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A bstr a ct  —   We  c o nsi d e r  t h e  st r a g gl e r  p r o bl e  m i n  d e c e nt r ali z e d
l e a r ni n g  o v e r  a  l o gi c al  ri n g    w hil e  p r es e r vi n g  us e r  d at a  p ri v a c y.
Es p e ci all y,     w e   e xt e n d   t h e   r e c e ntl y    p r o p os e d   f r a  m e  w o r k   of
diff e r e nti al   p ri v a c y  (  D P)   a  m pli û c ati o n   b y   d e c e nt r ali z ati o n   b y
C yff e rs a n d   B ell et t o i n cl u d e o v e r all t r ai ni n g l at e n c y   — c o  m p risi n g
b ot h  c o  m p ut ati o n  a n d  c o  m  m u ni c ati o n l at e n c y.   A n al yti c al  r es ults
o n   b ot h  t h e  c o n v e r g e n c e  s p e e d   a n d  t h e    D P  l e v el   a r e   d e ri v e d
f o r  b ot h  a  s ki p pi n g  s c h e  m e  (  w hi c h  i g n o r es  t h e  st r a g gl e rs  aft e r
a  ti  m e o ut)  a n d  a  b as eli n e  s c h e  m e  t h at    w aits  f o r  e a c h  n o d e  t o
û nis h  b ef o r e  t h e  t r ai ni n g  c o nti n u es.   A  t r a d e- off  b et  w e e n  o v e r all
t r ai ni n g  l at e n c y,   a c c u r a c y,   a n d   p ri v a c y,   p a r a  m et e ri z e d   b y  t h e
ti  m e o ut   of  t h e  s ki p pi n g  s c h e  m e,  is  i d e nti û e d   a n d   e  m pi ri c all y
v ali d at e d  f o r  l o gisti c  r e g r essi o n  o n  a  r e al-  w o rl d  d at as et  a n d  f o r
i  m a g e  cl assi û c ati o n  usi n g  t h e    M  NI S  T  a n d   CI F A  R- 1 0  d at as ets.

I n d e x   Ter  ms —  D e c e nt r ali z e d l e a r ni n g,  diff e r e nti al  p ri v a c y,  g r a-
di e nt  d es c e nt,  p ri v a c y a  m pli û c ati o n, st r a g gl e r   miti g ati o n, t r ai ni n g
l at e n c y.

I.  I N  T  R  O  D  U  C  T I  O  N

I N     DI S T  RI  B  U T E  D   l e ar ni n g,   a   û nit e-s u  m   o pti  mi z ati o n
pr o bl e  m is  s ol v e d  a cr oss   m ulti pl e  n o d es   wit h o ut  e x c h a n g-

i n g t h e l o c al  d at as ets  dir e ctl y, t h us i  m pr o vi n g  us er  d at a  pri v a c y
a n d  r e d u ci n g  t h e   c o  m  m u ni c ati o n   c ost.    A   p o p ul ar  i nst a n c e
of   distri b ut e d  l e ar ni n g  is  f e d er at e d  l e ar ni n g   [ 2], [ 3], [ 4]  i n
w hi c h t h er e is  a si n gl e  c e ntr al s er v er  c o or di n ati n g t h e tr ai ni n g
pr o c ess.   O n t h e ot h er h a n d, i n f ull y d e c e ntr ali z e d l e ar ni n g, s e e,
e. g.,  [ 5], [ 6], t h er e is  n o s u c h  c o or di n ati n g  c e ntr al s er v er   —t h e
n o d es    m ai nt ai n  a  l o c al  esti  m at e   of  t h e   o pti  m al    m o d el  a n d
it er ati v el y   u p d at e  it   b y   a v er a gi n g   esti  m at es   o bt ai n e d  fr o  m
n ei g h b ors  c orr e ct e d  o n t h e  b asis  of t h eir l o c al  d at as ets.   T h er e
ar e  t  w o    m o d es   of   o p er ati o n   —s e q u e nti al   a n d   p ar all el   — a n d

M a n us cri pt r e c ei v e d  2 9   O ct o b er  2 0 2 3; r e vis e d  2 2  F e br u ar y  2 0 2 4;  a c c e pt e d
1 9    A pril  2 0 2 4.    D at e  of  p u bli c ati o n  2 0    M a y  2 0 2 4;  d at e  of  c urr e nt  v ersi o n
1  J ul y  2 0 2 4.   T his   w or k   w as  s u p p ort e d  b y t h e   E x p eri  m e nt al I nfr astr u ct ur e f or
E x pl or ati o n  of   E x as c al e   C o  m p uti n g  ( e  X 3),   w hi c h is  û n a n ci all y  s u p p ort e d  b y
t h e   R es e ar c h   C o u n cil  of   N or  w a y  u n d er   C o ntr a ct  2 7 0 0 5 3.   T h e   w or k  of   Ya u h e n
Ya ki  m e n k a  a n d J ör g   Kli e  w er   w as s u p p ort e d i n  p art  b y   U. S.   N S F  u n d er   Gr a nt
1 8 1 5 3 2 2,   Gr a nt 1 9 0 8 7 5 6, a n d   Gr a nt 2 1 0 7 3 7 0.   T his p a p er   w as pr es e nt e d i n p art
at t h e I E E E I nf or  m ati o n   T h e or y    W or ks h o p (I T   W),   M u  m b ai, I n di a,   N o v e  m b er
2 0 2 2 [  D  OI:  1 0. 1 1 0 9/I T   W 5 4 5 8 8. 2 0 2 2. 9 9 6 5 8 9 8].  (  C orr es p o n di n g  a ut h or:   Eiri k
R os n es.)

Ya u h e n     Ya ki  m e n k a   a n d   J ör g     Kli e  w er   ar e     wit h   t h e     H el e n   a n d   J o h n
C.     H art  m a n n     D e p art  m e nt    of     El e ctri c al    a n d     C o  m p ut er     E n gi n e eri n g,
N e  w   J ers e y   I nstit ut e   of    Te c h n ol o g y,     N e  w ar k,     NJ   0 7 1 0 2     U S  A   ( e-  m ail:
y a u h e n. y a ki  m e n k a   @ njit. e d u; j kli e  w er   @ njit. e d u).

C h u n g-   Wei     We n g,    Hs u a n-  Yi n    Li n,   a n d    Eiri k    R os n es   ar e    wit h   Si  m ul a
Ui  B,  5 0 0 6    B er g e n,    N or  w a y  ( e-  m ail:  c h u n g  w ei   @si  m ul a. n o;  li n   @si  m ul a. n o;
eiri kr os n es   @si  m ul a. n o).

T his    arti cl e    h as    s u p pl e  m e nt ar y    d o  w nl o a d a bl e     m at eri al    a v ail a bl e    at
htt ps:// d oi. or g/ 1 0. 1 1 0 9/J S  AI T. 2 0 2 4. 3 4 0 0 9 9 5,  pr o vi d e d  b y t h e  a ut h ors.

Di git al   O bj e ct  I d e nti û er  1 0. 1 1 0 9/J S  AI T. 2 0 2 4. 3 4 0 0 9 9 5

t h e or eti c al   st u di es   s h o  w   t h at   t h e   p h ysi c al   c o  m  m u ni c ati o n
t o p ol o g y  h as  a str o n g i  m p a ct  o n t h e  n u  m b er  of  e p o c hs  n e e d e d
t o  c o n v er g e [ 7].

It   is     w ell- k n o  w n    b y    n o  w   t h at   t h e    c o  m p ut e d    p arti al
(s u b) gr a di e nts  c a n  l e a k  i nf or  m ati o n  o n  t h e  l o c al  d at as ets  [ 8].
I n  or d er t o cir c u  m v e nt t his, a c ar ef ull y s el e ct e d  n ois e t er  m c a n
b e  a d d e d  t o  t h e  c o  m p ut e d  p arti al  (s u b) gr a di e nts  b ef or e  t h e y
ar e tr a ns  mitt e d t o  ot h er  n o d es, r ef err e d t o  as l o c al  diff er e nti al
pri v a c y ( L  D P)  [ 9], [ 1 0]. I n f ull y  d e c e ntr ali z e d l e ar ni n g,  n o d es
h a v e  o nl y  a  l o c al  vi e  w  of  t h e  s yst e  m.    H e n c e,    C yff ers  a n d
B ell et   [ 1 1]   r e c e ntl y   pr o p os e d   a   n o v el   r el a x ati o n   of    L  D P,
r ef err e d  t o  as  n et  w or k    D P  (  N  D P),  t o  n at ur all y  c a pt ur e  t his.
F urt h er  m or e,  t h e y   s h o  w e d  t h at  t h e   pri v a c y- utilit y  tr a d e- off
u n d er    N  D P  c a n  b e  si g ni û c a ntl y  i  m pr o v e d  u p o n  c o  m p ar e d  t o
w h at is  a c hi e v a bl e  u n d er   L  D P, ill ustr ati n g t h at f or  m al  pri v a c y
g ai ns  c a n  b e  o bt ai n e d fr o  m f ull  d e c e ntr ali z ati o n,  c o  m pl e  m e nt-
i n g  pr e vi o us  n oti o ns  of  < a  m plif yi n g = t h e  pri v a c y  b y  s h uf üi n g,
s u bs a  m pli n g,   a n d  it er ati o n   [ 1 2],  [ 1 3],  [ 1 4],  [ 1 5].    R e c e ntl y,
t h e   w or k  i n  [ 1 1]  w as  e xt e n d e d  t o  a  p ar all el  a p pr o a c h  t h at
alt er n at es  b et  w e e n  l o c al  gr a di e nt  d es c e nt  st e ps  f or  all  n o d es
i n  p ar all el  a n d s u bs e q u e nt  g ossi p  a v er a gi n g [ 1 6].   A c c or di n gl y,
t h e    N  D P   c o n c e pt    w as  r el a x e d  t o   c a pt ur e  t h at  t h e   pri v a c y
l e a k a g e  fr o  m  a  n o d e  t o  a n ot h er  n o d e    m a y  d e p e n d  o n  t h eir
dist a n c e  i n  t h e   gr a p h.  It    w as   s h o  w n  i n   [ 1 6]   t h at   pri v a c y
a  m pli û c ati o n  c a n  b e  a c hi e v e d  as  f or  t h e  s e q u e nti al  a p pr o a c h
i n [ 1 1].   Diff er e nti all y- pri v at e  f ull y  d e c e ntr ali z e d  l e ar ni n g  h as
als o   b e e n  c o nsi d er e d  i n  s e v er al   ot h er   pr e vi o us    w or ks,  s e e,
e. g.,  [ 6], [ 1 7], [ 1 8].  I n  t h e  f e d er at e d  l e ar ni n g  c as e,  t h er e  ar e
n u  m er o us    w or ks  t h at  c o nsi d er  us er  pri v a c y,  e. g.,  b ot h  fr o  m
a    D P  p ers p e cti v e  (s e e,  e. g.,   [ 1 0])  a n d  fr o  m  a n  i nf or  m ati o n-
t h e or eti c  s e c ur e  a g gr e g ati o n  p ers p e cti v e  (s e e,  e. g.,  [ 1 9], [ 2 0],
[ 2 1], [ 2 2], [ 2 3]).

T h e  pr o bl e  m  of   str a g gli n g  n o d es,  i. e.,  n o d es  t h at  t a k e  a
l o n g ti  m e t o  û nis h t h eir t as ks  d u e t o r a n d o  m  p h e n o  m e n a  s u c h
as  pr o c ess es  r u n ni n g  i n  t h e  b a c k gr o u n d  a n d    m e  m or y  a c c ess,
h as   b e e n   br o a dl y   st u di e d  i n  t h e  lit er at ur e.    T h e   i g n ori n g-
str a g gl ers   str at e g y ,  i. e.,  i g n ori n g   r es ults   fr o  m  t h e   sl o  w est
n o d es,  s e e,  e. g.,  [ 6], [ 2 4], is  si  m pl e  a n d  p o p ul ar,  b ut  c a n l e a d
t o  c o n v er g e n c e t o  a l o c al  o pti  m u  m   w h e n t h e  d at a is  h et er o g e-
n e o us   [ 2 5], [ 2 6].    C o d e d  c o  m p uti n g    m et h o ds  [ 2 7], [ 2 8], [ 2 9]
is   a n   alt er n ati v e   t o   pr o vi d e   r esili e n c y   a g ai nst   str a g gli n g
n o d es,   a n d   t h e   k e y   i d e a   is   t o   a d d   r e d u n d a n c y   t o   t h e
c o  m p ut ati o n   t hr o u g h   a n   err or- c orr e cti n g   c o d e.    T h e   c o d e d
c o  m p uti n g lit er at ur e  h as  c o nsi d er e d  s e v er al  diff er e nt  c o  m p ut-
i n g  t as ks,  e. g.,  v e ct or-  m atri x    m ulti pli c ati o n  [ 2 7], [ 3 0], [ 3 1],
(s e c ur e) distri b ut e d  m atri x-  m atri x    m ulti pli c ati o n   [ 3 2],  [ 3 3],
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[ 3 4],   [ 3 5],   [ 3 6],   [ 3 7],   [ 3 8],   [ 3 9],   [ 4 0],   [ 4 1],   a n d     m or e
g e n er al   distri b ut e d   o pti  mi z ati o n   a n d   n o nli n e ar   c o  m p ut ati o n
pr o bl e  ms   [ 4 2],  [ 4 3],  [ 4 4],  [ 4 5],  [ 4 6],  [ 4 7],  [ 4 8],  [ 4 9].   F or
m atri x-  m atri x    m ulti pli c ati o n,  t h e  st at e- of-t h e- art  f or  str a g gl er
miti g ati o n is a c hi e v e d  b y t h e c o  m bi n ati o n  of t h e r es ults i n   [ 4 7]
a n d  [ 4 0].

I n  t his    w or k,    w e  st u d y  t h e  i  m p a ct  of  str a g gl ers  a n d  us er
d at a  pri v a c y i n  d e c e ntr ali z e d tr ai ni n g. I n  p arti c ul ar,   w e ass u  m e
a n  u n d erl yi n g  p h ysi c al  f ull   m es h t o p ol o g y, i. e.,  all  n o d es  c a n
p h ysi c all y  c o  m  m u ni c at e   wit h  e a c h  ot h er,  b ut  s e q u e nti al tr ai n-
i n g  al o n g  a l o gi c al ri n g  o n t o p  of t h e  p h ysi c al t o p ol o g y   w h er e
e a c h   n o d e   c o  m  m u ni c at es   a  t o k e n   o nl y    wit h  its  i  m  m e di at e
n ei g h b ors  u pstr e a  m  a n d  d o  w nstr e a  m.  I n  s e q u e nti al  tr ai ni n g,
n o d es   d o   n ot   n e e d  t o   b e  a cti v e   d uri n g  t h e    w h ol e  tr ai ni n g
p eri o d,   w hi c h   m a k es it  s uit a bl e f or  s c e n ari os   w h er e t h e  n o d es
h a v e  li  mit e d  r es o ur c es,  a n d  t h er ef or e  r e  m ai n  d or  m a nt  u nl ess
t h e y  ar e  tri g g er e d  t o  d o  a n  u p d at e.   S e e  als o  [ 5 0], [ 5 1]  f or
f urt h er   m oti v ati o n f or t his s c e n ari o.  F or t his s etti n g,   w e e xt e n d
t h e  r e c e ntl y  pr o p os e d  fr a  m e  w or k  of  pri v a c y  a  m pli fi c ati o n  b y
d e c e ntr ali z ati o n   b y    C yff ers   a n d    B ell et   [ 1 1]  t o  i n cl u d e  t h e
o v er all l at e n c y   — c o  m prisi n g  b ot h  c o  m p ut ati o n  a n d  c o  m  m u ni-
c ati o n  l at e n c y   — u n d er  st o c h asti c  gr a di e nt  d es c e nt.    O ur    m ai n
c o ntri b uti o ns  ar e  s u  m  m ari z e d  as  f oll o  ws.

• We st u d y a s ki p pi n g s c h e  m e (  w hi c h i g n or es t h e str a g gl ers
aft er  a  ti  m e o ut)  a n d  a   b as eli n e  s c h e  m e  t h at    w aits  f or
e a c h  n o d e  t o  fi nis h  its  c o  m p ut ati o n  b ef or e  t h e  tr ai ni n g
c o nti n u es,  f or  a  fi x e d  a n d  a  r a n d o  mi z e d  ri n g  t o p ol o g y,
a n d  d eri v e  a n al yti c al r es ults  o n t h e  c o n v er g e n c e  b e h a vi or
(s e e   T h e or e  m  1 )  a n d  t h e   D P  l e v el  (s e e   T h e or e  ms  2  a n d
3 ),  r e v e ali n g  a  tr a d e- off   p ar a  m et eri z e d   b y  t h e  ti  m e o ut
of  t h e  s ki p pi n g  s c h e  m e.    We  s h o  w  t h at  t h e  as y  m pt oti c
c o n v er g e n c e  r at e  is   e q u al  t o  t h at   of   [ 5 2,   T h.   2].   We
n ot e  t h at  t h e  pr es e nt e d  pr o ofs  i n    A p p e n di c es   A   a n d  B
r e q uir e s e v er al  n o ntri vi al st e ps   w hi c h  c a n  n ot  b e f o u n d i n
pr e vi o us   w or k,  e. g., t h e  as y  m pt oti c  c o n v er g e n c e  a n al ysis
i n    A p p e n di x    E  i n  t h e  s u p pl e  m e nt ar y    m at eri al  a n d  t h e
a d a pti o n  t o  a  d e cr e asi n g  l e ar ni n g  r at e  i n    A p p e n di x   B  .
S e e  als o  t h e   first   p ar a gr a p h   of   S e cti o n   I  V.    M or e o v er,
w e  e  m p h asi z e  a g ai n  t h at  t his    w or k  st u di es  t h e  eff e ct  of
str a g gl ers,    w hi c h   b y  its elf  is   n o v el  f or  t h e  c o nsi d er e d
s c e n ari o.

• T h e  o pti  m al ti  m e o ut t h at   mi ni  mi z es t h e ti  m e  b et  w e e n t  w o
c o ns e c uti v e  u p d at es  of t h e t o k e n is  d et er  mi n e d,  s h o  wi n g
t h at   s ki p pi n g  is   b e n e fi ci al   f or   f ast er   c o n v er g e n c e   f or
c ert ai n  p o p ul ar c o  m p ut ati o n al  d el a y   m o d els c o nsi d er e d i n
t h e lit er at ur e  (s e e   L e  m  m a 2  a n d  S e cti o n  VI-  C  ).

• We  s h o  w t h at r a n d o  mi zi n g t h e  pr o c essi n g  or d er  of  n o d es
o n  t h e  ri n g  yi el ds  a n  i  m pr o v e  m e nt  i n  b ot h  c o n v er g e n c e
b e h a vi or  a n d  pri v a c y i n t h e l o n g r u n (s e e  S e cti o n  VI-  B  ),
alt h o u g h  t h e  err or  a n d  t h e  pri v a c y  l e a k a g e  l e v el  s h o  w
t h e  s a  m e  or d er-  wis e  as y  m pt oti c  b e h a vi or  i n  t h e  n u  m b er
of   u p d at e   st e ps    wit h   a n d    wit h o ut  r a n d o  mi z ati o n  (s e e
R e  m ar k   2 ).   T his  is  i n  p arti c ul ar  pr o  mi n e nt  f or  a  l ar g er
n u  m b er  of  n o d es  d u e  t o  t h e  i n cr e as e d  eff e ct  of  pri v a c y
a  m pli fi c ati o n.

Fi n all y,    w e   pr es e nt   e xt e nsi v e   e  m piri c al  r es ults  f or   b ot h
l o gisti c  r e gr essi o n  o n  a  bi n ari z e d  v ersi o n  of  t h e    U  CI  h o us-
i n g   d at as et   [ 5 3]   a n d   f or   i  m a g e   cl assi fi c ati o n   usi n g   b ot h

t h e     M  NI S T  [ 5 4]   a n d    CI F A  R- 1 0   [ 5 5]   d at as ets  t o   v ali d at e
o ur  t h e or eti c al   fi n di n gs.    We  als o  c o  m p ar e    wit h  t h e  p ar all el
a p pr o a c h  fr o  m   [ 1 6]  a n d  t o  a  c e ntr ali z e d  f e d er at e d  l e ar ni n g
a p pr o a c h. 1

II.    P R  E  L I   M I  N  A  R I  E S

A.    N ot ati o n

We  us e  u p p er c as e  a n d  l o  w er c as e  l ett ers  f or  r a n d o  m  v ari-
a bl es  (  R Vs)  a n d  t h eir  r e ali z ati o n  ( b ot h  s c al ars  a n d  v e ct ors),
r es p e cti v el y,  a n d it ali cs  f or  s ets,  e. g.,  X  , x ,  a n d X   r e pr es e nt  a
R V, a s c al ar/ v e ct or, a n d a s et, r es p e cti v el y.   A n e x c e pti o n t o t his
r ul e  is  Ä   w hi c h  d e n ot es  t h e    m o d el  d es cri pti o n,  als o  r ef err e d
t o  as  t h e  t o k e n.    M atri c es  ar e  d e n ot e d  b y  u p p er c as e  l ett ers,
t h eir   disti n cti o n  fr o  m    R Vs    will   b e  cl e ar  fr o  m  t h e  c o nt e xt.
Ve ct ors  ar e  r e pr es e nt e d  as  r o  w  v e ct ors  a n d  t h e  tr a ns p os e  of
a  v e ct or  or  a    m atri x  is  d e n ot e d  b y  (·) .   T h e  e x p e ct ati o n  of
a   R V  X   is  d e n ot e d  b y  E [X ].    We  d e fi n e  [n ]   {1 , 2 , . . . , n },
w hil e   N   d e n ot es  t h e  s et  of  n at ur al  n u  m b ers  a n d   R   t h e  s et
of   r e al   n u  m b ers.    T h e   (s u b) gr a di e nt   of   a   f u n cti o n   f (x )   is
d e n ot e d  b y  '  f (x ),   w hil e t h e p - n or  m  of  a l e n gt h-n  v e ct or  x  =
(x 1 , . . . , x n ) (   R

n is  d e n ot e d  b y   x p =   ( n
i=  1 |x i|

p ) 1/ p ,   w h er e
|·| d e n ot es a bs ol ut e  v al u e.   T h e  b as e  of t h e  n at ur al l o g arit h  m is
d e n ot e d  b y e,   w hil e l o g  d e n ot es  n at ur al l o g arit h  m.  N   μ, Ã 2 Id
d e n ot es t h e  d - di  m e nsi o n al   G a ussi a n ( u n c orr el at e d)  distri b uti o n
wit h    m e a n   μ   a n d  st a n d ar d  d e vi ati o n   Ã   of  e a c h  c o  m p o n e nt,
w h er e   Id is  t h e  i d e ntit y    m atri x  of  si z e  d .  X   ∼   P   d e n ot es
t h at  X   is  distri b ut e d  a c c or di n g  t o  t h e  distri b uti o n  P  ,    w hil e
x   ∼   P   d e n ot es  a  s a  m pl e   x   t a k e n  fr o  m  P  .    We   d e n ot e   b y
D   ∼ u D   t h e  f a ct  t h at   d at as ets  D   =   ∪ v ( V D v a n d   D   =
∪ v ( V D v ar e  t h e  s a  m e  e x c e pt  p er h a ps  f or  t h e  d at as et  of  us er
u ,  i. e.,  D v =   D v f or  all  v   =   u ,    w h er e  V   is  s o  m e  s et   of
us ers.   St a n d ar d   or d er   n ot ati o n   O  (·)  is   us e d  f or  as y  m pt oti c
r es ults.

