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Straggler-Resilient Differentially Private
Decentralized Learning
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Absrract—We consider the strageler problem in decentralized
learning over a logical ring while preserving user data privacy.
Especially, we extend the recently proposed framework of
differential privacy (DP) amplification by decentralization by
Cyffers and Bellet to include overall training lateney—comprising
both computation and communication Iatency. Analytical results
on both the convergence speed and the DP level are derived
for both a skipping scheme (which ignores the stragglers after
a timeout) and a baseline scheme that waits for each node to
tinish before the training continues. A trade-off between overall
training latency, accuracy. and privacy, parameterized by the
timeout of the skipping scheme, is identified and empirically
validated for logistic regression on a real-world dataset and for
image classification using the MNIST and CIFAR-10 datasels.

Index Terms—Decentralized learning, differential privacy, gra-
dient descent, privacy amplification, straggler mitigation, training
latency.

I. INTRODUCTION

N DISTRIBUTED learning, a finite-sum optimization

problem is solved across multiple nodes without exchang-
ing the local datasets directly, thus improving user data privacy
and reducing the communication cost. A popular instance
of distribuled learning is federated learning [2], [3], [4] in
which there is a single central server coordinating the training
process. On the other hand, in fully decentralized learning, see,
e.2., [3]. [6], there is no such coordinating central server—the
nodes maintain a local estimate of the optimal model and
iteratively update it by averaging cslimates oblained from
neighbors corrected on the basis of their local datasets. There
are two modes of operation—sequential and parallel—and

Manuscripl received 29 Oclober 2023: revised 22 February 2024; accepled
19 April 2024. Date of publication 20 May 2024: date of cument version
1 July 2024, This work was supported by the Experimental [nfrastructure for
Exploration of Exascale Computing (eX3), which is financially supported by
the Research Council of Moreay under Contract 270053, The work of Yauhen
Yukimenka and Jorg Kliewer was supported in parl by U5, NSF under Grant
1815322, Grant 1908756, and Grant 2107370, This paper was presenied in part
at the TEEE Information Theory Workshop (TTW), Mombai, India, November
2022 [DOL: 100 10HTTW 54588, 2022 9965898]. ( Corresponding author: Eirik
Roxnes. |

Yauhen Yakimenka and Jorg Kliewer are with the Helen and John
C. Hartmann Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, MNewark, NI 07102 USA (e-muail:
yauhen yakimenka@ njit.eduo; jkliewer @njit.edu).

Chung-Wel Weng, Hsuan-Yin Lin, and Eirk Rospes are with Simola
UiB, 5006 Bergen, Norway (e-mail: chungwei@simulano; lin@simubanog
eirikrosnas @simula.no),

This articke has supplementary  downloadsble material  available
hitps:iidoi.org/ 10,1 1DHISATT.2024. 3400995, provided by the auihors.

Digital Object Identifier 10.110915AIT. 2024, 340089455

. Senior Member, IEEE,
Fellow, IEEE

theoretical studies show thal the physical communication
topology has a strong impact on the number of epochs needed
to converge [7].

It is well-known by now that the computed partial
{sub)gradients can leak information on the local datasets [8].
In order to circumvent this, a carefully selected noise term can
be added to the computed partial (sub)gradients before they
are (ransmitted o other nodes, referred 1o as local differential
privacy (LDP) [9], [10]. In fully decentralized learning, nodes
have only a local view of the system. Hence, Cyffers and
Bellet [11] recently proposed a novel relaxation of LDP,
referred Lo as network DP (NDP), o naturally capture this.
Furthermore, they showed that the privacy-utility trade-off
under NDP can be significantly improved upon compared 1o
what is achievable under LDPF, illustrating that formal privacy
2ains can be obtained from full decentralization. complement-
ing previous notions of “amplifying™ the privacy by shuffling,
subsampling. and iteration [12], [13], [14], [15]. Recently,
the work in [11] was extended to a parallel approach that
alternates between local gradient descent steps for all nodes
in parallel and subsequent gossip averaging [16]. Accordingly,
the NDP concept was relaxed (o caplure thal the privacy
leakage from a node to another node may depend on their
distance in the graph. It was shown in [16] thal privacy
amplification can be achieved as for the sequential approach
in [11]. Differentially-private fully decentralized learning has
also been considered in several other previous works, see,
eg.. [6], [17]. [18]. In the federated learning case, there are
numerous works that consider user privacy, e.g., both from
a DP perspective (see, e.g., [10]) and from an information-
theoretic secure agpregation perspective (see, e.g.. [19], [20],
[21], [22], [23]).

The problem of straggling nodes, i.e.. nodes that take a
long time to finish their tasks due to random phenomena such
as processes running in the background and memory access,
has been broadly smdied in the literature, The ignoring-
stragglers strategy, i.e., ignoring results from the slowesl
nodes, see, eg. [6], [24], is simple and popular, but can lead
to convergence to a local optimum when the data is heteroge-
neous [25], [26]. Coded computing methods [27], [28], [29]
is an alternative (o provide resiliency againsl straggling
nodes, and the key idea is to add redundancy to the
computation through an error-correcting code. The coded
computing lilerature has considered several different comput-
ing tasks, e.g., veclor-matrix multiplication [27], [30], [31],
(secure) distributed matrix-matrix multiplication [32], [33],
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[34]1, [35]. [36]. [37]. [38]. [39], [40], [41]. and more
general distributed optimization and nonlinear computation
problems [42], [43], [44], [45], [46], [47], (48], [49]. For
matrix-matrix multiplication, the state-of-the-art lor straggler
mitigation is achieved by the combination of the results in [47]
and [44].

In this work, we study the impact of stragglers and user
dala privacy in decentralized training. In particular, we assume
an underlying physical full mesh topology, i.e.. all nodes can
physically communicate with each other. bul sequential train-
ing along a logical ring on top of the physical topology where
each node communicates a token only with its immediate
neighbors upstream and downstream. In sequential training,
nodes do nol need to be active during the whole lraining
period, which makes it suitable for scenarios where the nodes
have limited resources, and therefore remain dormant unless
they are triggered lo do an update. See also [50], [51] for
further motivation for this scenario. For this setling, we extend
the recently proposed framework of privacy amplification by
decentralization by Cyffers and Bellet [11] 1o include the
overall latency—comprising both computation and commiuni-
cation latency—under stochastic gradient descent. Our main
contributions are summarized as follows.

« We study a skipping scheme (which ignores the stragglers
after a timeout) and a baseline scheme that waits for
each node to finish its computation before the training
continues, for a fixed and a randomized ring lopology,
and derive analytical results on the convergence behavior
(see Theorem 1) and the DP level (see Theorems 2 and
3), revealing a trade-off parameterized by the limeout
of the skipping scheme. We show thal the asymplotic
convergence rate is equal to that of [52, Th. 2]. We
nole that the presented proofs in Appendices A and B
require several nontrivial steps which can not be found in
previous work, e.g.. the asymptotic convergence analysis
in Appendix E in the supplementary material and the
adaption to a decreasing learning rate in Appendix B.
See also the first paragraph of Section IV. Moreover,
we emphasize again that this work studies the effect of
stragglers, which by itsell is novel for the considered
scenaric.

« The optimal timeout that minimizes the time between two
consecutive updates of the oken is delermined, showing
that skipping is beneficial for faster convergence for
certain popular computational delay models considered in
the literature (see Lemma 2 and Section VI-C).

« We show that randomizing the processing order of nodes
on the ang yields an improvement in both convergence
behavior and privacy in the long mn (see Section VI1-B),
although the error and the privacy leakage level show
the same order-wise asymptotic behavior in the number
of update steps with and without randomization (see
Remark 2). This is in particular prominent for a larger
number of nodes due to the increased effect of privacy
amplification.

Finally, we presenl extensive empirical results for both

logistic regression on a binarized version of the UCH hous-
ing dataset [53] and for image classification using both
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the MNIST [54] and CIFAR-10 [55] datasets o validate
our theoretical findings, We also compare with the parallel
approach from [16] and to a centralized federaled learning

approach.!

