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Abstract—Reconfigurable intelligent surface (RIS)-aided mil-
limeter wave (mmWave) wireless systems offer robustness to
blockage and enhanced coverage. In this paper, we develop an
algorithmic solution that shows how RISs can also enhance the
positioning performance in a joint localization and communica-
tion setting, even when hardware impairments are considered. We
propose a realistic system architecture that considers the clock
offset between the transmitter and the receiver, impairments
at transmit and receive arrays, and mutual coupling between
the RIS elements. We formulate the estimation of the composite
channel in a RIS-aided mmWave system as a multidimensional
orthogonal matching pursuit problem, which can be solved with
high accuracy and low complexity, even when operating with
large antenna arrays as required at mmWave. In addition, we
introduce a dictionary learning stage to calibrate the hardware
impairments at the user array. To complete our design, we devise
a localization scheme that exploits the estimated composite chan-
nel while accounting for the clock offset between the transmitter
and the receiver. Numerical results show how RIS-aided mmWave
systems can significantly improve the localization accuracy in a
realistic 3D indoor scenario simulated by ray tracing.

Index Terms—Reconfigurable intelligent surface, joint localiza-
tion and channel estimation, hardware impairments, dictionary
learning.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication uti-
lizing large arrays and high bandwidths, such as those em-
ployed in millimeter wave (mmWave) bands, enables high
data rates for wireless links while increasing angle and delay
resolvability during channel parameter estimation. Moreover,
the sparsity of the channels enhances the sensing performance
of the communication waveform [2]. Despite these advantages,
state-of-the-art solutions for mmWave localization still face
challenges in achieving the required accuracy for specific use
cases that depend on precise position information. Current
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approaches include ultra-dense deployments for beam-based
coordinated measurements from multiple base stations (BSs)
[3]–[5], deep networks exploiting power delay profiles or
other channel parameters [6]–[9], and two-stage methods that
involve a sparse channel estimation phase and a subsequent
stage that maps the estimated channel parameters to the
position and orientation of the user by exploiting geometric
relationships [10]–[17].

Reconfigurable intelligent surfaces (RISs) have recently
emerged as a promising technology for improving the perfor-
mance of wireless systems [18]–[22]. By digitally configuring
the coefficients of its passive elements, the reflection angle of
a RIS can be adjusted, enabling the creation of controllable
propagation environments for wireless communications. This
feature is especially useful in situations where there is a
blockage between the BS and the mobile station (MS) [23],
a challenge that is particularly acute in the mmWave band,
where the line-of-sight (LoS) path is typically much stronger
than the non-line-of-sight (NLoS) paths. Although the benefits
of RISs in communication systems are limited when the LoS
path between the BS and the MS is present [18], the accuracy
of positioning solutions that exploit the communication wave-
form could be significantly increased if a second strong path
is available [1], [24], [25]. Moreover, higher accuracy could
also be obtained in NLoS scenarios, which are usually very
challenging for precise localization.

A. Prior Work

One of the primary challenges in RIS-aided mmWave
systems is channel estimation, as the large number of passive
elements in RISs requires the estimation of large matrices [26].
The passive nature of the RIS also complicates the channel
estimation process since a cascade channel comprising the
BS-RIS-MS links needs to be estimated. There are several
recent attempts to estimate the large dimensional channels of
RIS-aided systems [27]–[39]. A compressed channel estima-
tion method is proposed to estimate the narrowband cascade
channel via a RIS where the BS-MS channel is blocked in
[27]. The BS-RIS channel is determined by beam searching,
and the RIS-MS channel is estimated with a sparse recovery
algorithm in [28]. With the knowledge of the LoS path of the
BS-RIS channel, the BS-MS and the RIS-MS channels are
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jointly estimated with a compressed sensing approach in [29].
A fixed-rank manifold optimization algorithm is adopted for
alternatingly estimating the BS-RIS and the RIS-MS channels
in [30]. A convolutional neural network architecture is utilized
to sequentially estimate the BS-MS and the BS-RIS-MS chan-
nels in [31]. Sparse multiuser channel estimation using nuclear
norm is proposed in [32]. Newtonized orthogonal matching
pursuit algorithm (OMP) is proposed to estimate the MS-RIS
channel with the knowledge of the LoS path of the RIS-
BS channel in [33]. In a multiuser scenario, [34] proposes
a double-structured OMP algorithm that first estimates the
common BS-RIS channel while the RIS-MS channel of each
user is subsequently estimated. In [35], the direction of arrival
(DoA) at the MS and the direction of departure (DoD) at
the BS are estimated by atomic norm minimization followed
by MUSIC/ESPRIT in a narrowband system. Then, the DoA
and the DoD at the RIS are estimated using a similar atomic
norm minimization approach. In [36], [37], dictionary learning
methods are utilized to estimate the ill-conditioned narrowband
cascade RIS channel. The work in [38] proposes a two-stage
multiuser narrowband channel estimation algorithm where the
common angles at the BS are estimated in the first stage by
using the pilots transmitted by a single MS, while the cascade
channels of MSs are estimated in the second stage. In a similar
setting, [39] proposes an improved algorithm that leverages
the pilots transmitted by multiple MSs in the first stage. In
[40], a general framework for channel estimation in RIS-aided
communication systems is presented with various channel
models, array structures, and channel estimation algorithms.

