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ABSTRACT

Calibrating a simulation digital twin using real-time observation data is a key requirement for making the
simulation model aligned with a physical system under study. This paper applies a particle filter-based data
assimilation framework to online calibration of simulation digital twin, with a focus on calibrating multiple
model parameters. An overview of the problem formulation and the particle filter-based data assimilation
is provided. The combination effect of multiple model parameters and its impact on multi-parameter
calibration is discussed. Experiment results based on a simulation case study example demonstrate the
effectiveness of the data assimilation for online model calibration of simulation digital twin models.

1 INTRODUCTION

Digital twin is a new technology that holds promise for supporting rapid and accurate analysis and real-
time decision making for many systems. While different models have been used in different contexts, a key
type of digital twin model is simulation models (also referred to as simulation digital twins in this paper)
that explicitly model the dynamic behavior of physical systems. A simulation digital twin differs from other
models by modeling a system’s state and state transition over time. The dynamic nature of these models
makes it possible to run simulations to analyze and predict future behaviors starting from some initial states.
Simulation digital twins find applications in many domains, such as manufacturing process, city traffic, and
wildland fire management.

To achieve full potential of simulation digital twin, it is crucial to synchronize a simulation model with
the corresponding physical system using real-time observation data collected from the system (Fuller et al.
2020). The synchronization is necessary because a simulation run needs to start from an initial state, which
needs to match the real-time state of a physical system in order to support real-time analysis/prediction.
Furthermore, a simulation model needs to be properly parameterized based on the real-time characteristics
of a physical system in order to achieve accurate simulation results. Thus, to support synchronization two
tasks are needed: dynamic state estimation and online model calibration. The former allows a simulation
run to be initialized to the right state, and the latter allows a simulation model to be correctly parameterized.
Both dynamic state estimation and online model calibration are key activities of Dynamic Data Driven
Simulation (DDDS), which refers to a new simulation paradigm where a simulation system continuously
and systematically assimilates real-time data from a system in operation to support real-time prediction and
analysis for the system (Hu 2023a).

Dynamical state estimation and online model calibration are challenging tasks because in many cases
the state and parameters that need to be estimated/calibrated are hidden, i.e., they cannot be directly
observed or computed from observation data. Thus, one need to infer the state and parameter values based
on real-time observation data. An important approach for state/parameter estimation is data assimilation.
Data assimilation is a methodology that combines observation data with a dynamic model of a system to
optimally estimate the evolving state of the system. It has been used in many science fields such as
meteorology and geosciences, but received less attention in the modeling and simulation community. Data
assimilation in science fields typically deals with continuous models with continuous state variables.
Recently, Hu (2023a) systematically introduced data assimilation as an enabling technology for DDDS that
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involves discrete simulation models with discrete or hybrid states. A tutorial on
Bayesian sequential data assimilation for discrete simulation models can be found in Hu (2023b).

With growing interest in digital twin technologies, applying data assimilation to simulation digital twins
becomes an important research topic. In previous work (Hu and Yan 2024), we developed a particle filter-
based data assimilation framework for online model calibration in discrete event simulations. This paper
extends previous work by applying the framework to online calibration of simulation digital twins, with a
focus on calibrating multiple model parameters. A challenge of multi-parameter calibration is associated
with the combination effect of multiple parameters, i.e., there may exist multiple combinations of parameter
values that produce the same or similar observation data. As a result, the true parameter values cannot be
effectively distinguished from the observation data. We provide an in-depth discussion of this issue and its
impact on online model calibration. To evaluate the particle filter-based data assimilation for online
calibration of digital twins, a case study example of a one-way traffic control system simulation is presented,
and experiment results are provided.

It is important to note that the problem of online model calibration is different from the traditional
problem of calibrating simulation models in an offline fashion. Offline model calibration is considered part
of the model evaluation process that includes activities such as verification, calibration, and validation
(Rykiel 1996). Typical offline model calibration methods include parameter sweeps, hill climbing,
simulated annealing, and genetic algorithms (Malleson 2014). Offline model calibration is usually
formulated as a global optimization problem by using historical data. On the other hand, online model
calibration uses real-time data to adjust a simulation model to make it match the real-time characteristics
of a system. Compared to offline calibration, less work exists for online model calibration. An extended
Kalman filter-based online calibration algorithm was developed to support real-time calibration of large-
scale traffic simulators (Zhang 2020). Within the context of digital twin, a machine learning-based method
was developed to support online autonomous calibration of digital twin models for nuclear power plants
(Song et al. 2022). A particle filter-based method was used to continuously calibrate a digital twin model,
and its performance was compared with static and sequential Bayesian calibration approaches (Ward et al.
2021). Titscher et al. (2023) developed a Bayesian calibration method and applied it to online model
calibration using real measurement data from a lab-based demonstrator bridge.

