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Abstract—In this paper, we provide a collaborative posi-
tion tracking solution exploiting the parameters of vehicle-
to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links to
significantly improve the localization accuracy of the vehicles in
the group that are in non-line-of-sight (NLOS) conditions. We
assume a group size of three vehicles and unknown orientation
and clock offsets among the vehicles. The vehicles with a line-
of-sight (LOS) channel to the base station (BS) act as anchors
and are localized through V2I geometric localization, while
the other vehicles in the group are considered targets and
are localized via sidelink channel parameters. An additional
Kalman filter (KF) stage is considered for vehicle position
tracking. The proposed methods are evaluated based on realistic
simulations of the channels in urban canyon areas considering
a single BS scenario, where vehicles frequently enter and exit
NLOS situations. Simulation results indicate that orientation
offset estimation errors remain below 0.05◦, while clock offset
estimation errors are under 10 ns. The average localization
accuracy is 0.2 m, with errors ≤ 0.7 m for 90% of the cases.

I. INTRODUCTION

Communication at mmWave enables highly accurate user
localization as a byproduct, thanks to large antenna arrays and
wide bandwidths that enhance angular and delay resolution,
as well as channel sparsity that facilitates geometric localiza-
tion [1]–[3]. However, the performance of V2I localization
degrades in NLOS conditions, since the channel parameter
estimation error is larger [3]. The exploitation of sidelinks,
as specified in [4], emerges as a promising option for
user positioning given the high likelihood of a strong LOS
component [5].

Localization leveraging sidelinks typically relies on
ranging-based methods [6]—where the round trip time
(RTT), the time of arrival (ToA) or the time difference of
arrival (TDoA) are leveraged for distance calculations [7]—
and angle based solutions—where the target can be local-
ized at the intersection of the angular directions [4]. These
techniques can be combined for more accurate localization.
In a multi-vehicle scenario, collaborative positioning lever-
ages information from multiple links to improve localization
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performance. Filtering based algorithms, as proposed in [8],
[9], involve collection of the observations including channel
parameters [8], global navigation satellite system (GNSS)
data and inertial measurement unit (IMU) data [9], and
fusion with a global filter. Bayesian inference-based solutions
have been widely proposed for collaborative localization
[10]–[13]. In [10], ToA is estimated for ranging and fused
with GNSS following a maximum-likelihood formulation. In
[11], [12] the authors exploit factor graphs, treating delay
and angles as observations, and estimate vehicle locations
through cooperative belief propagation (BP). Fault-tolerant
localization is achieved in [12] through integrity for BP.
Moreover, [13] introduces an undirected graph for mea-
surement exchanges, where the localization methods exploit
least-mean-square (LMS) and conjugate gradient algorithms.
Finally, solutions based on deep learning have also been
developed in previous work [14], [15]. In this case, the
designed neural networks, e.g., attention networks [14] or
long short-term memory (LSTM) networks [15], gather the
observations for predictions of the vehicle locations and the
environment map.

Solutions in prior work have, however, different limita-
tions: 1) Requirement of measurements from multiple BSs
[9], [16]; 2) Neglect of clock offsets [10], [12], [13], which
is a major limitation for the accuracy in the ranging process;
3) Lack of solutions to address the high complexity of time
domain high-resolution channel estimation that accounts for
realistic filtering effects [8]–[13]; 4) Availability of perfect
channel/channel parameter distributions, or employing unre-
alistic synthetic channels; 5) Simplification of the localization
schemes to 2D [9], [13]; 6) Neglect of the offset in the
orientation of transmit and receive antenna arrays; 7) Limited
accuracy (∼ 4 m) provided by data driven solutions in
vehicular scenarios [14], [15].