Most channel estimation methods, such as the ones that
utilize compressed sensing for RIS-assisted mmWave systems,
exploit the sparsity of the channel and estimate the angular
and delay parameters of the paths, which can also be used for
localization. A RIS can enhance the localization performance
with or without the presence of a LoS path between the BS
and the MS since it creates another relatively strong path
whose direction can be controlled [1], [25]. Theoretical lower
bounds on the positioning error for RIS-aided localization
were obtained in [41]–[43], whereas practical positioning algo-
rithms exploiting RIS were proposed in [44]–[48]. Hierarchical
codebooks were designed for RIS phase configurations and
training beamformers to estimate the DoA, DoD, and delay
parameters in [44]. A tensor-based channel estimator was
derived in [45] to extract the angle and delay parameters
using a two-plane twin RIS structure, followed by a location
mapping. A path parameter estimation approach that exploits
the MS position likelihood was designed in [46]. The received
signal strength approach is utilized for localization in a RIS-
aided system in [47]. Multiple RISs are employed to localize
and track the users based on the Bayesian approach and
message passing algorithm in [48].

The work on mmWave systems and RISs often assumes that
the hardware behaves ideally. However, hardware impairments
have significant effects on system modeling. For instance,
mutual coupling-aware end-to-end RIS channel models are
developed in [49], [50]. The work in [51] shows the degrada-
tion in channel estimation accuracy if the mutual coupling at
the RIS is not considered. Although this work indicates that

the degradation is more prominent if the spacing between the
RIS elements is small, the degradation increases significantly
when the number of elements of the RIS gets larger, even
in the case of large spacing between the elements. Mutual
coupling and other hardware impairments (e.g., phase/gain
errors for the arrays) create a mismatch in the assumed channel
model for channel estimation methods. Hence, measurement
and calibration of the arrays is a necessary stage for practical
applications [52]–[56]. Calibration of a RIS under mutual
coupling in an experimental setup is considered in [52].
Calibration of arrays in the presence of mutual coupling and
gain/phase errors is studied during the DoA estimation in
[53]. Dictionary learning-based joint calibration of transmit
and receive arrays of a point-to-point mmWave MIMO system
is proposed in [54]. In addition to the hardware impairments,
the beam squint effect is compensated with dictionary learning
algorithms in [55], [56]. Furthermore, dictionary learning is
used for adapting to the cell characteristics during channel
estimation in [57]. In this paper, we follow a similar dictionary
learning approach to calibrate the user array.

When it comes to channel estimation and localization in
RIS-assisted mmWave systems, recent literature has proposed
several efficient solutions [27]–[39], [44]–[48]. However, some
of these solutions make unrealistic assumptions and neglect
important effects that are present in real-world systems. For
instance, hardware impairments such as mutual coupling and
gain/phase errors are not considered in practical channel
estimation and localization algorithms. Furthermore, certain
studies rely on single-antenna or fully digital multiantenna
architectures at MSs [27], [29]–[34], [37]–[39], [46]–[48],
instead of a hybrid analog-digital architecture, which is the
commonly accepted solution for mmWave MIMO if high-
resolution data converters are considered. Additionally, some
papers assume either a blocked or perfectly known direct link
between the BS and the MS, limiting the estimation to the BS-
RIS-MS channel [27], [28], [30], [32]–[35], [37]–[39], [44]–
[46], [48]. Moreover, filtering effects of the pulse shaping
function at the transmitter and the receiver are disregarded
in all the related work except [29]. Most prior work on
RIS-aided channel estimation and localization ignores filtering
effects [58], which does not hold in practical systems. These
assumptions lead to an artificial enhancement of delay sparsity,
while realistic pulse shaping and filtering in the discrete-time
equivalent channel model leads to a leakage in neighboring
delay taps [59], [60]. If recovering the delays of the paths
is not necessary, which is the case in many communication
applications, frequency-domain channel estimation can be per-
formed by exploiting only the angular sparsity [61]. However,
delay information is crucial for localization applications; thus,
sparse methods that consider pulse shaping and filtering effects
are necessary. Note that the tensor decomposition-based and
the ESPRIT-based channel estimation methods cannot handle
delay recovery in the presence of pulse shaping and filtering
[45], [62], [63] since the delay no longer appears as the
exponent in a pure exponential, which is required for ESPRIT
to operate. Lastly, previous work on RIS-aided localization
does not account for the impact of the clock offset between
the transmitter and the receiver. Although the clock offset
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does not affect communication systems, it significantly affects
the localization performance since the absolute delays of the
paths cannot be measured. Most works in the literature assume
perfect synchronization and, thus, perform the localization
with angular and delay information of only the LoS path.
These assumptions oversimplify the channel estimation and
localization tasks, which can result in unreliable and inaccurate
results in practical systems.

