodes. Moreover, the server, often
perceived as a trusted entity by the worker nodes in the system,
can be a single point of failure or be maliciously attacked
as well [7].

In certain networks, such as IoT networks, individual
nodes may only possess partial observations of the input
data. Additionally, due to the increasingly large size of data
generated from various sources, nodes may lack sufficient
storage capacity to retain the entire dataset [8]. Consequently,
centralizing the data distribution becomes impractical within
these networks. Another notable example of such networks
arises in data-driven machine learning applications, such as
recommender systems, where the maximum utilization of
extensive data is crucial for accurate predictions and future
event determination [9]. Therefore, to provide more coherent
recommendations to the users, decentralized recommender
systems were proposed to use information distributed across
a network of nodes, with each node possessing only a partial
observation of the data [10].

As a result, a promising alternative to the centralized
setting in such networks is to consider fully decentralized
settings where the nodes exchange their partial computa-
tion results to derive the complete result collectively. By
“fully decentralized,” we mean a system with no central
server, ensuring that all computations and communications
are performed by the participating nodes rather than rely-
ing on a single controlling entity. As in general, such an
environment is untrusted, an additional goal beyond com-
putation is to detect and mitigate the impact of adversarial
nodes.
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To this end, our problem formulation is inspired by several
practical scenarios. One notable example is in [oT networks,
where multiple devices possessing partial sensor data must col-
laboratively process information without relying on a central
server [11], [12]. For example, in [12], the authors introduced
a decentralized framework specifically tailored for multi-
hop IoT networks, which mitigates the bottleneck associated
with central aggregation by facilitating local model exchanges
between immediate neighbors. In this framework, the opti-
mization process is driven by stochastic gradient descent
(SGD), which involves large-scale matrix multiplications dur-
ing both the forward and backward passes. Another significant
example is healthcare systems, where sensitive data is dis-
tributed across various medical institutions [13], [14]. In this
scenario, Lian et al. [13] proposed a hierarchical decentralized
federated learning architecture, where local models trained on
mobile healthcare devices are initially aggregated at institu-
tional edge servers, which subsequently form a ring for model
exchange, eliminating a single point of failure. Additionally,
[14] proposed a decentralized federated learning network uti-
lizing a ring of trusted and untrusted nodes for deep generative
models in healthcare systems. Deep generative models rely
heavily on large-scale matrix multiplications to perform the
intensive linear transformations necessary during both training
and inference. Distributing these matrix operations across
a decentralized network can leverage parallel computation
across nodes, enhancing scalability and robustness. However,
this approach also introduces critical real-world challenges,
such as effectively managing adversarial nodes without relying
on global knowledge and ensuring consistent verification of
results without relying on a centralized server.

Although fully decentralized computation has been pro-
posed in the context of decentralized learning (see, e.g., [15],
[16], [17], [18], [19]), to the best of our knowledge, a fully
decentralized matrix multiplication approach was explored for
the first time in our initial work [20]. Hence, inspired by the
results from decentralized learning in this paper, we propose
a decentralized sparse matrix multiplication approach on a
logical ring under certain restrictions. We also consider the
potential presence of Byzantine nodes to address security
concerns in such a setting.

B. Related Work

To put our contribution in perspective, we briefly review
prior related works. In recent years, the majority of the works
in distributed matrix multiplication have focused on dense
matrices. Specifically, it has been shown that encoding the
input matrices via polynomial codes can improve the system
performance in terms of latency and straggler tolerance [21].
Different coding schemes provide different trade-offs between
the recovery threshold, i.e., the number of workers that have
to complete their tasks before the server can recover the result,
and the communication load, i.e., the amount of information
to be downloaded from the workers (see, e.g., [2], [22], [23],
[24], [25], [26], [27]).

However, for sparse input matrices, encoding the sub-
matrices in general decreases the sparsity of their coded
representations sent to the worker nodes. This eliminates the
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complexity gains obtained by offloading the computation;
for example, a coded sparse matrix multiplication scheme
proposed in [28] achieves a sub-optimal recovery threshold. In
[29], the authors consider a convolutional coding scheme and
low-complexity peeling decoder for sparse distributed matrix-
vector multiplication. The papers [30], [31] propose coding
schemes for sparse matrix multiplication, which provides a
trade-off between straggler resilience and worker computation
speed. A coded scheme for distributed vector-matrix multipli-
cation proposed in [32] is based on a secret sharing scheme
and trades privacy guarantees with sparsity. The authors in [33]
propose a lower bound on the encoding weight (i.e., number
of submatrices to be combined) to preserve the input sparsity
as much as possible.

Similarly, distributed matrix multiplication in the presence
of Byzantine attackers has been addressed recently for archi-
tectures with a centralized server and dense input matrices.
Specifically, in [34], [35], a distributed matrix-vector multi-
plication in the presence of a subset of Byzantine workers
is considered. In [34] a probabilistic scheme based on group
testing is proposed to identify the attacked workers with
high probability. Further, [36] presents a coded distributed
computing scheme to preserve data security and privacy by
improving adversarial tolerance. A private and secure coded
matrix-matrix multiplication scheme SRPM3 is proposed in
[37], where Freivalds’ algorithm is applied to detect the adver-
saries. In recent work, [38], a general framework for linear
secure distributed matrix multiplication (SDMM) is introduced
to treat the straggling and Byzantine worker nodes in a
centralized setting. However, little attention has been devoted
to decentralized adversarial matrix multiplication problems.

C. Main Contribution

In summary, our work presents several novel contributions
beyond existing research in distributed matrix multiplication.
We first extend the well-known setting with a trusted server
to the fully decentralized case over a logical ring. Despite
conventional distributed systems with a central server, all
computation, verification, and task re-computations are carried
out by the individual nodes in our proposed schemes. This
design eliminates a single point of failure and enhances robust-
ness against Byzantine attacks. Furthermore, the ring-based
approach ensures that all nodes share equal responsibility for
verifying computations and reassigning tasks, even if each
node only holds partial or systematically redundant data.

Also, our proposed algorithm employs an uncoded scheme
to preserve computational efficiency at the worker nodes for
sparse input matrices. In this process, we introduce a novel
verification method called Common Tag, which is a modified
version of the well-known Freivalds’ algorithm [39], and
allows for result verification in the absence of blocks of the
two input matrices to be multiplied.

Furthermore, we propose two new schemes for decentral-
ized sparse matrix multiplication, capable of detecting and
mitigating the effects of Byzantine attacks. Unlike centralized
systems, our approach relies on local consensus among all
nodes. Specifically, every node actively participates in verify-
ing computations, detecting misbehavior, and rerouting data.
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Consequently, tasks initially assigned to a flagged adversarial
node are reallocated to benign nodes that hold the corre-
sponding input data. This collaborative, fully decentralized
mechanism eliminates any single point of failure and enhances
the network’s overall robustness.