2 ONLINE CALIBRATION OF SIMULATION DIGITAL TWIN

A simulation digital twin typically has many parameters that characterize the physical system under study.
While some parameters can be determined or calibrated offline using historical data or domain knowledge,
others need to be calibrated in an online fashion based on real-time observation data. This is because some
characteristics of the physical system are known only after the system operates in the field, and thus the
corresponding parameters can only be determined when the system works in real time. Furthermore, a
system’s characteristics may change or shift over time due to changing operating conditions. For these
systems, the digital twin models’ parameters are not static — they are dynamic parameters whose values
need to be calibrated online based on real-time observation data.

Online model calibration is a challenging task due to multiple reasons. First, the parameter values often
cannot be directly observed or computed from observation data. Thus, their values need to be inferred
indirectly from the observation data. For example, a traffic light digital twin model may need to calibrate
its parameters characterizing the durations of the red/green light. Nevertheless, there may be no direct
observations about the traffic light state or light switch time. In this case, one need to infer the parameter
values based on other available observation data, such as the number of cars that passed the intersection in
previous time intervals. Second, a system’s behavior is influenced not only by its characteristics but also
by its state that dynamically change over time. This means it is often difficult to separate the task of
parameter estimation from the task of state estimation because both impact the observation data. Thus, the
parameters and dynamically-changing states need to be estimated at the same time. Third, often there is a
need to calibrate multiple model parameters. The multiple parameters bring the combination effect of
multiple parameters that will be discussed further in Section 2.2.
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2.1 Overview of Problem Formulation and Particle Filter-based Data Assimilation

The goal of online calibration of simulation digital twin is to dynamically estimate the parameters of a
simulation digital twin based on real-time observation data to make the model more accurately capture the
characteristics of a physical system. As an estimation problem, it can be defined in a probabilistic way. Let
Vi = Y(ty) be the observation data y at time ty; Vo.x := (¥(ty), y(t1), ..., y(tx)) be the sequence of
observation data up to time t;. Let 8 be the parameter vector to be calibrated. We define 8, := 0(¢t;,) be
the parameter vector 6 at time t;,. Then the online calibration problem can be defined as p(0x|vo.x), i.¢.,
computing the probability distribution of 8;, conditioned on the observation data y.,. This is carried out in
an iterative way: when new observation data become available at time t;, 1, a new calibration is carried out
to update the parameter estimate.

To apply data assimilation to online model calibration, a common approach is to formulate it as a joint
state-parameter estimation problem. In this approach, the to-be-estimated parameters are included as part
of the state vector that needs to be estimated. Let x;, be the n-dimensional state vector and 8}, be the h-
dimensional parameter vector that need to be estimated online at step k. Typically, the set of parameters
that need to estimated online is a small subset of all the parameters of a simulation digital twin. We define

X
an augmented state vector X, by appending the parameter vector 8y, to the state vector xy, i.e., X} = (9];)

or Xx = (Xyp X2 h Xnjo O1)0 B2+, O )T, where X is a n+ h dimensional vector, x;; (i =
1,..,n) is the ith element of the state vector, and 8;, (j = 1, ..., h) is the jth element of the parameter
vector.

In data assimilation, a dynamic system is generally modeled as a dynamic state-space model that
includes a state transition model and a measurement model. With the augmented state vector Xy, the state
transition model can be defined as follows.

” —1,05._1, Uz,
Xy = (z:) = fxRp—1, Uk, Vi §i) = (fk(xkgi_lk_l_l(:k yk)). (D

This model includes two parts. The first part x;, = f, (Xx—1, Ox—1, Uk, V) describes how the state x;,
evolves over time. For a simulation digital twin, the f;, () is defined by the simulation model that specifies
a systems’ state transition based on its previous state x;_; and the model parameters 8, _;. The wuy is the
external input of the simulation model at step k, and y;, is the process noise that models the uncertainty of
the state transition. The second part 8, = 6;,_; + {;, models how the parameters 8, evolve over time. A
common approach is to add small random perturbations to the parameter values in each step of the transition
(Liu and West 2001). Typically, the random perturbations are drawn from a zero-mean Gaussian
distribution, i.e., {; ~N (0, W},), where W}, is a diagonal covariance matrix for the Gaussian noises that has
variance sz for the jth parameter. Adding random perturbations to the parameter values allows generating
new parameter values in each step of the data assimilation. This supports robust estimation even when
parameters’ initial values are far away from the true values. Large variances of the Gaussian noises lead to
large changes of the parameter values in each step. Large variances may be necessary if the estimation has
not converged or if one expects the parameter values change dynamically in a fast pace. Otherwise, small
variances are preferred. For example, when a parameter under estimation is expected to be a static
parameter, a small variance will lead to more stable estimation results.