B.    D e fi niti o ns  a n d   Ass u  m pti o ns

D e fi niti o n  1  ( k- Li ps c hitz   C o nti n uit y):   A f u n cti o n   f  : W   →
R   is k -Li ps c hitz  c o nti n u o us   o v er t h e  c o n v e x  d o  m ai n  W   ⊆   R d

if |f (w  ) −   f (w   )|   ≤ k   w  −   w
2

f or  all  w  , w   (   W   .
D e fi niti o n  2  (  β - S  m o ot h n ess):  A   f u n cti o n   f   :   W   →

R   is   β -s  m o ot h   o v er   t h e   c o n v e x   d o  m ai n   W   ⊆   R d if
'  f (w  ) −   '  f (w  )

2
≤   β   w  −   w

2
f or  all  w  , w   (   W   .

Ass u  m pti o n  1:  f v ( Ä ; ·), v  (   V  , is k - Li ps c hit z c o nti n u o us a n d
c o n v e x i n its  first  ar g u  m e nt.

Ass u  m pti o n  2:  f v , v  (   V  , is β -s  m o ot h.

C.  S yst e  m    M o d el

C o nsi d er  a  d e c e ntr ali z e d  n et  w or k  of   n   h o n est- b ut- c uri o us
n o d es  ( us ers)   V   =  {  v 1 , . . . , v n }  wit h  a  d e c e ntr ali z e d  d at as et
D   =   ∪ v ( V D v w h er e   D v =  {  (x (v )

i , y (v )
i )} κ

i=  1 , (x
(v )
i , y (v )

i )  (   R   ⊆
R d x ×   R d y ,  f or  s o  m e  s et  R   a n d  d x , d y ,  κ  (   N  ,  is  t h e  pri v at e
d at as et  of  n o d e  v  (   V  .

1 C o  m p ar e d t o t h e c o nf er e n c e  v ersi o n   [ 1],   w e  pr o vi d e a c o  m pl et e  e x p ositi o n
t h at i n cl u d es all t e c h ni c al pr o ofs, as   w ell as n e  w as y  m pt oti c r es ults, i n a d diti o n
t o  si g ni fi c a ntl y  e xt e n d e d   n u  m eri c al  r es ults.    Missi n g   pr o ofs  (i n cl u di n g  t h e
pr o of  of   R e  m ar k  2 ) c a n  b e f o u n d i n   A p p e n di c es   D a n d   E i n t h e s u p pl e  m e nt ar y
m at eri al.    T h e  c o d e  f or  t his    w or k  is  a v ail a bl e  at  htt ps:// git h u b. c o  m/ Si  m ul a-
Ui  B/ S  R  D P  D L _J S  AI T 2 4.
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T h e  n o d es    w a nt  t o  c o  m p ut e  s o  m e  f u n cti o n  t o g et h er  b as e d
o n  t h eir  d at as ets  b ut    w a nt  t o  k e e p  t h eir  d at as ets  pri v at e.  F or
t h at, t h e y  e  m pl o y  a  d e c e ntr ali z e d  pr ot o c ol   w h er e  a t o k e n  Ä  (
W   ,  f or  s o  m e  c o n v e x  s et W   ⊆   R d ,  tr a v els  b et  w e e n  t h e  n o d es
a c c or di n g  t o  s o  m e   pr e d e fi n e d  ( b ut   p ot e nti all y  r a n d o  mi z e d)
p at h.    W h e n  r e c ei vi n g  t h e  t o k e n  t h e   r -t h  ti  m e  a n d  t h e  gl o b al
ti  m e  is  h ,  t h e  n o d e v  u p d at es  it  as  Ä  ←   g

(v )
r ( Ä ;  s t a t e v (h )),

a n d  s e n ds  it  f urt h er.    H er e,   s t a t e v (h )  e n c a ps ul at es  all  t h e
i nf or  m ati o n a v ail a bl e t o t h e  n o d e v  at ti  m e  h , e. g., t h e a v ail a bl e
d at a   p oi nts  a n d  t h e  r es ults   of   pr e vi o us  c al c ul ati o ns.  It  c a n
als o i n cl u d e  s o  m e  s o ur c e  of  r a n d o  m n ess.    We  ass u  m e t h at t h e
c o  m p ut ati o n i n  e a c h  n o d e  v  d uri n g t h e  r -t h  visit  of t h e t o k e n
t a k es  r a n d o  m  ti  m e  T

(v )
r .    H e n c e,  t h e  c o  m p ut ati o n  of  g

(v )
r (·, ·)

t a k es ti  m e at   m ost T (v )
r as t h e t o k e n   m a y  b e  u p d at e d  b ef or e t h e

e ntir e  c o  m p ut ati o n  is  fi nis h e d. 2 We  c o nsi d er  a    m o d el    w h er e
T (v )

r is  c o  m pris e d  of  a  d et er  mi nisti c  c o nst a nt  p art  (t h e  ti  m e
it  t a k es  f or  a n  a ct u al  c o  m p ut ati o n)  a n d  a  r a n d o  m  p art.   Als o,
w e  ass u  m e  t h at  c o  m  m u ni c ati o n   b et  w e e n  a n y  t  w o   n o d es  is
n ois el ess  a n d  t a k es  c o nst a nt  ti  m e   χ  ,  a n d  h e n c e  t h e  c o nst a nt
p art  of t h e  c o  m p ut ati o n ti  m e  c a n  b e  s et t o  z er o.   At t h e  e n d  of
t h e  pr ot o c ol, t h e t o k e n Ä  is distri b ut e d a  m o n g t h e  n o d es,   w hi c h
all o  ws f or  c al c ul ati n g t h e  d esir e d r es ult.   T his  fi n al  distri b uti o n
t a k es  c o nst a nt  o v er h e a d ti  m e  a n d is t h er ef or e i g n or e d.

F or  a  d e c e ntr ali z e d  pr ot o c ol   A  ,    w e  d e n ot e  b y  A  (D  )  t h e
(r a n d o  m)  tr a ns cri pt  of  all    m ess a g es  s e nt  or  r e c ei v e d  b y  all
t h e   us ers,  i. e.,  A  (D  )   ar e   all  t h e  tri pl es   (u , w  , v ),  if  u   (
V   s e nt   a     m ess a g e    wit h   c o nt e nt   w   t o  v   (   V  .    H o  w e v er,
d u e  t o  t h e   d e c e ntr ali z e d   n at ur e   of   A  ,  t h e   us er  v   o nl y   h as
a c c ess  t o  t h e  s u bs et  of  A  (D  )  c o nsisti n g  of  t h e    m ess a g es  s h e
s e nt  or  r e c ei v e d,  a n d    w e  d e n ot e  t his  vi e  w  b y  O v (A  (D  ))  =
{(u , w  , u  )   (   A  (D  ):u  =   v  or  u   =   v }.   L et   d e n ot e  t h e  s et
of  all  p ossi bl e  vi e  ws,  i. e.,   O v (A  (D  ))  (   f or  all  p ossi bl e
p ar a  m et ers  a n d  r e ali z ati o ns.

D.    N et  w or k   Diff er e nti al   Pri v a c y

We  a c c e pt t h e  n oti o n  of   N  D P i ntr o d u c e d i n   [ 1 1].
D e fi niti o n  3  (  N  D P   [ 1 1] ):  A   pr ot o c ol   A   s atis fi es   ( ̧ , · )-

N  D P  if  f or  all  p airs  of  disti n ct  us ers   u , v   (   V  ,  all  p airs  of
n ei g h b ori n g  d at as ets  D   ∼ u D   ,  a n d  a n y S   ⊆   ,   w e  h a v e

Pr [ O v (A  (D  ))  (   S  ]   ≤   e
¸ Pr [ O v (A  (D   ))  (   S  ]   +   ·,

w h er e t h e  n oti o n  of  n ei g h b ori n g  d at as ets   D   ∼ u D   is  d e fi n e d
i n  S e cti o n II-  A.

N  D P    m e as ur es   h o  w    m u c h  t h e  i nf or  m ati o n   c oll e ct e d   b y
n o d e   v   d e p e n ds   o n  t h e   d at as et   of   n o d e   u .  I n  t h e   s p e ci al
c as e  t h at  all  n o d es  c a n  o bs er v e  all    m ess a g es,  i. e.,  O v is  t h e
i d e ntit y    m a p,    N  D P   b oils   d o  w n  t o   c o n v e nti o n al    L  D P  [ 5 7].
W h e n  pr o c essi n g i nf or  m ati o n i n  a  d e c e ntr ali z e d   m a n n er   wit h
n o c e ntr al c o or di n ati n g e ntit y, a n d   w h e n t h er e is  n o t hir d  p art y
( o n t o p  of t h e t o p ol o g y)  o bs er vi n g  all   m ess a g es  s e nt,   N  D P is
a   m or e  n at ur al  pri v a c y   m e as ur e t h a n   D P  or   L  D P.

2 T h e   R Vs   T
(v )
r ar e  ass u  m e d  t o  b e  i n d e p e n d e nt  a n d  i d e nti c all y  distri b ut e d

(i.i. d.)    w hi c h  is  i n  a c c or d a n c e    wit h  t h e  lit er at ur e,    w h er e  t y pi c all y  str a g gl ers
ar e  g e n er at e d  u nif or  ml y  at  r a n d o  m,  e x c e pt  f or  a  f e  w    w or ks,  e. g.,  [ 4 4], [ 5 6]
t h at  c o nsi d er  a   m o d el   w h er e  n o d es t e n d t o r e  m ai n  str a g gl ers f or  a l o n g ti  m e,

vi ol ati n g t h e i.i. d.  ass u  m pti o n  o n t h e   R Vs  T
(v )
r .

Fi g.  1.    Ill ustr ati n g t h e   j-t h  r o u n d i n   w hi c h  n o d e  v i is  a  str a g gl er.

III.    E M P I  R I  C  A  L R I S  K M I  N I   M I  Z  A T I  O  N

I n t his s e cti o n,   w e  c o nsi d er t h e  e  m piri c al ris k   mi ni  mi z ati o n
pr o bl e  m

Ä ∗ =   ar g   mi n
Ä ( W ⊆  R d

f ( Ä ; D  )
1

n
v ( V

fv ( Ä ; D v )   ,   ( 1)

w h er e   fv ( Ä ; ·)  is k - Li ps c hit z  c o nti n u o us  a n d  c o n v e x i n its  first
ar g u  m e nt  (s e e   Ass u  m pti o n  1 ).

A.  S ki p pi n g  S c h e  m e

We  s u g g est  t h e  f oll o  wi n g   pr ot o c ol  i ns pir e d   b y   pr oj e ct e d
n ois y  st o c h asti c  gr a di e nt  d es c e nt  t o  s ol v e   ( 1).   T h e  t o k e n  Ä
k e e ps t h e  c urr e nt  esti  m at e  of t h e  o pti  m al  p oi nt  Ä ∗ a n d f oll o  ws
a  p ossi bl y  r a n d o  mi z e d  p at h  o v er  t h e  a v ail a bl e  n o d es   V  .   T o
s p e e d  u p  t h e  pr o c ess,  t h e  t o k e n   w aits  u p  t o  a  t hr es h ol d  ti  m e
ts ki p a n d, if t h e  c o  m p ut ati o n  h as  n ot  fi nis h e d  b y t h at ti  m e, t h e
t o k e n is f or  w ar d e d f urt h er   wit h o ut a n  u p d at e.3 I n  o ur  n ot ati o n,
it   m e a ns t h at t h e  c al c ul ati o n i n  e a c h  n o d e  v  is

g (v )
r (Ä ; s t a t e v (h ))

= W (Ä  −   η h ('  fv (Ä ; D v ) +   N h )) if T
(v )
r ≤   ts ki p ,

Ä ot h er  wis e ,
( 2)

w h er e   η h is  t h e  st e p  si z e  (l e ar ni n g  r at e), W d e n ot es  t h e
E u cli d e a n  pr oj e cti o n  o nt o  t h e  s et   W   ,  a n d  N h is  n ois e    wit h
z er o    m e a n  a n d  st a n d ar d  d e vi ati o n  Ã h .   T h e  n ois e N h is  a d d e d
i n  or d er  t o  pr ot e ct  t h e  pri v a c y  of  t h e  l o c al  d at as ets,  a n d  t h e
st a n d ar d  d e vi ati o n  Ã h is  c h os e n  s o  a  c ert ai n  l e v el  of   N  D P  is
e ns ur e d. 4 I n  t his    w or k,    w e  c o nsi d er  t h e  g a  m  m a  distri b uti o n
(i n cl u di n g t h e  e x p o n e nti al  distri b uti o n)  a n d t h e  P ar et o t y p e  II
( als o  k n o  w n  as   L o  m a x)  distri b uti o n  f or  T (v )

r ,   w hi c h  ar e   w ell-
est a blis h e d   m o d els i n t h e lit er at ur e,  s e e,  e. g.,  [ 5 6], [ 5 8], [ 5 9].
Si n c e   w e  ass u  m e t h at t h e   R Vs   T

(v )
r ar e i.i. d.,   w e  si  m plif y t h e

n ot ati o n i n t h e  f oll o  wi n g  b y l etti n g  T   ≡   T (v )
r .

T h e al g orit h  m st o ps   w h e n a pr e d e fi n e d c o n v er g e n c e r e q uir e-
m e nt  is  f ul fill e d.    We  r ef er  t o  t h e  al g orit h  m  d et ail e d  a b o v e
as  t h e  s ki p pi n g  s c h e  m e    wit h  p ar a  m et er   ts ki p ,    w hi c h  c a n  b e
o pti  mi z e d  i n   or d er  t o  r e d u c e   eit h er  t h e   c o n v er g e n c e  ti  m e
a n d/ or  t h e  pri v a c y  l e a k a g e.  I n  t h e  s p e ci al  c as e  of  ts ki p =   ∞  ,

3 I n  pr a cti c e,  a c k n o  wl e d g  m e nts  c a n  i d e ntif y  str a g gli n g  n o d es:  if  t h e  t o k e n
is s e nt t o t h e  n e xt  n o d e i n li n e  a n d  n ot  a c k n o  wl e d g e d   wit hi n  a t hr es h ol d ti  m e,
it is  f or  w ar d e d t o t h e  n e xt  n o d e i n li n e,  et c.

4 T h e  n ois e  f oll o  ws   N   0 ,  Ã 2
h ,   w h er e  Ã h =

k
√

8 l o g (1 .2 5/ · )
¸ ,  ̧    >   0,  a n d

0  <  ·   <   1.
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Al g o rit h  m  1:   S ki p pi n g  S c h e  m e

I n p ut:   D at as ets D v a n d  k - Li ps c hit z  c o nti n u o us  c o n v e x
f u n cti o ns  fv :W   ×   R » →   R  , v  (   V  , i n t h e  ûrst
ar g u  m e nt,  n ois e  st a n d ar d  d e vi ati o n  s e q u e n c e
( Ã 1 , . . . ,  Ãh m a x ),  n o d e  p at h  s e q u e n c e
(v (1 ) , . . . , v (h m a x ) ), l e ar ni n g  r at e  p ar a  m et er · ,
s ki p pi n g  p ar a  m et er  ts ki p ,  n u  m b er  of  st e ps h m a x ,
a n d  c o  m  m u ni c ati o n l at e n c y  χ

O ut p ut  : ( Ä h m a x ,   )
1 Ä 0 ←   0,   ←   0,   c  ←   1
2 P   ←   C o  m p. l at.   m o d el  ( g a  m  m a  or  P ar et o t y p e  II)
3 f o r  h  (   [h m a x ]  d o
4 t ∼   P
5 if t ≤   ts ki p t h e n
6 ¸ h ←   · /

√
c

7 Ä h ←

W Ä h −  1 −   ̧ h '  fv (h ) ( Ä h −  1 ; D v (h ) ) +   N h ,   w h er e
N h ∼   N   (0 ,  Ã 2

h Id )
8 ←   +   χ   +   t,   c  ←   c  +   1

9 els e
1 0 Ä h ←   Ä h −  1 ,   ←   +   χ   +   ts ki p

1 1 r et u r n  ( Ä h m a x ,   )

it  r e d u c es t o  a  s c h e  m e  f or   w hi c h t h e t o k e n  al  w a ys   w aits.    We
d e n ot e  b y   p   =   Pr [ T   >   ts ki p ]  t h e  pr o b a bilit y  of  s ki p pi n g  a
n o d e.   T h e  f or  m al  al g orit h  m  is  gi v e n  i n    Al g orit h  m   1 ,    w h er e
t h e  o ut p ut   d e n ot es  its  e x e c uti o n  l at e n c y  a n d   Ä h m a x t h e  û n al
v al u e  of t h e t o k e n  aft er  h m a x st e ps.

We  us e   Al g orit h  m   1  i n t  w o  s p e ci al  c as es  as  o utli n e d  b el o  w
a n d ill ustr at e d i n  Fi g.  1 .  F or  b ot h  s c h e  m es, t h e  n ois e  v ari a n c e
is  û x e d  t hr o u g h o ut  t h e  al g orit h  m,  i. e.,  Ã h =   Ã  ,  ∀  h ,  a n d    w e
ass u  m e,  f or  si  m pli cit y, t h at  h m a x is  a   m ulti pl e  of n  i n t h e  r est
of t h e  p a p er.

• First,   w e  c o nsi d er  a n  u p d at e s c h e d ul e i n   w hi c h t h e  n o d es
i n  V   ar e  pr o c ess e d  al o n g  a  l o gi c al  ri n g,  i. e.,  t h e  n o d e
p at h  s e q u e n c e   of    Al g orit h  m   1   is  (v (1 ) , . . . , v (h m a x ) )   =
((v 1 , . . . , v n ), (v 1 , . . . , v n ), . . . , (v 1 , . . . , v n )).    T h e  c orr e-
s p o n di n g  s c h e  m e is  d e n ot e d  b y  S k i p - R i n g .

• S e c o n d,    w e  c o nsi d er  a   r a n d o  miz e d  v ersi o n  of  t h e  l o g-
i c al  ri n g,  d e n ot e d  b y  S k i p - R a n d - R i n g .    E a c h  r o u n d
o v er   t h e   ri n g   c a n   b e   s e e n   as   a   r a n d o  m     w al k   o n
t h e   s et   of   n o d es,   b ut    wit h o ut   r e pl a c e  m e nt.   F or   e a c h
r o u n d,  t h e  r a n d o  m    w al k  pr o c e d ur e  is  r est art e d.    H e n c e,
t h e   n o d e   p at h  s e q u e n c e   b e c o  m es  (v (1 ) , . . . , v (h m a x ) )   =
((v π 1 (1 ) , . . . , v π 1 (n ) ), (v π 2 (1 ) , . . . , v π 2 (n ) ), . . . ,  (v π h m a x / n (1 ) ,
. . . , v π h m a x / n (n ) ))  w h er e   π 1 , . . . ,  πh m a x / n ar e  i n d e p e n d e nt
r a n d o  m  p er  m ut ati o ns  o v er  [n ].

As  a   û n al  r e  m ar k,    w e    m e nti o n   h er e  t h at  r es ults   o n  t h e
c o  m p ut ati o n   a n d   c o  m  m u ni c ati o n   l at e n c y   f or   t h e   s ki p pi n g
s c h e  m e i n   Al g orit h  m  1  will b e  pr es e nt e d l at er i n  S e cti o n   VI-  A  .

I  V.    C O  N  V  E  R  G  E  N  C  E A N  A  L  Y S I S

H er e,    w e  pr o vi d e  a  c o n v er g e n c e  r es ult  f or  t h e  t  w o  c o n-
si d er e d  s c h e  m es  b y  a d a pti n g  t h e  cl assi c al  c o n v er g e n c e  r es ult
of   [ 5 2,   T h.   2]   t o   d e c e ntr ali z e d  l e ar ni n g    w h er e   n o d es   ar e

pr o c ess e d  a c c or di n g  t o  a    M ar k o v  c h ai n  a n d  f or    w hi c h  t h e
(s u b) gr a di e nt  esti  m at e  i n  e a c h  st e p  is  bi as e d,  b ut  c o n v er g es
t o  u n bi as e d  e x p o n e nti all y  f ast,    w hi c h  ar e  t h e    m ai n  t  w o  n e  w
t e c h ni c aliti es  of t h e  pr o of.5 A d diti o n all y, t h e  n u  m b er  of t o k e n
u p d at es  is  r a n d o  m  ( d e p e n di n g  o n  t h e  s ki p pi n g  pr o b a bilit y),
a n d   w e  n e e d  t o  a v er a g e  o v er  it.   N ot e  t h at,  as  i n  [ 5 2,   T h.  2],
fv , v  (   V  , is  n ot  r e q uir e d t o  b e β -s  m o ot h  or  e v e n  k - Li ps c hit z
c o nti n u o us,  as   w e  o nl y  n e e d t h e (s u b) gr a di e nts t o  b e  b o u n d e d
(  w hi c h f oll o  ws fr o  m  k - Li ps c hit z n ess),  a n d  als o t h at  o ur r es ult
pr o vi d es  a  g u ar a nt e e  o n t h e  p erf or  m a n c e  of t h e l ast  u p d at e  of
t h e t o k e n i nst e a d  of  f or t h e  a v er a g e  of  all t o k e n  v al u es.

T h e or e  m  1:   U n d er    Ass u  m pti o n   1 ,  if  t h e   di a  m et er   of  W
is  d W ,  t h e  e x p e ct e d  diff er e n c e  b et  w e e n  t h e    mi ni  m u  m  v al u e
f ( Ä ∗ ; ·)  a n d t h at  fr o  m   Al g orit h  m  1  wit h  a n  ar bitr ar y l e ar ni n g
r at e  p ar a  m et er  ·   >  0  aft er  h m a x st e ps is  b o u n d e d  as

E   f ( Ä h m a x ; ·) −   f ( Ä ∗ ; ·)   ≤

h m a x

h =  0

h m a x

h
(1  −   p ) h p h m a x −  h e h

=   O
l o g(h m a x )
√

h m a x
,

w h er e   ∀  h  >   0,

e h

d 2
W +   · 2 (k 2 +   d Ã 2 ) (2  +   l o g(h  +   1 ))

·
√

h  +   1

+   d W k
√

n
1

h  +   1

h +  1

i=  1

|¼ 1 |i +

h

j=  1

1

j(j +   1 )

h +  1

i=  h +  1 −  j

|¼ 1 |i

a n d   e 0 d W k ,  |¼ 1 |   = 1 −  p

(1 +  p 2 )−  2 p  c os ( 2 π
n )

a n d   0   <   p   <

1  f or   S k i p - R i n g ,    w hil e  ¼ 1 0   a n d   0   ≤   p   <   1  f or
S k i p - R a n d - R i n g .