B. Contributions

In this paper, we propose a novel approach for joint
channel estimation and localization in RIS-aided frequency-
selective mmWave MIMO systems, taking into account the
impact of hardware impairments, such as mutual coupling
and gain/phase errors at the BS, RIS, and MS. We build
our solution upon our initial work that does not consider
the hardware impairments [1]. We consider a fully connected
hybrid analog-digital architecture at the BS and the MS,
that are not perfectly synchronized in time, which makes the
system realistic but adds to the complexity of the problem. To
develop our approach, we first establish a composite channel
model incorporating two potential components: the BS-MS
and the BS-RIS-MS channels, whose presence depend on the
channel realization. We then investigate cases where one or
both components are available. To simplify the channel model,
we make a fundamental assumption that the DoA and the
DoD associated with the LoS path of the BS-RIS channel
are known, as the locations of the BS and the RIS are fixed
[1], [29], [33], [64]. We consider the remaining paths of
the BS-RIS channel to be interference. Thus, the BS-RIS-
MS channel is simplified to a RIS-MS channel, which is
similar to the BS-MS channel. In addition, we assume that
the BS and the RIS hardware impairments are known and that
both devices have been calibrated in previous stages. Thus,
we propose a dictionary learning solution to calibrate the
MS array, while noting that the same approach can be used
to calibrate the BS array and the RIS. Note that the clock
offset between the BS and the MS, which can be seen as
a hardware impairment, is still unknown. These assumptions
are reasonable, particularly for indoor scenarios, which are the
focus of this paper. Considering the described system model,
our contributions can be summarized as follows:

• We present a novel approach for solving the compos-
ite channel estimation problem in RIS-aided frequency-
selective mmWave MIMO systems. The problem is for-
mulated as a sparse recovery problem with independent
dictionaries for the angle and delay domains while ac-
counting for the effects of pulse shaping. To address
this problem, we propose a modified version of the
multidimensional orthogonal matching pursuit (MOMP)
algorithm [14], [15] that jointly estimates the BS-MS
and the RIS-MS channels. This approach enables low
complexity sparse channel estimation for large arrays and
RISs, which prevent the use of a single, large dictionary.

• To further reduce the complexity of the channel estima-
tion problem, we propose using the MOMP algorithm by
omitting the estimation of the DoA at the MS. Instead,

we show that path gains and DoAs can be recovered
afterward using the parameters estimated by the MOMP
algorithm.

• We develop a novel dictionary learning problem based
on the DoA recovery stage of our proposed channel
estimation method. The dictionary learning algorithm
used in this paper updates the DoA dictionary, accounting
for the hardware impairments of the MS array. This
approach enables joint channel estimation and user array
calibration, improving the accuracy of the localization
and channel estimation results.

• We introduce a versatile framework for 3D localization
that can be applied to either the BS-MS or the BS-RIS-
MS links, as well as to the LoS paths of both links. For
the one-link case, we exploit the characteristics of the
NLoS paths in indoor settings, whereas, in the two-link
case, we utilize the equality satisfied by the LoS paths
of both links to solve for the unknown clock offset. The
location of the MS can then be determined by using the
estimated clock offset and the parameters of the LoS path
of either the BS-MS or the RIS-MS channel.

• We utilize ray tracing to generate a channel dataset for a
RIS-aided mmWave communication system in an indoor
factory environment. The simulation results obtained us-
ing the generated dataset demonstrate the improvement
in the localization accuracy when the RIS-MS channel is
leveraged instead of the BS-MS channel for localization.
Furthermore, we show that sub-meter accuracy can be
achieved when the LoS paths of both the BS-MS and
the RIS-MS channels are utilized. The channel dataset
and the code used to obtain the simulation results are
available to the research community in [65] and [66],
respectively.