In Scheme I, we assume that all nodes have enough capac-
ity to store the entire input matrices, which allows to use
Freivalds’ algorithm for result verification. Additionally, we
assume that each node forwards a read-only version of its
computed result to prevent corruption by Byzantine nodes.
Next, we introduce Scheme II which relaxes the previous
assumptions regarding storage capacity and read-only files.
This scheme is more storage efficient, making it suitable even
for dense input matrices. The Byzantine nodes are also able
to corrupt any blocks arbitrarily in Scheme II. The proposed
Common Tag method is employed for result verification in
this scheme. We apply our proposed schemes to both deter-
ministic and probabilistic Byzantine adversaries, allowing for
both perfect recovery and an approximation of the correct
matrix product at each node, depending on the number of
active adversaries in the system. Finally, we analyze and
compare both schemes in terms of reconstruction distortion
and illustrate the trade-off between computational complexity
at each worker node and its reconstruction distortion.

In general, Scheme I offers the advantage of lower com-
munication costs due to the direct application of Freivalds’
algorithm for result verification, provided that each node has
sufficient memory capacity to store the entire input matrices.
However, this requirement for large memory capacity can be a
significant drawback, especially in resource-constrained envi-
ronments. Additionally, Scheme I restricts Byzantine nodes
to corrupt only their own blocks, which may limit its effec-
tiveness against more sophisticated adversaries. In contrast,
Scheme II reduces the memory burden on each node, making
it more suitable for systems with limited storage capacity.
Note that this scheme also enables result verification without
the presence of blocks of the two input matrices associated
with the result. However, the trade-off is a higher total com-
munication cost of the scheme, as nodes need to exchange
more information to ensure accurate verification. Ultimately,
the choice between Scheme I and Scheme II depends on the
specific system requirements and constraints. Scheme I is ideal
for scenarios where communication efficiency is paramount
and memory capacity is not a limiting factor. On the other
hand, Scheme II is better suited for environments with limited
storage resources and where robust verification mechanisms
are needed, despite the increased communication overhead.

D. Organization

The rest of this paper is organized as follows. In Section II,
we describe the basic definitions and the system model. In
Section III we describe the Freivalds’ algorithm and introduce
our verification method Common Tag, which is able to verify
the block multiplication results without the requirement of
existing the input blocks associated with the result. Sec-
tion IV presents our proposed schemes for decentralized sparse
matrix multiplication which can detect and mitigate the effect
of Byzantine nodes. Section V analyzes the reconstruction
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Fig. 1. System model and data distribution in the network of N = 6 nodes,
with Ay = 3,Ap = 2, and an initial communication path (logical ring).

distortion for two sparsity models of input matrices: with
constant column weight, and with i.i.d. entries. Section VI
summarizes the overall computational complexity of the
schemes. In Section VII, we present numerical results to illus-
trate our analytical findings. Finally, the paper is concluded in
Section VIII.

II. PROBLEM STATEMENT

A. Notation
We denote by F, the finite field of size g. The set [n] is
defined as {0, 1,...,n—1}. Matrices and vectors are denoted in

boldface: A and a, respectively. A zero vector is denoted by 0.
The transposition of matrix A is denoted by A”. We denote i-th
column of A by col;(A). For a vector a, we denote by supp(a)
the set of indices of the non-zero entries of a, and by wy(a)
its Hamming weight. The probability of an event A is denoted
by P[A]. We write xi,xp,...,Xx, ~ U(S) to denote that the
objects xy, x2,...,x, are drawn uniformly and independently
at random from the set S.

B. System Model

Consider a system where N worker nodes W =
{Wo, ..., Wn_1} need to collaboratively compute the multi-
plication C = ATB of two large matrices A € Fg xS and
B € F,*P with sparsity levels of £(A) and L(B), respectively.

Definition 1: The sparsity level of matrix X = (x;;) € Fy'™",
denoted by L(X), is the fraction of the number of zero
elements with respect to the size of the matrix, i.e.,
£xy & HoT 2 =01 (M

mn

Each node W, has partially observed and stored the input
data based on its accessibility and storage capacity. Therefore,
the nodes employ a decentralized protocol where each node
computes its corresponding task and sends it to its neighbor
downstream, according to some predefined path. We generally
assume that nodes can communicate on a complete graph
where some links are associated with smaller communication
costs than others, e.g., as in wireless networks. Thus, some
links are preferred for communication, and nodes may follow
a Hamiltonian cycle with the minimum total communica-
tion cost (i.e., logical ring) with the node path sequence
Wo, Wi, ..., Wn_1, Wh,...), as depicted in Fig. 1. The ring
topology eases the information exchange between the nodes
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and also accelerates the process by leveraging parallel trans-
missions in a pipelined fashion. However, while we use a ring
topology in this work for the sake of clarity, the core ideas,
such as local verification, re-computation of corrupted blocks,
and link reconfiguration remain applicable to more general
network topologies with minor modifications. We also assume
that the worker nodes are also allowed to broadcast small-sized
vectors (much smaller than the sizes of the matrix blocks) at
negligible cost.

To this end, the input matrices A and B are partitioned into
Ay and Ag block-columns,! respectively:

A=[Ao ..., An,], B=[Bo....Ba,]. (@

where each block column A; is of size P X S’, S’ = 5/a,, and
B; is of size P x D', D’ = P/ay. We imply that S is divisible
by Aa and that D is divisible by Ag, respectively, and thus
both S’ and D’ are integers. With such a partitioning, the
matrix C € F; %P consists of blocks C;; = ATB; € F5 "', We
consider multiplication of two block-columns AiTB j» 1 € [Agl,
J € [Ag], to be one multiplication task. Hence, the total number
of multiplication tasks is AyAg = A. We use both double
indexing (i, j) € [Aa] X [Ap] and single indexing n € [A]
interchangeably, when it is not ambiguous.

Suppose that each node W, has access to a subset of
size ya < Aa of block-columns from the input matrix A,
namely A,/ mod Ay)> [ =10,...,7va — 1}, and a subset of size
v < Ap of block-columns from the input matrix B, namely
B+ mod ag)> I =10, ..., yp—1}, respectively. We assume
that each node is potentially capable of performing d < yays
multiplication tasks, where d denotes the computational com-
plexity constraint of each node. However, it is important to
note that each node W, is solely responsible for performing
exactly one multiplication task C;; = ATB;, which implies
N =A.

We assume that the worker nodes can run their computations
in parallel. Additionally, they are able to communicate in
parallel, i.e., each node transmits and receives a bounded
number of computed block columns simultaneously within a
fixed amount of time, which is synchronized across all the
worker nodes. However, minor delays are tolerable as long as
the order of messages is preserved and no data is permanently
lost. In such cases, each node can buffer incoming data and
proceed to the next round only once all required messages
have been received.

As mentioned, each node computes one block C;; = Al.TB s
and then the nodes exchange their results over the ring.
However, there may exist an arbitrary subset of non-colluding
Byzantine worker nodes (i.e., adversaries) {W,},c4 indexed
by A c [N] with cardinality | 4| = z (N — z benign nodes
remain benign during the whole process). The adversaries
want to maliciously corrupt the final result by arbitrarily
sending incorrect results Z;; to the next neighboring worker
node. The assumption of non-colluding adversarial nodes is
made to simplify both the design and analysis of our scheme,

1Our ring-based verification can be extended to inner [40] or grid (2D) [41]
partitioning as long as the sub-matrices are uniformly sized. This may change
how sub-blocks are assigned, but the overall protocol, such as forwarding,
verification, and re-computation upon detecting corruption, remains valid.
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establishing a baseline for decentralized verification and re-
computation without relying on a central server.