II. PRELIMINARIES
A. Notation

We use uppercase and lowercase letters for random vari-
ables (RVs) and their realization (both scalars and vectors),
respectively, and italics for sets, e.g., X, x, and A’ represent a
RV, a scalar/vector, and a sel, respectively. An exceplion o this
rule is v which denotes the model description, also referred
to as the token. Matrices are denoled by uppercase letters,
their distinction from RVs will be clear from the context
Vectors are represented as row vectors and the transpose of
a veclor or a matrix is denoted by (). The expectation of
a RV X is denoted by E[X]. We define [n] £ 11,2,...,n},
while M denotes the set of natural numbers and B the set
of real numbers. The (subjgradient of a function fix) is
denoted by Vi(x), while the £,-norm of a length-n vector x =
(X, . ... %) € B™ is denoted by [xfl, = (3o, lx|")"r, where
|-| denotes absolute value. The base of the namral logarithm is
denoted by e, while log denotes natural logarithm. A"(s, r,r:'-'d]
denotes the d-dimensional Gaussian (uncorrelated) distribution
with mean g and standard deviation o of each component,
where [y is the identity matrix of size d. X ~ P denotes
that X is distributed according to the distribution P, while
x ~ P denotes a sample x taken from 7. We denote by
D ~, T the fact that datasets D = U,.yD, and D' =
U,y D, are the same except perhaps for the dataset of user
#, e, D, = D) for all v # u, where V is some set of
users. Standard order notation O-) is used for asymptotic
resulls,

B. Definitions and Assumplions

Definition 1 (k-Lipschitz Continuity): A function f : W —
IR is k-Lipschitz continuous over the convex domain W < B4
if [f(w) — fW)] < k|l w —w'|, for all ww' e W.

Definition 2 {g-Smoothness): A function f W —
R is pB-smooth over the convex domain W < RY if
|%fw) — VW) |, < B|w — w ], for all w,w' e W.

Assumption 1> fu(r:-)ve V.is k-LipschiLz continuous and
convex in its first argument.

Assumption 2: f,, ve V, is f-smooth.

C. Svstem Model

Consider a decentralized network of n honest-but-curious
nodes (users) V = [v|,...,v;} with a decentralized dataset
D = UpeyD, where D, = [y, o™ yWherc
B % B4y, for some set R and dy, dy.x = I4, is the private
dataset of node v £ V.

1C|:|mpared to the conference version [1]. we provide a conplete cxposition
hat neludes all technical proofs, as well as new asymplotic results, in sddition
o significantly extended pumerical resulls. Missing proofs (including the
proof of Remark 2} can be found in Appendices D and E in the supplemeantary
material. The code for this work is available atl hitps2Vgithub.com/Simola-
LiB/SRDOPDL_JSAIT24,
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The nodes want o compute some function together based
on their datasets but want to keep their datasets private. For
that, they employ a decentralized protocol where a token ¢ =
W, for some convex set W © R4, travels between the nodes
according to some predefined (bul potentially randomized)
path. When receiving the token the r-th time and the global
time is A, the node v updates it as © +— g}ﬂ{r: state  h)).
and sends it further. Here, state,(f) encapsulates all the
information available to the node v at time &, e.g., the available
dala points and the results of previous calculations. Tt can
also include some source of randomness. We assume that the
computation in each node v during the r-th visit of the token
takes random time 7', Hence. the computation of gE"’{~__ Fy’
takes time at most T as the token may be updated before the
entire computation is finished.? We consider a model where
T is comprised of a deterministic constant part (the time
it takes for an actual computation) and a random part. Also,
we assume thal communication between any two nodes is
noiseless and takes constant time y, and hence the constant
part of the computation time can be set lo zero. At the end of
the protocol, the token r is distributed among the nodes, which
allows for calculating the desired result. This final distribution
lakes constant overhead time and is therefore ignored.

For a decentralized protocol A, we denote by A(D) the
{random} transcript of all messages sent or received by all
the wsers, ic.. A(D) are all the triples (u,w, 1), if u =
V sent a message with content w o v € V. However,
due to the decentralized nature of .4. the vser v only has
access o the subset of A(D) consisting of the messages she
sent or received, and we denote this view by QAT =
Mo, wouw") € ADru=voru =v} Let £ denote the set
of all possible views, i.e, O.(A(D)) = @ for all possible
parameters and realizations,

D, Network Differential Privacy

We accept the notion of NDP introduced in [11].

Definition 3 (NDP [11]): A protocol A satisfies (e, 8)-
NDP it for all pairs of distinct users w, v € V. all pairs of
neighboring datasets T ~, T, and any & < Q, we have

Pr@i 4D e S] =& PriO0. AT = 8] +8,

where the notion of neighboring datasets T ~, TV is defined
in Section 1I-A.

NDP measures how much the information collected by
node v depends on the dataset of node w. In the special
case that all nodes can observe all messages, ie., O, is the
identity map, NDP boils down 1o conventional LDP [57].
When processing information in a decentralized manner with
no central coordinating entity, and when there is no third party
{on top of the topology) observing all messages sent, NDP is
a more natural privacy measure than DP or LDP,

IThe RVs 71" are assumed to be independent and identically distributed
(Lid.) which is in accordance with the literature, where typically stragglers
are generated wniformly at random, except for a few works, e.g., [44], [56]
tht consider & model where nodes tend to remain siragglers for a long time,

violating the iid assumplion on the Bvs 75
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{a) Skip-Ring. (b} Skip-Rand-Ring.

Fig. 1. Mustrating the f~th round In which node 1 is 8 straggler.

M. EmPIRICAL RISK MINIMIZATION

In this section, we consider the empirical risk minimization
problem

. 1

o= agmin |[f(; D) £ -3 fw: Dy |, (1)
TeWCRH !

where fi.(t;-) is k-Lipschitz. continuous and convex in its firs|

argument (see Assumption 1)

A. Skipping Scheme

We suggest the following protocol inspired by projecied
noisy stochastic gradient descent to solve (1). The token
keeps the current estimale of the optimal point o and follows
a possibly randomized path over the available nodes V. To
speed up the process, the token waits up to a threshold time
Ikip and, if the computation has not finished by that time, the
token is forwarded further without an update.” In our notation,
it means that the calculation in each node v is

gf_"}{t; state,(fi))

_ | T — (e Do) + N I T < i, o
£ otherwise,

where ny is the step size (learning rate), [y denotes the
Euclidean projection onto the set W, and Ny, is noise with
#ero mean and standard deviation oy, The noise N 15 added
in order to protect the privacy of the local datasets, and the
standard deviation o is chosen so a certain level of NDP is
ensured.* In this work, we consider the gamma distribution
(including the exponential distribution) and the Pareto type 1l
{also known as Lomax) distribution for TP'} ., which are well-
established models in the literature, see, e.g., [56], [58], [39].
Since we assume that the RVs T2 are i.i.d., we simplify the
notation in the following by letting 7 = T2,

The algorithm stops when a predefined convergence require-
menl is fulfilled. We refer lo the algorithm detailed above
as the sKipping scheme with parameter fggp, which can be
optimized in order to reduce either the convergence lime
and/or the privacy leakage. In the special case of fLyp = oo,

n practice, acknowledgments can identify straggling nodes: if the loken
is sent to the next node in line and pot seknowledged within a threshold time,
it is forwarded o the next node in lne, ee,

. ; 12578)
4The noise follows A ('I.'II. nrf), where oy = : ”'Fl m, £ = 0, and
O0<d <l
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Algorithm 1: Skipping Scheme
Input: Datasets T, and &-Lipschitz continuous convex
functions fi:WW = R* — R, v £ V, in the first
argument, noise standard deviation sequence
(o, ..o ay,, ), node path sequence
(", .. vy learning rate parameter o,
skipping parameter fy;,. number of steps Ay,
and communication latency
Output: (z__ . £)
L0 £+0, c«1
1 P « Comp. lat. model (gamma or Pareto type TT)
3 for b e [Fge] do
4 t~P
5
L]
7

if 1 = Lygp then
M L/t

Th

nw{:ﬁ_1 — n;,("'?ﬁ.m{th_n Dom) + N&}], where
Nj, ~ N0, aly)

] f—Ef+ x4+t c+—c+1

9 else

10 LTI:*U:—I- £+ x +bip

n retorn (7., £)

it reduces to a scheme for which the token always waits. We
denote by p = Pr[T = fagpl the probability of skipping a
node. The formal algorithm is given in Algorithm 1, where
the output £ denotes its execution latency and =, the final
value of the token after fiyq. steps.

We use Algorithm 1 in two special cases as outlined below
and illustrated in Fig. 1. For both schemes, the noise variance
is fixed throughowt the algorithm, ie., op = o, YA and we
assume, for simplicity, that fin., is a multiple of # in the rest
of the paper.

« Firsl, we consider an update schedule in which the nodes
in 1 are processed along a logical ring, i.e., the node
path sequence of Algorithm 1 is (W1, .. . wlimsly —
(07, eees ¥alds (W1eveea ¥ady o ovn (Pl eue s ¥yd). The corme-
sponding scheme is denoted by Skip-Ring.