With the augmented state vector X}, the measurement model is defined as

Vi = Gk Zrr &) £ g (Xk, k), ()

where g () maps from the augmented state vector Xj to the observation data vector y,, and & is the
measurement noise. The gy (X, €) is equivalent to the function gj (xy, &) that defines the mapping from
the state x;, to the observation data y,. This is because the state space formulation of data assimilation
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generally assumes the Markov property, which means the observation data y, at step k is completely
defined by the state x;, at that step. More explanations of the state transition model and measurement model
described above can be found in Hu (2023a).

The state space formulation described above allows us to carry out data assimilation to estimate the state
and model parameters at the same time. In this work, we employ particle filters to carry out data
assimilation. Particle filters are a set of algorithms that use the Monte Carlo techniques to realize sequential
Bayesian filtering. They are non-parametric filters that work well with simulation models with discrete or
hybrid states. They also have the advantage of working with systems that have non-linear non-gaussian
behaviors, which is the case for many simulation models. Specifically, we choose to use the bootstrap filter
algorithm (Doucet et al. 2001; Arulampalam et al. 2002) to carry out data assimilation. The bootstrap filter
algorithm uses the state transition model to evolve particles during the sampling step. For the joint state-
parameter estimation problem, the state transition model is defined by Equation (1) described above.
Another major advantage of the bootstrap algorithm is that it simplifies the computation of particles’
importance weights, where the weight is defined by the likelihood probability that can be computed from
the measurement model (Equation (2)).

In particle filtering, the belief distribution of the state under estimation is represented by a set of samples,
each of which is called a particle. A particle is a concrete instantiation of the augmented state vector X. Let
{55,((1),3?,((2), -, )?,((N)} be the set of particles representing the posterior distribution p (X |y1.x, U1.x) at time
step k, where N is the size of the particle set. The bootstrap algorithm has a standard algorithmic structure
that includes three sub-steps in each data assimilation step: 1) sampling, 2) importance weight computation,
and 3) resampling. The sampling step evolves each particle to a new state using the state transition model
(Equation (1)). The outcome of the sampling step is a set of particles representing the prior distribution of
the state estimate. Then the importance weight of each particle is computed according to its likelihood
probability of observing the observation data at this step. A higher likelihood probability leads to a larger
weight and a lower likelihood probability leads to a smaller weight. After all particles’ weights are
computed, a set of weighted particles are formed, which act as an intermediate approximation for the
posterior distribution at step k. Subsequently, the resampling step selects the particles according to their
importance weights. The particles with large weights are selected multiple times while the particles with
small weights may be eliminated. The set of resampled particles represent the final posterior distribution of
the state at this step, which also serve as the input for the next iteration of the bootstrap filter algorithm.
More details about the bootstrap filter algorithm and its implementation for data assimilation can be found
in Hu (2023a; 2023b) and Hu and Yan (2024).

Initialization of the bootstrap filter algorithm needs to generate N initial particles following the belief
of the initial state. When knowledge about the initial state is available, the initial set of particles can be
generated using that knowledge. Otherwise, a common practice is to generate the initial particles randomly
covering a wide state space in a uniform way. For the model parameters that need to be calibrated online,
their initial values may be sampled around the baseline values based on an offline model calibration.

2.2 The Combination Effect of Multiple Model Parameters

The problem formulation and particle filter-based data assimilation described above are applicable to both
single-parameter and multi-parameter calibration. Compared to calibrating a single parameter, calibrating
multiple parameters works with a higher dimensional augmented state vector, which makes it more difficult
for the data assimilation to converge to the true state/parameter values. More importantly, multi-parameter
calibration brings another challenge: there may exist multiple combinations of parameter values that make
a physical system to exhibit the same or similar observation data. In this case, the true parameter values of
the physical system cannot be effectively inferred or distinguished from the observation data. This issue
was also reported in an earlier work of parameter calibration for wildfire spread simulation (Bai et al. 2011).
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To better illustrate this issue, we consider a simplified version of the one-way traffic control system that
will be described in Section 3. This simplified one-way traffic control system includes a road segment
controlled by a traffic light. The system assigns green light to the west-to-east moving direction for a
duration of Ty, f, and then switch to the east-to-west direction for a duration of T4y, . It then switches back
and repeats the cycle. During a green light, cars move through the road segment one by one: a car enters
into the road segment only after its front car has finished crossing the road segment. It takes a constant time