Pr o of:   S e e    A p p e n di c es   A   a n d    E  i n  t h e   s u p pl e  m e nt ar y
m at eri al  f or t h e  û nit e  a n d  as y  m pt oti c  r es ults,  r es p e cti v el y.

N ot e t h at t h e as y  m pt oti c c o n v er g e n c e r at e is t h e s a  m e as t h at
of  [ 5 2,  T h.  2],   w hil e  b ei n g  a l o g(h m a x )-f a ct or   w ors e  c o  m p ar e d
t o [ 6 0,   T h.  1].   T h e  l att er  is  d u e  t o  1)  t h e  ass u  m pti o n  t h at Ã h

d e c a ys t o  z er o   wit h  h  [ 6 0,  e q.  ( 1 6)],  a n d  2) t h at  c o n v er g e n c e
t h er e is  pr o v e d  f or t h e  r u n ni n g  a v er a g e  of t h e t o k e n.

I nt er esti n gl y,   t h e   as y  m pt oti c   b e h a vi or   of   t h e   b o u n d   i n
T h e or e  m   1   is  t h e   s a  m e  f or   b ot h  ¼ 1 =   0   a n d   ¼ 1 >   0.
H e n c e,   a   bi as e d   (s u b) gr a di e nt   esti  m at e   t h at   c o n v er g es   t o
u n bi as e d  e x p o n e nti all y  f ast  d o es  n ot i n ü u e n c e t h e  as y  m pt oti c
c o n v er g e n c e  r at e.    M or e o v er,  i n   T h e or e  m  1 ,    w e  d o  n ot  all o  w
f or  p   =   0  i n  t h e   S k i p - R i n g   s c h e  m e  as  i n  t his  c as e  t h e
st o c h asti c  (s u b) gr a di e nt  is   bi as e d,  e v e n  as y  m pt oti c all y,  a n d
h e n c e  a  diff er e nt  pr o of t e c h ni q u e is  r e q uir e d.   T h e  as y  m pt oti c
c o n v er g e n c e r at e i n t his  s p e ci al  c or n er  c as e is l eft  o p e n.   N ot e
t h at t h e  pr o of  of [ 5 2,  T h.  2] c a n n ot  b e  a d a pt e d t o t his s c e n ari o
as it  r e q uir es  a n  u n bi as e d  st o c h asti c  (s u b) gr a di e nt.

R e  m ar k  1:   F or  t h e  u nif or  m  r a n d o  m    w al k  s c h e  m e  c o nsi d-
er e d i n  [ 1 1], t h e   m ar gi n al  distri b uti o n  of  visit e d  n o d es  at  e a c h
st e p  is  u nif or  m,  as  it  is   wit h  S k i p - R a n d - R i n g .   T h us,  t h e

5 T h er e  ar e  s e v er al  pr e vi o us    w or ks  t h at  pr o vi d e  c o n v er g e n c e  r es ults  f or
M ar k o v  c h ai n  ( n ois y)  st o c h asti c  gr a di e nt  d es c e nt,  e. g.,   [ 6 0], [ 6 1].   H o  w e v er,
all  of  t h es e    w or ks  r e q uir e  t h at   Ã h d e c a ys  t o  z er o    wit h   h ,    w hi c h    m e a ns  a
si g ni û c a ntl y  hi g h er l e a k a g e  of  pri v at e  d at a.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n S e pt e m b er 2 6, 2 0 2 5 at 2 0: 3 2: 3 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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pr o of  of   T h e or e  m  1  a p pli es t o  b ot h t h es e s c h e  m es   wit h  λ 1 0
a n d  0  ≤   p  <   1.

V.   P R I  V A  C  Y A N  A  L  Y S I S

I n  t his  s e cti o n,    w e  pr es e nt  r es ults  o n  t h e  pri v a c y  l e a k a g e
l e v el  of  t h e  s ki p pi n g  s c h e  m e  f or  b ot h  u p d ati n g  s c h e d ul es  of
t h e t o k e n  o utli n e d i n  S e cti o n III-  A, i. e., f or  b ot h  a  û x e d  a n d  a
r a n d o  mi z e d  l o gi c al  ri n g  o n  t h e  s et  of  n o d es  V  .    We  hi g hli g ht
h er e  t h at  c o  m p ar e d  t o   [ 1 1],  t h at  o nl y  c o nsi d ers  a  c o nst a nt
l e ar ni n g  r at e  a n d  als o  a  diff er e nt  r a n d o  mi z e d  p at h  ( a n d  n o
û x e d  p at h),  o ur  r es ults  a p pl y  t o  a  d e cr e asi n g  l e ar ni n g  r at e  of
t h e  f or  m ¹ h =    ̧/

√
h  ( as  s p e ci û e d i n   Al g orit h  m  1 ).

T h e   f ull   pr o of,     w hi c h   c a n   b e   f o u n d   i n     A p p e n di x   B  ,
r e v ol v es ar o u n d  u p p er  b o u n di n g t h e   R é n yi  di v er g e n c e  b et  w e e n
O v (A  (D  ))  a n d   O v (A  (D   )),  D   ∼ u D   ,  f or  a n y  disti n ct  p air
of   us ers   u , v ,   usi n g   t o ols   (i n cl u di n g   a   c o  m p ositi o n   t h e o-
r e  m   f or    R é n yi    D P   (  R  D P)   [ 6 2,   Pr o p ositi o n   1])   fr o  m   t h e
fr a  m e  w or k   of   pri v a c y   a  m pli û c ati o n   b y  it er ati o n   [ 1 3].   T h e
r es ulti n g   b o u n d  c a n   b e  tr a nsf or  m e d  i nt o  a   b o u n d   o n    N  D P
usi n g   [ 6 2,   Pr o p ositi o n   3]  a n d  f urt h er   o pti  mi z e d.    All o  wi n g
f or  a  d e cr e asi n g  l e ar ni n g  r at e  c o nstit ut es  t h e    m ai n  t e c h ni c al
c o ntri b uti o n  of t h e  pr o of.

T h e or e  m  2:   L et   ·   >   0   a n d   0   <   ¶   <   1.    T h e n,   u n d er
Ass u  m pti o ns   1  a n d  2 , t h e S k i p - R i n g  s c h e  m e  o n  a ri n g   wit h
n  n o d es a n d   wit h l e ar ni n g r at e  p ar a  m et er  0  <  ̧    ≤ 2/ ´ a c hi e v es
( · s ki p , ¶ +   ¶  )-  N  D P  f or  all  ¶   ∈   (0 , 1]   wit h

· s ki p =   ·
h̃  l o g( 1/ ¶ )

l o g( 1 .2 5/ ¶ )
+

· 2 h̃

4 l o g ( 1 .2 5/ ¶ )
,

w h er e h̃ h m a x (1 −  p )/ n + 3 h m a x (1 −  p )/ n l o g( 1/ ¶ )   a n d  0  ≤   p  <   1
is t h e  pr o b a bilit y  of  s ki p pi n g  a  n o d e.

T h e  f oll o  wi n g  t h e or e  m  c h ar a ct eri z es  t h e   pri v a c y  l e a k a g e
l e v el · s ki p of t h e  S k i p - R a n d - R i n g   s c h e  m e.

T h e or e  m  3:   L et   ·   >   0   a n d   0   <   ¶   <   1.    T h e n,   u n d er
Ass u  m pti o ns   1  a n d  2 ,  t h e  S k i p - R a n d - R i n g   s c h e  m e  o n  a
ri n g   wit h n  n o d es a n d   wit h l e ar ni n g r at e p ar a  m et er 0  <  ̧    ≤ 2/ ´

a c hi e v es  ( · s ki p , ¶ +   ¶  )-  N  D P  f or  all  ¶   ∈   (0 , 1]   wit h

· s ki p =
· 2 a ³

2 l o g ( 1 .2 5/ ¶ )
+

l o g( 1/ ¶ )

³  −   1
,

w h er e

a
1

n  −   1

h̃ −  1

r =  0

n −  1

d =  1

d

h =  1

h d
h p d −  h (1  −   p ) h

µ r ,h
,

µ r ,h 4 (1  +   r · h )   ·
√

1  +   r · h  +   h  −
√

1  +   r · h
2
,

h̃ h m a x (1 −  p )/ n + 3 h m a x (1 −  p )/ n l o g( 1/ ¶ ) ,

³ mi n

⎛

¿
√

2 l o g ( 1/ ¶ ) l o g( 1 .2 5/ ¶ )

·
√

a
+   1 ,

1 +
1 6 l o g ( 1 .2 5 /¶ )

· 2 +  1

2

À

⎠ ,

a n d  0  ≤   p  <   1 is t h e  pr o b a bilit y  of  s ki p pi n g  a  n o d e. 6

6 F or t h e  u nif or  m  r a n d o  m   w al k  s c h e  m e  c o nsi d er e d i n   [ 1 1],  a  si  mil ar  r es ult
c a n  b e  d eri v e d (s e e   T h e or e  m  4 i n   A p p e n di x   C i n t h e s u p pl e  m e nt ar y   m at eri al).

R e  m ar k  2:   It   f oll o  ws   fr o  m    T h e or e  ms   2   a n d   3   t h at  t h e
as y  m pt oti c  b e h a vi or  of t h e  pri v a c y l e a k a g e l e v el  · s ki p f or  b ot h
S k i p - R i n g   a n d  S k i p - R a n d - R i n g   is  li n e ar  i n  h m a x ,  i. e.,
· s ki p =   O  (h m a x ),  f or  0 ≤   p  <   1.

As  a  û n al  r e  m ar k,  t h e  pri v a c y  a n al ysis  r eli es  o n  t h e  e x a ct
n u  m b er  of  u p d at es  p erf or  m e d.  S ki p pi n g i ntr o d u c es  u n c ert ai nt y
o n    w hi c h  n o d es  p arti ci p at e d  a n d  c a n  b e  s e e n  as  a    w a y  t o
r e ali z e  s u bs a  m pli n g  [ 1 2]  o n t h e  ü y.

VI.    E X P  E  R I   M  E  N  T S

H er e,    w e   ûrst   pr es e nt  s o  m e  r es ults   o n  t h e   c o  m p ut ati o n
a n d   c o  m  m u ni c ati o n   l at e n c y   f or   t h e   s ki p pi n g   s c h e  m e   i n
Al g orit h  m   1  t h at   will  b e  us e d i n t h e  n u  m eri c al  r es ults.

S e c o n d,    w e  p erf or  m  a  c o  m p aris o n  b as e d  o n  t h e  a n al yti c al
r es ults  fr o  m  S e cti o ns  I  V  a n d  V  ,  b ef or e  t ur ni n g  t o  tr ai ni n g  a
l o gisti c r e gr essi o n   m o d el  usi n g t h e  d at as et i n [ 5 3]  a n d  a  d e e p
n e ur al  n et  w or k f or i  m a g e  cl assi û c ati o n  usi n g t h e   M  NI S T  [ 5 4]
a n d    CI F A  R- 1 0   [ 5 5]   d at as ets.   Fi n all y,    w e   c o  m p ar e    wit h   a
p ar all el  a n d  a  c e ntr ali z e d  f e d er at e d l e ar ni n g  a p pr o a c h.

A.    C o  m p ut ati o n  a n d   C o  m  m u ni c ati o n  L at e n c y

T h e   a v er a g e   t ot al   l at e n c y   of   t h e   s ki p pi n g   s c h e  m e   i n
Al g orit h  m   1  is  gi v e n  b y t h e  f oll o  wi n g l e  m  m a.

L e  m  m a  1:   T h e   e x p e ct e d   t ot al   l at e n c y   f or   t h e   s ki p pi n g
s c h e  m e i n   Al g orit h  m  1  is

h m a x χ   +
ts ki p

0
t d T (t) +   ts ki p 1  − T (ts ki p )   ,

w h er e T (t)   Pr [ T   ≤   t]  a n d T (ts ki p ) =   1  −   p .
If t h e n u  m b er of h o ps h m a x is l ar g e e n o u g h,   w e   w o ul d e x p e ct

s h ort er ti  m es  b et  w e e n t o k e n  u p d at es ( all  ot h er  pr o p erti es  b ei n g
t h e  s a  m e)  t o  b e  b e n e û ci al  f or  c o n v er g e n c e.  I n  ot h er    w or ds,
e x p e ct e d  ti  m e  b et  w e e n  t  w o  c o ns e c uti v e  visits  t o    Li n e  7  i n
Al g orit h  m   1  s h o ul d  b e   mi ni  mi z e d.

L e  m  m a  2:   T h e  v al u e  of   ts ki p t h at    mi ni  mi z es  t h e  a v er a g e
ti  m e  b et  w e e n  t  w o  c o ns e c uti v e  u p d at es  of  t h e  t o k e n  is  gi v e n
b y t h e  s ol uti o n  of t h e  o pti  mi z ati o n  pr o bl e  m 7

ar g   mi n
ts ki p

χ   +
ts ki p
0 t d T (t) +   ts ki p 1  − T (ts ki p )

T (ts ki p )
.

B.    C o n v er g e n c e   Vers us   Pri v a c y  a n d   Av er a g e  L at e n c y

We  û x   ·  =   1,  ¶  =   1 0 −  6 , ¶   =   1 0 −  6 , d  =   8,  d W =   1 0,  k  =   1,
 ̧ = 6/ 1 0 , a n d χ   = 1/ 1 0 0 .   R es ults ar e pr es e nt e d f or t  w o diff er e nt
v al u es  of t h e  n u  m b er  of  n o d es  n ,  n a  m el y  f or  a  s  m all  n u  m b er
of  n  =   1 0  n o d es  a n d  a l ar g e  n u  m b er  of  n  =   5 0 0  n o d es. 8 T h e
t hr e e  c h ar a ct eristi cs   w e  ar e i nt er est e d i n  ar e:  a v er a g e l at e n c y,
e x p e ct e d  err or  b o u n d,  a n d  pri v a c y l e a k a g e l e v el  · s ki p .   We  ûrst
c o nsi d er  n  =   1 0  n o d es.   T h e t o p  r o  w  of  Fi g.  2  pl ots  e x p e ct e d
err or b o u n d (l eft  y - a xis) a n d pri v a c y l e a k a g e l e v el (ri g ht y - a xis)

I n  f a ct,  t h e  o nl y  disti n cti o n  li es  i n  a  diff er e nt  d e û niti o n  of  t h e  p ar a  m et er  a .
H o  w e v er,  as  s h o  w n t h er e, t h e  pri v a c y l e a k a g e l e v el   · s ki p is  hi g h er  c o  m p ar e d
t o t h e S k i p - R a n d - R i n g   s c h e  m e.

7 N ot e t h at t h e   o pti  m al  v al u e  of  ts ki p c a n i n c or p or at e t h e  pr o b a bilit y  of li n k
f ail ur es  a n d  c h a n n el  n ois e  b et  w e e n  n o d es  b y  c h a n gi n g t h e  distri b uti o n  of  T .

8 I n [ 6 3] a n d  [ 6 4], [ 6 5], a r at h er s  m all  n u  m b er  of  n o d es (n  =   2 5 a n d  n  =   1 5
or  2 0,  r es p e cti v el y)    w as  us e d  i n  all  n u  m eri c al  r es ults,    w hil e  i n   [ 1 1], [ 1 6]  a
r at h er l ar g e  n u  m b er  of  n o d es  (n  =   1 0 0 0,  2 0 0 0,  or  4 0 0 0 )  w as  us e d.
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Fi g.  2.     E x p e ct e d  err or  b o u n d  ( d e cr e asi n g  c ur v es;   T h e or e  m   1 )  a n d  pri v a c y  l e a k a g e  l e v el  ε s ki p (i n cr e asi n g  c ur v es;   T h e or e  ms  2   a n d  3 )  vs  a v er a g e  l at e n c y
( L e  m  m a  1 )  f or  n  =   1 0  (t o p  r o  w)  a n d  n  =   5 0 0  ( b ott o  m  r o  w).  S oli d li n es  ar e  f or  a  fi x e d  ri n g  ( S k i p - R i n g ),   w hil e  d as h e d li n es  ar e  f or  S k i p - R a n d - R i n g .

v ers us   a v er a g e  l at e n c y,   a n d  t h e  t o p  r o  w   of   Fi g.   3   s h o  ws
pri v a c y l e a k a g e l e v el  v ers us  e x p e ct e d  err or  b o u n d, ill ustr ati n g
t h e i n h er e nt tr a d e- off  b et  w e e n  a v er a g e l at e n c y,  e x p e ct e d  err or
b o u n d,  a n d  pri v a c y  l e a k a g e  l e v el.   T h e  pl ots  ar e  f or  t h e  t hr e e
l at e n c y   m o d els:  e x p o n e nti al   wit h   m e a n  1,  g a  m  m a   wit h  s h a p e
1/ 4 a n d  s c al e  1,  a n d  P ar et o  t y p e  II   wit h  s h a p e  3  a n d  s c al e  2
( as  us e d  i n  [ 5 9]).   T h e  pr o b a bilit y  of  s ki p pi n g  p   =   Pr [ T   >
ts ki p ]  ∈  { 1 0

−  4 , 1/ 2 , 7/ 1 0 },  si n c e  p   =   1 0 −  4 a n d 7/ 1 0 ar e  cl os e
t o  t h e   v al u es   of  p   c orr es p o n di n g  t o  t h e   o pti  m al   v al u es   of
ts ki p gi v e n  b y   L e  m  m a   2 ,  r es p e cti v el y  0/ 0 .7 1 0 / 0 .7 3 7  f or  t h e
e x p o n e nti al/ g a  m  m a/ P ar et o  d el a y    m o d els,    w hil e   p   = 1/ 2 is  a
v al u e i n  b et  w e e n. 9

As  c a n  b e  s e e n  fr o  m  t h e  pl ots,   p   =   1 0 −  4 ( virt u all y,  n o
s ki p pi n g)  gi v es  t h e    w orst  e x p e ct e d  err or  b o u n d  f or  all  c o n-
si d er e d l at e n c y   m o d els, f or  b ot h  s c h e  m es.   T his is  p arti c ul arl y
e vi d e nt f or  S k i p - R i n g   wit h   n  =   5 0 0 (s e c o n d r o  w  of  pl ots),
w h er e  t h e  c o n v er g e n c e  r at e  is  n oti c e a bl y  sl o  w  d u e  t o   |λ 1 |   ≈
1  −   1 0 −  8 ,    w hi c h  is  v er y  cl os e  t o  1.    O n  t h e  ot h er  h a n d,  t his
v al u e  of  p  pr o vi d es t h e  b est  pri v a c y l e a k a g e l e v el f or t h e s a  m e
a v er a g e  l at e n c y.    H e n c e,  t h er e  is  a  tr a d e- off  b et  w e e n  pri v a c y
a n d  a c c ur a c y  of  t h e  al g orit h  m  ( cf.  t h e  t o p  r o  w  of  pl ots  i n
Fi g.  3 ), a n d o n e n e e ds t o c h o os e t h e s ki p pi n g pr o b a bilit y b as e d
o n  a  p arti c ul ar  o pti  mi z ati o n  pr o bl e  m.

T h e   pri v a c y- v ers us- err or   tr a d e- offs   l o o k   si  mil ar   f or   all
l at e n c y    m o d els  c o nsi d er e d.  S k i p - R a n d - R i n g   gi v es  b ett er
tr a d e- off  c ur v es  ( es p e ci all y  f or  p  =   1 0 −  4 )  f or  s  m all er  v al u es
of e x p e ct e d err or  b o u n d,   w hil e t h e sit u ati o n c h a n g es f or  hi g h er
v al u es   of  err or  (i. e.,  at  t h e  i niti al  st a g es   of    Al g orit h  m   1 ’s

9 We  h a v e  pi c k e d   p  =   1 0 −  4 i nst e a d  of p  =   0  as   T h e or e  m  1  r e q uir es  p  >   0
i n t h e S k i p - R i n g   s c h e  m e.

e x e c uti o n).   H e n c e,  p at h  r a n d o  mi z ati o n i  m pr o v es t h e tr a d e- off
i n t h e l o n g r u n,  b ut   mi g ht  b e  h ar d er t o r e ali z e i n  a r e al-  w orl d
i  m pl e  m e nt ati o n  as it   w o ul d  r e q uir e  a  f ull   m es h t o p ol o g y.1 0

O n  t h e   c o ntr ar y,  t h e   S k i p - R i n g   c ur v e  f or   p   =   1 0 −  4

is  t h e    w orst,    w hi c h    m e a ns  t h at  s ki p pi n g  h el ps.    Als o,  t h er e
is  n ot    m u c h  diff er e n c e  b et  w e e n  t h e  S k i p - R i n g   c ur v es  f or
p   = 1/ 2 a n d   p   = 7/ 1 0 (t h e y  ar e  ar e  al  m ost  o n  t o p  of  e a c h
ot h er  a n d  h e n c e  dif fi c ult  t o  disti n g uis h).    O n  t h e  ot h er  h a n d,
S k i p - R a n d - R i n g   f a v ors  s  m all er  v al u es  of  p   (i. e.,  l ar g er
ti  m e o ut)  at t h e  e x p e ns e  of  a  hi g h er tr ai ni n g l at e n c y  as  s h o  w n
i n t h e  n e xt  s u bs e cti o n.