We model the existence of adversaries probabilistically.
More precisely, each node can be adversarial with probability
a, independently of others. The number of adversaries z is
then a random variable (RV) distributed according to binomial
distribution with parameters N and a. Moreover, the node
responsible for computing C;; produces

Ci
Z

N with probability 1 — «,
Cij= P Y 3)

;j Wwith probabilitya.

To verify the results and detect the Byzantine worker nodes,
we apply one of the verification methods presented in the
following section.

III. ADVERSARIAL ATTACK DETECTION

Verifying the correctness of the results and also iden-
tifying the adversarial worker nodes are critical design
issues in distributed computation systems. In the following,
we present a well-known matrix multiplication verification
method, Freivalds’ algorithm [39], and introduce our proposed
method, named Common Tag. The latter is a modified version
of Freivalds’ algorithm, which does not require the input
matrices associated with the result for verification.

A. Freivalds’ Algorithm

Freivalds® algorithm is a well-known probabilistic method
to verify the correctness of a matrix multiplication more
efficiently than recomputing the product. The algorithm is
based on the following observation. If A,.TB ; # C;j, then for
a vector v ~ U (F2'), the probability that ATB;v = Cy;v is
small. At the same time, this verification requires only three
matrix-vector multiplications instead of one matrix-matrix
multiplication. Note that the time complexity of a matrix-
vector multiplication is much smaller than the complexity of a
matrix-matrix multiplication. The probability of misdetection
(i.e., the probability of not detecting the incorrect block) for
Freivalds® algorithm is given in the following lemma [37].

Lemma 1 ([37]): Assume W, is an adversary and, thus,
Cij = Z;; # ATB;. Having { i.i.d. vectors v, Vs,...,V,, ~
U (FY'), the probability of misdetection is at most '

1\%
P, 2P[AB;v, = Zjv,, Yk e [{]] < (—) .
q

While the original Freivalds’ algorithm relies on the pres-
ence of input matrices for verification, we propose a modified
version that eliminates this dependency. Our proposed veri-
fication method has a complexity comparable to the original
algorithm (see Section VI). In the adapted version described
below, we introduce tags for input blocks from both matrices A
and B. These tags are specifically designed to verify the result
of each worker node, C;; without requiring the presence of the
associated input blocks, A; and B;.
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B. Common Tag

In this verification method, denoted as Common Tag, at
iteration ¢, after each node W, forwards the result to its
downstream neighboring node, it generates two vectors vy, ~
U (F') and vg,, ~ U (FY) and broadcasts them to all other
nodes in the ring. Note that the required communication
cost to do this is much smaller than communicating the
computed block C;; downstream along the ring. Then, all
the nodes aggregate all the vectors to create common vectors
va, = Y0 Va,, and vg = DR vg,,. Subsequently, each
node W, computes the tags 773" , and ’7,'1}’;," for each of its
stored block-columns, A; € {Ay4; mod ay) | ! € [yal} and
Bj € {BL”/AAJ‘H/ (mod Ag) |l € [’)/B]} as outlined below?:

Ty = va AT 4)
./ =Bjvs, 5)

Since all the nodes use the common vectors va, and vg,,
all the tags 7:3" and 7;]’3,’ computed by different nodes for the
same input blocks must be the same. In other words, using the
same v,, and vg, ensures that all the tags belonging to the same
input block-column but computed by different nodes are equal.
Therefore, a Byzantine node cannot broadcast an arbitrary tag;
otherwise, it will be detected by benign nodes right away. For
simplicity, we revise the notation as 7;A" = 7;’}," and 7;B’ =
7:5" . Consequently, all the nodes broadcast their computed tags
to every other node in the ring, incurring a negligible cost
compared to communicating computed blocks downstream in
the ring. Under the assumption of non-colluding adversaries,
this scheme requires at least two equal tags for each input
block-column A; and B;. This ensures that other nodes can
trust the generated tags and consider nodes with different tags
as adversaries.

Next, each node W, utilizes the tags 7,** and 7> to verify
its received block C,,, possibly without having the associated
input matrices A, and/or B,. The result of the verification test
can be improved by repeating the whole process ¢ times. The
verification process is carried out as follows:

A, B, 1 T &
T T = va,Cuvve, (6)

If the equality in (6) does not hold, it indicates the result
C., is corrupted with probability 1. On the contrary, if the
aforementioned equality is satisfied, there is a high probability
that the result is correct. The probability of misdetection for
Common Tag is given in the following lemma.

Lemma 2: Assume W, is an adversary and, thus, Cij =
Z; + AiTBj. Having ¢ pairs of vectors VAgs VA, VA, ™
U (]Ffi) and VB> VB, >---» VB, | ~ Uu (F,?/), all vectors being
independent, the probability of misdetection is at most

Pm ) [7:’(Ai7:ka = Vz;rk ZijVBrk’ Yk € [g]]

(-9

2Qver-the-air computation can be used to efficiently compute these tags
[42].
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Proof: The proof of the lemma follows along the lines of
the original result by Freivalds [39]. Since all the vectors VA,
and Vg, are independent, we have

Py = (P [vg% (AIB, - Zi))vp, = o]){,

where v, ~ U (FS') and vg, ~ U (FY') are independent.
Let Y = Al.TB ;i — Z;j # 0. For each fixed non-zero vector
y € Fg/, there are exactly ¢” ' vectors VB, € FqDl, such that
yTvBIk = 0.2 Since Y # 0, at least one of its rows is a non-
zero row vector. Therefore, there are at most qD"l vectors

ve, € FY such that Yvg, =0, and

1
7
On the other hand, obviously, P LYVB% =0(>1Y",as YO =0.
Now, using the law of total probability,

P[vA, Yvs, = 0]
=P [YVB% - 0] P [vgk Yvp, = 0] Yvg, = 0]

+P[Yv, # 0|2 V4 Yvg, =0]Yvg, #0]

1
=P[Yv3, =0] 4+ (1 —P[YVB, =0]) -
k k q
1 1 -1
< max (x+(l—x)—) = -4 4 5
L <x<l ) a ¢
and the statement of the lemma follows immediately. [

Algorithm 1 Common Tag
Input: W,, n € [N], Aa, AB, VA, ¥B, round ¢
Qutput: CORRECT(0) or INCORRECT(1)

1 receive Cuv

2 generate and broadcast vy, , < U (Fqs/)

3 generate and broadcast vp, , < U (FqD/)

4 compute collaboratively vy, = fo;é VA,.,» and

VB, = 300 VB,

s compute and broadcast 7, = vi, Al for all
I € {Anti (mod ay) |1 € [yal}

6 compute and broadcast ’];Bj = B, v, for all
J € Blu/ap)+ (mod ap) |1 € [vB])

7 receive 7, and 77"

8 compute vgr CMUVB[

9 if M7 £ v} C,yvp, then

10 | return INCORRECT (“17)

11 else

12 | return CORRECT (“0”)

As seen from the lemma, the probability of misdetection
decreases with the increase of the field size g. Note that this
verification test requires only a single comparison in F,, as
opposed to S’ comparisons in Freivalds’ algorithm. The details
of this method are presented in Algorithm 1.