« Second, we consider a randomized version of the log-
ical ring, denoted by Skip-Rand-Ring. Each round
over the ring can be seen as a random walk on
the set of nodes, but without replacement. For each
round, the random walk procedure is restaried. Hence,
the node path sequence becomes (WU .. hmaaly —
V(e oo oo Vmpim b Pz oo Vagmp Ds oo 1y {me“,-'.{]]-
coo s Vg sminy)) Where my, ..., g, sn are independent
random permutations over [n].

As a final remark, we mention here that resulis on the

computation and communication latency for the skipping
scheme in Algorithm | will be presented later in Section VI-A.

IV, CONVERGENCE ANALYSIS
Here, we provide a convergence resull for the lwo con-
sidered schemes by adapting the classical convergence result
of [52, Th. 2] w decentralized leaming where nodes are
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processed according to a Markov chain and for which the
(sub)gradient estimate in each step is biased, but comverges
to unbiased exponentially fast, which are the main two new
technicalities of the proof.” Additionally, the number of token
updates is random (depending on the sKipping probability),
and we need to average over it. Note that, as in |52, Th. 2],
fuo v 2 W, is not required to be A-smooth or even k-Lipschitz
continuous, as we only need the (sub)gradients to be bounded
{which follows from k-Lipschitzness), and also that our result
provides a guarantee on the performance of the last update of
the token instead of for the average ol all token values.

Theorem I: Under Assumption 1, if the diameter of W
is dyy, the expected difference between the minimum value
fiz*;+) and that from Algorithm 1 with an arbitrary learning
rale parameter ¢ = 0 after fip,, steps is bounded as

-hl'l'lﬂl
; fi *
Eff (thaes ) —F*5 0] = Y ( “;“)u Y
=0
_ '_j(lﬂ‘gmmu})
Py el |
where ¥h = 0,
N (d;;v + 2 +dnr2}){2 +log(h + 1))
Eh — f; —m
1 h+1 _ h I b1 .
+dwkﬁ(—ZIl1l'+E — ¥, i:ul’]
F:+l].=l J.=|,.r||;,r+l}r.=ﬁ_'_]_j
and eg 2 dyk. || = = and D = p =

y U+p?)—2pcos(&2)

| for Skip-Ring, while 4 = 0 and 0 <= p < 1 for
Skip-Rand-Ring.

Progf: See Appendices A and E in the supplementary
malterial for the finile and asymplotic results, respectively. W

MNote that the asymplotic convergence rate is the same as that
of [52, Th. 2|, while being a log(#ftp,,, )-factor worse compared
to [60, Th. 1|. The latter is due to 1) the assumption that oy,
decays to zero with i [60, eq. (16)], and 2) that convergence
there is proved for the running average of the token.

Interestingly, the asvmptotic behavior of the bound in
Theorem | is the same for both A 0 and &) = 0.
Henee, a biased (subjgradient estimate that converges Lo
unbiased exponentially fast does not influence the asymptotic
convergence rate. Moreover, in Theorem |, we do nol allow
for p = 0 in the Skip-Ring scheme as in this case the
stochastic (sub)gradient is biased, even asymptotically, and
hence a different proof technique is required. The asymptotic
convergence rate in this special corner case is lefl open. Note
that the prool of [52, Th. 2] cannol be adapled to this scenario
as it requires an unbiased stochastic (sub)gradient.

Remark 1; For the uniform random walk scheme consid-
ered in [11]. the marginal distribution of visited nodes at each
step is uniform, as it is with Skip-Rand-Ring. Thus, the

IThere are several previous works thal provide convergence resulis for
Markow chain (noisy) stochastic gradient descent, e.g., [60], [61]. However,
all of these works requine that o decays o sero with f, which means a
significantly higher leakage of private dat:.
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proof of Theorem | applies to both these schemes with & £ 0
and 0=p < 1.

V. PRIVACY ANALYSIS

In this section, we present results on the privacy leakage
level of the skipping scheme for both updating schedules of
the token outlined in Section TIT-A, i.e., for both a fixed and a
randomized logical ring on the set of nodes V. We highlight
here that compared to [11], that only considers a constant
learning rate and also a different randomized path (and no
fixed path), our results apply to a decreasing learning rate of
the form gy, = {fﬁ (as specified in Algorithm 1.

The full proof, which can be found in Appendix B,
revolves around upper bounding the Rényi divergence between
OAD)) and O(A(D"), D ~, TV, for any distincl pair
of users u, v, using tools (including a composition theo-
rem for Rényi DP (RDP) [62, Proposition 1]) from the
framework of privacy amplification by iteration [13]. The
resulting bound can be transformed into a bound on NDP
using [62, Proposition 3| and further optimized. Allowing
for a decreasing leamning rale constitutes the main technical
contribution of the proof.

Theorem 2: Let ¢ > O and 0 = § < 1. Then, under
Assumptions | and 2, the Skip-Ring scheme on a ring with
n nodes and with learning rate parameter 0 < [ = 2/g achieves
(£skip. & + 8')-NDP for all 8 < (0, 1] with

o hlog(1/5) e2h

£ + s
J]{]g{ 1255 4log(l-25/)

where it £ [ (1—p)/n+ M i1—rpinlog(l/y}] and 0 = p < 1
is the probability of skipping a node,

The following theorem characterizes the privacy leakage
level ggp of the Skip-Rand-Ring scheme,

Theorem 3: Let # = 0 and 0 = & = 1. Then, under
Assumplions 1 and 2, the Skip-Rand-Ring scheme on a
ring with » nodes and with learning rate parameter 0 < £ = /s
achieves (£4ip, 8 + 8")-NDP for all 8 = (0, 1] with

Egkip =

staa . log(!fs)
Eskip = . 1
2 log(1.25/5) a—1
where
r;—l a—1 o Ik i
! hiy)p" (1 —p)
£ k
L IET
r=0 d=1 k=1 g
2
Ve 240 trohy (VT h—THrh)
hl [ﬁm[l—p‘lfn + /B (1) lOge( lj,.r,gr}-|1
. (111 5wy
a 2 min| A2 e 1, IT"'I_E’_?_lH

e

and 0 < p < 1 is the probability of skipping a node.”

B Far the uniform mndom walk scheme considered in [11], & similtar result
can be derived (see Theorem 4 in Appendix C in the supplementary material).
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Remark 2: It Tfollows from Theorems 2 and 3 that the
asymptotic behavior of the privacy leakage level eqqp for both
Skip-Ring and Skip-Rand-Ring is linear in hyas, i,
Egip = Mhgay), for 0 =p < 1.

Az a final remark, the privacy analysis relies on the exact
number of updates performed. Skipping introduces uncertainty
on which nodes participated and can be seen as a way (o
realize subsampling [12] on the fy.

V1. EXPERIMENTS

Here, we first present some resulis on the computation
and communication latency for the skipping scheme in
Algorithm | that will be used in the numerical results.

Second, we perform a comparison based on the analytical
results from Sections [V and V, before turning to training a
logistic regression model using the dataset in [53] and a deep
neural network for image classification using the MNIST [54]
and CIFAR-10 [55] datasets. Finally, we compare with a
parallel and a centralized federated learning approach.

A, Computation and Communication Latency

The average total latency of the skipping scheme in
Algorithm | is given by the following lemma.

Lemma [: The expected total latency for the sKipping
scheme in Algorithm 1 is

sk
hmu(x + fﬂ ; rddy(r) + r!kip“ = ¢T{I5i’jp.}])$

where @p(f) £ Pr[T < ] and ®rltys) = 1 —p.

IT the number of hops My, is large enough, we would expect
shorter times between token updates (all other properties being
the same) to be beneficial for convergence. In other words,
expected time between [wo conscculive visits o Line 7 in
Algorithm 1 should be minimized.

Lemma 2; The value of Ly thal minimizes the average
time between wo conseculive updates of the token is given
by the solution of the optimization problem’

X+ 25 tdr(t) + taip(1 — D7 (fsiip))

arg min
> Dr(faip)

Tskip

B. Convergence Versus Privacy and Average Latency
Welixe =1,8 =107% 8 = 10-5.d =8, dyy = 10,k = 1,
& =8/10, and y = I/100. Results are presented for two different
values of the number of nodes a, namely for a small number
of n = 10 nodes and a large number of n = 500 nodes.® The
three characteristics we are interested in are: average latency,
expected error bound, and privacy leakage level gup,. We first
consider n = 10 nodes. The top row of Fig. 2 plots expected
error bound (left v-axis) and privacy leakage level (right y-axis)

In Fact, the only distinclion lies in & differenl definition of the parameter o
However, as shown there, the privacy leakage level eqgp i8 higher compared
1o the Sklp-Rand-Ring scheme.,

TNote that the optimal value of fy, can incorporate the probability of link
failures and channel noise between nodes by changing the distribution of T,

#n [63] and [64], [65], a rather small number of nodes (# =25 and n = 15
or 20, respectively) was used in all numerical results, while in [11], [16] a
mther large number of nodes (A = 1000, 2000, or HK) was used.
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versus average lalency, and the top row of Fig. 3 shows
privacy leakage level versus expected error bound, illustrating
the inherent trade-off between average latency, expected error
bound, and privacy leakage level. The plots are for the three
latency models: exponential with mean 1, gamma with shape
/4 and scale 1, and Pareto type Il with shape 3 and scale 2
{as used in [539]), The probability of skipping p = Pr[T =
taipl € {1074, 12,710}, since p = 10~* and 710 are close
to the values of p corresponding to the optimal values of
ip given by Lemma 2, respectively 0/0.710/0.737 for the
exponential/gamma/Parclo delay models, while p = /2 is a
value in between.”