I n  t h e  b ott o  m  r o  ws  of  Fi gs.  2   a n d  3 ,    w e  s h o  w  t h e  c orr e-
s p o n di n g  r es ults  f or  n  =   5 0 0  n o d es.   As  e x p e ct e d, t h e  r el ati v e
or d er  of t h e  c ur v es  r e  m ai ns  f or t h e   m ost  p art t h e  s a  m e  as  f or
n   =   1 0  n o d es  ( c o  m p ar e    wit h  t h e  t o p  r o  ws  of  t h e  fi g ur es).
We  als o  o bs er v e  fr o  m  Fi g.   3  t h at  f or  a  gi v e n  e x p e ct e d  err or
b o u n d  t h e  pri v a c y  l e a k a g e  l e v el   ε s ki p is  l o  w er    wit h  n  =   5 0 0
t h a n    wit h  n   =   1 0  n o d es,  i. e.,  pri v a c y  a  m pli fi c ati o n  ki c ks  i n
t o  a  l ar g er  e xt e nt    wit h  a  l ar g er  n u  m b er  of  n o d es.    Als o,  t h e
S k i p - R a n d - R i n g   s c h e  m e  s h o  ws i n  g e n er al  a   m u c h  bi g g er
pri v a c y  a d v a nt a g e  c o  m p ar e d  t o  t h e   S k i p - R i n g   s c h e  m e  as
t h e  pri v a c y a  m pli fi c ati o n eff e ct is str o n g er   wit h r a n d o  mi z ati o n.
Fi n all y,  n ot e  t h e    m or e  pr o n o u n c e d  st air c as e  b e h a vi or  f or  t h e

1 0 Stri ctl y  s p e a ki n g  a f ull   m es h t o p ol o g y is  als o r e q uir e d f or   S k i p - R i n g ,
as  f or  a  hi g h  s ki p pi n g  pr o b a bilit y   p   t h er e  c o ul d  p ot e nti all y  b e  a  n e e d  f or
e v er y  si n gl e  n o d e t o  b e  a bl e t o  c o  m  m u ni c at e   wit h  all  ot h er  n o d es,   w hil e   wit h
n o  s ki p pi n g  o nl y  o n e  o ut p ut  c o  m  m u ni c ati o n  c h a n n el  p er  n o d e  is  r e q uir e d.
H o  w e v er, as   p  is c o nst a nt, a n d t h e  u n a v ail a bilit y is ass u  m e d i n d e p e n d e nt fr o  m
o n e  n o d e t o  a n ot h er,  a f e  w  e d g es  s h o ul d  g u ar a nt e e t h at  at l e ast  o n e  n o d e   will
a ns  w er.   T h e  pr o b a bilit y t h at   m or e t h a n  l e d g es   w o ul d  b e r e q uir e d is  p l,   w hi c h
q ui c kl y  b e c o  m es  s  m all,  e. g., f or  p  = 1/ 2 a n d  1 0  e d g es, t h e  pr o b a bilit y is l ess
t h a n  1 0−  3 .
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Fi g.  3.    Pri v a c y l e a k a g e l e v el   · s ki p vs  e x p e ct e d  err or  b o u n d  f or  n  =   1 0  (t o p  r o  w)  a n d  n  =   5 0 0  ( b ott o  m  r o  w).  S oli d li n es  ar e  f or  a  fi x e d  ri n g  ( S k i p - R i n g ),
w hil e  d as h e d li n es  ar e  f or   S k i p - R a n d - R i n g .

pri v a c y  l e a k a g e  l e v el.   T his  is  d u e  t o  t h e  f a ct or (1 −  p )/ n i nsi d e
t h e c eili n g f u n cti o n i n t h e  d e fi niti o n  of h̃  i n   T h e or e  ms 2  a n d  3 ,
w hi c h  als o  e x pl ai ns   w h y t h e  st e ps  ar e   wi d er  f or  a l ar g er   n .

C.    E  m piri c al   R es ults

We  c o nsi d er  b ot h  tr ai ni n g  a  l o gisti c  r e gr essi o n    m o d el  a n d
i  m a g e  cl assi fi c ati o n  tr ai n e d  o n  t h e    M  NI S T  [ 5 4]  a n d   CI F A  R-
1 0  [ 5 5]  d at as ets.

1)   L o gisti c    R e gr essi o n:   F or  l o gisti c  r e gr essi o n  t h e  l o c al

l oss f u n cti o ns  ar e fv ( τ , D v ) = 1/ |D v | (x ,y )∈ D v
l o g(1 +  e −  y τ x ),

w h er e   x  ∈   R d (d x =   d )  a n d  y  ∈  {  − 1 , 1 }  (d y =   1 ).   We   us e
a  bi n ari z e d  v ersi o n  of  t h e    U  CI  h o usi n g  d at as et   [ 5 3],  tr yi n g
t o  pr e di ct  bi n ar y  v ari a bl e  y  (  w h et h er  h o us e  pri c e  is  a b o v e  a
t hr es h ol d) fr o  m  ot h er f e at ur es, x .   T h e f e at ur es ar e st a n d ar di z e d
a n d   w e f urt h er  n or  m ali z e  e a c h  d at a  p oi nt t o  h a v e  u nit 2 - n or  m
s o t h at t h e l oss f u n cti o ns  fv ( τ ; D v )  ar e  1- Li ps c hit z  c o nti n u o us
(i. e.,  k   =   1 ).    T h e  d at as et  is  s plit  u nif or  ml y  at  r a n d o  m  i nt o
a  tr ai ni n g  s et    wit h   8 0  %   of  t h e   d at a   p oi nts   a n d   a  t est  s et
wit h   2 0  %   of  t h e   p oi nts.    M or e o v er,  t h e  tr ai ni n g   d at as et  is
f urt h er  r a n d o  ml y  s plit  a cr oss  t h e  n  n o d es  i n  V  .   We  us e d  t h e
S k i p - R a n d - R i n g  s c h e  m e (si  mil ar r es ults ar e  o bt ai n e d   wit h
t h e  S k i p - R i n g   s c h e  m e)    wit h  t h e  s a  m e   p ar a  m et ers  as  i n
S e cti o n   VI-  B  ,   b ut   usi n g  a    mi ni- b at c h  i  m pl e  m e nt ati o n    wit h
b at c h es  of  si z e  1 0 0  a n d  8  a n d   wit h  a n i niti al l e ar ni n g  r at e  of
 ̧ = 6/ 1 0 a n d   ̧ = 3/ 1 0 f or,  r es p e cti v el y,  n  =   1 0  a n d  n  =   1 0 0 0
n o d es  i n  or d er  t o  s p e e d  u p  t h e  l e ar ni n g.    T h e  c h os e n    mi ni-
b at c h  si z e  is  a  c o  m pr o  mis e  b et  w e e n  t h e  t  w o  c or n er  c as es:  a
mi ni- b at c h  si z e  of  1 is  dif fi c ult t o  p ar all eli z e,   w h er e as  a l ar g e
mi ni- b at c h  si z e   m a y  e x c e e d t h e  n o d es’ li  mit e d  p ar all eli z ati o n
c a p a biliti es.

F or   n   =   1 0  n o d es,  t h e  r es ults  of  t h e  tr ai ni n g  ar e  s h o  w n
i n  t h e  t o p  pl ots  i n  Fi g.  4 ,    w hi c h  s h o  w  t h e  pr e di cti o n  err or
r at e,  i. e.,  t h e  r ati o   of  i n c orr e ct   pr e di cti o ns   o n  t h e  t est  s et,
v ers us  a v er a g e  l at e n c y  fr o  m   L e  m  m a  1  f or  t h e  s a  m e  s ki p pi n g
pr o b a biliti es  as  i n  t h e  c orr es p o n di n g  pl ots  i n  Fi gs.   2   a n d  3 .
We  o bs er v e t h at  s ki p pi n g  a c hi e v es  a  cl e ar  s p e e d- u p  c o  m p ar e d
t o  n o  s ki p pi n g,  e x c e pt  f or  t h e  e x p o n e nti al  d el a y    m o d el  ( as
pr e di ct e d    w ell   b y    L e  m  m a   2 ,    w hi c h   s u g g ests   a n   o pti  m al
ts ki p =   +   ∞   f or  t h e  e x p o n e nti al    m o d el).    T his  r h y  m es    w ell
wit h  t h e or eti c al  e x p e ct e d  err or  b o u n ds  ( d as h e d  c ur v es  of  t h e
pl ots  i n   Fi g.   2 ).    As  c a n  b e  s e e n  fr o  m  t h e  pl ots  of   Fi g.  3 ,
n o  s ki p pi n g  i n  g e n er al  pr o vi d es  a  sli g htl y  hi g h er  pri v a c y  f or
S k i p - R a n d - R i n g .  I n  t h e  s e c o n d  r o  w  of  pl ots  i n   Fi g.  4 ,
w e  s h o  w  t h e  c orr es p o n di n g  r es ults   wit h   n  =   1 0 0 0  n o d es.   As
e x p e ct e d, t h e   m ai n c o n cl usi o ns r e  m ai n t h e s a  m e as f or  n  =   1 0.
I n  or d er t o  h a v e s  m o ot h c ur v es t h e a v er a g e  of  2 0 0 i n d e p e n d e nt
r u ns is  pr es e nt e d  f or  b ot h  n  =   1 0  a n d  n  =   1 0 0 0  n o d es.

2)  I  m a g e    Cl assi fi c ati o n:   We   c o nsi d er   b ot h   t h e     M  NI S T
a n d    CI F A  R- 1 0   d at as ets.    B ot h   d at as ets   ar e   c o  m  m o nl y- us e d
b e n c h  m ar ks   a n d   ar e   c o  m pris e d   of   1 0   cl ass es   of   i  m a g es;
M  NI S T  b ei n g  c o  m pris e d  of  2 8   ×   2 8  pi x els  gr a ys c al e  i  m a g es
of   h a n d  writt e n   di gits  fr o  m   0  t o   9,    w hil e    CI F A  R- 1 0   b ei n g
c o  m pris e d  of  3 2  ×   3 2  pi x els  c ol or  i  m a g es.    T h e  n u  m b er  of
tr ai ni n g  s a  m pl es  is  6 0 0 0 0  (6 0 0 0  f or  e a c h  di git)  a n d  5 0 0 0 0
(5 0 0 0 f or  e a c h  cl ass) f or t h e    M  NI S T  a n d   CI F A  R- 1 0  d at as ets,
r es p e cti v el y.   As  f or  l o gisti c  r e gr essi o n  i n  S e cti o n  VI-  C 1  ,  t h e
tr ai ni n g   d at as et  is  f urt h er  r a n d o  ml y  s plit   a cr oss   a   n u  m b er
of   n o d es   n   i n  V  .    W hil e    w e   us e d  n   =   1 0  a n d   n   =   1 0 0 0
n o d es  i n  S e cti o n   VI-  C 1  ,   w e   us e  n  =   6 0  a n d   n  =   5 0  n o d es,
r es p e cti v el y,  f or  t h e    M  NI S T  a n d    CI F A  R- 1 0  d at as ets.    As  f or
l o gisti c  r e gr essi o n,    w e  us e  t h e  S k i p - R a n d - R i n g   s c h e  m e
wit h  t h e  s a  m e   p ar a  m et ers   as  i n   S e cti o n   VI-  B  ,   b ut    wit h   a
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Fi g.  4.    Pl ots (fr o  m t o p):  1) l o gisti c r e gr essi o n   m o d el tr ai ni n g   wit h   n  =   1 0  n o d es,  s h o  wi n g  a c c ur a c y ( o n t h e t est  s et)  vs  a v er a g e l at e n c y;  2) l o gisti c r e gr essi o n
m o d el tr ai ni n g   wit h   n  =   1 0 0 0  n o d es;  3) i  m a g e  cl assi fi c ati o n  usi n g t h e    M  NI S T  d at as et   wit h  n  =   6 0  n o d es;  4) i  m a g e  cl assi fi c ati o n  usi n g t h e   CI F A  R- 1 0  d at as et
wit h   n  =   5 0  n o d es.  First  a n d  s e c o n d  r o  w  of  pl ots:  e a c h  c ur v e is  a n  a v er a g e  of  2 0 0 i n d e p e n d e nt  r u ns  f or   S k i p - R a n d - R i n g ,   w hil e  f or t h e t hir d  a n d  f o urt h
r o  w  of  pl ots  a n  a v er a g e  of, r es p e cti v el y,  3 0  a n d  6  r u ns is  pr es e nt e d  (S k i p - R a n d - R i n g ).   H ori z o nt al  a n d  v erti c al  err or  b ars ill ustr at e t h e  esti  m at e d  st a n d ar d
d e vi ati o n.

s  m all er  i niti al  l e ar ni n g  r at e  of  ζ   = 3/ 1 0 0 0 (  M  NI S T)  a n d  ζ   =
7/ 1 0 0 0 0 (  CI F A  R- 1 0),  a n d  a  b at c h  si z e  of  5 0 0,   w hi c h is  h alf t h e
n u  m b er  of  d at a  s a  m pl es  i n  e a c h  n o d e.    M or e o v er,    w e  us e  a
cr oss- e ntr o p y l oss  f u n cti o n.

T h e  r es ults  ar e   d e pi ct e d  i n  t h e  t hir d  a n d  f o urt h  r o  w   of
pl ots  i n   Fi g.   4 ,   s h o  wi n g  t h e   pr e di cti o n   err or  r at e   o n  t h e
t est  s et  ( c o  m prisi n g  1 0 0 0 0  i  m a g es  f or  b ot h  d at as ets)  v ers us
a v er a g e  l at e n c y  fr o  m   L e  m  m a  1 .  F or  b ot h    M  NI S T  (t h e  t hir d
r o  w   of   pl ots)   a n d    CI F A  R- 1 0   (t h e   b ott o  m   pl ots),    w e   c a n
m a k e  t h e  s a  m e  o bs er v ati o ns  as  f or  t h e  first  a n d  s e c o n d  r o  w
of   pl ots  (l o gisti c  r e gr essi o n);  s ki p pi n g  a c hi e v es  a  s p e e d- u p
c o  m p ar e d  t o  n o  s ki p pi n g,  e x c e pt  f or  t h e  e x p o n e nti al  d el a y

m o d el,   as   pr e di ct e d   b y    L e  m  m a   2 .    M or e o v er,  t h e   or d er   of
t h e   c ur v es  st a ys  t h e  s a  m e   a cr oss  t h e   d at as ets  f or   a   gi v e n
c o  m p ut ati o n al  d el a y   m o d el.   N ot e,  h o  w e v er, t h at t h er e is  s o  m e
l oss  i n  a c c ur a c y  d u e  t o  pri v a c y;  t h e  a c c ur a c y  a c hi e v e d    wit h
t h e    M  NI S T  d at as et  is  cl os e  t o  9 0  %,    w hil e    wit h  n o  pri v a c y
r e q uir e  m e nt  a n  a c c ur a c y  of  ar o u n d  9 9  %  c a n  b e  r e a c h e d.  F or
t h e    CI F A  R- 1 0  d at as et,  t h e  a c c ur a c y  d e cr e as es  fr o  m  ar o u n d
7 0  %  t o  ar o u n d  4 2  %  i n  t h e  b est  c as e.   T his  ali g ns    w ell    wit h
r es ults  i n  t h e  lit er at ur e,  s h o  wi n g  a  r e d u cti o n  i n  a c c ur a c y  d u e
t o  pri v a c y,   w hi c h is  p arti c ul arl y si g ni fi c a nt f or   CI F A  R- 1 0, s e e,
e. g.,   [ 6 6].    C o  m p ar e d  t o  t h e  c as e  of  l o gisti c  r e gr essi o n,  t h e
a v er a g e  of  o nl y  3 0  (  M  NI S T)  a n d  6  (  CI F A  R- 1 0)  i n d e p e n d e nt
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Fi g.  5.     C o  m p ari n g  S k i p - R a n d - R i n g   (s oli d  c ur v es)   wit h  M u f f l i a t o - S G D   ([ 1 6,   Al g.  3];  d as h e d  a n d  d as h d ott e d  c ur v es)  a n d F e d L - S G D   ( d ott e d  c ur v es)
f or l o gisti c  r e gr essi o n   m o d el tr ai ni n g  o n t h e   U  CI  h o usi n g  d at as et   wit h  n  =   1 0 0 0  n o d es  f or t h e  e x p o n e nti al  d el a y   m o d el   wit h   m e a n  1.   L eft: t est  s et  a c c ur a c y
vs  a v er a g e  l at e n c y.    Ri g ht:  pri v a c y  l e a k a g e  l e v el  vs  a v er a g e  l at e n c y.    E a c h  si  m ul ati o n  c ur v e  f or   M u f f l i a t o - S G D   a n d  F e d L - S G D   is  a n  a v er a g e  of  1 0 0
i n d e p e n d e nt r u ns,   w hil e f or S k i p - R a n d - R i n g   t h e  a v er a g e  of  2 0 0 i n d e p e n d e nt r u ns is  pr es e nt e d. I n  or d er t o  n ot  cl utt er t h e  pl ots,  n o  err or  b ars  ar e i n cl u d e d.

r u ns is  pr es e nt e d  d u e t o t h e   m u c h   m or e c o  m pl e x l e ar ni n g t as k.
T h e c orr es p o n di n g d e e p n e ur al n et  w or ks ar e d et ail e d i n   Ta bl e I
i n t h e  s u p pl e  m e nt ar y   m at eri al.

D.    C o  m p aris o ns    Wit h  a   P ar all el  a n d  a   C e ntr aliz e d
Fe d er at e d  L e ar ni n g   A p pr o a c h

F or  c o  m pl et e n ess,   w e  als o  c o  m p ar e  o ur  r es ults  f or  l o gisti c
r e gr essi o n    wit h  a   p ar all el  a p pr o a c h   usi n g   g ossi p  a v er a gi n g
b et  w e e n  e a c h  st e p  of  gr a di e nt  d es c e nt  f or  e v er y  n o d e.    T h e
m ost  r el e v a nt    w or k  t o   c o  m p ar e    wit h  is   [ 1 6].  I n  [ 1 6,   Fi g.
1( c) ],  r es ults  ar e  pr es e nt e d  f or l o gisti c  r e gr essi o n  o n t h e   U  CI
h o usi n g   d at as et   [ 5 3]  of   S e cti o n   VI-  C 1   usi n g   [ 1 6,   Al g.   3]
(M u f f l i a t o - S G D ).    We   h a v e  r e pli c at e d  t h e  s et u p   of  [ 1 6,
Fi g.  1( c) ]  ( usi n g  r a n d o  m   Er d ő s-  R é n yi  c o  m  m u ni c ati o n  gr a p hs
wit h   n o d e   d e gr e e  l o g   n   d uri n g   g ossi pi n g),   b ut    wit h   n   =
1 0 0 0   n o d es,   a   û x e d   n u  m b er   of   2   g ossi p   it er ati o ns,   a n d
³   =   1  i n   [ 1 6,   Al g.   1]  ( n o   a c c el er ati o n)   a n d   c o  m p ar e  i n
Fi g.   5   M u f f l i a t o - S G D   ( d as h e d   a n d   d as h d ott e d   c ur v es)
wit h t h e   S k i p - R a n d - R i n g   s c h e  m e (s oli d  c ur v es)  u n d er t h e
e x p o n e nti al  d el a y   m o d el   wit h   m e a n  1.   T h e l eft  pl ot s h o  ws t h e
err or  pr e di cti o n r at e  o n t h e t est s et,   w hil e t h e ri g ht  pl ot  s h o  ws
t h e  (  w orst- c as e)  pri v a c y  l e a k a g e  l e v el,  b ot h  as  a  f u n cti o n  of
t h e  a v er a g e l at e n c y fr o  m   L e  m  m a 1 .   T h e  pri v a c y l e a k a g e l e v el
f or  M u f f l i a t o - S G D   is  si  m ul at e d  b as e d  o n [ 1 6,   T h.  4]  (f or
t  w o  diff er e nt  v al u es  of  t h e  pri v a c y  n ois e  st a n d ar d  d e vi ati o n;
r ef err e d  t o  as  i nst a n c es  o n e  a n d  t  w o  i n  t h e  n e xt  p ar a gr a p h)
a n d  c o n v erti n g  t o    D P  usi n g   L e  m  m a  1 1   i n    A p p e n di x  B   wit h
 ́  =   1 0 −  6 a n d    wit h  a   n u  m eri c all y   o pti  mi z e d   v al u e   of  t h e
R é n yi  di v er g e n c e  p ar a  m et er   α ,   w hil e f or S k i p - R a n d - R i n g
w e  h a v e  us e d  t h e  s a  m e  s et u p  as  f or  t h e  s e c o n d  r o  w  of  pl ots
i n   Fi g.  4 ,  i. e.,    T h e or e  m  3   wit h   =   1 .0,    ́  =   1 0 −  6 ,  a n d
 ́ =   1 0 −  1 2 ( c orr es p o n di n g  t o   a    D P   n ois e  l e v el   of  σ h ≈
1 0 .5 9 7 6  us e d  i n  t h e  a ct u al  si  m ul ati o n).    We  als o  c o  m p ar e  t h e
pr e di cti o n  err or  r at e  a n d  t h e  pri v a c y  l e a k a g e  l e v el   wit h t h os e
of  a  c e ntr ali z e d  f e d er at e d  l e ar ni n g  a p pr o a c h  ( d ott e d  c ur v es),
d e n ot e d  b y   F e d L - S G D   i n  t h e  f oll o  wi n g.1 1 T h e  (  w orst- c as e)
pri v a c y  l e a k a g e  l e v el   f or   F e d L - S G D   is   c o  m p ut e d   as   f or

1 1 O ur   si  m ul ati o n   of   M u f f l i a t o - S G D   a n d   F e d L - S G D   is   b as e d   o n
htt ps:// git h u b. c o  m/t otil as/  m uf üi at o     w h er e   gr a di e nt   cli p pi n g   is   us e d.    F or
M u f f l i a t o - S G D ,   gr a di e nt   cli p pi n g   gi v es  i  m pr o v e d   a c c ur a c y,    w hil e  f or
S k i p - R a n d - R i n g   w e  h a v e  n ot  o bs er v e d  a n y  n oti c e a bl e  g ai n   wit h  gr a di e nt
cli p pi n g a n d  h e n c e t h e  pr es e nt e d r es ults f or  S k i p - R a n d - R i n g  ( as i n  Fi g. 4 )
ar e   wit h  n o  cli p pi n g.