3This is the number of solutions of the linear system yTvB,k = 0 which has
rank 1 and D’ variables.
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TABLE I

COMPARISON OF COMMON TAG WITH FREIVALDS’ ALGORITHM FOR A
SINGLE NODE IN ROUND ¢ (UNIT: FIELD ELEMENT)

Common Tag Freivalds

Communication complexity

J/ / ~ A~
(broadcasting) S'+ D'+ P(ya+78) | 0

# of comparisons 1 S’

P, (upper bound) é + qq%l

SEE

C. Comparison

We compare the Freivald’s algorithm and Common Tag in
Table I. The communication complexity for Common Tag in
Table I is given in field elements, specifically, the random
vectors va ., € F5 "and vg,,, € FqD/, along with the tags for ya
and yp input blocks. In terms of bits, this overhead is at worst
((S "+ D)+ (ya +yB)P) log,(g) per node per round, since each
element of F; can be represented using log,(q) bits. Next, the
number of comparisons is the number of field elements that
need to be compared for the result’s verification. Finally, the
third row of Table I shows the upper bound on the probability
of misdetection P,, for each method. As can be seen, P,, for
Common Tag has an additional term qq;zl resulting from the
multiplication of two random vectors by C;;, as opposed to the
multiplication by one random vector in Freivalds’ algorithm.
However, this term is negligible for sufficiently large field
size q.

Remark 1: To implement Common Tag more efficiently in
terms of communication, each worker node W, can broadcast
two random seeds Ry,, € F, and Rg,, € F,, respectively,
instead of broadcasting the entire vectors v,,, and vg,,. Each
node then computes the average of all seeds as Ry, =
S V0 Ra,, and Rg, = Y.\-) Rg,,. Finally, the same vy, and
vp, can be generated at each node using a pseudo random
number generator [43].

IV. PROPOSED SCHEMES

We now describe our proposed schemes for sparse matrix
multiplication in a fully decentralized setting under Byzantine
attacks. In Scheme I, we assume that all the worker nodes have
enough memory capacity to store the entire input matrices
A and BY, ie., va = Aax and yg = Ag. This assumption
is made for simplicity and to demonstrate the feasibility of
our approach in an idealized setting, serving as a baseline
for performance evaluation before introducing more practical
constraints. Nevertheless, we recognize that real-world dis-
tributed systems often have limited storage capacity [45], [46].
Therefore, we further relax this assumption in Scheme II, by
considering a limited storage capacity per node, while preserv-
ing robustness against Byzantine attacks. Another important
assumption is that the Byzantine nodes can only corrupt their
own computed blocks. In other words, each worker node sends
the read-only version of its computed multiplication task to

“#Possibly in a compressed form. Compressed sparse row (CSR) and com-
pressed sparse column (CSC) are the most common compression techniques
for sparse matrix storage [44].
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Fig. 2. Scheme I: decentralized sparse matrix multiplication in the presence
of Byzantine nodes with N = A =6, yo = Ax =3 and yp = Ap = 2. (a) Each
node computes its task and forwards it to its downstream neighboring node.
(b) The subset of benign nodes, 3, forms a smaller ring, recomputes the z
remaining tasks, and communicates them over the new ring.

its downstream neighboring node in the ring. The read-only
requirement can be implemented by cryptographic tools [47].

In Scheme II, we relax the assumptions of read-only files
and the need to store the entire input matrices A and B at
each node, making this scheme practically applicable even to
dense input matrices. In this scheme, we consider a limited
storage capacity for each node, i.e., yo < Ax and yg < Ag. We
also consider Byzantine nodes able to arbitrarily corrupt any
blocks. Both schemes can produce either perfect or imperfect
reconstruction of the result. The latter is the case when perfect
reconstruction is not possible, and we aim to minimize the
distortion of such reconstruction. We denote the reconstruction
of the product C by C.

A. Scheme I

In Scheme I, each node computes its assigned multiplication
task and shares the results over the ring in a sequence of
parallel transmissions. Each node is responsible for the veri-
fication of the calculation results from its upstream neighbors
by employing the verification test. After the computed blocks
have been distributed among all the nodes, the nodes skip
all the identified adversaries, and thus the communication is
performed over the smaller ring, albeit at a potentially higher
communication cost (see Fig. 2(a)). The block multiplications
that were assigned to the adversaries are re-assigned among the
remaining nodes, and they proceed similarly (see Fig. 2(b)).
If the number of remaining multiplication tasks is larger than
the number of benign nodes, this procedure may be repeated
several times.

1) Perfect Reconstruction: Perfect reconstruction of the
product C is possible if the total number of multiplication tasks
all the benign nodes can perform is larger than the number of
the tasks, i.e., |B|ld > A. This scheme has multiple steps includ-
ing computation, communication, and verification. Given that
each node has complete access to the entire input matrices A
and B in this scheme, every node can independently verify
any block multiplication result using Freivalds’ algorithm (see
Lemma 1).

Task assignment: The workers form the pool of computa-
tional tasks P, and each node is assigned one task from P.
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Computation: Each worker node computes the assigned
task and forwards it to its downstream neighboring node (see
Fig. 2(a)).

Verification and distribution: The steps below are per-
formed in a synchronized fashion in parallel by all the nodes
repeatedly until all the nodes receive all the blocks (exactly
N — 1 repetitions required). At step t = 1,2,...,N—1, a node

1) receives a new block forwarded by the upstream node;

2) performs verification test on the received block;

3) if the test fails, marks the node that produced this
block as an adversary, and returns the corresponding
computation task back to P for further computation;

4) forwards the received block further downstream.

After that, every node has the same list of nodes marked
adversarial since they all have tested the same computed
blocks. Now, the benign nodes are renumbered in increasing
order and skip all the adversaries, thus forming a smaller ring.

Algorithm 2 Scheme I

Input: mgtrices A and B, A4, Ap, node W,
Output: C

1 Partition A and B into A4 and Ap blocks, resp.
2 B<«[N], A <~ ApAp, P« [0:A—1]
3forr=1:d do
4 mo, mi, ..., my—_q < first N elements® of P.
5 P <« P\ {my}
6 Compute Cy, = A, (mod A4)Bmn/a,)
7 Send C,,, to the node downstream
8 fori=1:N—-1do
9 Receive Cp,,_; (1oq v, from the node upstream
10 Run Freivalds’ algorithm on Cy,_; (104 )
1 if test succeeds then
12 Cmn—i (mod N) <~ Cmn—i (mod N)
13 P < P\ {mu—i mod M)
14 else
15 | B« B\{n—i (mod N)}
16 | Forward G, ; (04 ) to the node downstream
17 N < |B|, n < index of n in B
18 Renumber benign nodes:
Wo,...,WN_1 (—{Wm |m EB}
19 B« [0:N—-1]
20 if P = { then
21 | goto Line 24
22 if P # () then
23 Replace y = A — (N — z)d blocks with all-zero
L blocks

24 return C

If there are still tasks in P left to compute and each benign
node has performed less than d computations, the protocol
execution goes back to the task assignment step. The same
algorithm runs on every node in parallel, but each node W, is

SIf there are fewer tasks than in 7 the remaining benign nodes, some of
them do not perform computations but still participate in verification and
distribution.
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aware of its index » in the system. See a detailed description
of Scheme I in Algorithm 2.