In this paper, we consider a partial coverage V2X scenario
as outlined in 3GPP technical reports [4], with at least one of
the communicating users in-coverage and with a connection
to a BS. We first formulate the expression of the mmWave
V2I and V2V channels accounting for both the unknown
clock and orientation offsets. Then we propose a positioning
strategy that involves localizing an anchor vehicle with a LOS
to the BS through the V2I downlink as in [3], while NLOS



targets are positioned via sidelinks. We employ the ESPRIT-
D algorithm in [17] for sidelink channel estimation, which
accounts for the filtering effects and yields high-accuracy
channel estimates. The orientation and clock offsets are then
derived based on sidelink information shared among the
vehicles. Finally, the target locations are determined through
geometric transformations from the anchor location. A simple
yet effective KF performs a temporal filtering to improve the
localization accuracy. The average accuracy of the proposed
strategy is 0.2 m, with sub-meter accuracy realized for 90%
of the cases.

II. SYSTEM MODEL

We consider a mmWave vehicular network, where a single
BS is located at a known position, and three vehicles moving
at different speeds are scheduled as a group. At a given
time slot, at least one of the vehicles should have a LOS
channel with the BS to act as the anchor. The vehicle/s
in LOS is localized via the V2I link, while the other/s in
NLOS situations will be the target(s) to be collaboratively
located through V2V sidelinks. The BS and the vehicles are
equipped with uniform rectangular array (URA)s to enable
3D localization.

We first formulate the expression of the channels account-
ing for unknown clock biases and orientation offsets among
the three vehicles. The V2I channel can be written as

H(τ)
n =

L∑
ℓ=1

α
(τ)
ℓ fp

(
nTs − (t

(τ)
ℓ −∆tu)

)
· (1)

a
(
θ
(τ)
az,ℓ −∆ϑ(τ)u , θ

(τ)
el,ℓ

)
a
(
ϕ
(τ)
az,ℓ, ϕ

(τ)
el,ℓ

)∗
, (2)

where n indicates the n-th tap of the channel, τ is the time
frame indicator, L is the number of paths, α(τ)

ℓ and t(τ)ℓ are
the complex gain and the delay of the ℓ-th path at time τ ,
∆tu is the unknown clock offset between the BS and vehicle
u, Ts is the sampling period, fp(·) represents the pulse
shaping and filtering effects, θ(τ)az,ℓ and θ

(τ)
el,ℓ represent the

azimuth and elevation angle-of-arrival (AoA) at τ , and ∆ϑ
(τ)
u

is the orientation offset varying every time frame between
the array on the BS and that on vehicle u. ϕ(τ)az,ℓ and ϕ

(τ)
el,ℓ

are defined similarly for the angle-of-departure (AoD). The
array response vector is defined as [a(ωx, ωy)]mxNx+my =
exp (−jπmx cos(ωy) sin(ωx)− jπmy sin(ωy)), mx =
0, 1, ..., Nx − 1,my = 0, 1, ..., Ny − 1, considering a
planar array of size Na = Nx × Ny in the yz-plane with
half-wavelength element spacing.

Similarly, the channel for V2V link from vehicle u to
vehicle v is expressed as
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where the notations of the different parameters are similar to
those for the V2I link, with the dot indicating the sidelink

(a) (b)

Fig. 1: Sky view of collaborative positioning considering:
(a) single-anchor, and (b) multi-anchor cases, where the
orientation offsets are unknown. The numbers in the circles
indicate the order in the estimation of the link parameters.
All the parameters are aggregated at the BS for further
processing.

channel parameters. The sidelink is modeled as LOS due to
the close proximity between the vehicles in a group.

During the position and channel tracking phase, the train-
ing precoders and combiners are designed based on previ-
ous channel estimates. We consider a hybrid multiple-input
multiple-output (MIMO) architecture at both the BS and the
vehicle. The hybrid precoder and combiner can be written as
F = FRFFBB and W = WRFWBB, where FRF and FBB

are the analog and digital precorders, and WRF and WBB

are the analog and digital combiners. At time slot τ , the q-
th instance of the downlink received signal at the vehicle
obtained using the m-th precoder-combiner pair is

yτ,m[q]= W∗
τ,m

Nd−1∑
n=0

√
PH(τ)

n Fτ,ms[q−n]+W∗
τ,mnτ,m[q],

(5)