M u f f l i a t o - S G D ,  b y  c o n v erti n g t o   D P  usi n g   L e  m  m a 1 1  i n
A p p e n di x   B   wit h    ́ =   1 0 −  6 a n d   wit h  a  n u  m eri c all y  o pti  mi z e d
v al u e  of t h e   R é n yi  di v er g e n c e  p ar a  m et er  α . I n  p arti c ul ar,  e a c h
ti  m e  a  n o d e  u   u pl o a ds  t o  t h e  c e ntr al  s er v er, 2 α / σ 2

h is  a d d e d
t o  t h e   o v er all    R  D P  l e v el   of  u ,  a n d  t h e    m a xi  m u  m   o v er  all
n o d es  u  is t h e   w orst- c as e l e a k a g e.    We  n ot e t h at i  m pl e  m e nti n g
g ossi pi n g i n  a l at e n c y- ef û ci e nt   m a n n er is  n ot  str ai g htf or  w ar d.
I n  p arti c ul ar,    wit hi n  e a c h  it er ati o n  of  g ossi pi n g,  e a c h  n o d e
s e n ds t h e s a  m e i nf or  m ati o n t o its n ei g h b ors,   w hi c h c a n b e d o n e
t hr o u g h a si n gl e br o a d c ast tr a ns  missi o n r at h er t h a n b y   m ulti pl e
p e er-t o- p e er   tr a ns  missi o ns.     H o  w e v er,   c o n c urr e nt   br o a d c ast
tr a ns  missi o ns  fr o  m    m ulti pl e  n o d es  cr e at e  i nt erf er e n c e,   w hi c h
c a n  l e a d  t o  f ail e d  r e c e pti o n   of  i nf or  m ati o n  at  t h e  r e c ei v er
n o d es.    A  si  m pl e  s ol uti o n    w o ul d  b e  t hr o u g h  a  si  m pl e  ti  m e-
di visi o n  a p pr o a c h i n   w hi c h  e a c h  n o d e  br o a d c asts s e q u e nti all y.
T his   e nt ails   a   c o  m  m u ni c ati o n   l at e n c y   pr o p orti o n al   t o   t h e
n u  m b er   of   n o d es.    A    m or e   el a b or at e   a p pr o a c h   is   r a n d o  m
a c c ess    wit h   br o a d c ast  tr a ns  missi o n   as   o utli n e d  i n   [ 6 4]   or
t hr o u g h  br o a d c ast- b as e d  s u b gr a p h  s a  m pli n g  as  o utli n e d i n t h e
v er y  r e c e nt   p a p er   [ 6 5].   F or  t h e  r es ults  i n   Fi g.  5 ,   w e   h a v e
us e d  t h e  r a n d o  m  a c c ess  a p pr o a c h  o utli n e d  i n   [ 6 4]  wit h  a n
o pti  mi z e d  v al u e f or t h e  pr o b a bilisti c r a n d o  m a c c ess  p oli c y.  F or
F e d L - S G D ,    w h e n  c o  m p uti n g  t h e  tr ai ni n g  l at e n c y,    w e  h a v e
ass u  m e d  1 0 0  i n d e p e n d e nt  s u b c h a n n els  f or  t h e  u pl o a d  t o  t h e
c e ntr al s er v er  a n d  a si n gl e  br o a d c ast tr a ns  missi o n t o  distri b ut e
t h e  a g gr e g at e d   gr a di e nt   b a c k  t o  t h e   n o d es.    H a vi n g  a   v er y
l ar g e  n u  m b er  of  s u b c h a n n els   w o ul d r e d u c e t h e  b a n d  wi dt h  p er
c h a n n el  a n d   h e n c e  t h e  tr a ns  missi o n  r at e,  ass u  mi n g  a   û x e d
o v er all  b a n d  wi dt h  c o nstr ai nt   [ 6 7],  a n d  h e n c e    w e  h a v e  us e d
1 0 0  as  a  c o  m pr o  mis e (i n  [ 6 7],  o nl y  8  or  1 6  s u b c h a n n els   w er e
us e d).     M or e   d et ails   o n  t h e  l at e n c y   c o  m p ut ati o n/si  m ul ati o n
ar e   gi v e n    A p p e n di x    G  i n  t h e  s u p pl e  m e nt ar y    m at eri al.   F or
S k i p - R a n d - R i n g ,   w e   us e  ζ   = 3/ 1 0 a n d   a   b at c h   si z e
of  8  ( as  f or  t h e  s e c o n d  r o  w  of  pl ots  i n   Fi g.   4 ),    w hil e  f or
M u f f l i a t o - S G D   a n d  F e d L - S G D ,   w e   us e  ( as  i n  [ 1 6,   Fi g.
1( c) ])  a  c o nst a nt l e ar ni n g  r at e  of 7/ 1 0 a n d  a  f ull  b at c h  si z e  of
1 6  ( c h a n gi n g t o  a  b at c h  si z e  of  8  d o es  n ot  n oti c e a bl y  c h a n g e
t h e  a c c ur a c y).  F or  a f air  c o  m p aris o n,  a  c o  m  m u ni c ati o n  c ost  of
χ   = 1/ 1 0 0 is  us e d  f or  all  s c h e  m es.

Fr o  m    Fi g.   5   (l eft    pl ot),     w e    o bs er v e    t h at    t h e
S k i p - R a n d - R i n g   s c h e  m e    (s oli d    c ur v es)    a c hi e v es    a
l o  w    err or    r at e    q ui c k er   t h a n    o n e    of   t h e   i nst a n c es    of
M u f f l i a t o - S G D   ( d as h e d   c ur v es)   a n d   als o   F e d L - S G D
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wit h   virt u all y   n o   s ki p pi n g   (r e d   d ott e d   c ur v es),    w hil e   f or
t h e   s e c o n d   i nst a n c e   of   M u f f l i a t o - S G D   wit h   a   l o  w er
v al u e   of  t h e   pri v a c y   n ois e   st a n d ar d   d e vi ati o n   ( d as h d ott e d
c ur v es)   a n d  f or   F e d L - S G D   wit h   s ki p pi n g   (p   = 1/ 2 a n d
p   = 7/ 1 0 )   w e   o bs er v e   t h e   o p p osit e   b e h a vi or.     O n   t h e
ot h er   h a n d,  t h e   o v er all   pri v a c y  l e a k a g e  l e v el   gr o  ws    m u c h
sl o  w er    wit h  t h e  S k i p - R a n d - R i n g   s c h e  m e  (s e e  t h e  ri g ht
pl ot).    F or   i nst a n c e,   M u f f l i a t o - S G D   (s e c o n d   i nst a n c e;
d as h d ott e d  c ur v es)  a c hi e v es  a n  a c c ur a c y  of  8 0  %  q ui c k er t h a n
S k i p - R a n d - R i n g   (i n  a b o ut  6 0 0 0  u nits  of  ti  m e  (p   = 1/ 2 )
c o  m p ar e d  t o  a b o ut  2 4 0 0 0   (p   =   1 0 −  4 ;  s e e   first  pl ot  i n  t h e
s e c o n d  r o  w  of  pl ots  i n  Fi g.  4 ),  b ut  at  a    m u c h  hi g h er  pri v a c y
l e a k a g e l e v el ( · s ki p =   5 .5  c o  m p ar e d t o  2 .2 ).   C o  m p ar e d t o t h e
first  i nst a n c e  ( d as h e d  c ur v es),  h o  w e v er,   S k i p - R a n d - R i n g
a c hi e v es  a  t ar g et  a c c ur a c y   of   8 0  %   q ui c k er   b ut  at  a  l o  w er
pri v a c y  l e a k a g e   g a p   (t h e   d as h e d   c ur v es  i n  t h e   ri g ht   pl ot
li e   b el o  w   t h e   d as h d ott e d   c ur v es).   F e d L - S G D   pr o vi d es   a
l o  w er   pri v a c y  l e a k a g e  l e v el    w hi c h  als o   gr o  ws  sl o  w er    wit h
l at e n c y   c o  m p ar e d  t o  M u f f l i a t o - S G D ,   b ut   o n  t h e   ot h er
h a n d  r eli es  o n  t h e  ass u  m pti o n  of  a  c e ntr ali z e d  s er v er.    T h e
S k i p - R a n d - R i n g   s c h e  m e  p erf or  ms  f a v or a bl e  c o  m p ar e d t o
F e d L - S G D   wit h   virt u all y   n o  s ki p pi n g,    w hil e  f or   p   = 1/ 2

a n d   p   = 7/ 1 0 F e d L - S G D   yi el ds   a  l o  w er   pr e di cti o n   err or
r at e  at  t h e  e x p e ns e  of  a  hi g h er  pri v a c y  l e a k a g e  c o  m p ar e d  t o
S k i p - R a n d - R i n g . I n  g e n er al, s  m all er  v al u es  of t h e  pri v a c y
n ois e st a n d ar d  d e vi ati o n  Ã h f or F e d L - S G D  will  pr o vi d e  b ett er
a c c ur a c y,  b ut  at  t h e  s a  m e  ti  m e  i n cr e as e  t h e  pri v a c y  l e a k a g e
l e v el.

VII.    C O  N  C  L  U S I  O  N   A  N  D F U  T  U  R  E W O  R  K

We  h a v e  st u di e d  a  s ki p pi n g  s c h e  m e f or  str a g gl er   miti g ati o n
i n  d e c e ntr ali z e d  l e ar ni n g  o v er  a  l o gi c al  ri n g  u n d er    N  D P  b y
e xt e n di n g  t h e  fr a  m e  w or k  of  pri v a c y  a  m pli fi c ati o n  b y  d e c e n-
tr ali z ati o n t o i n cl u d e o v er all tr ai ni n g l at e n c y   — c o  m prisi n g b ot h
c o  m p ut ati o n  a n d  c o  m  m u ni c ati o n  l at e n c y.    A n al yti c al   d eri v a-
ti o ns   o n   b ot h   t h e   c o n v er g e n c e   s p e e d   a n d   t h e     D P   l e v el
w er e  pr es e nt e d,  s h o  wi n g  a  tr a d e- off  b et  w e e n  o v er all  tr ai ni n g
l at e n c y,  a c c ur a c y,  a n d  us er  d at a  pri v a c y.   T h e t h e or eti c al  fi n d-
i n gs    w er e   v ali d at e d  f or  l o gisti c  r e gr essi o n   o n  a  r e al-  w orl d
d at as et  a n d  f or  i  m a g e  cl assi fi c ati o n   usi n g  t h e    M  NI S T  a n d
CI F A  R- 1 0  d at as ets.

F ut ur e    w or k  c o ul d  e xt e n d  t h e  t h e or eti c al  a n al ysis  i n  t his
st u d y t o  g ossi p  al g orit h  ms  as  e x a  mi n e d i n  [ 1 6].

A P P  E  N  D I  X A
P R  O  O F   O F T H  E  O  R  E   M 1

A.    N ot ati o n

D e fi n e  [  a :b ]   {a , . . . , b }  f or  i nt e g ers  a   f   b .    M or e o v er,
U ∗ d e n ot es  t h e   c o nj u g at e  tr a ns p os e   of   a    m atri x   U  ,    w hil e
U −  1 d e n ot es   its   i n v ers e   (f or   a   f ull-r a n k   s q u ar e     m atri x
U  ).   di a g(a 1 , . . . , a l)  d e n ot es  a n   l ×   l  di a g o n al    m atri x    wit h
a 1 , . . . , a l al o n g t h e  di a g o n al.

B.    Pr eli  mi n ari es

F or  t h e  c o n v er g e n c e,    w h at    m att ers  is  o nl y  t h e  n o d es  t h at
a ct u all y  c o ntri b ut e d  t o  t h e  t o k e n  u p d at es  ( n o nstr a g gl ers,  i. e.,

t h os e t h at r e a c h e d   Li n e  7  of   Al g orit h  m 1 ).   L et  H   (   [ 0 : h m a x ]
b e t h e   R V  d e n oti n g t h e  n u  m b er  of  n o nstr a g gl ers   w h e n r u n ni n g
Al g orit h  m   1 ,  a n d  l et  t h e  c orr es p o n di n g  n o d es  visit e d  b y  t h e
t o k e n  b e  d e n ot e d  b y V (1 ) , V (2 ) , . . . , V (h ) , . . . , V (H  ) .  If H   =   0,
t h e n all n o d es ar e str a g gli n g,  n o  n o d es ar e  visit e d  b y t h e t o k e n,
a n d    Al g orit h  m   1   si  m pl y  r et ur ns  Ä 0 0  (i. e.,   Ä h m a x =   Ä 0 ).
Ot h er  wis e  (i. e.,   w h e n   H   >   0 ),  a c c or di n g  t o   Al g orit h  m 1 , t h e
t o k e n  u p d at es  ar e  (  wit h  s o  m e  a b us e  of  n ot ati o n)

Ä h ← W Ä h −  1 −   ¹ h '  fV (h ) Ä h −  1 ; D V (h ) +   N h ,

f or  all  h  (   [H  ].   N ot e  als o  t h at  ¹ h = ¸/
√

h .  I n  t h e  r est  of  t his
s u bs e cti o n,   w e  ass u  m e  H   >   0.

F or   S k i p - R a n d - R i n g ,  t h e    m ar gi n al   distri b uti o n   of   a
n o d e  V (h ) is  u nif or  m  o v er V   f or  a n y  h .  F or S k i p - R i n g , t h e
s e q u e n c e  of  n o d es  V (1 ) , V (2 ) , . . .  f or  ms  a    M ar k o v  c h ai n   wit h
st at e tr a nsiti o n  pr o b a bilit y   m atri x

Q   =
1  −   p

1  −   p n

»

¼
¼
¼
½

p n −  1 1   p   p 2 . . .   p n −  2

p n −  2 p n −  1 1   p   . . .   p n −  3

...
...

...
...

...
1   p   p 2 p 3 . . .   p n −  1

¾

¿
¿
¿
À

,   ( 3)

w h er e  t h e  e ntri es   Q ij Pr [ V (h ) =   v j |  V (h −  1 ) =   v i],  1  f
i, j   f   n ,  h   g   1,   a n d,   as    w e   s h o  w  i n    L e  m  m a   3   b el o  w,
t h e    m ar gi n al   distri b uti o ns   of  V (h ) c o n v er g e  t o  t h e   u nif or  m
distri b uti o n  e x p o n e nti all y  f ast   w h e n  h  →   ∞   .

T h e  u nif or  m  distri b uti o n  of   V (h ) f or  S k i p - R a n d - R i n g
e ns ur es  a n  u n bi as e d  esti  m at e  of t h e r e al (s u b) gr a di e nt f or  a n y
fi x e d   Ä , i. e.,

E V (h ) '  fV (h ) ( Ä ; D V (h ) )   =   '  f ( Ä ; D  ),

w hil e  f or   S k i p - R i n g   w e  h a v e t h at

E V (h ) '  fV (h ) ( Ä ; D V (h ) )   − − − →
h →   ∞

'  f ( Ä ; D  ).

U n bi as n ess  of  t h e  (s u b) gr a di e nt  esti  m at e  at  e a c h  st e p  is  a
k n o  w n  c o n diti o n  us e d t o  pr o v e  c o n v er g e n c e  of ( c o n v e nti o n al)
st o c h asti c  gr a di e nt  d es c e nt.  I n  t his  a p p e n di x,    w e    will  s h o  w
t h at  h a vi n g as y  m pt oti c all y  u n bi as e d  esti  m at es is  s uf fi ci e nt  f or
t h e  c o n v er g e n c e  of   Al g orit h  m  1  t o o.    M or e  pr e cis el y,   w e   will
a d a pt  a  pr o of  fr o  m  [ 5 2,   T h.  2]  t o  o ur  s c e n ari o.

First,    w e  pr es e nt  s o  m e  t e c h ni c al  r es ults  us e d  i n  t h e    m ai n
p art  of t h e  pr o of  ( n e xt  s u bs e cti o n).

L e  m  m a  3:   F or   n   g   2,  l et   {V (h ) },  V (h ) (   V  ,  h   g   1,  b e  a
h o  m o g e n e o us    M ar k o v  c h ai n    wit h  st at e  tr a nsiti o n  pr o b a bilit y
m atri x   ( 3) wit h 0   <   p  <   1. If   w e d e n ot e b y  π (h ) t h e pr o b a bilit y
v e ct or  of  t h e    m ar gi n al  distri b uti o n  of   V (h ) (i. e.,   Pr [V (h ) =
v a ] =   π

(h )
a ), t h e n π (h ) →   π (∞   ) =   ( 1/ n , 1/ n , . . . , 1/ n )   ,  as h  →

∞   ,  a n d  f or  all h ,

π (h ) −   π (∞ )

1
f

√
n |λ 1 |

h , ( 4)

w h er e   |λ 1 |   =
1 −  p

1 +  p 2 −  2 p  c os 2 π
n

.

R e  m ar k  3:   F or   c o n v e ni e n c e,     w e   als o   d e fi n e   t h e   v al u e
λ 1 0  f or   S k i p - R a n d - R i n g   ( a n d  a n y  0  f   p  <   1 ).   Wit h
t his  n ot ati o n, ( 4)  h ol ds i n  b ot h  c as es.

R e  m ar k  4:   F or   a n y   pr o b a bilit y   v e ct or   π  ,   it   h ol ds   t h at
π   −   π (∞   )

1
f

√
n ,  a n d,  t h us,    L e  m  m a  3   t e c h ni c all y  h ol ds

als o  f or  h  =   0.
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L e  m  m a  4:   L et   N   ∼   N   (0 ,  Ã 2 Id ).   T h e n,  E   N 2 <   Ã
√

d

a n d  E   N 2
2 =   d Ã 2 .

L e  m  m a  5  ( [ 6 8,  L e  m  m a  2]):  If  t h e   d o  m ai n   W   ⊂   R d is
c o n v e x a n d cl os e d, t h e n f or a n y  x , y  (   R d ,   w e  h a v e   x  −   y 2 g

W (x )   − W (y ) 2 .
L e  m  m a  6:   F or  a n y   x , y  (   R d ,   x  ±   y 2

2 =   x 2
2 +   y 2

2 ±
2 x  y .

C.    M ai n   P art  of t h e   Pr o of  of  T h e or e  m   1

We  first c o nsi d er t h e c as e  of   H   g   1.  F or c o n v e ni e n c e,  d e fi n e

g h '  f (Ä h −  1 ; D ),

ĝ h '  fV (h ) Ä h −  1 ; D V (h ) +   N h

as  a  s h ort h a n d  n ot ati o n  f or  h   (   [H  ].    Wit h  t his  n ot ati o n,  t h e
t o k e n is  u p d at e d  as Ä h ← W ( Ä h −  1 −   ̧ h ĝ h ).

If   V (h ) is   u nif or  ml y   distri b ut e d   o v er   V  ,    w e   h a v e   t h at
E   ĝ h =   g h f or  a n y  fi x e d  Ä h −  1 ,  a n d i n  b ot h  s c h e  m es,

E   ĝ h
2
2

(a )
=   E   '  fV (h ) ( Ä h −  1 ; D V (h ) )

2
2

+   E   N h
2
2

+   2 E   N h '  fV (h ) ( Ä h −  1 ; D V (h ) )

(b )
=   E   '  fV (h ) ( Ä h −  1 ; D V (h ) )

2
2

+   E   N h
2
2

(c )
f   k 2 +   d Ã 2 ,

w h er e   (a )  is fr o  m   L e  m  m a 6 , (b )  is  b e c a us e N h is i n d e p e n d e nt
of  ot h er    R Vs  a n d  h as  z er o    m e a n,  a n d   (c )  f oll o  ws  fr o  m  t h e
k - Li ps c hit z  pr o p ert y  of  f  a n d   L e  m  m a  4 .

N o  w,    w e  pr o v e  t h e    m ai n  st at e  m e nt  of   T h e or e  m   1 .  I n  t h e
pr o of, if it is  n ot   m e nti o n e d  e x pli citl y, t h e  n or  m  of  a  v e ct or is
t h e 2 - n or  m.   Als o,   w e  ass u  m e t h e s a  m e  d at as et  D   e v er y  w h er e
a n d t h us  o  mit it  f or  br e vit y.

Ass u  m e   H   g   1  is  fi x e d  (i. e.,   w e  c o n diti o n  o n  it).  F or  a n y
Ä  (   W   ,  b y   L e  m  m a 5 ,

E W ( Ä h −  1 −   ̧ h ĝ h ) − W ( Ä )
2

f   E   Ä h −  1 −   ̧ h ĝ h −   Ä
2

.

T h us,

E   Ä h −   Ä 2

=   E W ( Ä h −  1 −   ̧ h ĝ h ) − W ( Ä )
2

f   E   ( Ä h −  1 −   Ä )  −   ̧ h ĝ h
2

=   E   Ä h −  1 −   Ä 2 +   ̧ 2
h E   ĝ h

2
−   2 ̧ h E   ( Ä h −  1 −   Ä )   ĝ h

f   E   Ä h −  1 −   Ä 2 +   ̧ 2
h (k 2 +   d Ã 2 ) −   2 ̧ h E   ( Ä h −  1 −   Ä )   ĝ h

f   E   Ä h −  1 −   Ä 2 −   2 ̧ h E   ( Ä h −  1 −   Ä )   g h

+   ¸ 2
h (k 2 +   d Ã 2 ) +   2 ̧ h d W k

√
n |λ 1 |h ,

w h er e t h e t er  m   d W k
√

n |λ 1 |
h a p p e ars  b e c a us e  of t h e  diff er e n c e

b et  w e e n  t h e   distri b uti o ns   of   ĝ h a n d   g h ( cf.    L e  m  m a  3   a n d
R e  m ar k   3 ).   T h e n,

E   ( Ä h −  1 −   Ä )   g h f
E   Ä h −  1 −   Ä 2

2 ̧ h
−

E   Ä h −   Ä 2

2 ̧ h

+
¸ h (k

2 +   d Ã 2 )

2
+   d W k

√
n |λ 1 |

h .

L et   j b e  a n  ar bitr ar y  el e  m e nt i n [ H   −   1].   T h e n, s u  m  mi n g  u p
a n d  r e- arr a n gi n g,   w e  g et

H

h =  H  −  j

E   ( Ä h −  1 −   Ä )   g h

f
E   Ä H  −  j−  1 −   Ä

2

2 ̧ H  −  j

+

H  −  1

h =  H  −  j

E   Ä h −   Ä 2

2

1

¸ h +  1
−

1

¸ h

+
k 2 +   d Ã 2

2

H

h =  H  −  j

¸ h +   d W k
√

n

H

h =  H  −  j

|λ 1 |
h .

Si n c e   Ä h , Ä   (   W   ,    w e  h a v e  t h at   Ä h −   Ä 2 f   d 2
W .   We   als o

s u bstit ut e  ̧ h wit h ·/
√

h ,   w hi c h  gi v es

H

h =  H  −  j

E   ( Ä h −  1 −   Ä )   g h

f
E   Ä H  −  j−  1 −   Ä

2 √
H   −   j

2 ·
+

d 2
W

2 ·

√
H   −   H   −   j

+
k 2 +   d Ã 2

2

H

h =  H  −  j

·
√

h
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h .

H er e,   w e  c a n  u p p er  b o u n d t h e  s u  m  of i n v ers e  s q u ar e r o ots  as

H

h =  H  −  j

·
√

h
f

H

H  −  j−  1

·
√

h
d h  =   2 ·

√
H   −   H   −   j −   1   .

N e xt,  b y  c o n v e xit y  of   f ,   w e  c a n  l o  w er  b o u n d ( Ä h −  1 −   Ä )   g h

b y  f ( Ä h −  1 ) −   f ( Ä ).   H e n c e,

H

h =  H  −  j

E   f ( Ä h −  1 ) −   f ( Ä )

f

H

h =  H  −  j

E   ( Ä h −  1 −   Ä )   g h

f
E   Ä H  −  j−  1 −   Ä

2 √
H   −   j

2 ·
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h

+
d 2

W

2 ·

√
H   −   H   −   j

+   · ( k 2 +   d Ã 2 )
√

H   −   H   −   j −   1

<
E   Ä H  −  j−  1 −   Ä

2 √
H   −   j

2 ·
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h

+
d 2

W

2 ·
+   · ( k 2 +   d Ã 2 )

√
H   −   H   −   j −   1

=
E   Ä H  −  j−  1 −   Ä

2 √
H   −   j

2 ·
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h
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+
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

j +   1
√

H   +
√

H   −   j −   1

<
E   Ä H  −  j−  1 −   Ä

2 √
H   −   j

2 ζ
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h

+
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

j +   1
√

H
. ( 5)

B y  s etti n g   Ä  =   Ä H  −  j−  1 i n ( 5),   w e  g et

H

h =  H  −  j

E   f ( Ä h −  1 ) −   f ( Ä H  −  j−  1 )

≤
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

j +   1
√

H
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h .

N e xt,   as   a   s h ort h a n d,  l et   S j d e n ot e  t h e   a v er a g e   of  t h e

f oll o  wi n g  j +   1 it er at es:  S j = 1
j+  1

H
h =  H  −  j f ( Ä h −  1 ).   T h e n,

(j +   1 )E   S j −   (j +   1 )E   f ( Ä H  −  j−  1 )

=

H

h =  H  −  j

E   f ( Ä h −  1 ) −   f ( Ä H  −  j−  1 )

≤
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

j +   1
√

H
+   d W k

√
n

H

h =  H  −  j

|λ 1 |
h .

H e n c e,

−  E   f ( Ä H  −  j−  1 )   ≤   −  E   S j +
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

1
√

H

+
d W k

√
n

j +   1

H

h =  H  −  j

|λ 1 |
h .