Proposition 1: Algorithm 2 is resilient to at most N — [4/4]
adversaries. In other words, if there are no more than N —[4/4]
adversaries, the algorithm provides a perfect reconstruction of
the matrix C.

Proof: Based on our construction, the total number of tasks
that benign worker nodes can perform must be not smaller
than the total number of tasks A, i.e., (N — z)d > A, which
proves the proposition. [

As a remark, once the node W, detects W,, as an adversary,
it can append the vector v to the corrupted block (i.e., Cy[v)
and forward it along with the corrupted result to help the
downstream nodes to run the verification test faster. Indeed,
after such a vector v is found, it acts as a certificate that
proves the incorrectness of the multiplication. We omit this
optimization in the paper for the sake of clarity.

2) Imperfect Reconstruction: 1If |Bld < A, perfect recon-
struction of C is not possible. In this case, y = A—(N—-z)d tasks
cannot be reconstructed since this exceeds the computational
capabilities of the benign worker nodes. Due to the sparse
nature of the matrices, these y blocks can be substituted with
all-zero blocks (cf. Line 23 of Algorithm 2). This substitution
is the element-wise maximum likelihood estimate of the cor-
rect blocks and it imposes a relatively small error/distortion
on the result.

B. Scheme II

In Scheme II shown in Fig. 3, we relax the assumption
of read-only files and the requirement for sufficient memory
capacity to store the entire input matrices on each node. In
this scheme, each node stores ypo < Ax and yg < Agp block-
columns from the input matrices A and B, respectively. We
assume that adversarial nodes themselves never provide a
correct result (i.e., they always corrupt their own output). A
correct re-computation can be obtained from a benign node
holding the same input blocks, albeit at the cost of higher com-
putational overhead. This assumption ensures that our protocol
remains robust even under worst-case adversarial behavior.
However, if an adversary does occasionally produce a valid
result, the ring accepts and forwards it, thereby reducing the
re-computation overhead.

Similar to Scheme I, each node W, computes its multi-
plication task C, and forwards it to its downstream neighbor
over the ring. Each node verifies the correctness of its received
calculation result from the upstream node using the Common
Tag method, presented in Section III-B. At the end of the final
round, the nodes associated with missing blocks are identified
as adversaries, and thus the remaining nodes form a smaller
ring to recompute the missing blocks.

1) Perfect Reconstruction: We first describe the case of
reconstructing the product C perfectly. This is possible if the
total number of multiplication tasks A can be done by the set
of benign nodes B based on their availability of input blocks.
Since each node has partially observed the input matrices
A (ya blocks from A), and B (yg blocks from B) in this
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Fig. 3. Scheme II: decentralized sparse matrix multiplication in the presence of Byzantine nodes with N = A =6, Ay =3, Ap =2, yo =2 and yg = 1. Each
node (a) computes its task and forwards it to its downstream neighboring node, (b) first broadcasts random vectors and then broadcasts the computed tags,
(c) performs the test and broadcasts the result, (d) continues forwarding the blocks via the former link (solid lines) and the temporarily activated link (dotted
line). The link between W5 and Wi is temporarily deactivated (dashed line) since W3 discarded its received block from W, and has no verified block to
forward in this round.

scheme, the Common Tag method presented in Section III
is utilized for verification. This scheme has multiple steps
including computation, communication, and verification.

Task assignment: The worker nodes form a pool of com-
putational tasks P, and each node is assigned one task from
‘P based on its observed input block-columns from the input
matrices A and B.

Computation and Communication: Each worker node
computes its assigned task and forwards it to its downstream
neighboring node (see Fig. 3(a)).

Verification and distribution: The steps below are per-
formed in a synchronized fashion in parallel by all the nodes
repeatedly until all the nodes receive all the blocks. At step
t,t=1,2,...,N-1,

a) Initial Actions upon Detected Corruption:
e W, discards the corrupted block immediately.
e W, broadcasts “1” (“incorrect”) to notify all
nodes that node W,_| moa y 18 adversarial (see
Fig. 3(c)).
b) Local Link Adjustment (at node W,):

e Node W, now deactivates the link from the
adversarial upstream node W,_| mod 5. In other
words, node W, itself refuses further commu-
nication with node W,_1 moan (see Fig. 3(d),
deactivated link between W, and Wj).

e Instead, node W, activates an alternative link
with the next upstream node W,_omoan (s€€
Fig. 3(d), activated link between Wj; and W)).
After this reconfiguration, node W, bypasses
Wi-imodan and its new upstream neighbor
becomes W, 5 mod N-

1) node W, receives a new block forwarded by the
upstream node, W,,_1 moa v (Fig. 3(a));

2) W, generates Vo, ~ U (F5') and vg, ~ U (FY) and
broadcast them;

3) W, gather all the vectors vy, and vg,, m € [N]\n to
compute the common vectors v4, and vg,, respectively,
and subsequently computes the tags and broadcasts them
(Fig. 3(b)):;

4) W, performs verification tests on the received block °
from W,_1 moa v UsSing the received tags;

5) If verification fails, the following sequence of actions
occur:

¢) Downstream Adjustment (to maintain ring con-
» nectivity):

' e Because node W, discarded the corrupted block
from W,_1 moa n» ¥V, now has no block to for-
ward downstream in the next round.

To preserve the connectivity of the ring
and maintain a steady flow of the blocks,
node W, mod v’S temporarily activates the link
to its next downstream neighbor W,iimod ¥
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and directly forwards its computed block to
Wi+1 mod v (see Fig. 3(d), activated link between
W, and Wy).

e The direct link between W, |moany and
Witimodny 1S activated until either node
W41 mod n independently detects W,_| moa y @S
adversarial or node W, receives a correct block
to resume forwarding.

Even though node W, has flagged node W,_imoan
as adversarial, other nodes do nor immediately trust
W, s accusation. Instead, they use W, s broadcast (“17)
only as a trigger for link reconfiguration. Each node
independently verifies the correctness of the results from
node W,_1mod N Using its own verification processes
and does not classify W,_1 moany as adversarial until
corruption is confirmed. This ensures robustness against
the situations in which node W, itself is adversarial
and might falsely flag its upstream node W,—_| mod v tO
mislead other nodes. A node is universally recognized
as adversarial only after multiple independent detections,
representing a consensus among benign nodes. Thus, the
scheme achieves robust decentralized verification based
on consensus among nodes.

6) if the correctness of the result is verified, W, forwards
the received block further downstream.

Considering that adversaries always corrupt their blocks,
the above communication and verification steps will repeat
for N — 1 rounds. After that, the nodes associated with
missing blocks are identified and marked as adversaries for
all other nodes (universally). Now, the remaining nodes are
renumbered in increasing order, skip all the identified adver-
saries, thus forming a smaller ring and recompute the missing
blocks. The detailed description of the scheme is presented in
Algorithm 3.

Proposition 2: Algorithm 3 is resilient to at least yayp — 1
adversaries.