where Nd is the number of channel taps, P is the transmitted
power, s[q] is the q-th instance of the transmitted pilots, and
nτ,m[q] represents the additive white Gaussian noise. When
some of the vehicles enter the NLOS area and become the
targets, the sidelink is activated. The sidelink received signals
are written as in (5), with y, W, Nd, P , H, F, and n replaced
by their dotted counterparts ẏ, Ẇ, Ṅd, Ṗ , Ḣ, Ḟ, and ṅ,
indicating they correspond to the sidelink. Throughout the
localization process, the anchors manage the processing and
determination of positions, while the BS coordinates resource
allocation and scheduling across the network. The discussion
of the scheduling mechanism is outside the scope of this
paper.

III. COLLABORATIVE LOCATION AND ORIENTATION
TRACKING WITH V2I AND V2V LINKS

Anchors with LOS V2I links are localized based on chan-
nel geometry, as detailed in our previous work [3]. Assuming
that u1 is the anchor and the V2I downlink localization result
is p̂u1

, the clock offset ∆t̂u1
is calculated based on the

distance between the BS and u1, and the orientation offset



Fig. 2: Illustration of the channel geometry of sidelinks.

∆ϑ̂u1
is acquired based on the estimated AoDs of the LOS

component. In this paper, we focus on tracking the NLOS
targets in the group. To account for the impact of channel
estimation errors, we acquire the channel parameters from
the received signals using ESPRIT-D [17], which considers
filtering effects in the channel model. While [17] considers
the initial access scenario, in this paper we leverage historical
location data here to determine the precoders and combiners
that point the beams toward the transmitter (receiver) to
reduce the signaling overhead. Specifically, for a V2V link
from user ui to uk at τ , we focus on the LOS components
(ℓ = 1) and denote AoA estimates as θ̂(τ)az,k ≈ θ̇

(τ)
az −∆ϑ

(τ)
uk

and θ̂
(τ)
el,k, AoD estimates as ϕ̂

(τ)
az,i ≈ ϕ̇

(τ)
az − ∆ϑ

(τ)
ui and

ϕ̂
(τ)
el,i, and delay estimate as t̂(τ)ik ≈ ṫ(τ) − (∆tuk

− ∆tui),
where the orientation and clock offsets are unknown. Then
Ḟ

(τ+1)
RF and Ẇ

(τ+1)
RF are implemented based on the array

response vectors considering θ̂
(τ)
az,k, θ̂(τ)el,k, ϕ̂(τ)az,i, and ϕ̂

(τ)
el,i,

using quantized phase-shifter approximations.
The proposed collaborative positioning algorithms differ

for single-anchor and multi-anchor scenarios, offering flex-
ibility based on available information. As the following
localization algorithms do not change with the time frame,
the time variable τ is omitted in the notations for simplicity.

A. Single-anchor localization

Let’s assume that u1 is the anchor and u2 and u3 are
the targets, as illustrated in Fig. 1a. The targets u2 and u3
take turns sending pilots to anchor u1 and each other. When
user u2 is transmitting, both u1 and u3 estimate the AoA, the
AoD, and the delay. The process repeats with u3 transmitting
pilots. We first extract the orientation offsets so all the angular
values are computed in the global coordinate system. Then
the clock offsets are estimated for ranging and positioning.

Based on the LOS path properties, illustrated in Fig. 2, the
estimated angles satisfy{

cos(ϕ̂az,i +∆ϑui) = − cos(θ̂az,k +∆ϑuk
)

sin(ϕ̂az,i +∆ϑui
) = − sin(θ̂az,k +∆ϑuk

)
. (6)

Let ∆ϑik = ∆ϑui −∆ϑuk
, then (6) can be rewritten as[

cos(ϕ̂az,i) − sin(ϕ̂az,i)

sin(ϕ̂az,i) cos(ϕ̂az,i)

] [
cos(∆ϑik)
sin(∆ϑik)

]
=

[
− cos(θ̂az,k)

− sin(θ̂az,k)