(denoted as T, ) for all cars to move across the road segment. The observation data is the number of cars

that finish crossing the road segment from west to east (denoted as y‘%;;art) in a 30-second time interval,

and these data are collected every 30 seconds starting from time 0.

In this example, the Ty »g, Tgow, and T, are parameters of the one-way traffic control system, and the

yxezﬁ’;art is the observation data. During rush hours when there are many cars on both sides of the road

segment, the number of cars that can cross the road segment in a 30-second time interval is directly related

to the green light duration of the corresponding direction within the 30-second interval as well as the time

for a car to cross the road segment. Figure 1 shows the y‘fll,ezzgart observation data (blue line) for two cases

that have different parameters: 1) Case 1: T, = 4.0s, Ty = 40s, Ty, = 20s, and 2) Case 2: T,y =

5.0s, Tgow = 35s, Ty, = 25s. As can be seen, the two cases have the exactly same yg/ezz;art: the first data

point (at time=30s) is 5 and the second data point (at time=60s) is 0, and then the remaining data points
repeat the 5-0-5-0...cycle. This is because in Case 1 the west-to-east green light is 20s and it takes 4.0s for
a car to cross the road segment. Thus, in the first 30s only 5 cars can cross the road segment from west to
east; and in the second 30s no car can cross the road segment from west to east because the traffic light is
in the opposite direction. In Case 2 the west-to-east green light is 25s and it takes 5.0s for a car to cross the
road segment. Again, 5 cars can cross the road segment from west to east in the first 30s, and O car can
cross the road segment from west to east in the second 30s. This is the same as in Case 1. In both cases, a
new traffic light cycle starts at time=60s that repeats the observation data from the previous cycle.

depart depart depart depart
= Yw2e YE2w = Ywae Ye2w

OO D VAN WAN ANAAARARAA

VAR T AWM

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
Time (s) Time (s)

Number of cars
oORNWAUVGN®
Number of cars
oRrNWARUON®

Case 1: Tyqr = 4.0s, Tgoy=40s, Tyop = 20s Case 2: Toqr = 5.08, Tgoyw=35s, Tyop = 258

Figure 1: Observation data for two cases with different parameter values.

For this system, there exist many other combinations of parameter values that result in the same yﬁ,ezlgart

(i.e., 5-0-5-0-5-0...) as shown in Figure 1. For example, the combination of Ty, = 30s, T, =30s, and

Teqr = 6.0m/s will also make the yﬁ,eszart be 5-0-5-0.... In fact, as long as Ty, < 30s, and Tyyop /Tear =

5, and Ty, + Tgaw = 60s, then the yﬁ,ezrgart will be the same as shown in Figure 1.

The fact that there exist two or more combinations of parameters that result in the same observation data
means that it is impossible to determine the exact parameter values from observation data. In the above
example, we assume the observation data has zero noise and the system has deterministic behavior (e.g.,
all cars use the same constant time to cross the road segment and the traffic light has a fixed schedule). To
complicate things further, observation data are noisy and there exists uncertainty in system behavior. The
noisy observation data and uncertain system behavior bring more challenges for precisely estimating the
true parameter values from observation data. A major advantage of particle filter-based data assimilation is
that it can represent multimodal distributions or other arbitrary distributions that are needed for handling
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the combination effect of multiple parameters. For example, when there are two possible combinations of
parameter values, particles will represent a bimodal distribution that has two local peaks. When there are
multiple or infinite combinations of parameter values, the corresponding distributions can be represented
by particles too. This will be demonstrated by the experiment results in Section 4.2.

The challenge associated with the combination effect of multiple parameters is closely related to the

limited observability of observation data used in data assimilation. In the above example, the observation

data yvcli,ezzéart carries limited information that is insufficient to distinguish the parameter values. When this

happens, other observation data (if available) may be used to help distinguish the parameter values. For

example, let us assume the observation data (denoted as ygfﬁ,art) of the number of cars that finish crossing

the road segment from east to west in every 30s is also available, as shown in Figure 1 (red line). One can

see that the two cases have different ygzelf,art: Case I’s ygzeﬁ,art are 2-8-2-8..., and Case 2’s ygzeﬁ,a” are 1-

6-1-6... When assimilating both data of yﬁ,ezz;art and ygzeﬁ,art, the data assimilation should be able to

distinguish the two cases from one to another. Section 4.2 shows some results to demonstrate this.