Usi n g t his,   w e  h a v e

E   S j−  1 =
(j +   1 )E   S j −   E   f ( Ä H  −  j−  1 )

j

≤   E   S j +
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

1

j
√

H

+
d W k

√
n

j(j +   1 )

H

h =  H  −  j

|λ 1 |
h .

I n t h e  f oll o  wi n g, t o  si  m plif y  n ot ati o n,  d e fi n e

a j
d 2

W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

1

j
√

H
+

d W k
√

n

j(j +   1 )

H

h =  H  −  j

|λ 1 |
h

as  a  s h ort h a n d.   T h e n,

E   f ( Ä H  −  1 )   =   E [S 0 ] ≤   E [S 1 ] +   a 1 ≤   E [S 2 ] +   a 1 +   a 2

≤ · · ·   ≤   E   S H  −  1 +

H  −  1

j=  1

a j.

N e xt,   w e  b o u n d  a  p art  of t h e  s u  m  o n t h e  ri g ht  h a n d  si d e  as

H  −  1

j=  1

d 2
W

2 ζ
+   ζ   k 2 +   d Ã 2 1

j
√

H

≤

H  −  1

j=  1

d 2
W

ζ
+   ζ   k 2 +   d Ã 2 1

j
√

H

≤
d 2

W +   ζ 2 k 2 +   d Ã 2

ζ
√

H
(1  +   l o g H )

a n d  o bt ai n

E   f ( Ä H  −  1 )   ≤   E   S H  −  1 +
d 2

W +   ζ 2 (k 2 +   d Ã 2 )

ζ
√

H
(1  +   l o g H  )

+

H  −  1

j=  1

d W k
√

n

j(j +   1 )

H

h =  H  −  j

|λ 1 |
h . ( 6)

N o  w, r e c all   ( 5).  S et t h er e j =   H  −  1 (i. e.,  H  −  j =   1 ), Ä  =   Ä ∗ ,
a n d  b o u n d  all  n or  ms  b y  d 2

W ,   w hi c h  r es ults i n

H

h =  1

E   f ( Ä h −  1 ) −   f ( Ä
∗ )

≤
d 2

W

2 ζ
+   d W k

√
n

H

h =  1

|λ 1 |
h +

d 2
W

2 ζ
+   ζ ( k 2 +   d Ã 2 )

√
H

≤
d 2

W

ζ
+   ζ ( k 2 +   d Ã 2 )

√
H   +   d W k

√
n

H

h =  1

|λ 1 |
h .

T h er ef or e,

E   S H  −  1 −   f ( Ä ∗ ) =   E
1

H

H

h =  1

f ( Ä h −  1 ) −   f ( Ä
∗ )

≤
d 2

W +   ζ 2 (k 2 +   d Ã 2 )

ζ
√

H
+

d W k
√

n

H

H

h =  1

|λ 1 |
h .   ( 7)

Fi n all y,  b y  c o  m bi ni n g   ( 6)  a n d  ( 7),   w e  o bt ai n

E   f ( Ä H  −  1 ) −   f ( Ä
∗ )

≤
d 2

W +   ζ 2 (k 2 +   d Ã 2 )  (2  +   l o g H  )

ζ
√

H

+   d W k
√

n
1

H

H

h =  1

|λ 1 |
h +

H  −  1

j=  1

1

j(j +   1 )

H

h =  H  −  j

|λ 1 |
h .

T h e n,

E   f ( Ä H ) −   f ( Ä ∗ )

≤
d 2
W +   ζ 2 (k 2 +   d Ã 2 )   (2  +   l o g(H   +   1 ))

ζ
√

H   +   1

+   d W k
√

n
1

H   +   1

H  +  1

h =  1

|λ 1 |h +

H

j=  1

1

j(j +   1 )

H  +  1

h =  H  −  j+  1

|λ 1 |h .

T h e  c or n er  c as e  of   H   =   0  ( a n d  t h us,  Ä h m a x =   Ä 0 =   0 )  c a n
b e  b o u n d e d  as  |f (0 ) −   f ( Ä ∗ )|   ≤ k   0  −   Ä ∗ ≤   k d W .

As  a  fi n al  st e p,   w e  n e e d t o t a k e  e x p e ct ati o n  c o n diti o n e d  o n
t h e  distri b uti o n  of H  ,   w hi c h is  bi n o  mi al   wit h h m a x i n d e p e n d e nt
tri als  a n d  s u c c ess  pr o b a bilit y  1 −   p , i. e.,

Pr [ H   =   h ] =
h m a x

h
(1  −   p ) h p h m a x −  h ,

w hi c h  c o n cl u d es t h e  pr o of.
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A P P  E  N  D I  X B
P R  O  O F   O F T H  E  O  R  E   M S 2 A  N  D 3

T h e    m ai n  t o ol   of  t h e   pr o ofs  is  t h e   c o n c e pt   of   pri v a c y
a  m pli fi c ati o n  b y  it er ati o n  [ 1 3],  a n d   T h e or e  m  2 2  t h er ei n.   T h e
s etti n g  i n  [ 1 3]  is  pr oj e ct e d  n ois y  st o c h asti c  gr a di e nt  d e c e nt ,
i n    w hi c h  n ois e  is  a d d e d  f or  e v er y  gr a di e nt  u p d at e  st e p.   T h e
m ai n t e c h ni c al t o ol is   R é n yi  di v er g e n c e  a n d t h e  pr o of  e v ol v es
ar o u n d   u p p er   b o u n di n g  it  f or  a  si n gl e   vi e  w   of  a   n o d e.  I n
p arti c ul ar,  b as e d  o n   L e  m  m a   8 ,  f or  a n y  disti n ct  p air  of  us ers
u , v ,   w e  c a n  d eri v e  a n  u p p er  b o u n d  o n  t h e   R é n yi  di v er g e n c e
b et  w e e n  t h e  vi e  ws  of  us er   v   w h e n  t h e  t o k e n  visits  f or  t h e
(r +  1 )-t h ti  m e, e x cl u di n g r e c ei v e d a n d s e nt   m ess a g es  o bs er v e d
u p t o  a n d i n cl u di n g t h e  r -t h  visit, f or t  w o  n ei g h b ori n g  d at as ets
of  us er  u  ( L e  m  m a  1 2 ).   B y   m a xi  mi zi n g t his  u p p er  b o u n d  o v er
all  p airs  of  disti n ct  us ers   u , v   a n d  b y  usi n g  a  c o  m p ositi o n
t h e or e  m  f or    R  D P  [ 6 2,   Pr o p ositi o n   1]  ( L e  m  m a  9 ),    w e  c a n
d eri v e  a n   u p p er   b o u n d   o n  t h e    R  D P  l e v el   of    Al g orit h  m   1 ,
w hi c h c a n  b e tr a nsf or  m e d i nt o a n  u p p er  b o u n d  o n t h e   D P l e v el
usi n g  [ 6 2,  Pr o p ositi o n  3] ( L e  m  m a 1 1 ). I n  or d er t o  g et t h e  b est
(l o  w est)  u p p er  b o u n d,  t h e   R é n yi  di v er g e n c e  p ar a  m et er  α   c a n
b e  o pti  mi z e d.  Fi n all y,  si n c e t h e  n u  m b er  of  visits t o  a  n o d e is
n ot  a  c o nst a nt,  b ut  i nst e a d  f oll o  ws  a  bi n o  mi al  distri b uti o n,  a
st a n d ar d   C h er n off  b o u n d i n  c o  m bi n ati o n   wit h   L e  m  m a  1 0  c a n
b e  us e d t o  d eri v e t h e  fi n al  r es ult.

We  st art  b y  d e fi ni n g   R é n yi  di v er g e n c e  a n d   R  D P  a n d  t h e n
st at e  s o  m e  i  m p ort a nt  r es ults  fr o  m  t h e  pri v a c y  a  m pli fi c ati o n
b y  it er ati o n  lit er at ur e.  I n   p arti c ul ar,   d e fi niti o ns   a n d  r es ults
fr o  m  [ 1 3], [ 6 2].

A.  I  m p ort a nt   R es ults   Fr o  m   [ 1 3], [ 6 2]

We st art  b y st ati n g  a n d  a d a pti n g s o  m e i  m p ort a nt  d e fi niti o ns
a n d r es ults fr o  m  [ 1 3], [ 6 2].   C e ntr al t o t h e  ar g u  m e nts i n [ 1 3] is
t h e c o n c e pt  of   R é n yi  di v er g e n c e  a n d s hift e d   R é n yi  di v er g e n c e.

D e fi niti o n  4  ( R é n yi   Di v er g e n c e):   F or  t  w o   pr o b a bilit y   dis-
tri b uti o ns  ¿   a n d  À   d e fi n e d  o v er  t h e  s a  m e  s et   Z  ,  t h e   R é n yi
di v er g e n c e  of  p ositi v e  or d er  α   =   1  b et  w e e n  ¿   a n d  À  is

D α (¿   À )
1

α  −   1
l o g

z∈ Z

¿(  z)

À ( z)

α

À ( z)  d z.

D e fi niti o n  5  ( S hift e d   R é n yi   Di v er g e n c e   [ 1 3,   D e fi niti o n  8]):
F or  t  w o  pr o b a bilit y  distri b uti o ns   ¿   a n d   À   d e fi n e d  o v er  t h e
s a  m e  c o  m pl et e  n or  m e d  v e ct or  s p a c e  (Z  ,   ·   ),  t h e  u -s hift e d
R é n yi  di v er g e n c e,  f or   u  g   0,  of  or d er  α   >   1  b et  w e e n  ¿   a n d
À  is

D (u )
α (¿   À ) i nf

¿   : d W ∞ (  ¿,  ¿  )f  u
D α ¿  À   ,

w h er e   d W ∞ (·, ·)   d e n ot es   t h e   ∞   -   Wass erst ei n   dist a n c e   [ 1 3,
D e fi niti o n  6  ]  b et  w e e n t  w o  distri b uti o ns  o n  (Z  ,   ·   ).

L e  m  m a  7  (  We a k     C o n v e xit y     R é n yi     Di v er g e n c e   [ 1 3,
L e  m  m a  2 5 ]):  L et   ¿ 1 , . . . ,  ¿n a n d   À 1 , . . . , Àn b e  pr o b a bilit y
distri b uti o ns   d e fi n e d   o n   a   c o  m pl et e   n or  m e d   v e ct or   s p a c e
(Z  ,   ·   )  s u c h  t h at  ∀  i ∈   [n ], D α (¿ i À i) f b/ ( α −  1 ) f or  s o  m e
b   ∈   (0 , 1]    w h er e   α   >   1.   L et   ρ   b e  a  pr o b a bilit y  distri b uti o n
o v er [ n ]  a n d  d e n ot e  b y  ¿ ρ t h e  pr o b a bilit y  distri b uti o n  o v er Z
o bt ai n e d  b y  s a  m pli n g  i fr o  m  ρ   a n d t h e n  o ut p utti n g  a  r a n d o  m
s a  m pl e  fr o  m  ¿ i (r es p e cti v el y,  À i).   T h e n

D α ¿ ρ À ρ f   (1  +   b ) · E i∼  ρ D α (¿ i À i).

D e fi niti o n  6  (  [ 1 3,   D e fi niti o n  1 0]):  F or a  distri b uti o n  ¹  o v er
(Z  ,   ·   )  a n d  a n y  a  g   0, t h e  m a g nit u d e  of  n ois e   is t h e l ar g est
R é n yi  di v er g e n c e  of  p ositi v e  or d er   α   =   1  b et  w e e n  ¹   a n d  t h e
s a  m e  distri b uti o n  ¹   s hift e d  b y  a  v e ct or  of  l e n gt h  at    m ost  a ,
i. e.,

R α ( ¹ , a )   s u p
z :   z   f  a

D α (¹   z   ¹ ).

R e  m ar k  5:   C o nsi d er t h e st a n d ar d   G a ussi a n distri b uti o n o v er
R d wit h v ari a n c e   σ 2 , d e n ot e d b y N   (0 ,  σ 2 Id ).   T h e n, it is k n o  w n
t h at ∀  z  ∈   R d ,  σ   > 0  (s e e,  e. g.,  [ 6 9,   E x.  3]),   w e  h a v e

D α N   x ,  σ 2 Id N   0 ,  σ 2 Id =   α
x 2

2 σ 2
,

R α N   0 ,  σ 2 Id , a   =   α
a 2

2 σ 2
.

D e fi niti o n  7  (  C o ntr a cti v e     N ois y    It er ati o n    (  C  NI)   [ 1 3,
D e fi niti o n   1 9  ]):  Gi v e n   a n  i niti al  r a n d o  m  st at e   Z 0 ∈   Z  ,   a
s e q u e n c e   of   c o ntr a cti v e    m a ps   {ψ h }

m
h =  1 ,   a n d   a  s e q u e n c e   of

n ois e   distri b uti o ns   {¹ h }
m
h =  1 ,  t h e  c o ntr a cti v e   n ois y  it er ati o n

aft er  m   st e ps,  d e n ot e d  b y   C  NI m (Z 0 , {ψ h }, {¹ h }), is  d e fi n e d  b y
t h e  f oll o  wi n g  u p d at e  pr o c ess:  Z h ψ h (Z h −  1 )  +   N h ,    w h er e
N h ∼   ¹ h , h  ∈   [m  ].

T h e  f oll o  wi n g l e  m  m a is t a k e n  fr o  m   [ 1 3,   T h.  2 2].
L e  m  m a  8  ( [ 1 3,  T h.  2 2]):  L et   Z m a n d   Z m r e pr es e nt   t h e

o ut p uts   of     C  NI m (Z 0 , {ψ h }, {¹ h })   a n d     C  NI m (Z 0 , {ψ h }, {¹ h }),

r es p e cti v el y.    D e fi n e  s h s u p z ψ h (z)  −   ψ h (z)   ,  {a h }
m
h =  1 a

s e q u e n c e  of  n o n n e g ati v e r e als, a n d  u h
h
i=  1 (s i−  a i). If u h g

0,  ∀  h  ∈   [m  ], t h e n D (u m )
α Z m Z m f h ∈ [m  ] R α ( ¹ h , a h ).

N o  w,   w e  r e vi e  w  s o  m e  r es ults  fr o  m   R  D P   [ 6 2].
D e fi niti o n  8  (  ( α,  ̧)- R  D P):  F or  a n y  p ositi v e  α   =   1  a n d   ̧ g

0,  a  (r a n d o  mi z e d)  pr ot o c ol  A   is  s ai d t o  s atisf y ( α,  ̧)-  R  D P, if
f or  all  n ei g h b ori n g  d at as ets  D  , D a n d  f or  all  S   i n t h e  o ut p ut
s p a c e   ,   w e  h a v e D α A  (D  ) ∈   S   A  (D   ) ∈   S   f    ̧.

N e xt,   w e  st at e t h e  c o  m p ositi o n t h e or e  m  f or   R  D P.
L e  m  m a  9  ( [ 6 2,   Pr o p ositi o n  1]):  L et   r  ∈   N  .  If  {A l}

r
l=  1 ar e

pr ot o c ols   s atisf yi n g,  r es p e cti v el y,   ( α, ¸ 1 )-  R  D P,   . . .,  ( α, ¸ r )-
R  D P, t h e n t h eir  c o  m p ositi o n  d e fi n e d  as   (A 1 , . . . , A r )  s atis fi es
( α, r

i=  1 ¸ i)-  R  D P.
T h e    D P  (  R  D P)  l e v el    wit h  a  r a n d o  m  n u  m b er  of  e ntri es  i n

t h e  c o  m p ositi o n  c a n  b e  b o u n d e d  as  f oll o  ws.
L e  m  m a  1 0:   L et   R   d e n ot e  a   R V    wit h  r a n g e   {1 , 2 , . . .}  t h at

s atis fi es  Pr (R  >   r ) f   · .  If  {A l}
R
l=  1 ar e  pr ot o c ols  s atisf yi n g,

r es p e cti v el y,  ( ̧ 1 , ·1 )-  D P,  . . ., ( ̧ R , ·R )-  D P, t h e n t h eir  c o  m p osi-
ti o n  d e fi n e d  as (A 1 , . . . , A R )  s atis fi es  ( ̧ c , ·c +   ·  )-  D P,   w h er e
( ̧ c , ·c )  is t h e   D P  g u ar a nt e e  u n d er r -f ol d  c o  m p ositi o n  f or   D P.

I n   p arti c ul ar,   if   R   is   a   bi n o  mi al     R V   (i. e.,   a   s u  m   of
i n d e p e n d e nt   B er n o ulli   R Vs),   w e c a n  us e t h e st a n d ar d   C h er n off
b o u n d t o  u p p er  b o u n d  Pr (R  >   r ).

A r el ati o n  b et  w e e n   ( α,  ̧)-  R  D P  a n d  ( ̧ , · )-  D P  c a n  b e  st at e d
as  f oll o  ws.

L e  m  m a  1 1:  ( [ 6 2,   Pr o p ositi o n  3]): If A   s atis fi es  ( α,  ̧)-  R  D P
f or  α   >   1,  t h e n  f or  all   ·   ∈   (0 , 1 ),  it  als o  s atis fi es  ( ̧   +
l o g ( 1/ · )

α −  1 , · )-  D P.

B.    A d a pti n g t o   Al g orit h  m   1

F or   n ot ati o n al   c o n v e ni e n c e,  l et   O (r )
v (A  (D  ))   b e  t h e   vi e  w

of  us er   v  w h e n  t h e  t o k e n  visits  f or  t h e   r -t h  ti  m e,  e x cl u di n g

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n S e pt e m b er 2 6, 2 0 2 5 at 2 0: 3 2: 3 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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s e nt/r e c ei v e d   m ess a g es  o bs er v e d  u p t o  a n d i n cl u di n g t h e  (r −
1 )-t h  visit.

T h e  f oll o  wi n g  l e  m  m a  is   a n al o g o us  t o   [ 1 3,    T h.   2 3],   b ut
t ail or e d t o  o ur  s etti n g   wit h  a  d e cr e asi n g l e ar ni n g  r at e.

L e  m  m a  1 2:   L et   W   ⊆   R d b e  a  c o n v e x  s et  a n d  l et   fv :W   ×
R κ →   R  , v  (   V  ,  b e k - Li ps c hit z c o nti n u o us a n d  ́ - s  m o ot h c o n-
v e x  f u n cti o ns  i n  t h eir  first  ar g u  m e nt.   L et   (v

(r +  1 )
1 , . . . , v

(r +  1 )
l(r +  1 )

)
d e n ot e t h e  s e q u e n c e  of  n o d es  visit e d i n  b et  w e e n t h e  r -t h  a n d
(r +  1 )-t h  visit t o  n o d e v  i n   Al g orit h  m 1 .   T h e n, f or   Al g orit h  m 1
wit h  l e ar ni n g  r at e  p ar a  m et er  0   <  ·   f 2/ ´ a n d  c o nst a nt  n ois e
Ã h =   Ã  ,  a n d  a n y  disti n ct  p air  of  us ers u , v  (   V  ,

D ³ O (r +  1 )
v (A  (D  ))   O (r +  1 )

v (A  (D   ))
§
ªªªªªª̈

ªªªªªª©

f 2 ³ k 2

Ã 2 if ξ
(r +  1 )
u ,v =   1 ,

f
³ k 2 ξ

(r +  1 )
u ,v

2   1 + r
i=  1 ξ

(i)
u ,v ·  1 + r

i=  1 ξ
(i)
u ,v +  ξ

(r +  1 )
u ,v −   1 + r

i=  1 ξ
(i)
u ,v

2

Ã 2

if  1 <  ξ
(r +  1 )
u ,v <   ∞   ,

=   0    ot h er  wis e ,

f or   e v er y   ³   >   1,    w h er e   D   ∼ u D   ,  ξ (r +  1 )
u ,v l(r +  1 ) −

c (r +  1 ) +   1  a n d   c (r +  1 ) (   [l(r +  1 ) ]  is  t h e  i n d e x  of  v
(r +  1 )
i =   u

f or  u   (   { v
(r +  1 )
1 , . . . , v

(r +  1 )
l(r +  1 )

},  i. e.,  u   =   v
(r +  1 )
c (r +  1 ) .   Ot h er  wis e,  if

u  ( { v (r +  1 )
1 , . . . , v (r +  1 )

l(r +  1 )
}, t h e n ξ (r +  1 )

u ,v ∞   .
F or  si  m pli cit y  of  n ot ati o n,   w e  o  mit  t h e  s u p ers cri pt   (r +   1 )

fr o  m  l, c ,  a n d v 1 , . . . , v l i n t h e  f oll o  wi n g.
Pr o of:   C o nsi d er t h e  c as e   w h e n   u  ( { v 1 , . . . , v l}.   Ot h er  wis e,

O (r +  1 )
v (A  (D  ))  =   O (r +  1 )

v (A  (D   )),  a n d  it  f oll o  ws  dir e ctl y  t h at

D ³ O
(r +  1 )
v (A  (D  ))   O

(r +  1 )
v (A  (D   ))   =   0.

B y  ass u  m pti o n,  t h e  l e ar ni n g  r at e   ¸ h i is  u p p er- b o u n d e d  b y
2/ ´ ,  a n d  h e n c e  t h e  u p d at e  r ul e  g

(v )
r ( Ä ; s t a t e v (h ))  i n  ( 2)  f or

Al g orit h  m   1   c o nstit ut es   a    C  NI  (s e e   [ 1 3,   Pr o p ositi o n   1 8]).
C o nsi d er   n o  w  t h e    C  NI   fr o  m    D e fi niti o n   7   wit h   ψ i( Ä )   =

W ( Ä  −   ¸ h i'  fv i( Ä , D v i))  = W ( Ä ) −   ¸ h i'  fv i( W ( Ä ), D v i)
a n d    wit h   ψ h ( Ä )   = W ( Ä  −   ¸ h i'  fv i( Ä , D v i

))   = W ( Ä )  −

¸ h i'  fv i( W ( Ä ), D v i
),   c orr es p o n di n g   t o  g

(v )
r ( Ä ; s t a t e v (h ))

i n ( 2).  It  f oll o  ws t h at

s u p
Ä

ψ i( Ä ) −   ψ i ( Ä ) 2

=   s u p
Ä

¸ h i'  fv i

W

( Ä ), D v i −   ̧ h i'  fv i

W

( Ä ), D  ‘v i

2

=
0   if  i =   c ,

f   2 ̧ h c k   ot h er  wis e ,

si n c e  b y  ass u  m pti o n  fv i is k - Li ps c hit z  c o nti n u o us.
N o  w  a p pl y   L e  m  m a   8  wit h   a i =   0,  ∀  i (   [c  −   1],  a n d  a i =

2 ̧ h i k/
(r +  1 )
u ,v , ∀  i (   [c :l],   w h er e

(r +  1 )
u ,v

i( [c :l] ¸ h i

¸ h c

=
i( [c :l]

1√
h i

1√
h c

.   ( 8)

Cl e arl y,   z i =   s i −   a i g   0,  ∀  i (   [l],  a n d  z l =   0.   H e n c e,  usi n g
R e  m ar k   5 ,

D ³ O (r +  1 )
v (A  (D  ))   O (r +  1 )

v (A  (D   ))

f   ³
i( [c :l]

4 ̧ 2
h i

k 2

2
(r +  1 )
u ,v

2
¸ 2

h i
Ã 2

=   ³
i( [c :l]

2 k 2

(r +  1 )
u ,v

2
Ã 2

=
2 ³ |[c :l]|k 2

(r +  1 )
u ,v

2
Ã 2

=
2 ³ ξ (r +  1 )

u ,v k 2

(r +  1 )
u ,v

2
Ã 2

. ( 9)

N o  w,  if   c  =   l,  i. e.,  u  =   v l a n d  ξ (r +  1 )
u ,v =   1,  t h e n  fr o  m   ( 8)  it

f oll o  ws t h at
(r +  1 )
u ,v =   1  a n d t h er ef or e

D ³ O (r +  1 )
v (A  (D  )) O (r +  1 )

v A  (D   )   f
2 ³ k 2

Ã 2
.