]
,

(7)

where [cos(∆ϑik), sin(∆ϑik]
T is obtained through LS es-

timation, and ∆ϑ̂ik is derived accordingly. In the current
single-anchor case, ∆ϑ̂23, ∆ϑ̂21, and ∆ϑ̂31 are estimated
through signal transmission from u2 to u3, u2 to u1, and
u3 to u1, respectively. Then ∆ϑ̂u2

and ∆ϑ̂u3
are determined

based on the known ϑ̂u1 estimated from the V2I channel by
solving 1 −1

1 0
0 1

[
∆ϑu2

∆ϑu3

]
=

 ∆ϑ̂23
∆ϑ̂21 +∆ϑ̂u1

∆ϑ̂31 +∆ϑ̂u1

 . (8)

Now we have all angle values in the global coordinate system.
As the targets transmit pilots to each other and the anchor,

the RTT between u2 and u3 can be obtained as t̂23+t̂32
2 , and

the distance between them is derived as d̂23 = (t̂23+t̂32)·c
2 ,

where c is the speed of light. The delay estimates t̂21 and
t̂31 are obtained by the anchor u1 exploiting the law of sine
as

(t̂21+∆tu1
−∆tu2

)·c
sin(ψ3)

=
(t̂31+∆tu1

−∆tu3
)·c

sin(ψ2)
=

d̂23
sin(ψ1)

,

(9)

where ψi = cos−1(< ϕi1,ϕik >) for i, k ∈ {2, 3}, i ̸=
k, and ψ1 = cos−1(< θ21,θ31 >), with ϕik and θik the
direction of departure (DoD) and direction of arrival (DoA)
of the LOS path from ui to uk. Now, the clock offsets of
the targets ∆t̂ui

, i = 2, 3 are determined based on ∆t̂u1
by

solving Ax = b, where

A=

[
I2

sin(ψ2) − sin(ψ3)

]
;b=


t̂21+∆t̂u1−

d̂23 sin(ψ2)
c·sin(ψ1)

t̂31+∆t̂u1−
d̂23 sin(ψ3)
c·sin(ψ1)

3∑
i=2

(−1)i sin(ψi)(t̂i1 +∆t̂u1)

 ,
(10)

and x = [∆tu2
,∆tu3

]
T. Note that, though the clock offsets

are assumed to be consistent for the entire trajectory, we
account for the variations in each time slot due to channel
estimation errors, and average the estimates over the trajec-
tory to determine the final clock offsets. Finally, the locations
of the targets are derived based on the anchor’s location as

p̂ui
= p̂u1

+ θi1 · c(t̂i1 +∆t̂u1
−∆t̂ui

). (11)

B. Multi-anchor localization

We discuss now the scenario where two of the three
vehicles in the group, u1 and u2, serve as anchors, while
u3 is the target. As illustrated in Fig. 1b, after the anchors
are independently localized from the parameters of their
corresponding V2I links, u3 sends pilots to the anchors, so
they can estimate the parameters if the V2V channels. We
follow the previous definitions for the channel estimates, and



(6) and (7) can be leveraged to obtain ∆ϑ̂31 and ∆ϑ̂32.
Since ∆ϑ̂u1

and ∆ϑ̂u2
have already been computed for

the localization of the anchors exploiting the V2I links,
∆ϑ̂u3 can now be obtained by averaging the estimates as
∆ϑ̂u3

= (∆ϑ̂31+∆ϑ̂u1
+∆ϑ̂32+∆ϑ̂u2

)/2. Now we derive
a system of equations similar to the one in (9) to obtain
the clock offsets. First, the AoAs in the global coordinate
system θ̂az,i + ∆ϑ̂ui

and θ̂el,i as well as the delays t̂3i for
i = 1, 2 are estimated at each anchor. From these values,
their associated directions θ31 and θ32 can be obtained. In
addition, since p̂u1

and p̂u2
are known, the DoA for each

anchor θik = p̂ui
− p̂uk

can also be calculated. Next, the
clock offset ∆t̂u3

can be computed from ∆t̂u1
and ∆t̂u2

as

∆t̂u3 =

2∑
i=1

(−1)2 sin(ψi)(t̂3i −∆t̂ui
)

sin(ψ1)− sin(ψ2)
. (12)

Finally, we obtain two estimates for p̂u3
by exploiting (11)

and the anchor locations, and take the average as the final
estimate for the target position.