As can be seen from the plots, p = 107* (virually, no
skipping) gives the worst expected error bound for all con-
sidered latency models, for both schemes. This is particularly
evident for Skip-Ring with a = 500 (second row of plots),
where the convergence rate is noticeably slow due lo |4 =
I — lﬂ—g, which is very close to 1. On the other hand, this
value of p provides the best privacy leakage level for the same
average latency. Hence, there is a trade-off belween privacy
and accuracy of the algorithm (cf. the top row of plois in
Fig. 3), and one needs to choose the skipping probability based
on a particular optimization problem.

The prvacy-versus-error trade-offs look similar for all
latency models considered. Skip-Rand-Ring gives better
trade-off curves (especially for p = 107*) for smaller values
of expecled error bound, while the situation changes for higher
values of error (i.c., al the initial stages of Algonthm 1°s

W have picked pr = 10 instead of P =1 as Theorem | requires p = 0
in the Skip-HRing scheme.

execulion). Henee, path randomization improves the trade-off
in the long ran, but might be harder to realize in a real-world
implementation as it would require a full mesh topology.'”

On the contrary, the Skip-Ring curve for p = 1077
is the worst, which means that skipping helps. Also, there
is not much difference between the Skip-HEing curves for
p = /2 and p = %o (they are are almost on lop of each
other and hence difficult o distinguish). On the other hand,
Skip-Rand-Ring favors smaller values of p (i.e. larger
timeout) at the expense of a higher training latency as shown
in the next subsection.

In the bottom rows of Figs. 2 and 3. we show the corre-
sponding results for n = 500 nodes. As expected, the relative
order of the curves remains for the most parl the same as for
n = 10 nodes {compare with the top rows of the fipures).
We also observe from Fig. 3 that for a given expected error
bound the privacy leakage level 4, is lower with n = 500
than with n = 10 nodes, ie.. privacy amplification Kicks in
to a larger extent with a larger number of nodes. Also, the
Skip-Rand-Ring scheme shows in general a much bigger
privacy advantage compared (o the Skip-Ring scheme as
the privacy amplification effect is stronger with randomization.
Finally, note the more pronounced staircase behavior for the

’”smcuy speaking a full mesh topology is also required for Skip-Ring,
as for a high skipping probability p there could potentislly be a need for
every simgle node (o be able 0 communicate with all other nodes, while with
ne skipping only one output communication channel per node i required.
Himwever, as pis constant, and the gnavailability is assomed independent froam
one node o another, 4 few edges should gusrantes thael al least one node will
answer, The probahility that more than { edges would be required is p', which
quickly bﬁmms small, e.g.. for p = 1/2 and 10 edges, the probability is less
than 107
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privacy leakage level. This is due o the factor (1-p)/a inside
the ceiling function in the definition of # in Theorems 2 and 3,
which also explains why the sieps are wider for a larger n.

C. Empirical Results

We consider both training a logistic regression model and
image classification trained on the MNIST [54] and CIFAR-
10 [55] datasets.

1) Logistic Regression: For logistic regression the local
loss functions are f,(r, Dy} = YD X, e, log(l +e 7™ i
where x € BY (dy = d) and y € [1,1] (dy = 1). We use
a binarized version of the UCT housing dataset [53], trying
to predict binary variable y (whether house price is above a
threshold) from other features, x. The features are standardized
and we Turther normalize each data point Lo have unit £3-norm
s0 that the loss functions fi(r; T, ) are I-Lipschitz continuous
ii.e., k = 1). The dataset is split uniformly at random into
a training set with 80% of the data poinis and a tesi set
with 20% of the points. Morcover, the training dataset is
further randomly split across the n nodes in V. We used the
Skip-Rand-Ring scheme (similar results are obtained with
the Skip-Ring scheme) with the same paramelers as in
Section VI-B. bul using a mini-batch implementation with
batches of size 100 and 8 and with an initial learning rate of
& =610 and £ = Y10 for, respectively, n = 10 and n = 1000
nodes in order (o speed up the learning. The chosen mini-
batch size is a compromise between the two corner cases: a
mini-batch size of 1 is difficull o parallelize, whereas a large
mini-balch size may exceed the nodes” limited parallelization
capabilities.

For n = 10 nodes, the results of the training are shown
in the top plots in Fig. 4, which show the prediction error
rale, i.e., the ratio of incorrect predictions on the lest sel,
versus average lalency from Lemma | for the same skipping
probabilities as in the corresponding plots in Figs. 2 and 3.
We observe that skipping achieves a clear speed-up compared
to no skipping, excepl for the exponential delay model (as
predicted well by Lemma 2, which suggests an optimal
Iaip = +0o for the exponential model). This rhymes well
with theoretical expected error bounds (dashed curves of Lhe
plots in Fig. 2). As can be seen from the plots of Fig. 3,
no skipping in general provides a slightly higher privacy for
Skip-Rand-Ring. In the second row of plots in Fig. 4,
we show the corresponding results with 7 = 1M nodes. As
expected, the main conclusions remain the same as for n = 10.
In order to have smooth curves the average ol 200 independent
runs is presenied for both 5 = 10 and n = 1000 nodes.

2) Image Classification: We consider both the MNIST
and CIFAR-10 datasets. Both datasets are commonly-used
benchmarks and are comprised of 10 classes of images;
MNIST being comprised of 28 x 28 pixels grayscale images
of handwritten digits from 0 to 9, while CIFAR-10 being
comprised of 32 x 32 pixels color images. The number of
training samples is 60000 (6000 for each digit) and 50000
(5000 for cach class) for the MNIST and CIFAR-10 datasets,
respectively. As for logistic regression in Section VI-C1, the
training datasel is further randomly splil across a number
of nodes n in V. While we used n = 10 and n = 1000
nodes in Section V1-C1, we use 1 = 60 and 1 = 50 nodes,
respectively, for the MNIST and CIFAR-10 datasets. As lor
logistic regression, we use the Skip-Rand-Ring scheme
with the same parameters as in Section V1-B. but with a
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Fig. 4. Plots (from lop). 1) logistic regression model training with n = 10 nedes, showing accuracy (on the lest seth vs average latency; 2} logistic regression
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row of plots an average of, respactively, 30 and 6 runs is presented (Skip-Rand-Ring). Horizontal and vertical error bars illustrate the estimated standard

deviation,

smaller initial learning rate of ¢ = /1000 (MNIST) and ¢ =
Thooon (CTFAR-10), and a batch size of 500, which is half the
number of data samples in each node. Moreover, we use a
cross-entropy loss function.

The results are depicted in the third and fourth row of
plots in Fig. 4, showing the prediction error rate on the
test sel (comprising 10000 images for hoth datasets) versus
average latency from Lemma 1. For both MNIST (the third
row of plots) and CIFAR-10 (the bottom plols), we can
make the same cobservations as for the first and second row
of plots (logistic regression); skipping achieves a speed-up
compared to no skipping, except for the exponential delay

model, as predicted by Lemma 2. Moreover, the order of
the curves stays the same across the dalasels for a given
computational delay model. Note, however, thal there is some
loss in accuracy due o privacy: the accuracy achieved with
the MNIST dataset is close to 90%, while with no privacy
requirement an accuracy of around 99% can be reached, For
the CIFAR-10 dataset, the accuracy decreases from around
T0% to around 42% in the best case. This aligns well with
resulls in the literature, showing a reduction in accuracy due
to privacy. which is particularly significant for CIFAR-1{, see,
e.g.. [66]. Compared to the case of logistic regression, the
average of only 30 (MNIST) and 6 (CTFAR-10) independent
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runs is presented due to the much more complex learning task.
The corresponding deep neural networks are detailed in Table |
in the supplementary malerial.