Ot h er  wis e, i. e.,   w h e n   l >   c  a n d  1  <  ξ (r +  1 )
u ,v <   ∞   ,

(r +  1 )
u ,v =

i( [c :l]
1√
h i

1√
h c

(a )
>   2   h c h c +   ξ

(r +  1 )
u ,v −   1  +   1  −   h c ( 1 0)

(b )
g   2   1  +

r

i=  1

ξ (i)
u ,v ·

⎛

¿ 1  +

r

i=  1

ξ (i)
u ,v +   ξ (r +  1 )

u ,v

−   1  +

r

i=  1

ξ (i)
u ,v

À

⎠ ,

w h er e   (a )  f oll o  ws  b y  t a ki n g  t h e  a nti- d eri v ati v e  of 1/
√

h i a n d
t h e  f a ct t h at t h e l e ar ni n g  r at e is  o nl y  u p d at e d   w h e n  visiti n g  a
n o d e, i. e.,  h l =   h l−  1 +  1  =   h l−  2 +  2  = · · ·   =   h c +  l −  c ,  a n d (b )
f oll o  ws  b y l o  w er- b o u n di n g h c b y  1 + r

i=  1 ξ
(i)
u ,v (t h e e x pr essi o n

i n ( 1 0) is stri ctl y i n cr e asi n g i n h c f or ξ
(r +  1 )
u ,v >   0 ). I n  p arti c ul ar,

f or  r  =   0,   h c g   1,    w hi c h  is  o b vi o usl y  tr u e.  F or   r  =   1  (t h e
s e c o n d  visit),  t h e  t o k e n  h as  at  l e ast    m a d e  ξ

(1 )
u ,v u p d at es,  et c.,

fr o  m   w hi c h t h e l o  w er  b o u n d  o n  h c f oll o  ws.

C.    Pr o of  of  T h e or e  m   2

F or  t h e   S k i p - R i n g   s c h e  m e,  i n  e v er y  r o u n d  r  ( u nl ess  all
n o d es  ar e  s ki p p e d),  t h er e  e xists  a  p air  of  n ei g h b ori n g  n o d es
( ̃u (r ) , ṽ (r ) ) f or   w hi c h t h e t o k e n tr a v els  dir e ctl y fr o  m  ̃u (r ) t o ṽ (r ) .
H e n c e,   ξ (r )

ũ (r ) ,ṽ
(r ) =   1  f or  all  r ,  a n d  it  f oll o  ws  fr o  m   L e  m  m a 1 2

t h at

m a x
u ,v ( V ,  u =  v

D ³ O (r )
v (A  (D  ))   O (r )

v (A  (D   ))   f
2 ³ k 2

Ã 2
. ( 1 1)

T h e  n u  m b er  of  visits  of  t h e  t o k e n  t o  a  n o d e   v   d uri n g  t h e
e x e c uti o n  of t h e  al g orit h  m,  d e n ot e d  b y v , f oll o  ws  a  bi n o  mi al
distri b uti o n    wit h   p ar a  m et ers h m a x / n ( n u  m b er   of  i n d e p e n d e nt
tri als) a n d 1−  p  (s u c c ess pr o b a bilit y).   L et h̃  b e d e fi n e d as i n t h e
f or  m ul ati o n  of  t h e  t h e or e  m.   T h e n,  it  f oll o  ws  fr o  m  a  st a n d ar d
C h er n off  b o u n d  t h at  Pr  ( v g h̃ )  f   δ  ,  f or  s o  m e  δ   (   (0 , 1 ).
N o  w,

m a x
u ,v ( V ,  u =  v

D ³ O v (A  (D  ))   O v (A  (D   ))

(a )
f   m a x

u ,v ( V ,  u =  v

h̃

r =  1

D ³ O (r )
v (A  (D  ))   O (r )

v (A  (D   ))
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(b )
≤

h̃

r =  1

m a x
u ,v ∈ V ,  u =  v

D α O (r )
v (A  (D  ))   O (r )

v (A  (D   ))

(c )
≤

h̃

r =  1

2 α k 2

σ 2
=

2 α k 2

σ 2
· h̃ ( 1 2)

f or  e v er y  α   >   1,    w h er e   D   ∼ u D   .  (a )  f oll o  ws  fr o  m  t h e
c o  m p ositi o n t h e or e  m f or   R  D P ( L e  m  m a  9 )  a n d   L e  m  m a 1 0 , (b )
fr o  m s  w a p pi n g t h e  or d er  of   m a xi  mi z ati o n a n d s u  m  m ati o n, a n d
(c )  fr o  m  ( 1 1).

T h e n,  c o n v erti n g  fr o  m   R  D P  t o   D P  usi n g   L e  m  m a   1 1  gi v es
t h at   Al g orit h  m 1  s atis fi es

2 h̃ α k 2

σ 2
+

l o g( 1/ · )

α  −   1
, · +   ·  −   N  D P  .   ( 1 3)

N o  w,  t h e   R é n yi  di v er g e n c e  p ar a  m et er   α   c a n  b e  o pti  mi z e d
i n   or d er  t o    mi ni  mi z e 2 h̃ α k 2/ σ 2 + l o g( 1/ · )/ ( α −  1 ) b y  t a ki n g  t h e
d eri v ati v e    wit h   r es p e ct  t o   α .    D oi n g   s o,   gi v es  α   =   1   +
σ
√

l o g( 1/ · )

k
√

2 h̃
>   1  fr o  m    w hi c h  t h e  r es ult  f oll o  ws  b y  s u bstit uti n g

t his  v al u e  of α   i nt o ( 1 3)  a n d  s etti n g  σ   =
k
√

8 l o g ( 1 .2 5/ · )
¸ ,   w h er e

 ̧  >  0  a n d  0  <  ·   <   1.

D.    Pr o of  of  T h e or e  m   3

I n  c o ntr ast t o t h e  pr o of  of   T h e or e  m  2 , t h e  dist a n c e  b et  w e e n
a n y   p air   of  t  w o   n o d es   u , v   is  r a n d o  m   o v er  t h e  r o u n ds   of
t h e  al g orit h  m.    H e n c e,    w e  h a v e  t o  r es ort  t o  a    w e a k  f or  m  of
c o n v e xit y  f or    R é n yi  di v er g e n c e  as  f or  m ul at e d  i n    L e  m  m a   7 .
We  st art   wit h  a t e c h ni c al l e  m  m a.

L e  m  m a  1 3:   T h e  fr a cti o n ξ
(r +  1 )
u ,v / (

(r +  1 )
u ,v ) 2 fr o  m  ( 9)  is  u p p er-

b o u n d e d  b y  1.
N o  w, l et

(r )
u ,v d e n ot e t h e a ct u al n u  m b er of n ois e t er  ms a d d e d

i n  b et  w e e n t h e (r −   1 )-t h  a n d  r -t h  visit  of t h e t o k e n  at  n o d e  v
aft er  visiti n g  n o d e  u .

(r )
u ,v is  a  bi n o  mi al   R V   wit h  p ar a  m et ers

d (r ) (u , v )  a n d  1  −   p ,   w h er e d (r ) (u , v )  is  t h e  dist a n c e  b et  w e e n
u  a n d  v  al o n g  t h e  dir e cti o n  of  t h e  t o k e n  o v er  t h e  ri n g.  Fr o  m
L e  m  m a   7 , it  f oll o  ws t h at

D α O
(r )
v (A  (D  ))   O

(r )
v (A  (D   ))   ≤   (1  +   b )

×  E D α O
(r )
v (A  (D  ))   O

(r )
v (A  (D   ))

(i)
u ,v =   ξ

(i)
u ,v , i ∈   [r ]   ,

w h er e D α O (r )
v (A  (D  ))   O (r )

v (A  (D   ))| (i)
u ,v =   ξ (i)

u ,v , i ∈   [r ]   is

t h e    R é n yi   di v er g e n c e   b et  w e e n  t h e   vi e  ws  O
(r )
v (A  (D  ))   a n d

O (r )
v (A  (D   ))  gi v e n t h at i n  b et  w e e n t h e  (i −   1 )-t h  a n d i-t h  visit

of  t h e  t o k e n  at  n o d e   v ,  ξ (i)
u ,v ∈   [d (i) (u , v )]  n o d es  aft er  n o d e

u   (i n cl u di n g)  h a v e  b e e n  visit e d,  a n d    w h er e  0  <   b   ≤   1  is  a
c o nst a nt  s u c h t h at

D α O (r )
v (A  (D  ))   O (r )

v (A  (D   )) (i)
u ,v =   ξ (i)

u ,v , i ∈   [r ]

≤
b

α  −   1
( 1 4)

f or  all  ξ
(i)
u ,v ∈   [d (i) (u , v )].    B y  pi c ki n g  b   =   1  a n d  a p pl yi n g

L e  m  m a   1 2 ,   gi v es  t h e  e x pr essi o n  i n  ( 1 5)  at  t h e   b ott o  m   of
t h e  p a g e.    As ξ

(r +  1 )
u ,v / (

(r +  1 )
u ,v ) 2 ≤   1  (s e e   L e  m  m a   1 3 ),  i n  or d er  t o

s atisf y  ( 1 4)  (  wit h  b  =   1 ),   w e  r e q uir e  t h at  2α ( α  −   1 )k 2 ≤   σ 2

(s e e  ( 9)),   w hi c h is  e q ui v al e nt t o
1 −   2 σ 2

k 2 +  1

2 ≤   α  ≤
1 +   2 σ 2

k 2 +  1

2 .
Si n c e t h e l o  w er  b o u n d  o n   α   a b o v e is l ess t h a n  o n e,

1  <  α   ≤
1  + 2 σ 2

k 2 +   1

2
=

1  + 1 6 l o g ( 1 .2 5/ · )
¸ 2 +   1

2
,   ( 1 6)

w h er e   w e  h a v e  us e d t h at   σ   =
k
√

8 l o g ( 1 .2 5/ · )
¸ .

I n  t h e  f oll o  wi n g,  t o  si  m plif y  n ot ati o n,  l et  g (
(1 )
u ,v . . . ,

(r )
u ,v )

d e n ot e t h e  e x pr essi o n i nsi d e t h e  e x p e ct ati o n  o p er at or  of  ( 1 5).
It  f oll o  ws t h at

E (1 )
u ,v ,...,

(r )
u ,v

g
(1 )
u ,v . . . ,

(r )
u ,v

=

n −  1

d 1 =  1

· · ·

n −  1

d r =  1

r

i=  1

Pr (d (i) (u , v ) =   d i)

×   E (1 )
u ,v ,...,

(r )
u ,v

g
(1 )
u ,v , . . . ,

(r )
u ,v d (i) (u , v ) =   d i, i ∈   [r ]   ,

w h er e

E (1 )
u ,v ,...,

(r )
u ,v

g (1 )
u ,v , . . . ,

(r )
u ,v d (i) (u , v )  =   d i, i ∈   [r ]

=

d 1

h 1 =  1

· · ·

d r

h r =  1

g (h 1 , . . . , h r )

×
d 1

h 1
· · ·

d r

h r
p d 1 +···  +  d r −  (h 1 +···  h r ) (1  −   p ) h 1 +···  +  h r .

N o  w,  f or   a   fi x e d   p air   of   n o d es   u , v ,  d (i) (u , v )   =   1    wit h
pr o b a bilit y 1/ (n −  1 ), d (i) (u , v )  =   2   wit h  pr o b a bilit y  (1 − 1/ (n −  1 )) ·
1/ (n −  2 ) = 1/ (n −  1 ), d (i) (u , v )  =   3   wit h  pr o b a bilit y  (1  − 1/ (n −  1 )) ·
(1  − 1/ (n −  2 )) · 1/ (n −  3 ) = 1/ (n −  1 ),  et c.   H e n c e, d (i) (u , v )  f oll o  ws  a
u nif or  m  distri b uti o n.   As  a  r es ult,

E (1 )
u ,v ,...,

(r )
u ,v

g (1 )
u ,v , . . . ,

(r )
u ,v

=
1

(n  −   1 ) r

n −  1

d 1 =  1

· · ·

n −  1

d r =  1

d 1

h 1 =  1

· · ·

d r

h r =  1

g (h 1 , . . . , h r )

m a x
u ,v ∈ V ,  u =  v

D α O (r )
v (A  (D  ))   O (r )

v (A  (D   ))

≤   m a x
u ,v ∈ V ,  u =  v

(1  +   1 ) ·
2 α k 2

σ 2
E (1 )

u ,v ,...,
(r )
u ,v

£

¤
¤
¤
¥

(r )
u ,v

4 (1  + r −  1
i=  1

(i)
u ,v ) ·   1  + r −  1

i=  1
(i)
u ,v +

(r )
u ,v −   1  + r −  1

i=  1
(i)
u ,v

2

¦

§
§
§
¨

( 1 5)

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n S e pt e m b er 2 6, 2 0 2 5 at 2 0: 3 2: 3 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



4 2 2 I E E E  J  O  U  R  N  A L   O  N  S E L E  C T E  D   A  R E  A S  I  N  I  N F  O  R  M  A TI  O  N   T  H E  O  R  Y,   V  O L.  5,  2 0 2 4

×
d 1

h 1
· · ·

d r

h r
p d 1 +···  +  d r −  (h 1 +···  h r ) (1  −   p ) h 1 +···  +  h r

(a )
f

1

(n  −   1 )

n −  1

d =  1

d

h =  1

g (h , . . . , h )
d

h
p d −  h (1  −   p ) h

w hi c h  is  i n d e p e n d e nt   of   u , v ,  a n d    w h er e  (a )  f oll o  ws  fr o  m
t h e  f a ct  t h at  g (·, . . . , ·)  is  a  d e cr e asi n g  a n d  c o n v e x  f u n cti o n.
H e n c e,

m a x
u ,v ∈ V ,

u =  v

D α O (r )
v (A  (D  ))   O (r )

v (A  (D   ))

f
4 α k 2

(n  −   1 ) σ 2

n −  1

d =  1

d

h =  1

g (h , . . . , h )
d

h
p d −  h (1  −   p ) h . ( 1 7)

As  f or  t h e   S k i p - R i n g   s c h e  m e,  t h e  n u  m b er  of  visits  of  t h e
t o k e n  t o   a   n o d e  v   d uri n g  t h e   e x e c uti o n   of  t h e   al g orit h  m,
d e n ot e d b y v , f oll o  ws a bi n o  mi al distri b uti o n   wit h p ar a  m et ers
h m a x / n a n d   1  −   p .   L et h̃   b e   d e û n e d   as  i n  t h e  f or  m ul ati o n
of  t h e  t h e or e  m.    T h e n,  it  f oll o  ws  fr o  m  a  st a n d ar d    C h er n off
b o u n d   t h at   Pr ( v g h̃ )   f   ·  ,   f or   s o  m e   ·   ∈   (0 , 1 ).
A p pl yi n g   t h e   c o  m p ositi o n   t h e or e  m   f or    R  D P   ( L e  m  m a   9 ),
L e  m  m a   1 0 ,   a n d   s  w a p pi n g  t h e   or d er   of    m a xi  mi z ati o n   a n d
s u  m  m ati o n   as   i n   t h e   d eri v ati o ns   i n   ( 1 2),   b ut   usi n g  ( 1 7)
t o g et h er    wit h  t h e   d e û niti o n   of   g (·)   fr o  m   ( 1 5),   r es ults  i n

m a x u ,v ∈ V ,  u =  v D α O v (A  (D  ))   O v (A  (D   ))   f
4 a α k 2

σ 2 ,   w h er e a
is  d e û n e d i n t h e t h e or e  m  f or  m ul ati o n.

T h e n,  c o n v erti n g  fr o  m   R  D P  t o   D P  usi n g   L e  m  m a   1 1  gi v es
t h at   Al g orit h  m 1  s atis û es

4 a α k 2

σ 2
+

l o g( 1/ · )

α  −   1
, · +   ·  −   N  D P  ,   ( 1 8)

w h er e  a g ai n  t h e  p ar a  m et er   α   c a n  b e  o pti  mi z e d  i n  or d er  t o
mi ni  mi z e t h e    ̧ (l eft) t er  m i n ( 1 8).   H o  w e v er, t h er e is  a s u btl et y
as t h e c o n diti o n i n  ( 1 6) m ust  b e s atis û e d.   Ta ki n g t h e  d eri v ati v e
of  t h e   ̧   (l eft)  t er  m  of  ( 1 8)  wit h  r es p e ct  t o   α ,  e q u ati n g  it  t o

z er o,  a n d  s etti n g  σ   =
k
√

8 l o g ( 1 .2 5/ · )
¸ ,   w h er e  ̧  >  0  a n d  0  <  ·   <

1,  gi v es   α   =   1  +

√
2 l o g ( 1/ · ) l o g( 1 .2 5/ · )

¸
√

a
>   1  a n d  t h e  û n al  r es ult

f oll o  ws  b y s u bstit uti n g t h e   mi ni  m u  m  of t h e  o pti  m al  v al u e  of α
fr o  m  a b o v e  a n d  t h e  ri g ht- h a n d-si d e  u p p er  b o u n d  of  ( 1 6)  i nt o
t h e  ̧ (l eft) t er  m  of  ( 1 8)  a n d  si  m plif yi n g.
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ti o n,=  i n  Pr o c.  2 5t h  I nt.    C o nf.    Artif.  I nt ell.  St atist.  ( AI S T A T S) ,  2 0 2 2,
p p.  5 3 3 4 – 5 3 5 3.

[ 1 2]    B.   B all e,    G.   B art h e,  a n d    M.    G a b o ar di,  < Pri v a c y  a  m pli û c ati o n  b y  s u b-
s a  m pli n g:   Ti g ht  a n al ys es  vi a  c o u pli n gs  a n d  di v er g e n c es,= i n  Pr o c.  3 2t h
I nt.   C o nf.   N e ur al  I nf.   Pr o c ess.  S yst.  (  N e urI P S),  2 0 1 8,  p p.  6 2 8 0 – 6 2 9 0.

[ 1 3]    V.  F el d  m a n,  I.    Mir o n o v,   K.   Tal  w ar,  a n d   A.   T h a k urt a,  < Pri v a c y  a  m pli û-
c ati o n  b y  it er ati o n,=  i n  Pr o c.  5 9t h   A n n u.  I E E E  S y  m p.   F o u n d.   C o  m p ut.
S ci.  ( F  O  C S) ,  2 0 1 8,  p p.  5 2 1 – 5 3 2.

[ 1 4]    Ú.    Erli n gss o n,    V.   F el d  m a n,  I.    Mir o n o v,    A.    R a g h u n at h a n,    K.    Tal  w ar,
a n d    A.    T h a k urt a,  < A  m pli û c ati o n   b y  s h uf üi n g:   Fr o  m  l o c al  t o  c e ntr al
diff er e nti al  pri v a c y  vi a  a n o n y  mit y,=  i n   Pr o c.   A n n u.   A C  M- SI A  M  S y  m p.
Dis cr et e   Al g orit h  ms  ( S  O  D A)  ,  2 0 1 9,  p p.  2 4 6 8 – 2 4 7 9.

[ 1 5]    V.  F el d  m a n,    A.    M c  Mill a n,  a n d    K.   Tal  w ar,  <  Hi di n g  a  m o n g  t h e  cl o n es:
A   si  m pl e   a n d   n e arl y   o pti  m al   a n al ysis   of   pri v a c y   a  m pli û c ati o n   b y
s h uf üi n g,= i n Pr o c. 6 2t h   A n n u. I E E E S y  m p.   F o u n d.   C o  m p ut. S ci. ( F  O  C S)  ,
2 0 2 2,  p p.  9 5 4 – 9 6 4.

[ 1 6]    E.     C yff ers,     M.     E v e n,     A.     B ell et,   a n d     L.     M ass o uli é,   <  M uf üi at o:
P e er-t o- p e er   pri v a c y  a  m pli û c ati o n  f or   d e c e ntr ali z e d   o pti  mi z ati o n  a n d
a v er a gi n g,= i n  Pr o c.  3 6t h I nt.   C o nf.   N e ur al I nf.   Pr o c ess.  S yst. (  N e urI P S)  ,
2 0 2 2,  p p.  1 5 8 8 9 – 1 5 9 0 2.

[ 1 7]     M.  S h o  w k at b a k hs h,   C.   K ar a k us,  a n d  S.   Di g g a vi,  <  Diff er e nti all y  pri v at e
c o ns e ns us- b as e d  distri b ut e d  o pti  mi z ati o n,=  2 0 1 9,  ar Xi v: 1 9 0 3. 0 7 7 9 2 v 1 .

[ 1 8]    R. Ji n,   X.   H e,  a n d   H.   D ai,  <  D e c e ntr ali z e d  diff er e nti all y  pri v at e   wit h o ut-
r e pl a c e  m e nt  st o c h asti c  gr a di e nt  d es c e nt,=  2 0 1 8,  ar Xi v: 1 8 0 9. 0 2 7 2 7 v 3 .

[ 1 9]    K.   B o n a  wit z  et  al.,  < Pr a cti c al  s e c ur e  a g gr e g ati o n f or  pri v a c y- pr es er vi n g
m a c hi n e l e ar ni n g,= i n   Pr o c.  2 4t h   A C  M  SI  G S A C   C o nf.   C o  m p ut.   C o  m  m u n.
S e c urit y  (  C  C S) ,  2 0 1 7,  p p.  1 1 7 5 – 1 1 9 1.

[ 2 0]   S.    K a d h e,    N.    R aj ar a  m a n,    O.    O.    K o yl u o gl u,   a n d    K.    R a  m c h a n dr a n,
< F ast S e c  A g g:  S c al a bl e  s e c ur e  a g gr e g ati o n f or  pri v a c y- pr es er vi n g f e d er-
at e d l e ar ni n g,=  2 0 2 0,  ar Xi v: 2 0 0 9. 1 1 2 4 8 v 1 .

[ 2 1]   J.  S o  et  al.,  < Li g ht S e c  A g g:   A li g ht  w ei g ht  a n d  v ers atil e  d esi g n f or s e c ur e
a g gr e g ati o n  i n  f e d er at e d  l e ar ni n g,=  i n   Pr o c.    C o nf.    M a c h.  L e ar n.  S yst.
(  M L S ys), 2 0 2 2,  p p.  6 9 4 – 7 2 0.