Proof: According to the construction, each worker node
observes yo and yp block-columns from the input matrices
A and B, respectively. Based on the system model, the nodes
are organized into N/Ax = Ap groups, ensuring that nodes
within each group observe the same set of block-columns
from B. Therefore, each B; is observed by all the nodes in
gfﬁ; different groups. Given that N = A = A4Ag, each B;
appears exactly in yg groups. Also, each A; is observed by
ya different nodes within each group. Hence, each task can
be executed by yayp different nodes in the entire network.
Therefore, to ensure at least one correct version of a specific
computed task exists, this configuration can tolerate ysyp — 1
adversaries, regardless of their position in the ring, which
proves the proposition. [ |

As explained in Proposition 2, perfect reconstruction of the
result can be always obtained by the partial results from any
N — yays + | nodes in the ring. However, depending on
the specific positions of adversaries in the ring, the system
might be able to tolerate more adversaries. In other words,
it is possible to obtain perfect reconstruction of the result by
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Algorithm 3 Scheme II

Input: node Wy, Aa, Ap, ya, vB
Output: C

1 B« [N], A« AsAp, P« [0:A—-1]
2 fort=1:yayg do
3 mo, mi, ..., my_1 < first N elements of P
4 A, € {Auti (mod Ap) | I €lyal)
5 | Bu, € Blu/ag+ (mod ag) | ' € [vB]}
6 P <« P\ {my}
7 | Compute Cy, = A, (mod Ay Blm/a,) (mod Ap)
8 Send C;,, to the node downstream
9 fori=1:N—-1do
10 Receive Cp,,_; (noq vy from the node upstream
W,—1 (mod N)
11 Run Common Tag on Cp,,_; (100 v
12 if test succeeds then
13 Cmn—i (mod N) < Cmn—i (mod N)
14 P <P\ {mup_i (mod M)}
15 Forward C,,,_, (moa ) O the node
L downstream
16 else
17 discards Cp,,_; (100 m)
18 B <« B\{n—i (mod N)}
19 Wyu—1 (mod N) < W,_» (mod N)
20 N < |B|, n < index of n in B
21 Renumber benign nodes:
Wo, ..., Wn—1 <—{Wm |m EB}
22 B« [0:N-1]
23 if P = () then
2 | goto Line 27

25 if P # ¢ then
26 L Replace y blocks with all-zero blocks

27 return C

having the partial results from different sets of benign nodes
including a certain number of nodes from each group of the
same Bj,j € {0,1,---,Ag — 1}, as shown in the following
example.

Example: An illustrative scenario of Scheme II is shown in
Fig. 3 with N =6, Ay =3, Ag =2, yo =2, and yg = 1.

We consider six nodes, {W, ..., Ws}, and partition A into
blocks {Ag, A, A,} and B into {By, B}, resulting in a total of
A = Ap x Ag = 6 multiplication tasks {Cy, ..., Cs}. Each node
stores two blocks from A and one block from B. For example,
W, holds {Ag,A;,Bg} and W), stores A, A,, By.

e Round 1: Each node computes one assigned multipli-
cation task C, = AT By, then forwards it to its
downstream neighbor. Specifically, node W, computes
Cy = AlBy, node W, computes C; = ATB,, and so
forth. Each node forwards its computed block to the next
node in the ring (i.e., Wy — W, W, — W, etc.).
Upon receiving a block, each node immediately verifies
it using the Common Tag method. For example, node W5
receives and verifies C, from node W. If verification fails
(indicating corruption), the receiving node discards the
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block, flags the sender as adversarial, and broadcasts “1”
(“incorrect”). For instance, as depicted in Fig. 3(c), node
Wi discards the corrupted block from node W, flags W,
as adversarial, and broadcasts “1”. This action triggers
the network to reconfigure links, temporarily bypassing
the adversarial node, as clearly illustrated in Fig. 3(d).
If verification passes, the node continues forwarding the
block downstream.

o Rounds 2-5: Over the next N —2 = 4 rounds, each block
circulates through the ring, allowing independent veri-
fication by all nodes. This iterative verification ensures
robust detection of corrupted outputs. If an adversarial
node is detected (for example, node W, in Fig. 3),
alternate communication links are activated to maintain
ring connectivity. For instance, after node WW; detects
node W, as adversarial, it establishes a direct link to node
W, (bypassing node W) to receive future verified blocks.
Also, W, establishes a direct link to its next downstream
node W, and sends its computed block C,.

If a corrupted task is detected and discarded by all the
nodes (universally), another benign node that stores the same
corresponding input blocks (A;, B;) recomputes the task after
the final round, ensuring correctness and enabling recovery of
the corrupted results.

In this scheme, perfect reconstruction of the result is achiev-
able with the contributions from any N —yayp + 1 = 5 worker
nodes, implying resilience to yaygp—1 = 1 adversary. However,
perfect reconstruction also holds if any two nodes per B; group
are benign (e.g., {Wo, Wi, W3, Wy}), showing resilience to 2
adversaries. Thus, the exact tolerance depends on adversary
placement within the ring.

2) Imperfect Reconstruction: When the set of benign nodes
B is unable to compute all A tasks due to the lack of
corresponding input blocks, perfect reconstruction of the mul-
tiplication result is not possible. In this case, y remaining tasks
cannot be reconstructed. These y blocks can be substituted
with all-zero blocks similar to Scheme I (see Section IV-A2).
In this scheme, y is determined numerically as it depends on
the position of Byzantine nodes in the ring. This substitution is
the element-wise maximum likelihood estimate, and it imposes
a relatively small error/distortion to the result.

V. RECONSTRUCTION DISTORTION

In this section, we present the results of the average recon-
struction distortion for both schemes. We consider two sparsity
models for the input matrices A and B: (i) with constant
column weight and (ii) with i.i.d. entries distributed according
to Bernoulli distribution. We measure the reconstruction dis-
tortion in terms of the normalized Hamming distance between
the matrices.

Definition 2: The normalized Hamming distance between
two m X n matrices X = (x;;) and Y = (y;;) is defined as the
fraction of positions where X and Y differ:

du (X,Y) £ {lez—,iyu}I

mn

In both models below, the columns of A have the same
(marginal) distributions, and this is also true for the columns
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of B. In this case, the average distortion depends only on the
expected sparsity level of the resulting matrix C.

Theorem 1: If the columns of matrix A share identical
marginal distributions, and likewise for the columns of matrix
B (though the distributions between the columns of A and
B may differ), Scheme I and II achieve the following upper
bound for expected distortion:

r L (N
E[du(C.O] = £ > (Z)az(l - )V

z=0
x [ =ELLOCODy + Puz] (7)

Proof: Distortion can occur when a corrupted block is either
detected but not recomputed and therefore, substituted with all
zeros, or left undetected. Since P,, is close to zero for large
field size g, the upper bound for this term occurs when all
z corrupted blocks are detected. Therefore, for an average of
(1-P,,)z detected adversaries (first term of summation in (7)),
v blocks cannot be recomputed and must instead be substituted
with all zero blocks. If every column in matrices A and B
shares the same marginal distribution, then every element c;;
in matrix C has the same marginal distribution as the product
of the i-th column in A and the j-th column in B, for any
choice of i and j, and P [cij = O] = E[L(C)]. Therefore, the
upper bound for the average number of non-zero elements
in these blocks together is yS’D’(1 — E[L(C)]), which also
represents the average number of positions where vy blocks of
C and C differ.