3 THE CASE STUDY EXAMPLE

We consider a one-way traffic control system as illustrated in Figure 2, which is adapted from the example
originally described in Hu (2022). During road construction, the one-way traffic control is managed by two
persons deployed to the west and east ends of the road segment. Each person carries a STOP/SLOW hand-
held traffic paddle to control the traffic, where the STOP sign means cars should stop and wait, and the
SLOW sign means cars can slowly move ahead to pass the road segment. It is assumed that the two persons
coordinate and always use the STOP/SLOW signs in opposite directions. In the following description, we
refer to the STOP sign as the red traffic light and the SLOW sign as the green traffic light, and refer to cars’
moving directions as west-to-east (also called east-moving) and east-to-west (also called west-moving).
During the time when the traffic light is green on a specific direction, the arrival cars moving in the opposite
direction are queued. The queues at the west side and east side of the road segment are named as the west-
side queue and east-side queue, respectively. The cars at both sides of the road segment arrive randomly
and independently, modeled by two Poisson distributions that have arriving rates of Aoggimor and Ay estmon
for the east-moving and west-moving cars, respectively.

west-side west-moving one-way west-moving east-side
observer departure vehicles traffic control arrival vehicles observer
v v
52 East-side queue

west-side queue °®

D .. ‘;I, a0 one-way traffic road (;t’
east-moving east-moving
arrival vehicles departure vehicles

Figure 2: The one-way traffic control system. Adapted from Hu (2022).

To ensure safety, only one car is allowed to move on the road segment at any time. The time it takes for
a car to cross the road segment is modeled as a random number drawn from a truncated normal distribution
that has mean T, (seconds), variance a2 = 0.52, and lies within the range of [T.q, — 1, Tzq + 1]. During
a green light period, the traffic-control person on the corresponding side would signal a car to move ahead
only after the previous car has finished crossing the road segment. The traffic control system switches the
traffic lights using two rules: 1) Rule 1: switch the traffic light if the elapsed time for the current moving
direction reaches a pre-defined threshold. The pre-defined thresholds for the west-to-east and east-to-west
moving directions may be different, described by two parameters T,,,z and Tg,y, respectively. 2) Rule 2:
if the current moving direction has no car waiting and the opposite direction has cars waiting, switch the
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traffic light even if the pre-defined time threshold has not reached. We note that in both cases, the traffic
light switches only after the road segment is cleared if there is already a car moving on the road.
A discrete event simulation model was developed to model this system based on the DEVS formalism
(Zeigler et al. 2000). The DEVS model includes three atomic models: eastMovCarGenr, westMovCarGenr,
and oneWayTrafficRoad. The eastMovCarGenr generates the east-moving traffic arriving at the west side
of the road segment. The westMovCarGenr generates the west-moving traffic arriving at the east side of
the road segment. The oneWayTrafficRoad models the one-way traffic road segment, including the traffic
control logic as well as the time for cars to cross the road segment. This model has two input ports
eastMovArrival and westMovArrival that receive cars generated from the eastMovCarGenr and
westMovCarGenr, respectively. The cars finishing crossing the road segment are sent out through the
eastMovDeparture and westMovDeparture output ports.
The oneWayTrafficRoad model use several parameters. In this study, we consider the following three
parameters as candidates of online model calibration:
o T, this parameter specifies the average time for a car to cross the road segment.
o Ty-g: this parameter specifies the threshold for the traffic light to switch from west-to-east direction
to east-to-west direction under Rule 1.

o Ty, this parameter specifies the threshold for the traffic light to switch from east-to-west direction
to west-to-east direction under Rule 1.

To collect observation data from the system, observers (sensors) are deployed at the west-side and east-

side locations as marked in Figure 2. The east-side observer is able to count the number of cars moving

crossing its location for the west-to-east departure cars (denoted as yﬁ,ezz;art ) and east-to-west arrival cars

(denoted as y&7i°#). Similarly, the west-side observer is able to count the number of cars moving crossing

its location for the east-to-west departure cars (denoted as ygzefvart ) and west-to-east arrival cars (denoted

as yi7¥al) Each observer reports data every 30 seconds. It does not record the specific time that a car

crosses the observation location — all it reports is the total number of cars that have departed and arrived in
the past time interval. The data reported by the observer is noisy, with a 10% noise added to the actual
number of cars crossing the observer location.