D. Comparisems With a Parallel and a Centralized
Federated Learning Approach

For completeness, we also compare our results for logistic
regression with a parallel approach using possip averaging
between each step of gradient descent for every node. The
most relevant work o compare with is [16]. In [16, Fig.
1(c)], results are presented for logistic regression on the UCI
housing dataset [53] of Section VI-C1 using [16, Alg. 3]
(Muffliato-5G0). We have replicated the setup of [16,
Fig. 1(c}] {using random Erdds-Rényi communication graphs
with node degree logn during possiping), but with n =
1000 nodes, a fixed number of 2 gossip ilerations, and
¥y = | in [16, Alg. 1] (no acceleration) and compare in
Fig. 5 Muffliato-56D (dashed and dashdotied curves)
with the Skip-Rand-Ring scheme (solid curves) under the
exponential delay model with mean 1. The left plot shows the
error prediction rate on the test set, while the right plot shows
the (worsi-case) privacy leakage level, both as a function of
the average latency from Lemma 1. The privacy leakage level
for Muffliato-S500 is simulated based on [16, Th. 4] (for
two different values of the privacy noise standard deviation:
referred to as instances one and (wo in the next paragraph)
and converting o DP using Lemma 11 in Appendix B with
8 = 10% and with a numerically optimized value of the
Rényi divergence parameter ¢, while for Skip-Rand-REing
we have used the same setup as for the second row of plots
in Fig. 4, ie., Theorem 3 with ¢ = 1.0, § = 105, and
§ = 107" (corresponding to a DP noise level of o; =
10.5976 used in the actual simulation). We also compare the
prediction error rate and the privacy leakage level with those
of a centralized federated learning approach (dotted curves),
denoted by Fedl,-SGD in the following.!! The (worst-case)
privacy leakage level for FedL-SGD is computed as for

"our simolstion of Muffliato-SGD and PedL-SGD is based on
tps:igithub.comftoilas/muifiato. where gradient clipping s uwsed. For
Muffliato-SGED0. gradient clipping gives improved accuracy, while for
Skip-Rand-Ring we have not ohserved any noticeable gain with gradient
clipping and hence the presented resulls for Ekip-Rand-Ring (asin Fig. 4)
are with no clipping.

Muffliato-3CG0, by converling to DF using Lemma 11 in
Appendix B with § = 10~° and with a numerically optimized
value of the Rényi divergence parameter <. In particular, each
time a node w uploads to the central server, 2o/=7 is added
to the overall RDP level of u, and the maximum over all
nodes u is the worst-case leakage. We note that implementing
possiping in a lalency-efficient manner is nol straightforward.
In particular, within each iteration of gossiping, each node
sends the same information to its neighbors, which can be done
through a single broadcast transmission rather than by multiple
peer-to-peer transmissions. However, concurrent broadcast
transmissions from multiple nodes create interference, which
can lead to failed reception of information al the receiver
nodes. A simple solution would be through a simple time-
division approach in which each node broadcasts sequentially.
This entails a communication latency proportional o the
number of nodes. A more elaborate approach is random
access with broadcast transmission as outlined in [64] or
through broadcast-based subgraph sampling as outlined in the
very recent paper [65) For the resulls in Fig. 5, we have
used the random access approach cutlined in [64] with an
optlimized value for the probabilistic random access policy. For
Fedl-5GD, when computing the training latency, we have
assumed 100 independent subchannels for the upload (o the
central server and a single broadcast transmission to distribute
the aggregated gradient back o the nodes. Having a very
large number of subchannels would reduce the bandwidth per
channel and hence the transmission rate, assuming a fixed
overall bandwidth constraint [67], and hence we have used
100 as a compromise (in [67], only 8 or 16 subchannels were
used). More details on the latency computation/simulation
are given Appendix G in the supplementary material. For
Skip-Rand-Ring, we use ¢ = 30 and a balch size
of 8 (as for the second row of plots in Fig. 4), while for
Muffliato-5GD and FedL-35GD, we use {as in [16, Fig.
1{c)]) a constant learning rale of 7/10 and a full batch size of
16 {changing to a batch size of 8 does not noticeably change
the accuracy). For a fair comparison, a communication cost of
¥ = L0 is used for all schemes.

From Fig. 5 (lefi plot), we observe thal the
Skip-Rand-Ring scheme (solid curves) achieves a
low emor rate guicker than one of the inslances of
Muffliato-3CG0D (dashed curves) and also FedL-SCD
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with wvirtually no skipping (red dotted curves), while for
the second instance of Muffliato-s5GD with a lower
value of the privacy noise standard deviation (dashdotted
curves) and for FedlL-5GD with skipping (p = /2 and
p = Tho) we observe the opposite behavior. On  the
other hand, the overall privacy leakage level grows much
slower with the Skip-Rand-Ring scheme (see the right
plot). For instance, Muffliato-SCGD (second instance;
dashdotted curves) achieves an accuracy of 80% quicker than
Skip-Rand-Ring (in about 6000 units of time (p = 1/2)
compared to about 24000 (p = 10~*; see first plot in the
second row of plots in Fig. 4), but at a much higher privacy
leakage level (£g4p = 5.5 compared Lo 2.2). Compared Lo the
first instance (dashed curves), however, Skip-Rand-Ring
achieves a target accuracy of B0% guicker but al a lower
privacy leakage gap (the dashed curves in the right plot
lie below the dashdolled curves). FedL-SGD provides a
lower privacy leakage level which also grows slower with
latency compared to Muffliato-5GD, but on the other
hand relies on the assumption of a centralized server. The
Skip-Rand-Ring scheme performs favorable compared to
FedL-5GD with virtually no skipping, while for p = 12
and p = 710 FedL-SGD yields a lower prediction error
rate at the expense of a higher privacy leakage compared to
Skip-Rand-Ring. In general. smaller values of the privacy
noise standard deviation oy, for FedL-5GD will provide better
accuracy, but at the same time increase the privacy leakage
level.

VII. CoNCLUSION AND FUTURE WORK

We have studied a skipping scheme for straggler mitigation
in decentralized learning over a logical ring under NDP by
extending the framework of privacy amplification by decen-
tralization to include overall training lalency—comprising both
computation and communication latency. Analytical deriva-
tions on both the convergence speed and the DP level
were presenied, showing a trade-off between overall training
latency, accuracy, and user data privacy. The theoretical find-
ings were validated for logistic regression on a real-world
datasel and for image classification wsing the MNIST and
CIFAR-10 datasets.

Future work could extend the theoretical analysis in this
study to gossip algorithms as examined in [16].

APPENDIX A
PROOF OF THEOREM 1

A. Notation

Define [a:b] = [a, ..., b} for integers a = b. Moreover,
[ denotes the conjugate transpose of a matrix 7, while
U~! denotes ils inverse (for a full-rank square matrix
L. diaglay,....aq)) denotes an ! x [ diagonal matrix with
ag, ..., along the diagonal.

B. Preliminaries

For the convergence, what matlers is only the nodes that
actually contribuled to the token updates (nonstragglers, ic.,
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those that reached Line 7 of Algorithm 1). Let H < [0 /1
be the BV denoting the number of nonstragglers when running
Algorithm |, and let the corresponding nodes visited by the
token be denoted by VOO, V& vyt v Tf H =0,
then all nodes are straggling, no nodes are visited by the token,
and Algorithm 1 simply returns tp = 0 (ie., th,, = T0).
Otherwise (i.e., when H = (), according o Algorithm |, the
token updates are (with some abuse of notation)

o < Mw (et — m( Vv (Tr-1; Dym ) + Ni)),

for all h € [H]. Note also that 5y = &//k In the rest of this
subsection, we assume fH = 0.

For Skip-Rand-Ring, the marginal distribution of a
node V' is uniform over V for any h. For Skip-Ring, the
sequence of nodes V", V¥ . forms a Markov chain with
stale transition probability matrix

el 1 g P
Q_l—p g sill B O e @)
P=grd| & i3 ¥ e B P
1 2 PPt !
where the entries @y = Pr[V™" = v; | VU =y 1 =

ij = n h = 1, and, as we show in Lemma 3 below,
the marginal distributions of V' converge o the uniform
distribution exponentially fast when h — oc.

The uniform distribution of V™ for Skip-Rand-Ring
ensures an unbiased estimate of the real (sub)gradient for any
fixed 7, ie.,

Eyn [ Vi (v Dypan)] = Vf (3 D),
while for Skip-Ring we have that
By [?fwm'f‘r: Disiing JI —3-; " Vi D

Unbiasness of the (subjgradient estimate at each step is a
known condition used to prove convergence of {comventional)
stochastic gradient descent. In this appendix, we will show
that having asymptoticallv unbiased estimates is sufficient tor
the convergence of Algorithm | too, More precisely, we will
adapt a proof from [532, Th. 2] to our scenario.