For undetected blocks (the second term of summation in
(7)), an average of P,z undetected adversaries result in P,z
corrupted blocks. Additionally, the maximum distortion in this
case occurs when E[L(C)] = 0. Therefore, the upper bound
for the average number of non-zero elements in these blocks
together will be P,,zS’D’ -1 = P,zS’D’. In total, the upper
bound for the expected normalized Hamming distance (distor-
tion) between C and C can be obtained by summing up the
aforementioned upper bounds for distortion and normalizing
it over the matrix size as

S'D' (1 -E[L(O)]y) + Pnz) (1 -E[L(O)]y) + Puz
SD - A

Finally, we need to average over the number of adversaries
z, which is binomially distributed with parameters N and a.
This yields the result of the theorem. [

Below, we derive the exact expressions for E[L(C)] based
on the two sparsity models for A and B.

A. Constant Column Weight Matrices

Let the matrix A be drawn uniformly at random from the
set of all matrices in ]Ff; XS with constant column weight
wy and the matrix B be drawn from F}*P with constant
column weight wpg, respectively. We assume that A and B are
independent. With these distributions, the sparsity levels of the
matrices are deterministic: £(A) = 1 —w4/p and L(B) = 1 —"s/p.
Note that the non-zero entries of the input matrices are
independent and uniform over the multiplicative group of the
field F,.
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Lemma 3: For random matrices A and B with constant
column weights w4 and wp, respectively, the expected sparsity
level of C = ATB is

(o) | 1 ()
E[L(C)] = Pl 4+ — — ®)
B T & )

Proof: The element in i-th row and j-th column of C is
the dot product of col;(A) and col;(B). For fixed i and j and
random matrices, these columns are random vectors with fixed
weights. Let € be the size of the intersection of supp(col;(A))
and supp(col;(B)), i.e., the number of positions where both
columns have non-zero values. Only these values are important
for the result of the dot product.

If ¢ = 0 (the supports have an empty intersection), the dot
product is trivially 0. If £ = 1, the dot product is never O
as no product of two non-zero elements of F, is 0. If 2 <
¢ < min(wy4,wp), we have a dot product of two vectors of
¢ elements each, where all the elements are non-zero. Since
these elements are drawn uniformly and independently from
F, \ {0}, the probability of this product to be 0 is Yg-1.

The final ingredient of the proof is the distribution of ¢.
There are w4 non-zeros in col;,(A), and (wi ) ways to choose
these positions. Among those w, positions, there are (”t':‘)
ways to choose ¢ positions for the support intersection set.
Finally, there are (fv _EV_V’}) ways to choose the remaining non-
zero positions of col;(B). On the other hand, the total number
of choices for the independent positions of non-zeros in col;(A)
and col;(B) is (! )(.). Altogether, the size of the support
intersection set equals ¢ with probability

AL ) B O T
(5 r)

B. Matrices With i.I.D. Entries

Again, we assume that A and B are drawn independently.
Each element of A is 0 with probability 1 —A,, and any other
element of [F, with probability 4+/(s-1). Likewise, each element
of B is 0 with probability 1 — 4, and any other element of
F, with probability %/4-1). The expected sparsity levels are as
follows:

E[LA)]=1-2,, E[LB)]=1-4,.

Lemma 4: For random matrices A and B with independent
entries, the expected sparsity level of C = A”B is

- _ P
EILO)] = (1—;) (1 - 4 ZPAd =7
g-1 g-1

where A = A,4,.

Proof: The proof of the lemma follows along the same lines
as the proof of Lemma 3. The only difference is the distribution
of the support intersection size €. Also note that now ¢ can be
as large as the whole column, i.e., P. For the very first position
in both columns, the probability that both values are non-zero
is A = A,4;. Observe that this holds also for any position. In
other words, it follows a binomial distribution with parameters
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P and 4, i.e., the size of the support intersection set equals €
with probability

(P)A%1—Ay)4

¢

Finally,
1 (P
E[ﬁ«)]=(1—Afﬂ+5tfi§:(€)1%1—aff
=2
_ _ Pl
:(1_ 1 )u_ﬁf+_1pﬂl >
g-1 g-1

VI. COMPUTATIONAL COMPLEXITY

In this section, we outline the computational complexity of
the proposed schemes. We consider £(A), £(B) and E [L(C)]
as the sparsity levels of the input matrices A and B and the
expected sparsity level of the resulting matrix C, respectively.
We provide a breakdown of the main components as follows:

e Freivalds’ algorithm: The computational complexity of
one verification test per node to verify a block column
using Freivalds’ algorithm is at most 7 = O(PD'(1 —
LB)+S'P(1-L(A)+S'D’'(1-E[L(C)])). The first term
represents the cost of computing Bv, the second term
accounts for the cost of computing A;B;v, and finally, the
last term reflects the complexity of multiplying C;jv. All
terms consider the maximum overlap of nonzero entries.
Note that v is dense.

e Common Tag: The computational complexity of
computing tags for the input blocks are at most
O (yaS'P(1 — L(A))) for 7y, block columns of A,
and O (ygPD’'(1 — L(B))) for yg block columns of B,
respectively, for each node. Also, the complexity of
multiplying two tags of size P is at most O (P).
Finally, the complexity of computing v4 C;;vg is at most
Ol’'D'(1 —E[L(C)]) + S’). Therefore, the total com-
plexity of Common Tag is at most T¢ = O(yaS’'P(1 -
LA))+ysPD'(1-LB))+P(1-L2)+S'D'(1-E [L(C)D+S ).

e Matrix multiplication: The computational complexity
required at each worker node to compute a matrix-
matrix multiplication C;; = A;B; is at most Ty =
OS’PD’ (1 - Ly)), where £; = max (L(A), L(B)).

e Scheme I: Based on the computational complexity of
both, Freivalds’ algorithm (7r) and matrix multiplication
(Ty), the cost for Scheme I is computed as follows:

1) The N—z benign nodes compute their assigned tasks,
contributing a cost of (N —z)Ty.

2) These nodes also verify blocks over N — 1 rounds,
incurring a cost of (N —z)(N —1){TF, where { is the
number of verification repetitions per round.

3) Additionally, for the z — ¥ corrupted blocks (which
require re-computation), the cost for re-computing
and verifying each block over N — z — 1 rounds is
Ty + (N — z — 1){TF, resulting in a total cost of
@@=y Ty + N —z—1)Tp).

Thus, the overall computational complexity per benign
node is O([(N —z2)(Tyy + (N = ){Tg) 4+ (z—y) Ty + (N -
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z—1){TF)]/(N—2z)). Since the overall complexity depends
on the number of adversaries z (which follows a binomial
distribution), we average the cost over this distribution.

e Scheme II: Similarly to Scheme I, we compute the
overall cost for Scheme II based on the computational
complexities of Common Tag (T¢) and matrix multipli-
cation (7). The overall computational complexity per
benign node for Scheme II is O([(N — 2)(Ty + (N —
DTe) + =T + (N =z = DITNI/(N = 2)).
where N is the total number of nodes, z denotes the
number of adversaries, y is the number of tasks requiring
re-computation, and ¢ is the number of verification repe-
titions per round. This cost is averaged over the binomial
distribution of adversaries.