4 EXPERIMENT RESULTS

We use the identical twin experiment (Hu 2023a; Hu and Yan 2024) to evaluate the data assimilation for
online parameter calibration. In the identical twin experiment, a simulation is first run to represent the
“physical system” under study. The observation data obtained from this simulation are regarded as the
observation data collected from the physical system, and the state trajectory recorded and parameters used
in this simulation are considered the “true” state and “true” parameters, respectively. Using the collected
observation data, data assimilation is then carried out and the state/parameter estimates are checked against
the “true” state/parameters. In this work, the first simulation that serves as the physical system is based on
the same simulation model as the one used in data assimilation. Nevertheless, it has different model
configurations including different initial condition, input trajectories of west-side and east-side car arriving,
and random number seeds. More importantly, it uses model parameters that are “unknown” to the data
assimilation. The goal of data assimilation for online model calibration is to estimate the unknown model
parameters of the physical system based on real-time data that are collected from the physical system.

The data assimilation carries out joint state-parameter estimation. For the one-way traffic control
system, the state variables that need to be estimated include the westSideQueue size and eastSideQueue
size, the traffic light state (i.e., red or green), and the elapsed time in the current traffic light state. Our
previous work (Hu and Yan 2024) has reported results on joint state-parameter estimation involving a single
parameter for this system. We observed similar state estimation results when carrying out joint state-
parameter estimation involving multiple parameters. Due to this reason, in the following experiments we
skip the state estimation results and focuses only on the results for the multiple parameters.
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In all the experiments except for the ones in Section 4.2, the Poisson distributions used to generate
incoming cars have the arriving rates Aoqsimor = 1/9 (1 car per 9 seconds in average) and Ay esiponr =
1/7 (1 car per 7 seconds in average). With these arriving rates, in the beginning there are not many cars on
either side of the road segment. The small number of cars means that the traffic light can switch frequently
in the beginning because once one side has no car waiting, the traffic light switches even when the elapsed
time has not reached Ty, or Tg,y, (due to the Rule 2 described in Section 3). This makes it difficult for
the data assimilation to infer the true Ty, and Tg,y in the beginning, as will be observed from the
experiment results. All the experiments in this section use the data assimilation step of 30s, which is the
same as how often observation data are collected. We run 200 steps of data assimilation (6000s) for all the

experiments. Except for the last experiment in Section 4.2, all experiments assimilate only the observation

data collected from the east-side observer, i.e., Vcli,ezlgart and y& T4 In all the experiments, the particle

filter algorithm uses 5000 particles.

4.1 Online Calibration of Two and Three Parameters

Our first experiment studies online model calibration involving two parameters. In this experiment, the one-
way traffic control system uses the same time threshold for the traffic light to switch from west to east and
from east to west. In other words, the system uses only one parameter that is shared by Ty, and Tg,yy. For
simplicity, we refer to this parameter as Tirqfficrigne- This parameter and the other parameter T, of the
physical system are unknow and need to be estimated in real time based on real-time observation data.

To set up the experiment, we make the physical system use different combinations of T, and
TtrafficLighe to generate observation data. Four combination cases are considered, including: Case 1:
Tear = 4.0s and TyrqrficLigne = 90s; Case 2: Tegr = 4.0s and Tergpricrigne = 150s; Case 3: Tegr = 5.0s
and Tyrqfricrighe = 90s; and Case 4: Teg, = 5.0 and Tirgpficrigne = 150s. Figure 3 shows the parameter
estimation results for the four combination cases, each of which includes two charts. The top shows the
result for the T4, parameter, and the bottom shows the result for the TyrqfficLigne parameter. In each chart,
the horizontal axis represents the time (seconds) and the vertical axis represents the corresponding
parameter value. The blue line (denoted with a “#rue_” prefix) is the true parameter value from the physical
system that needs to be estimated. The red line (denoted with a “ave ” prefix) is the estimation result from
the data assimilation. The estimation result in each step is averaged from all the particles of that step.

true_Teqr = 4.0, true_TirafficLight=90 true_Teqr = 4.0, true_TirafficLighe=150 true_Tqr = 5.0, true_TiafficLight=90 true_Teqr = 5.0, true_TyafficLigne=150
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Figure 3: Online calibration of two model parameters.