[ 2 2]   J.  S o,   B.   G ül er,  a n d   A.  S.   A v esti  m e hr,  < T ur b o- a g gr e g at e:   Br e a ki n g  t h e
q u a dr ati c  a g gr e g ati o n  b arri er i n  s e c ur e f e d er at e d l e ar ni n g,=  I E E E  J.  S el.
Ar e as  I nf.  T h e or y ,  v ol.  2,  n o.  1,  p p.  4 7 9 – 4 8 9,    M ar.  2 0 2 1.

[ 2 3]    R.    S c hl e g el,    S.     K u  m ar,     E.     R os n es,    a n d     A.     Gr a ell    i     A  m at,
<  C o d e d P a d d e d F L  a n d    C o d e d S e c  A g g:  Str a g gl er    miti g ati o n  a n d  s e c ur e
a g gr e g ati o n i n f e d er at e d l e ar ni n g,=  I E E E  Tr a ns.   C o  m  m u n.,  v ol.  7 1,  n o.  4,
p p.  2 0 1 3 – 2 0 2 7,   A pr.  2 0 2 3.

[ 2 4]    A.   R eisi z a d e h,    H.   Ta h eri,    A.    M o k ht ari,    H.    H ass a ni,  a n d   R.  P e d ars a ni,
<  R o b ust    a n d    c o  m  m u ni c ati o n- ef û ci e nt    c oll a b or ati v e    l e ar ni n g,=    i n
Pr o c.   3 3t h   I nt.    C o nf.    N e ur al   I nf.    Pr o c ess.   S yst.   (  N e urI P S)  ,   2 0 1 9,
p p.  8 3 8 8 – 8 3 9 9.

[ 2 5]    Z.    C h arl es  a n d  J.    K o n e č n ý,  <  O n  t h e  o utsi z e d  i  m p ort a n c e  of  l e ar ni n g
r at es i n l o c al  u p d at e   m et h o ds,=  2 0 2 0,  ar Xi v: 2 0 0 7. 0 0 8 7 8 v 1 .

[ 2 6]    A.    Mitr a,   R.  J a af ar,   G.  J.  P a p p as,  a n d   H.   H ass a ni,  < Li n e ar  c o n v er g e n c e
i n  f e d er at e d  l e ar ni n g:    Ta c kli n g  cli e nt  h et er o g e n eit y  a n d  s p ars e  gr a di-
e nts,= i n  Pr o c.  3 5t h I nt.   C o nf.   N e ur al I nf.   Pr o c ess.  S yst. (  N e urI P S)  ,  2 0 2 1,
p p.  1 4 6 0 6 – 1 4 6 1 9.

[ 2 7]    K.   L e e,   M.   L a  m,   R.  P e d ars a ni,   D.  P a p aili o p o ul os,  a n d   K.   R a  m c h a n dr a n,
< S p e e di n g  u p  distri b ut e d    m a c hi n e  l e ar ni n g  usi n g  c o d es,=   I E E E  Tr a ns.
I nf.  T h e or y,  v ol.  6 4,  n o.  3,  p p.  1 5 1 4 – 1 5 2 9,    M ar.  2 0 1 8.

[ 2 8]   S.    Li  a n d  S.    A v esti  m e hr,  <  C o d e d  c o  m p uti n g:    Miti g ati n g  f u n d a  m e nt al
b ottl e n e c ks  i n  l ar g e-s c al e   distri b ut e d   c o  m p uti n g   a n d    m a c hi n e  l e ar n-
i n g,= F o u n d.  Tr e n ds R C o  m  m u n.  I nf.  T h e or y  ,  v ol.  1 7,  n o.  1,  p p.  1 – 1 4 8,
A u g.  2 0 2 0.

A ut h ori z e d li c e n s e d u s e li mit e d t o: N e w J er s e y I n stit ut e of T e c h n ol o g y. D o w nl o a d e d o n S e pt e m b er 2 6, 2 0 2 5 at 2 0: 3 2: 3 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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[ 2 9]    Q.    Yu,  <  C o d e d  c o  m p uti n g:    A  tr a nsf or  m ati v e  fr a  m e  w or k  f or  r esili e nt,
s e c ur e,   pri v at e,   a n d   c o  m  m u ni c ati o n   ef û ci e nt  l ar g e   s c al e   distri b ut e d
c o  m p uti n g,=  P h.  D.  diss ert ati o n,   El e ctr.   E n g.,   U ni v.  S o ut h er n   C alif or ni a,
L os   A n g el es   C  A,   U S  A,   A u g.  2 0 2 0.

[ 3 0]    A.  S e v eri ns o n,   A.   Gr a ell i   A  m at, a n d   E.   R os n es, <  Bl o c k- di a g o n al a n d   L T
c o d es  f or  distri b ut e d  c o  m p uti n g    wit h  str a g gli n g  s er v ers,=  I E E E  Tr a ns.
C o  m  m u n.  ,  v ol.  6 7,  n o.  3,  p p.  1 7 3 9 – 1 7 5 3,    M ar.  2 0 1 9.

[ 3 1]   S.     D utt a,     V.     C a d a  m b e,   a n d    P.     Gr o v er,   < < S h ort- d ot =:     C o  m p uti n g
l ar g e   li n e ar   tr a nsf or  ms   distri b ut e dl y   usi n g   c o d e d   s h ort   d ot   pr o d-
u cts,=   I E E E   Tr a ns.   I nf.   T h e or y,   v ol.   6 5,   n o.   1 0,   p p.  6 1 7 1 – 6 1 9 3,
O ct.  2 0 1 9.

[ 3 2]    Q.    Yu,    M.    A.    M a d d a h-  Ali,  a n d    A.  S.    A v esti  m e hr,  < P ol y n o  mi al  c o d es:
A n  o pti  m al  d esi g n f or  hi g h- di  m e nsi o n al c o d e d   m atri x   m ulti pli c ati o n,= i n
Pr o c.   3 1t h   I nt.    C o nf.    N e ur al   I nf.    Pr o c ess.   S yst.   (  N e urI P S)  ,   2 0 1 7,
p p.  4 4 0 3 – 4 4 1 3.

[ 3 3]   S.    D utt a,     M.   F a hi  m,   F.    H a d d a d p o ur,    H.   J e o n g,    V.    C a d a  m b e,   a n d
P.    Gr o v er,  <  O n  t h e  o pti  m al  r e c o v er y  t hr es h ol d  of  c o d e d    m atri x    m ul-
ti pli c ati o n,=  I E E E   Tr a ns.   I nf.   T h e or y,   v ol.   6 6,   n o.   1,   p p.  2 7 8 – 3 0 1,
J a n.  2 0 2 0.

[ 3 4]    Q.    Yu  a n d    A.  S.    A v esti  m e hr,  <  C o d e d  c o  m p uti n g  f or  r esili e nt,  s e c ur e,
a n d  pri v a c y- pr es er vi n g  distri b ut e d    m atri x    m ulti pli c ati o n,=  I E E E  Tr a ns.
C o  m  m u n.  ,  v ol.  6 9,  n o.  1,  p p.  5 9 – 7 2,  J a n.  2 0 2 1.

[ 3 5]     W.- T.     C h a n g   a n d     R.     Ta n d o n,   <  O n   t h e   c a p a cit y    of   s e c ur e    dis-
tri b ut e d    m atri x    m ulti pli c ati o n,=  i n  Pr o c.  I E E E    Gl o b.    C o  m  m u n.    C o nf.
(  G L  O B E  C  O  M),  2 0 1 8,  p p.  1 – 6.

[ 3 6]   J.    K a k ar,  S.   E b a dif ar,  a n d    A.  S e z gi n,  <  O n  t h e  c a p a cit y  a n d  str a g gl er-
r o b ust n ess  of  distri b ut e d  s e c ur e    m atri x    m ulti pli c ati o n,=  I E E E    A c c ess,
v ol.  7,  p p.  4 5 7 8 3 – 4 5 7 9 9,  2 0 1 9.

[ 3 7]    H.    Ya n g   a n d  J.    L e e,   < S e c ur e   distri b ut e d   c o  m p uti n g    wit h  str a g gli n g
s er v ers  usi n g  p ol y n o  mi al  c o d es,=  I E E E  Tr a ns.  I nf.   F or e nsi cs  S e c urit y,
v ol.  1 4,  p p.  1 4 1 – 1 5 0,  2 0 1 9.

[ 3 8]     M.   Ali as g ari,   O.  Si  m e o n e, a n d J.   Kli e  w er, <  Distri b ut e d a n d pri v at e c o d e d
m atri x  c o  m p ut ati o n    wit h  ü e xi bl e  c o  m  m u ni c ati o n  l o a d,=  i n   Pr o c.  I E E E
I nt.  S y  m p.  I nf.  T h e or y  (I SI T),  2 0 1 9,  p p.  1 0 9 2 – 1 0 9 6.

[ 3 9]    R.    G.    L.    D’  Oli v eir a,  S.    El    R o u a y h e b,  a n d    D.    K ar p u k,  <  G  A S P  c o d es
f or  s e c ur e  distri b ut e d    m atri x    m ulti pli c ati o n,=  I E E E  Tr a ns.  I nf.  T h e or y,
v ol.  6 6,  n o.  7,  p p.  4 0 3 8 – 4 0 5 0,  J ul.  2 0 2 0.

[ 4 0]    Q.   Yu,    M.   A.    M a d d a h-  Ali,  a n d   A.  S.   A v esti  m e hr,  < Str a g gl er   miti g ati o n
i n   distri b ut e d    m atri x    m ulti pli c ati o n:   F u n d a  m e nt al  li  mits  a n d   o pti  m al
c o di n g,=   I E E E   Tr a ns.   I nf.   T h e or y,   v ol.   6 6,   n o.   3,   p p.  1 9 2 0 – 1 9 3 3,
M ar.  2 0 2 0.

[ 4 1]    N.    Mit al,   C.   Li n g,  a n d   D.   G ü n d ü z,  < S e c ur e  distri b ut e d   m atri x  c o  m p ut a-
ti o n   wit h  dis cr et e  F o uri er tr a nsf or  m,= I E E E  Tr a ns.  I nf.  T h e or y,  v ol.  6 8,
n o.  7,  p p.  4 6 6 6 – 4 6 8 0,  J ul.  2 0 2 2.

[ 4 2]    R.   Ta n d o n,    Q.   L ei,    A.    G.    Di  m a kis,  a n d    N.    K ar a  m p at zi a kis,  <  Gr a di e nt
c o di n g:   A v oi di n g  str a g gl ers i n  distri b ut e d l e ar ni n g,= i n  Pr o c.  I nt.   C o nf.
M a c h.  L e ar n.  (I  C  M L)  ,  2 0 1 7,  p p.  3 3 6 8 – 3 3 7 6.

[ 4 3]    C.    K ar a k us,    Y.  S u n,  S.    Di g g a vi,  a n d    W.    Yi n,  < Str a g gl er    miti g ati o n  i n
distri b ut e d  o pti  mi z ati o n t hr o u g h  d at a  e n c o di n g,= i n  Pr o c.  3 1st I nt.   C o nf.
N e ur al  I nf.   Pr o c ess.  S yst.  (  N e urI P S)  ,  2 0 1 7,  p p.  5 4 4 0 – 5 4 4 8.

[ 4 4]    C.- S.    Ya n g,    R.  P e d ars a ni,  a n d    A.  S.    A v esti  m e hr,  < Ti  m el y-t hr o u g h p ut
o pti  m al    c o d e d    c o  m p uti n g    o v er    cl o u d    n et  w or ks,=   i n   Pr o c.    2 0t h
A C  M  I nt.   S y  m p.    M o bil e    A d    H o c    N et  w.    C o  m p ut.  (  M o bi  H o c)  ,   2 0 1 9,
p p.  3 0 1 – 3 1 0.

[ 4 5]    Q.    Yu,   S.    Li,    N.    R a vi v,   S.     M.     M.    K al a n,     M.   S olt a n ol k ot a bi,   a n d
A.  S.   A v esti  m e hr,   < L a gr a n g e   c o d e d   c o  m p uti n g:    O pti  m al   d esi g n   f or
r esili e n c y,  s e c urit y,  a n d  pri v a c y,=  i n  Pr o c.  2 2 n d  I nt.   C o nf.   Artif.  I nt ell.
St atist.  ( AI S T A T S) ,  2 0 1 9,  p p.  1 2 1 5 – 1 2 2 5.

[ 4 6]    R.   Bit ar,    M.    W o ott ers,  a n d  S.   El   R o u a y h e b,  < St o c h asti c  gr a di e nt  c o di n g
f or  str a g gl er   miti g ati o n i n  distri b ut e d l e ar ni n g,=  I E E E  J.  S el.   Ar e as  I nf.
T h e or y ,  v ol.  1,  n o.  1,  p p.  2 7 7 – 2 9 1,    M a y  2 0 2 0.

[ 4 7]    H.- P.    Wa n g  a n d I.   D u urs  m a,  < P arit y- c h e c k e d  Str ass e n  al g orit h  m,=  2 0 2 0,
ar Xi v: 2 0 1 1. 1 5 0 8 2 v 3 .

[ 4 8]    C.- S.   Ya n g a n d   A.  S.   A v esti  m e hr, <  C o d e d c o  m p uti n g f or s e c ur e   B o ol e a n
c o  m p ut ati o ns,=  I E E E J. S el.   Ar e as I nf.  T h e or y, v ol. 2, n o. 1, p p.  3 2 6 – 3 3 7,
M ar.  2 0 2 1.

[ 4 9]   J.   K os ai a n,   K.   V.   R as h  mi,  a n d  S.   Ve n k at ar a  m a n,  < L e ar ni n g- b as e d  c o d e d
c o  m p ut ati o n,=  I E E E J.  S el.   Ar e as I nf.  T h e or y,  v ol.  1,  n o.  1,  p p.  2 2 7 – 2 3 6,
M a y  2 0 2 0.

[ 5 0] A.   R.  El k or d y,    S.    Pr a k as h,   a n d    S.     A v esti  m e hr,   <  B asil:     A   f ast
a n d     B y z a nti n e-r esili e nt   a p pr o a c h   f or   d e c e ntr ali z e d   tr ai ni n g,=   I E E E
J.    S el.     Ar e as     C o  m  m u n. ,    v ol.    4 0,    n o.    9,    p p.  2 6 9 4 – 2 7 1 6,
S e p.  2 0 2 2.

[ 5 1]    Z.    Wa n g,    Y.    H u,  J.    Xi a o,  a n d   C.    W u,  < Ef û ci e nt  ri n g-t o p ol o g y  d e c e n-
tr ali z e d  f e d er at e d  l e ar ni n g    wit h  d e e p  g e n er ati v e    m o d els  f or  i n d ustri al
arti û ci al i nt elli g e nt,=  2 0 2 1,  ar Xi v: 2 1 0 4. 0 8 1 0 0 v 1 .

[ 5 2]    O.  S h a  mir  a n d   T.   Z h a n g,  < St o c h asti c  gr a di e nt  d es c e nt  f or  n o n-s  m o ot h
o pti  mi z ati o n:   C o n v er g e n c e  r es ults  a n d  o pti  m al  a v er a gi n g  s c h e  m es,=  i n
Pr o c.  I nt.   C o nf.    M a c h.  L e ar n.  (I  C  M L) ,  2 0 1 3,  p p.  7 1 – 7 9.

[ 5 3]   <  U  CI   h o usi n g   d at as et.=    O p e n  M L.    O ct.   1,   2 0 2 3.  [  O nli n e].    A v ail a bl e:
htt ps://  w  w  w. o p e n  ml. or g/ d/ 8 2 3

[ 5 4]    Y.    L e  C u n,    L.    B ott o u,    Y.    B e n gi o,   a n d   P.    H aff n er,   <  Gr a di e nt- b as e d
l e ar ni n g  a p pli e d t o  d o c u  m e nt r e c o g niti o n,= Pr o c. I E E E ,  v ol.  8 6,  n o.  1 1,
p p.  2 2 7 8 – 2 3 2 4,   N o v.  1 9 9 8.

[ 5 5]    A.     Kri z h e vs k y,   < L e ar ni n g     m ulti pl e   l a y ers    of   f e at ur es   fr o  m   ti n y
i  m a g es,=    D e pt.    C o  m p ut.   S ci.,    U ni v.    T or o nt o,    T or o nt o,    O  N,    C a n a d a,
R e p.   T  R- 2 0 0 9,   A pr.  2 0 0 9.

[ 5 6]    A.   S e v eri ns o n,    E.    R os n es,   S.    El    R o u a y h e b,   a n d    A.    Gr a ell  i    A  m at,
<  D S  A  G:     A     mi x e d   s y n c hr o n o us- as y n c hr o n o us   it er ati v e     m et h o d   f or
str a g gl er-r esili e nt  l e ar ni n g,=   I E E E   Tr a ns.    C o  m  m u n.,   v ol.   7 1,   n o.   2,
p p.  8 0 8 – 8 2 2,  F e b.  2 0 2 3.

[ 5 7]   J.    C.    D u c hi,    M.  I.  J or d a n,  a n d    M.  J.    Wai n  wri g ht,  < L o c al  pri v a c y  a n d
st atisti c al    mi ni  m a x  r at es,=  i n   Pr o c.   5 4t h    A n n u.  I E E E   S y  m p.    F o u n d.
C o  m p ut.  S ci.  ( F  O  C S)  ,  2 0 1 3,  p p.  4 2 9 – 4 3 8.

[ 5 8]   S.    D utt a,    V.   C a d a  m b e,  a n d  P.    Gr o v er,  <  C o d e d  c o n v ol uti o n  f or  p ar all el
a n d  distri b ut e d  c o  m p uti n g   wit hi n  a  d e a dli n e,= i n  Pr o c. I E E E  I nt.  S y  m p.
I nf.  T h e or y  (I SI T),  2 0 1 7,  p p.  2 4 0 3 – 2 4 0 7.

[ 5 9]    G.   N e gli a,   G.   C al bi,   D.   T o  wsl e y, a n d   G.   Var d o y a n, < T h e r ol e  of  n et  w or k
t o p ol o g y  f or  distri b ut e d    m a c hi n e  l e ar ni n g,=  i n  Pr o c.  I E E E  I nt.    C o nf.
C o  m p ut.   C o  m  m u n.  (I  N F  O  C  O  M)  ,  2 0 1 9,  p p.  2 3 5 0 – 2 3 5 8.

[ 6 0]    T.  S u n,    Y.  S u n,  a n d    W.    Yi n,  <  O n    M ar k o v  c h ai n  gr a di e nt  d es c e nt,=  i n
Pr o c.   3 2t h   I nt.    C o nf.    N e ur al   I nf.    Pr o c ess.   S yst.   (  N e urI P S)  ,   2 0 1 8,
p p.  9 9 1 8 – 9 9 2 7.

[ 6 1]    G.     A y a c h e   a n d   S.    El    R o u a y h e b,   < Pri v at e     w ei g ht e d   r a n d o  m     w al k
st o c h asti c  gr a di e nt  d es c e nt,=  I E E E J.  S el.   Ar e as I nf.  T h e or y,  v ol.  2,  n o.  1,
p p.  4 5 2 – 4 6 3,    M ar.  2 0 2 1.

[ 6 2]   I.    Mir o n o v,  <  R é n yi  diff er e nti al  pri v a c y,=  i n  Pr o c.  3 0t h  I E E E    C o  m p ut.
S e c urit y   F o u n d.  S y  m p.  (  C S F) ,  2 0 1 7,  p p.  2 6 3 – 2 7 5.

[ 6 3]    A.    K ol os k o v a,    N.    L oi z o u,   S.    B or eiri,     M.   J a g gi,   a n d   S.    U.   Sti c h,
< A   u ni û e d   t h e or y   of   d e c e ntr ali z e d   S  G  D     wit h   c h a n gi n g   t o p ol o g y
a n d  l o c al  u p d at es,=  i n   Pr o c.  I nt.    C o nf.    M a c h.   L e ar n.  (I  C  M L) ,  2 0 2 0,
p p.  5 3 8 1 – 5 3 9 3.

[ 6 4]    Z.    C h e n,    M.    D a hl,  a n d    E.    G.    L arss o n,  <  D e c e ntr ali z e d  l e ar ni n g  o v er
wir el ess  n et  w or ks:   T h e eff e ct  of  br o a d c ast   wit h r a n d o  m a c c ess,= i n   Pr o c.
I E E E   W or ks h o p Si g n al   Pr o c ess.   A d v.   Wir el ess   C o  m  m u n. ( S P A  W  C), 2 0 2 3,
p p.  3 1 6 – 3 2 0.

[ 6 5]    D.  P.   H err er a,   Z.   C h e n, a n d   E.   G.   L arss o n, < F ast er c o n v er g e n c e   wit h l ess
c o  m  m u ni c ati o n:    Br o a d c ast- b as e d  s u b gr a p h  s a  m pli n g  f or  d e c e ntr ali z e d
l e ar ni n g  o v er   wir el ess  n et  w or ks,=  2 0 2 4,  ar Xi v: 2 4 0 1. 1 3 7 7 9 v 1 .

[ 6 6]   S.   D e,   L.   B err a d a, J.   H a y es,  S.   L.  S  mit h, a n d   B.   B all e, <  U nl o c ki n g  hi g h-
a c c ur a c y  diff er e nti all y  pri v at e i  m a g e  cl assi û c ati o n t hr o u g h s c al e,=  2 0 2 2,
ar Xi v: 2 2 0 4. 1 3 6 5 0 v 2 .

[ 6 7]   S.   H u,   X.   Yu a n,   W.   Ni,   X.   Wa n g,   E.   H oss ai n, a n d   H.   V.  P o or, <  O F  D  M  A-
F 2 L:  F e d er at e d l e ar ni n g   wit h  ü e xi bl e  a g gr e g ati o n  o v er  a n   O F  D  M  A  air
i nt erf a c e,= I E E E  Tr a ns.    Wir el ess   C o  m  m u n.,  e arl y  a c c ess,  J a n.  1 5,  2 0 2 4,
d oi:  1 0. 1 1 0 9/ T   W  C. 2 0 2 3. 3 3 3 4 6 9 1 .

[ 6 8]    L.   G.   G u bi n,   B.   T.  P ol y a k,  a n d   E.   V.   R ai k,  < T h e   m et h o d  of  pr oj e cti o ns
f or  û n di n g  t h e  c o  m  m o n  p oi nt  of  c o n v e x  s ets,=  U S S R    C o  m p ut.    M at h.
M at h.   P h ys.  ,  v ol.  7,  n o.  6,  p p.  1 – 2 4,  J a n.  1 9 6 7.

[ 6 9]    T.  v a n   Er v e n a n d  P.   H arr e  m o ës, <  R é n yi  di v er g e n c e a n d   K ull b a c k- L ei bl er
di v er g e n c e,=   I E E E  Tr a ns.  I nf.  T h e or y,  v ol.  6 0,  n o.  7,  p p.  3 7 9 7 – 3 8 2 0,
J ul.  2 0 1 4.
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