To further increase positioning accuracy the system can
now exploit the history of previous position estimates with
a KF for 2D position tracking. This is implemented inde-
pendently for each vehicle. for each vehicle. The state of

vehicle ui at τ is defined as s(τ)ui =
[
x
(τ)
ui , v

(τ)
x,ui , y

(τ)
ui , v

(τ)
y,ui

]T
,

where x
(τ)
ui and y

(τ)
ui represent the x and y coordinates of

ui’s current location, v(τ)x,ui ∼ N (v̇x,ui , σ
2
x,ui

) and v
(τ)
y,ui ∼

N (v̇y,ui
, σ2

y,ui
) are the speeds along x and y axes at τ and

change following Gaussian distribution [18], where v̇x,ui
and

v̇y,ui
are the mean speeds along x and y axes, and σ2

x,ui
and

σ2
y,ui

represent the covariance. The measurement vector is de-

fined as the location estimate at τ , i.e., z(τ)ui =
[
p̂
(τ)
ui

]
1:2

. This
approach provides a high accuracy even during brief NLOS
conditions among all three vehicles along the trajectory, and
it uses the state transition function relying on vehicles’ speeds
to generate measurements.

IV. SIMULATION RESULTS

The experiments are conducted based on the realistic
mmWave channels generated from Wireless Insite, con-
sidering an outdoor urban canyon environment within
a rectangular cuboid with opposite vertices at points
[−13m,−123m, 0m] and [231m, 85m, 56m]. The three ve-
hicles in the group can be either cars of height 1.6 m or trucks
of height 3.8 m. Their speeds can take values of 20, 40, or
60 mph. The BS is located at [120m,−21m] with the array
height of 5m. The ray-tracing simulation operates at a carrier
frequency of 73 GHz, with other parameters chosen as in [3].
We consider the ray-tracing simulation performed every 25
ms given the vehicles moving on their lanes, and we generate
a total of 10 sets of the trajectories considering different
starting points of the vehicles, each of which contains around
150 simulation snapshots.

The simulated communication system exploits a bandwidth
of 1 GHz and operates at the carrier frequency of 73 GHz.

We assume that the vehicles and the BS are equipped with
planar arrays of size Nv = 8× 8 for the vehicles and NB =
24×24 for the BS. A sequence of training pilots with a length
Q = 38 is sent for channel and position tracking purposes.
The precoder and combiner design at time slot τ leverages
channel estimates from the preceding time slot τ−1, i.e., the
analog beams pointing to the directions based on the last set
of angle estimates and their adjacent beams are considered at
each time slot. The transmit power at the BS is 40 dBm for
V2I links, while the vehicles transmit power for V2V links
is 10 dBm. A raised cosine filter with a roll-off factor of 0.6
is selected for pulse shaping.

We first analyze the performance of the sidelink channel
estimation strategy, in addition to the accuracy of the ori-
entation and clock offset estimation results. As illustrated
in Fig. 3a, channel tracking with ESPRIT-D provides an
angular accuracy of 0.1◦ for 95% of the situations. The
collaborative orientation offset estimation errors are always
below 0.05◦. Furthermore, the algorithms guarantee a clock
offset estimation error below 10 ns. The delay estimations
factoring in the estimated clock offset, as shown in Fig.3b,
have an error below 10 ns.