Note that these complexities are much lower in practice
due to the sparsity of the input matrices and also the uniform
ii.d. distribution of the non-zero elements in each column.
In other words, supp (coli(A) N colj(B)) < (1-L)P. 1t is
important to note that our uncoded sparse matrix multipli-
cation approach exhibits a linear computational complexity,
compared to conventional coded matrix multiplication frame-
works (such as Polynomial [23], PolyDot [22], and MatDot
[22] coding), which typically incur polynomial complexity of
degree greaterr than 1 [2], [22]. The key reason is that dense
coded approaches inherently lose the sparsity present in the
original matrices A and B; the coding process often results in
coded submatrices that are significantly denser.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
schemes based on the analytical results derived in Section V.
We compare these schemes with the “no-detection” scenario,
where the worker nodes do not verify their neighboring
nodes’ results. Our evaluation is conducted within a network
comprising N = 100 nodes. The input matrices A and B are
equally partitioned into Ay = A = 10, thus resulting in
A = N = ApAg = 100. Moreover, we consider the adversarial
nodes, denoted as z. The distribution of these adversarial nodes
follows a binomial distribution, with parameters N and «,
where « is the probability of each node being adversarial.
We evaluate two sparsity levels £(A) = L(B) of 0.98 and 0.99
for input matrices A and B, both of size 5000 x 10000. The
column weights are set to wy = wg = 50 and wy = wg = 100
for sparsity levels of 0.99 and 0.98, respectively. We utilize
a large-size prime field F, = Fjps_1; for these implemen-
tations. This field size was selected exemplarily to balance
misdetection probability and computational efficiency. In the
following figures, we use solid lines for the sparsity level of
L(A) = L(A) = 0.98 and dash-dotted lines for the sparsity
level of L(A) = L(A) = 0.99, while different colors specify
the relevant parameters.

Fig. 4 illustrates the expected normalized distortion assum-
ing the probabilistic model for the adversarial attack.

This figure illustrates the results for different numbers of
tasks that each worker node can perform, i.e., d = 1,2,3.
As depicted in this figure, the adversarial tolerance increases
significantly with the number of tasks that each worker node
can perform. For instance, with d = 1, the scheme cannot
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Fig. 5. Expected normalized distortion of Scheme II with £(A) = £(B) of
0.98 (solid lines) and 0.99 (dash-dotted lines).

tolerate any adversaries, whereas, with d = 2, it can withstand
roughly up to z = N2 adversaries with negligible values of
distortion shown in the logarithmic scale of the plot in Fig. 4.
The small distortions observed in the ranges of a € [0,0.45]
and a € [0,0.6] for d = 2 and d = 3, respectively, are attributed
to verification errors of Freivalds’ algorithm. As explained in
Theorem 1, this error results from undetected adversaries and
therefore, it depends on the probability of misdetection P,,.
The impact of sparsity on distortion is also evident in Fig. 4.
Fig. 5 shows the distortion results for Scheme II, high-
lighting the worst-case scenario where the adversaries always
corrupt their own computed result (the correct versions of
Byzantine nodes’ tasks do not exist). We evaluate different
memory capacity sizes of yayp = 1, yays = 2, and yayp =3
in this figure, to be comparable with the result presented
in Fig. 4. We numerically determine the average value of
corrupted blocks, y, employing 1000 simulation rounds with
adversaries randomly positioned in the ring. As observed
in Fig. 5, Scheme II can roughly tolerate 10% and 20%
of the nodes to be adversaries for yayp = 2, yays = 3,
respectively, with negligible values of distortion shown in the
logarithmic scale of the plot. The small distortions observed
in the ranges of @ € [0,0.1] and « € [0,0.2] for yoyp = 2 and
YAYB = 3, respectively, are attributed to verification (Common
Tag) errors. As a result, Scheme II trades off the ability
to tolerate a large number of adversaries for a significant
reduction in required memory capacity at each node.
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Similar observations can be made for the i.i.d. entry case
in Section V-B. This is due to the fact that the recon-
struction distortion is only a function of the sparsity level
of C. In fact, we can observe from Theorem 1 that the
expected distortion only depends multiplicatively on E [L(C)].
Therefore the i.i.d. entry case shows qualitatively the same
behavior as the constant column-weight case in Fig. 4 and
Fig. 5. In Fig. 6, we presented the expected computational
complexity per benign node versus the probability of being
adversary «, analyzed in Section VI. Given the relatively small
probability of misdetection P,, in both schemes, attributed
to the large field size g, we set the number of repetitions
for the verification tests to { = 1. As depicted in Fig. 6,
the expected computational complexity per benign node for
both schemes increases with . This increase is attributable
to higher @ values indicating a larger number of adversaries.
Consequently, benign nodes must recompute and verify the
corrupted blocks, leading to higher computational complexity.
However, beyond the region of negligible distortion in Scheme
I, as illustrated in Fig. 6(a), the complexity begins to decrease.
This occurs because the number of benign nodes decreases,
resulting in fewer block recomputations and verifications, or in
other words, the number of z—y blocks that can be recomputed
by benign nodes starts to decrease in this regime. However, in
Scheme II shown in Fig. 6(b), since the benign nodes compute
the tags for all their existing blocks in each round, the curves
preserve their increasing behavior. It is also evident from Fig. 6
that the computational complexity versus a decreases with
increasing sparsity level in both schemes.

VIII. CONCLUSION

In this work, we considered the problem of decentralized
sparse matrix multiplication C = ATB. We also considered
the presence of Byzantine nodes to address the security
concerns in such a setting. The main goal was to design a
fully decentralized setting, detect the adversaries, and mitigate

their effects. In this regard, we proposed two new schemes
demonstrating the feasibility of sparse matrix multiplication
in a fully decentralized setting. In Scheme I, we relied on
two key assumptions: a) that all nodes possessed sufficient
memory capacity to store the entire input matrices, and b)
that they transmitted read-only versions of the results to
constrain Byzantine nodes, allowing them only to corrupt their
respective tasks or matrix blocks. Scheme II relaxed both
assumptions by considering a limited storage capacity for each
node and allowing Byzantine nodes to arbitrarily corrupt any
blocks. In this scheme, the nodes were able to verify any block
using our proposed Common Tag verification method. The
Common Tag method was introduced as a novel modification
of the well-known Freivalds’ algorithm and it allowed the
nodes to verify the results without requiring the presence of
input block matrices associated with the results. Our proposed
schemes were applied to both deterministic and probabilistic
Byzantine adversaries for perfect and imperfect reconstruction
of the matrix product. The results not only demonstrated
the feasibility of the proposed schemes but also showed a
substantial performance improvement compared to the no-
detection case. The results for both approaches further revealed
a trade-off between computational complexity at each node
and the reconstruction distortion. Scheme I exhibited a higher
resilience to adversaries at the expense of requiring storage for
the complete input matrices at each node. Conversely, Scheme
IT required significantly less storage, rendering it suitable
for dense input matrices, albeit with a reduced tolerance for
adversaries.
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