First, we present some technical results used in the main
part of the proof (next subsection).

Lemma 3: Forn = 2, let (VW] V& e Y b = |, be a
homogeneous Markov chain with stale transition probability
matrix (3) with 0 < p < 1. If we denote by ") the probability
vector of the marginal distribution of V™ (ie, Privih —
¥l = J‘Iéﬁ]:l_. then =™ — 71 — (U, U, oy lj'nJT. as fi —
oo, and for all A,

Nnm: » ?r;r_m“l < S,

1—p
.']+:JI—2p|_'ue:LTT1

Remark 3: For convenience, we also define the value
L1 £ 0 for Skip-Rand-Ring (and any 0 = p < 1). With
this notation, (4) holds in both cases.

Remark 4; For any probability vector m, il holds thal
|w — ™), = /n. and, thus, Lemma 3 technically holds
also for h = 0.

(4)

where |4)] =
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Lemma 4: Let N ~ N0, a21;). Then. E[I¥N:] = ad
and E[|N]3] = do”.

Lemma 5 ({68, Lemma 2]): If the domain W — RY is
convex and closed, then for any x, y € B, we have ||x —y|; =

IMyy(x) — M-
Lemma 6: For any x.y € RY, x££ ¥13 = I3 + fvl3 +
2Zx'y.

. Main Pari of the Proof of Theorem 1
We first consider the case of H > 1. For convenience, deline

2 = Vi D).
B0 = Vym (th-1: Dyim) + Na
as a shorthand notation for & e [H]. With this notation, the
token is updated as 7;, < My (Te_1 — gua).
If V" is uniformly distributed over V, we have that
E[g.a.] = gy, for any fixed t,_y, and in both schemes,
- 2 2
E[ 1 3] 2 B[ | sy s Dy 3] + 1l ]
+2E [NI Vv (Th-13 I’wkﬁ']
© [ | 97y on1: Dy [3] + E[ 141 ]

()
c.i:"+dcr

where (@) is from Lemma 6, (#) is because Ny, is independent
of other RVs and has zero mean, and (c) follows from the
k-Lipschitz property of f and Lemma 4,

Now, we prove the main statement of Theorem [ In the
proof, if it is not mentioned explicitly, the norm of a vector is
the £>-norm. Also, we assume the same dataset I everywhere
and thus omit it for brevity.

Assume H = 1 is fixed (i.e., we condilion on it). For any
t = W, by Lemma 3,

E["Hw{m_s — MhBn) — l'lw{rllll]
< B[ o1 — mn — 7|,
Thus,
Ef o — ]

=E[||T1wm,-| — Nhgn) — nw{t}IEJ
= [El:"{l}—j —T)— ']hﬁnlz]
= E[||:;,_, = 1'}12'] ¥ nﬁ[&'.[ |2 ||2] = EJME[(I}_| = r}Tg,,]
< Efltnt — 7l?] 4 03k + do®) — 2] (zh1 — )
< B[l 1 — 1] - 20E[ (01 — ) T

+ ik + do’) + 2npdwike/ming ",

where the term dypk/mli |Jcl dppears because of the difference
between the distributions of g, and g (cf. Lemma 3 and
Remark 3). Then,

Elllen — %]
2y

Kot — ol?]
2ty

E['[Th—1 - T}Tgh] =

417

k4 de?
+ % +dyk Sl .

Let j be an arbitrary element in [H — 1]. Then, summing up
and re-arranging, we get

i E[{Ta-| = f}Tgh]

h=H—j
E[ |t — 7|7
N 20—
E E[l% —rnz]( | _i)
Pl 2 Wil e
K +do?
— z n + dwk/n Z |ag ",
h=H-jf h=H—j
Since 74, T € W, we have that ||, —|® < d3,. We also
substitute np with ¢/yh, which gives
H
¥ [E[mr_; = !}TE.'h]
h=H—j
2
E[ETH—_;'—I — | ],,JH -1 4,
< 5 t ﬁ(«‘ﬁ - VH—))
Ie
kz +ﬂ'ar u
Z —= tdwk/a Z I 2.
h= H—_.l h=H—j

Here, we can upper bound the sum of inverse square roots as
H
Z f > dh= zg(F \fﬂ—j—l).

H ; H—j—1 v"f-

Next, by convexity of f, we can lower bound (1 — )" g
by flry—1) — fir). Hence,

h=

i
3 Efftm-) —f(0)]
h=H—j
H
= El(r—1)" g
:2;_; = A
jof | ST JH— H
< [l - I - tdwkdE 3 I
J h=H—j
+ Be(vE- i)

+ (07 +do™) (VA - JH—j—1)
E[zuj1 — < *[v=
< T

H
+dwkyi Y

hetl—j
¢ (% O daly)(ﬂ_:' = M)

Ei | zg—s— —TI\#H— H
= ["H_fl E:I J+dwkﬁz1lllﬁ

2t S
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d j+1
+ |22+ 2k +do?)
2 vH+ JH—]—
E|Jea—jm1 — = |* |VE=] z
= | | +dwkJ/m Y Il
2 .
h=H—j
dt i+ 1
W 2 4 Bl s \
+ | =+ +dot) |—. 5
(2; £ ) N (3)
By setting T = ty_; ; in (), we get
H
3 Eftm1) —fruj1)]
h=H—j
diy b
< (9 4 p 4 a0t L 4k A
(2',1. J_ W u’_hg Al
=H—y
Mext, as a shorthand,

let S‘H denote the average of the
following j + 1 iterates: 5; '-"—rZ}: i f(th-1). Then,

G+ DE[S] — G+ DE[fGza—j-1)]
H
= z EU"[&—IJ_I{TH—_.I—]}]
k=H-j
(iﬂw-wﬁ)“ + dyky/n Z o
2 VH Ml
Hence,

a3, 1
~E[f(wn-j-0] = ~E[5] + (—E"i + +c:a2}) 7

ki Z .

JT+] =H-j

Using this, we have

i+ 1E|S;| —
O o~ S G~
< E[Sj] + -2?+crk-+mrn

Z I-J'- ||ll

h=H—j

E[f(zi—j-1)]

1
)
rh/yk\.-’_

Jji+1)

In the following, to simplify notation, define
d}y, 1 dwkf
a2 | X 4o+ doh)
J (zr J_

N+,
as a shorthand. Then,
E[f(ry—1)] = ElSol = E[5i11+ a. = E[S:]+a +a

Zﬂ;

Next, we bound a part of the sum on the right hand side as

H-1 d-w ) 4 i
Z(lc +.;(k +do ))Jrﬁ

i=1

lel

<. < B[Sy ]+

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL 5, 2024

1
{Z( +f(k2+(jﬂ' ))ﬁ
_ dy + 2 +do?)
- ¢vH

(1 +logH)
and obtain

dyy + 202 + da?)

cf
H-1
dyk.
;m T, Z M (6)

MNow, recall (5). Set there j = H—1 [Le,. H—j=1,t=1*
and bound all norms by dzw, which results in

H
Y E[fGa-1) —f(e%)]
k=1

E[f(za—1)] = E[Su1] + (1+log H)

{’QV e k ﬂ‘ﬂ i
EEJra‘wkﬁEw +(—"’;’~+g<k +da’ ;)J_
h=1

t.!'}' H
= (TW + e+ ﬂ.’crz]) VH + dwkyn Y "

=1
Therefore,

H
1
E[Sy_1] —f(z*) = E[H ¥ (Fan-1) —f{r'n)]
=1
_ By + 0 +do?)
B tVH
Finally, by combining (6) and {7), we oblain

Elf(za_1) —f(=*)]
ﬂ'%v + 02k + do?))(2 + log H)
- -_w’_

+ a’wkf( ZIMI"+EJ{H”

AWk
it gim. (7)

Z I n")

b=H—j
Then,
Elf(em) — fiz*1]
(:r;,, + ¢ + do®) ) (2 + log(H + 1))
= cVHFT

1 H I H41
+dwkﬁ(H+l Z]A||"+Z.ﬁ_+” > |J.||").
1 =11 h=H—j+1
The comer case of H = 0 (and thus, 7, = m = () can

be bounded as [f(0) —f(r*)| < kJ|0 — =°|| < kdw.