An example of collaborative positioning results for a given
trajectory is included in Fig. 4, which shows the sky view
of a vehicle u1 moving at 60 mph acting as the anchor, a
truck u2 moving at 40 mph, and another vehicle u3 moving
at 20 mph. This example primarily features single-anchor
cases, with a few multi-anchor instances. Specifically, without
sidelink localization, V2I links can locate u1, u2, and u3 in
98%, 45%, and 18% of the vehicle locations, respectively.
After introducing sidelink positioning, these percentages go
up to 98% for all vehicles, while the remaining 2% of
the measurements rely on state transition functions. The
isolated points in this figure (triangles or squares) represent
the results of positioning from a single snapshot, without the
temporal smoothing implemented with the KF. The periods
marked in grey represent the times where the V2I channel
status is NLOS and collaborative positioning via sidelinks is
implemented. No performance loss is observed in the gray
periods which exploit sidelinks and collaborative localization
with respect to V2I localization.

After analyzing the results for all the testing trajectories,
we compute the cumulative distribution function (CDF) of
the 2D localization error (m), which is presented in Fig. 5.
Based on the accuracy of V2I LOS localization, collaborative
positioning from a single snapshot provides an average error
of 0.4 m for targets, and an error below 1.2 m for 90% of the
cases. The accuracy further improves to 0.3 m on average,
achiving sub-meter accuracy for 90% of the situations after
applying the KF. Sidelink localization performs worse than
V2I localization because errors from V2I are propagated
when estimating the target locations based on the anchor
positions. For comparison, we also include results using V2I
NLOS localization [3], which requires ≥ 3 estimated channel
paths, while often yielding lower accuracy and poorer local-
ization performance, e.g., 1.2 m localization error on average.
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Fig. 3: Sidelink channel estimation results: (a) CDF of
the angular estimation errors for 3D AoAs/AoDs and the
orientation offsets; (b) CDF of the delay estimation errors
factoring in the estimated clock offsets.
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Fig. 4: An example of the sky view of the collaborative
positioning and tracking results for two cars (u1 and u3) and
a truck (u2) moving on three lanes. The gray areas represent
the NLOS occasions for u2 and u3. In the example, u1 serves
as the anchor, u2 can be either an anchor or a target, and u3
is always the target.

Ref. Data type Localization scheme Avg.
accuracy (m)

90%-th
error (m)

[11] V2I/SL-AoA+
V2I/SL-ToA

Factor Graph+BP 1.2 1.5

[12] GNSS+SL-ToA Factor Graph+BP 2.9 3.5
[13] GNSS+SL-AoA Graph Laplacian with

LMS
1.4 2.5

Proposed V2I/SL-AoA+
V2I/SL-ToA

Collaborative geomet-
ric localization and KF

0.3 0.7

TABLE I: Comparison of several cooperative localization
schemes in urban driving scenarios. The proposed approach
clearly outperforms the baselines developed in previous work.

Table I presents a comprehensive comparison of our proposed
method with various V2V cooperative localization schemes
in realistic urban driving scenarios. Methods incorporating
V2I and V2V communication [11] outperform GNSS based
solutions [12], [13]. Compared to the other collaborative
V2V/V2I solution in [11], our approach provides significantly
better performance, achieving an average error reduction of 1
m and a 50% improvement in accuracy at the 90th percentile.
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0

20
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Fig. 5: CDF of the 2D error (m) with the proposed collab-
orative positioning, including V2I NLOS localization [3] for
comparison.

V. CONCLUSION

In this paper, we considered V2X-enabled collaborative
positioning accounting for unknown antenna array orientation
and clock offsets. Single and multiple anchors scenarios were
considered, where the transmission schedule differs depend-
ing on the available shared information. Channel estimation
and tracking was performed with an algorithm that accounts
for the filtering effects introduced by pulse shaping and
the analog frent-ends. Experimental results show that the
orientation offset estimation errors are below 0.05◦ and the
clock offset errors are below 10 ns both for 95% of the
situations. Based on these parameters, location estimates for
the targets, derived based on geometric transformations from
a single snapshot, achieve an average accuracy of 0.3 m
and 1.2 m at the 95th percentile. Applying Kalman filtering
for position tracking further improves accuracy, achieving
sub-meter localization in 90% of cases. For simplicity, we
illustrate our approaches using a group of three vehicles as
an example. However, this method can be readily adapted to
scenarios involving multiple vehicles.
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