As can be seen, in all the cases, the estimates converge to the true parameter values within some error
bounds after some time. The time of convergence is different. For the case of T, = 4.0s and
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TtrafficLighe = 90s, it takes about 1000s for the TyrqfficLigne to converge to the true state. For the case of
Tear = 4.0s and TyrqrficLigne = 150s, it takes about 2000s to converge. The longer convergence time is
due to the fact that when Tiqfficrigne = 150s, it is easier for all the waiting cars on one side to finish
crossing the road segment, and thus make the traffic light switch earlier. The early switch of traffic light
makes it more difficult to infer that the Tirqfficrigne 18 actuallyl50s. A similar pattern can be observed

when T, = 5.0s. Comparing the cases of T,y = 4.0s and T4, = 5.0s, we can see that the T, = 5.0s
cases converge earlier. This is because cars move faster when T,,,- = 4.0s, which makes it more likely for
all the cars on one side to finish crossing the road segment, and thus make the traffic light switch earlier.

The results shown in Figure 3 are based on four specific data assimilation runs. To quantitatively show
the effectiveness of the parameter estimation, for each case we carry out 20 independent data assimilation
runs and compute the Root Mean Square Error (RMSE) of the data assimilation results. The RMSE is
calculated based on the differences between the estimated parameter and the true parameter, averaged from
all 20 runs and from all the particles. The RMSE of the two parameters for the fours combination cases
described above are: Case 1: RMSE T = 0.6, RMSE TiyqrficLigne= 3.6; Case 2: RMSE T4, = 0.6,
RMSE TirafficLigne= 4.2; Case 3: RMSE T, = 0.6, RMSE Tiqfficrigne= 2.5; Case 4: RMSE _Tiqp =
0.6, RMSE_TirqfricLigne= 2.9- As can be seen, they are all relatively small, indicating the effectiveness of
the data assimilation for the online parameter calibration.

Our next experiment studies online model calibration involving three parameters. To set up the
experiment, we make the physical system use different combinations of T,,,-, Tgoy and Ty o to generate
observation data. The T,,,-, Ty and Ty, are unknown to the data assimilation and need to be estimated
based on real-time observation data. Figure 4 shows a specific simulation run for the case when the true
Tear = 4.0s, Tgay = 120s, and Ty = 80s. Similar as in Figure 3, the blue line is the true parameter
value and the red line is the estimation result from the data assimilation. The estimation result in each step
is averaged from all the particles of that step.
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Figure 4: Online calibration of three parameters. The true T,q, = 4.0s, Ty = 120s, Tyop = 80s.

One can see that the estimated T,,,-, Tgoy and Ty o all converge to the corresponding true values after
some time and stayed close to the true values for the rest of the data assimilation. Specifically, it took less
than 200s for the estimated T, to converge to the true value, and it took a bit more than 1000s for the
estimated T,y and Ty, to converge the true values. We note that the time for the Ty, and Ty ,E to
converge is significantly influenced by the number of cars arriving at the west or east side of the road
segment. When there is less cars arriving, the traffic light can switch early frequently, making it more
difficult for the Tg,y, and Ty, to converge (due to the same reason as explained for the two-parameter
cases). Again, to quantitatively show the parameter estimation results, we carry out 20 independent data
assimilation runs for this case of T,y = 4.0s, Tgyyy = 120s, and Ty, = 80s and compute the RMSE
values. The results are: RMSE T,,,- = 0.6, RMSE Tg,y,= 4.3, and RMSE Ty, p=4.3.

4.2 Studying the Combination Effect of Multiple Parameters

This experiment evaluates and demonstrates how the particle filter-based data assimilation works when
there exists the combination effect of multiple parameters as described in Section 2.2. To set up this
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experiment, we make the physical system have the same parameters as the ones described in Section 2.2.
Specifically, we consider two cases of the physical system that have the following parameters: 1) Case 1:
TC(IT = 4‘.05, TEZW = 405, TWZE = ZOS, and 2) Case 2: TC(IT = 5.05, TEZW = 355, TWZE = 25s. For the

illustrative example described in Section 2.2, these two sets of parameters make the system generate exactly

the same yv‘f,ezz;a”. The one-way traffic control system considered in this experiment is more complex than

the illustrative example from Section 2.2, due to the following factors: 1) observation data is noisy; 2) cars
arrive randomly; 3) traffic light can switch early if the current direction has no car waiting; 4) the time to
cross the road segment is a random number; and 5) traffic light switches only after the road segment is
cleared if there is a car already on the road. This last factor means in most cases the actual green time is
longer than Ty, (or Tgow) because when Tyy»5 (or Tgow) is reached the traffic light still needs to stay in
green until the car (if any) on the road segment finishes crossing it. For better demonstration, in this
experiment both the west side and east side have high car arriving rates: Aggsimor = 1/2 and Ay esipronr =
1/2. With these high arriving rate, both sides of the road segment can quickly accumulate a large number
of cars that need to cross the road segment. As a result, the complexity associated with the factors 2) and

3) described above is minimized.