As a final step, we need Lo lake expectation conditioned on
the distribution of H, which is binomial with Ay, independent
trials and success probability 1 — p. i.e.,

PriH = h] = ( ) — p)iphan=h,

which concludes the proof.
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APPENDIX B
PrROOF OF THEOREMS 2 AND 3

The main tool of the proofs is the concept of privacy
amplification by iteration [13], and Theorem 22 therein. The
setting in [13] is profected noisy stochastic gradient decent,
in which noise is added for every gradient updale step. The
main technical tool is Rényi divergence and the proof evolves
around upper bounding it for a single view of a node. In
particular, based on Lemma 8, for any distinct pair of users
u, v, we can derive an upper bound on the Rényi divergence
between the views of user v when the token visits for the
(r+1)-th time, excluding received and sent messages observed
up to and including the r-th visit, for two neighboring datasets
of user u (Lemma 12). By maximizing this upper bound over
all pairs of distinct users «, v and by using a composition
theorem for RDP [62, Proposition 1] (Lemma 9), we can
derive an upper bound on the RDP level of Algorithm 1.
which can be transformed into an upper bound on the DP level
using [62, Proposition 3] (Lemma 113}, In order to get the best
(lowest) upper bound, the Rényi divergence parameter o can
be optimized. Finally, since the number of visits to a node is
not a constant, but instead follows a binomial distribution, a
standard Chernoff bound in combination with Lemma 10 can
be used to derive the final resull.

We start by defining Rényi divergence and RDP and then
stale some imporiant resulls from the privacy amplification
by ileration literature. In particolar, definitions and resulis
from [13], [62].

A, Impartant Results From [13], [6G2]

We start by stating and adapting some important definitions
and results from [13], [62]. Central 1o the arguments in [13] is
the concept of Rényi divergence and shifted Rényi divergence.

Definition 4 (Rényi Divergence); For two probability dis-
tributions g and v defined over the same set Z, the Rényi
divergence of positive order @ % 1 between g and v is

1
Zolp|v) 2 ——Ilo

n@\"
e[ (45) o«

Definition 5 (Shifted Rényi Divergence [13, Definition 8]):
For two probability distributions g and v defined over the
same complete normed vector space (2, | - || ), the w-shifted
Rényi divergence, for u = 0, of order & > 1 berween g and
v is

i L) LY i & /

ﬁ" {H Il U} a T n'w;r:..liri*":'ﬁﬂ —g"lﬂ' {Iu " U].
where dw_ (.-} denotes the oo-Wasserstein distance [13,
Definition 6] between two distributions on (2, ||« [).

Lemma 7 (Weak Convexity Rényi Divergence [I3,
Lemma 25j); Let gy, ..., oy and vy, ..., vy be probability
distributions defined on a complele normed vector space
(Z.] - |I) such that ¥i € [n], ¥ (w;llv) = Be—1) for some
b e (0, 1] where & > 1. Let o be a probability distribution
over [n] and denote by w, the probability distribution over 2
nbtained by sampling i from p and then outputting a random
sample [rom ge; (respectively, v;). Then

-@ﬂ'{’i_p H “p] =({l1+58)- ]E'i'-'\p @u{f-'!‘r' [ 15

4149

Definition 6 (13, Definition 10f): For a distribution £ over
(Z,|l- ||y and any a = 0, the magnitude of noise is the largest
Rényi divergence of positive order o £ | between ¢ and the
same distribution ¢ shifted by a vector of length al most a,
ie.,

Bt a) 2 sup
7: Yl =a
Remark 5: Consider the standard Gaussian distribution over
[R4 with variance o2, denoted by A(0, o21,). Then, it is known
that ¥z ¢ BY o = 0 (see, eg., [69, Ex. 3]), we have
x|

fﬁ.,(.af(x. o’ly) ||N(G, o*l4)) = ag?.

Fall xzllC)

fﬁt"u(}ﬁ."(ﬂ. ::rz-'d). aj = a;%,

Definition 7 (Contractive  Neisy  Neration  (CNI)  [13,
Definition [9): Given an iniial random slate 2y < Z, a
sequence of contraclive maps {y]}" ,, and a sequence of
noise distributions |{p)i" . the confractive noisy iteration
after m sleps, denoled by CNI,,(Zq, {s], (2]}, is defined by
the following update process: Zy £ Wplfy—1) + Np, where
Ny ~ &y, h e [m].

The following lemma is taken from [13, Th. 22].

Lemma 8 ({13, Th. 221); Let & and Z:,, represent  the
outputs of CNLy(Zp, [¥n). [Zn)) and CNLa(Zg. (¥ ], (Ea]).
respectively. Define sy, 2 sup. || v(2) — /(@) . tan)l, a
sequence of nonnegative reals, and ay = E‘?:,{s, —a;). fuy, =
0, Yh € [m), then DL (Z,, | 20) = X hcimy B (Ghr 1)

Now, we review some results from RDP [62].

Definition &8 ((ce, £)-ROP}: For any posilive e = 1 and £ =
0, a (randomized) protocol 4 is said to satisfy (o, £)-RDP, if
for all neighboring datasets T, T and for all & in the output
space 2, we have @, (A(D) €S| AD) € 8) <e.

Mext, we state the composition theorem for RDP.

Lemma 9 ({62, Proposition 1]): Let r € M. If [A;]_, are
protocols satisfying, respectively, (o, £1)-RDP, . (a0, £.)-
RDP, then their composition defined as (.4, ..., 4,) satisfies
(@, [, 5)-RDP.

The DP (RDP) level with a random number of entries in
the composition can be bounded as follows.

Lemma [0: Let R denote a RV with range (1,2, ...} that
satisfies PriR = r) <= &. If [,d.;}f":] are protocols satisfying,
respectively, (eq, 8;)-DP, ..., (&g, 8g)-DP, then their composi-
tion defined as (.43, .....4g) satsties (z.. §. + §)-DP, where
(£, 8-) is the DP guarantee under r-fold composition for DP.

In particular, if R is a binomial RV (ie. a sum of
independent Bernoulli RVs), we can use the standard Chernoff
bound to upper bound PriR = r).

A relation between (o, £)-RDP and (g, 8)-DP can be staled
as follows.

Lemma [1: ([62, Proposition 3]): If A satisfies (e, £)-RDP
for @ = |, then for all 4 € (0, 1), il also salishes (s +

g () 5)-DP
keCh 5)-DP.

B. Adapting to Afgorithm 1

For notational convenience, let C)E.'r"' (AT be the view
of user v when the token visits for the r-th time, excluding
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sentfreceived messages observed up to and including the (r—
1)-th visit.
The following lemma is analogous to [13, Th. 23], but
tailored o our setling with a decreasing leaming rale.
Lemma 12: Let W < B9 be a convex set and let fi:WW x
R* — K, v =V, be £-Lipschitz continuous and #-smooth con-

vex functions in their first argument. Let {uf’ s vl

He+1)

denote the sequence of nodes visited in between the r-th and
(r-+1)-th visit to node v in Algorithm 1. Then, for Algorithm |
with learning rate parameler 0 < £ = /g and constanl noise

oy = o, and any distinct pair of users u, v € V,

% (0 DAY | o='+”um':~})
< 2{; if &5 (el
ak‘; ekl)

]

21y Ed). ( fiadL, a:‘*+a£:r"—.,fl+zz=.¢:51)ani
if 1 = E(""U = Dg,

=1 otherwise,

for every @ = 1, where D ~, T, &F1 £ [ir+l)
A 41 and A e [ s LI'H;: index of v{r+' =u

for u e V0L, ":;H} ie, u = v‘:ﬂ’: Otherwise, if
| r+1 r-l-l
ug ‘fr,”h then £{75 2 so.

For simpl'u:ity of notation, we omit the superscript (r + 1)
from /I, ¢, and vy, ..., w in the following.

Proaf: Consider T.h:: case when u € {vy, ..., v} Otherwise,
O+ AD)) = OV (AD)), and it follows directly that
240V AD)) uﬂ1 oD amy) =o.