Figure 5 shows the observation data yﬁ,ezz;art and ygzefvart for a typical run of the two cases of the

physical system. As can be seen, the yﬁ,ezlgart data between the two cases are different, which are also

different from what was shown in Figure 1. These differences are due to the noisy observation data and the

complexity and uncertainty associated with the system behavior as explained above. Despite the

differences, one can see that there is significant similarity between the two cases’ yv‘f,eszart. This similarity

of observation data will make it difficult for the data assimilation to distinguish the two sets of parameters
during online model calibration.
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Figure 5: Observation data for two cases of the physical system that have different parameters.

We carry out particle filter-based data assimilation to estimate the three parameters for the two cases.

We first assimilate only the observation data yﬁ,ezzgart and y47¥4  Figure 6 shows the estimation results

for the three parameters Ty g, Tgow, Tear for both cases. Similar as before, the blue line is the true
parameter value and the red line is the estimation result, which is averaged from all the particles in each
step. As can be seen, in both cases, the T,,, and Ty, have relatively large errors. Specifically, the
estimated T, is larger than the true T,,, for both cases, and the estimated T,y is smaller than the true
Tgow for both cases. Compared to T,,,- and Tg,y,, the estimated Ty, has relatively small error but still
does not converge to the true value — it is larger than the true value for both cases.

The results from Figure 6 show that the particles did not converge to the true parameter values. This is

due to the combination effect of the multiple parameters as described in Section 2.2. Since there exist

. . . . . depart . .
multiple combinations of parameter values that can produce similar ywsz as the ones sown in Figure 5,

all these combinations of parameter values are represented by the particles during data assimilation. When
this happens, one should not rely on the average from all the particles as the data assimilation results,
because the posterior distribution represented by the particles is not a typical normal distribution. To further
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check this, Figure 7(a) shows the histogram of all the particles’ estimates for T, at step 100 (time=3000s)

for the Case 2 when assimilating only the east-side observation data yﬁ,ezz;art and y&Tal  As can be seen,

the posterior distribution represented by the particles spans a wide range between 4.1 to 7.6. In particular,
it forms a plateau shape from 5.3 to 6.6, indicating that there is high likelihood for the T, to be any value
in this range. We note that the true T4, = 5.0 does not have the highest representation by the particles but
still has a significant representation.
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Figure 6: Parameter estimation when there exists combination effect of multiple parameters.
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Figure 8: Parameter estimation by assimilating both the east- and west-side observation data.

As mentioned before, one way to address the combination effect of multiple parameters is to assimilate
more observation data. To demonstrate this, we assimilate the observation data from both the east- and
west-side observers. Figure 8 shows the estimation results for Case 2 (results for Case 1 is omitted to save
space). Compare these results with the Case 2 results in Figure 6, one can see that the results have
significantly improved. All the three parameters were able to quickly converge to the true values. Figure
7(b) shows the histogram of all the particles’ estimates for T, at step 100 when assimilating observation
data from both sides of the observers. Compared to the histogram of Figure 7(a), the posterior distribution
represented by the particles in Figure 7(b) is roughly a normal distribution with a much narrow span

2854

Authorized licensed use limited to: Georgia State University. Downloaded on September 27,2025 at 00:27:38 UTC from IEEE Xplore. Restrictions apply.



Hu and Yan

(between 4.1 and 5.8). Furthermore, the mean of this normal distribution correctly lies at the true value of
5.0. This means the particles have correctly converged to the true parameter value.

5 CONCLUSION

This paper applies a particle filter-based data assimilation framework to online calibration of simulation
digital twin models. Experiment results show that the data assimilation can effectively support online
calibration of multiple model parameters using real-time observation data. The results also demonstrate the
challenge associated with the combination effect of multiple parameters and its impact on data assimilation.
This asks for rigorous approaches to handle the challenge of the combination effect of multiple parameters
in future work. Other future works include more in-depth analysis of multi-parameter calibration under
various situations, and development and evaluation of dynamic parameter calibration.
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