By assumplion, the leamning rate gy, i5 upper-bounded by
g, and hence the update rule gEﬂ (r:state,h)) in (2) for
Algorithm 1 constitutes a CNL (see [13, Proposition 18]).
Consider now the CNI from Definition 7 with ¥;{z) =
[Ty (r — o V(2. D)) = [hytr) — m.,vﬁ,,(ﬂw{r}._n.,.;
and with ‘H{TJ = [hwir — muVhs(e. T, ) = [Tw(z) —
Vi ATTw(r), D)), corresponding 1o g{”tt:state.,:.&}:
im (2). It follows that

sup|[ (o) — W)

Ilrhfval' (H{_TL I}'l"r') — Tk, vf'l-'j (l_ll:r:'! II:JH'I.'J) H
W ¥

= sup
: 2
if i # ¢,

]
h [-5 2np k  otherwise,

since by assumption f,; is E-Lipschitz continuous,
Now apply Lemma 8 with a; = 0, ¥i € [e — 1], and a; =

kol Wi € [el], where
1
ir+l) a chrr_ﬂ My - Zﬁe[c:]‘] e
o e (8)
TI i W

Clearly. 5 = 5 —a; = 0, ¥i € [{]. and z; = 0. Hence, using
Remark 5,

7o (00 Ay |0+ A y)
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4@&2 242

=g

<a

ieled) z(gLf +1) ) ol el (Qf,":”) 51
_ 2elell? 2aki U i
( ir:l—li) o ( Er;;-n)
Now, if ¢ = [, i.e,, u = v and "g‘m'” 1, then from (8) it

follows that g™ = 1 and therefore
Zﬂlk
(@{FH]{AWH“@['H}{A{D’j:}) A e —
Otherwise, i.c.. when [ = ¢ and 1 < £V < oo,
— 2iclel) ﬁ
MV T —
:'T

@ zf(ﬁ +E —14+1- JE) (10)
J1 + EE"J (\J I+ Zéi'i + &Y

where (@) follows by laking the anti-derivative of 1//% and
the fact that the learning rate is only updated when visiting a
node, ie. ly=h_1+1=hr+2=-- —h -+1—r, and (B)
follows by lower-bounding /. by H—E":G“ i the expression
in (10) is strictly increasing in k. for .*;"‘” = ). In particular,
for r = 0, i, = 1, which is obviously true. For r = | (the
second visit), the token has at least made gj_’,? updates, elc.,
trom which the lower bound on i follows. =]

C. Proof of Theorem 2

For the Skip-Ring scheme, in every round r (unless all
nodes are skipped), there exisis a pair of neighboring nodes
{u{" ), ¥y for which the token travels directly from @) 1o ¥

&'i;{ _n = 1 for all r, and it follows from Lemma 12
that
ek’
r} (rh

The number of visits of the token to a node v during the
execution of the algorithm, denoted by 2., follows a binomial
distribulion with parameters fme/r (number of independent
trials) and 1—p (success probability). Let h be defined as in the
formulation of the theorem. Then, it follows from a standard
ChernofT bound that PHE, = h) = &', for some § € (0, 1).
Now,

max

P (O (AD)) | OLAD'Y)
uvelV, ufEv

ta)
<

IMax

L @E 7.(0 (ay | 0 AD)
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(®) Zu max 7, (f}iﬂ (A(DY " o tAI[I?"]']')

, NFEW
(0) o 2ak®  Zok? -
a
for every @ > 1, where D ~, T, (a) follows from the

composition theorem for RDP (Lemma 9) and Lemma 10, ()
from swapping the order of maximization and summation, and
() from (11).

Then, converting from RDP to DP using Lemma 11 gives
that Algorithm | satisfies

2herk?
_2 -|—
r'.r
Now. the Rényi divergence parameler o can be optimized
in order to minimize 2hak’/s2 + log(\ft)/(a—1) by taking the
derivative with respect o «. Doing so, gives ¢« = | +
o o logi 1z}
k/2h
this value of @ into (13) and setting o =
e=0Dand0 <4 < 1.

log(!/x)
g—1"

A -I-ﬁ') — NDP. (13)

= | from which the resull follows by substituling

ko /B Iog 12578
uf‘ ”.whcre

D. Proof of Theorem 3

In contrast to the prool of Theorem 2, the distance between
any pair of two nodes w.v is random over the rounds of
the algorithm. Hence, we have o resort o a weak form of
convexity for Rényi divergence as formulated in Lemma 7.
We start with a technical lemma.

Lemma 13: The fraction & gl "y
bounded by 1.

Now, let Eﬁ denote the actual number of noise terms added
in between the {r — 1)-th and r-th visit of the token at node v
after visiting node u. Efﬂ, is a binomial RV with parameters
d"(u,v) and 1 — p, where @' (. v) is the distance between
u and v along the direction of the token over the ring. From
Lemma 7, it follows that

from (9) is upper-

i (including) have been visiled, and where 0 < h=1isa
constant such that

9. (00 AN |0 ADN|ED, =29, i < 1)
]

] —

Ta—1
for all £ = [@7(u, v)]. By picking b = 1 and applying
Lemma 12, gwe'a the expression in (15) al the bottom of
the page. As gl ;m";'“ 2 = | (see Lemma 13), in order m
satisfy (14) (with & = 1), we require that 2a{e — 1)k* < o

1 {2541

(see (9)), which is equivalent 10 ——— = a =
Since the lower bound on « above is less than one,

(14)

1+ 2':—}+I

(1255

L4,/25 +1 14/ 0elT0 L
2 - 2

where we have used that o = ~ S'“f“ L
—=(r}

In the following, o simplify notation, let gi Eﬂlﬁ -1 <
denote the expression inside the expectation operator of (15).
Tt follows that

l = < (16)

EELIJ i -m[g{EL'i s Exﬂ-]]
n—1 r
= E Z n[Pr{dm{u vl =d;) ]
d) =1 d,=1i=1

By o[e(El).... . 20) |0 ww =diieln ],

where
|E"JI.|IE1 ...ﬂ[g[EEE,.,., r-l:l":l} ff[ }(H 4‘] = d‘1 i e fr-l ]
d
= E Z glhy, ...,
h =1 hr=1

o (Y.L (4 ptit et (g phitbhe
y i,

Now, for a fixed pair of nodes u, v, .:.t'"'-"{u, v} = 1 with
probability 1/{n—1), d'u, v) = 2 with probability {1—1/in—1))-

(15)

73

Yin-2) = Yin—1), @ (u, v) = 3 with probability (1 — 1/(n—1)) -
5 (e} ir] !
Pu(OVADY H Oy Mﬂf”) ={l+& (1 — Yn—2)) - Y(n—3) = 1/ta—1), etc. Hence, d'¥(u, v) follows a
xIE[ P, (@{n‘l{ ADY) " oA |E®, =& ie [r])]. uniform distribution. As a result,
where _".3 (G{r’{A(D}} I g{d{_w‘i{p_}}l HE&:JV = 65';‘1% i€ [rl) ]EELjiI IIIIII 31’{,[-9[31.3 .y EETE}]
the Rényi divergence belween the views O (A(D)) and i n—1 it ) d,
OV (A(D)) given that mI*-elwecn the (i — 1)-th and i-th visit = - -“ZZ'“ZS“‘T-----"!J
of the token at node v, E“ e [d[”Lu v)] nodes after node (n—1) di=1  de=lh=1  h=1
max 7,00 AD) | 0L AD))
wvel, wdv :
Y [ E':""I'.
= max (I4+1D-—E_u _in —
os e = N

u eV, uFEv

[4{1 3 lally. (‘/1 TR, ot - -

J1+2e =)
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2 (:!) (:'r)pm+---+d,—fh1+---h,1“ _ pytehy
1 F

[ﬂ 1 ﬂ—l l.';ll
£ EZE(-‘L---J?J(DP"‘“EI -p"

(n—1) d=1 h=1

which is independent of w. v, and where (q) follows from
the fact that g(-,....-) is a decreasing and convex function.
Hence,

max @(00(AD) | 0P ADY)

uvel,

wEEY

o« Sk Eigth hn(”)p""’u p*.(17)

(n— 1ol A o h
As for the Skip-Ring scheme, the number of visits of the
token to a node v during the execution of the algorithm,
denoted by E,., follows a binomial distribution with paramelers
hawifn and 1 — p. Let h be defined as in the formulation
of the theorem. Then, it follows from a standard Chernoft
bound that Pr{Z, = K) = &, for some & e (0,1).
Applying the composition theorem lor RDP (Lemma 9),
lemma 10, and swapping the order of maximization and
summation as in the derivations in (12), bul wsing (17)
together with the definition of g(-) from (13}, jrr:sulis in
AKX, vel. usty @n{mv‘.-"uﬂu ” Gu{A{IDj]}} = %k_-v where a
is defined in the theorem formulation.

Then, converting from RDP to DP using Lemma 11 gives
that Algorithm | satisfies

dawk®  log(!
( « ogil/s)

(18)

A48 ) —NDP,
al a—1

where again the parameler @ can be optimized in order to

minimize the ¢ (lefl) term in (18). However, there i a subtlety

as the condition in (16) must be satisfied. Taking the derivative

of the  (left) term of (18) with respect to w, equating it to
3

zero, and setling o = hm, where e = Oand 0 = § <

78} ol 5
I, gives @ = | + zlmff}::’g{ ) - | and the final result

follows by substituting the minimum of the optimal value of «
[rom above and the right-hand-side upper bound of (16) into
the & (left) term of (18) and simplifying.
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