Notation: The following notation is used throughout the
paper: Lowercase x denotes a scalar, bold lowercase x denotes
a column vector, bold uppercase X denotes a matrix (or a
tensor), and X represents a set. Moreover, the conjugate,
transpose, conjugate transpose, and pseudo-inverse of the
matrix X are denoted by X∗, XT, XH, and X†, respectively.
The Euclidean and Frobenius norms of the vector x and the
matrix X are represented by ∥x∥ and ∥X∥F, respectively. The
expectation operator is denoted by E[·]. The n-th element of
the vector x is denoted by [x]n, and the (n,m)-th entry of the
matrix X is represented by [X]n,m. Furthermore, [X]n,: and
[X]:,m denote the n-th row and m-th column of the matrix
X, respectively. Multi-index notation n = (n1, . . . , nN ) is
used to refer to the entries of the N -dimensional tensor X as
[X]n = [X]n1,...,nN

. The identity matrix is represented by I,
and the vector with all zeros is denoted by 0. The Kronecker
product of the matrices X and Y is denoted by X⊗Y.

II. SYSTEM AND CHANNEL MODEL

We consider a frequency-selective mmWave system that
incorporates a RIS between the BS and the MS to enhance
the communication and sensing performance. A visual repre-
sentation of the RIS-aided joint communication and sensing
system is given in Fig. 1. The BS, RIS, and MS are equipped
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Fig. 1. Visual representation of the considered RIS-aided joint localization
and communication system.

with uniform planar arrays (UPAs), where the number of
antennas (passive elements for the RIS) are denoted by NB,
NR, and NM, respectively. A fully connected hybrid analog-
digital architecture is employed at the BS and the MS with
NRF,B and NRF,M radio frequency (RF) chains, respectively.

We are interested in the initial access stage, where the BS
transmits the training frames and the MS sounds the channel
with the aid of a RIS using a set of MB training transmit
configurations and MM training combiners. A transmit con-
figuration includes a particular choice of the pilot signal, the
training precoder, and the phase shifts for the RIS. To measure
the channel response for all possible combinations of transmit
configurations and combiners, the BS transmits MB × MM

training frames, each containing Ns streams of length-N train-
ing sequences. From the received signals corresponding to the
training frames, directly from the BS and/or through the RIS,
the MS estimates the downlink channel and its own location.
The proposed training architecture can be easily extended
to the multiuser case. Since we focus on downlink channel
estimation, and the transmit configurations are independent of
the MS locations and channels, the same channel estimation
and localization procedure can be concurrently performed at
different MSs. Furthermore, uplink channel estimation at the
BS is also possible, even in the multiuser case, if orthogonal
pilot sequences are assigned to MSs.

We set the number of streams to Ns = NRF,B during
the training. The training precoder for the mB-th training
transmit configuration, mB = 1, . . . ,MB, is represented
by FmB

= FRF,mB
FBB,mB

∈ CNB×NRF,B , with analog
precoder FRF,mB ∈ CNB×NRF,B and baseband precoder
FBB,mB ∈ CNRF,B×NRF,B . Analogously, the mM-th train-
ing combiner, mM = 1, . . . ,MM, is denoted by WmM

=
WRF,mM

WBB,mM
∈ CNM×NRF,M with analog combiner

WRF,mM
∈ CNM×NRF,M and baseband combiner WBB,mM

∈
CNRF,M×NRF,M . The training symbol vector at the n-th time
instance transmitted with the mB-th training configuration is
denoted by smB [n] ∈ CNRF,B , satisfying E[smB [n]smB [n]

∗] =
1

NRF,B
INRF,B . To mitigate the intersymbol interference, a zero-

prefix with length D − 1 is added at the beginning of each
frame, where D is the delay tap length.

The training signal generated by the BS is sent through the
channel and can reach the MS directly or via the RIS. Thus,
the channel model can be written in terms of two components:
the BS-MS channel and the BS-RIS-MS channel. Note that the
RIS employs a set of different phase configurations during

training, which leads to different BS-RIS-MS channel ma-
trices for different transmissions. The overall channel matrix
observed while transmitting with the mB-th configuration for
the d-th delay tap, d = 0, . . . , D − 1, can be written as

H
(mB)
d = HBM,d +H

(mB)
BRM,d, (1)

where HBM,d ∈ CNM×NB is the channel matrix of the BS-
MS link and H

(mB)
BRM,d ∈ CNM×NB is the cascade channel

matrix of the BS-RIS-MS link corresponding to the mB-
th training transmit configuration. Leveraging the geometric
channel model with L paths, the BS-MS channel is written as

HBM,d =
L∑

l=1

αBM,lMMΓMaM(θBM,l)

×
(
MBΓBaB(ϕBM,l)

)H
p(dTs + t0 − τBM,l), (2)

where each path l is described by complex gain αBM,l, DoA
θBM,l, DoD ϕBM,l, and delay τBM,l; the sampling period
is denoted by Ts; the time between the beginning of the
transmission and the beginning of the reception, i.e., clock
offset, is t0; the time response of the pulse shaping function,
which includes the effects of the transmitted signal and the
filtering operations at the BS and the MS, is represented by
p(t); the array response vectors of the BS and the MS are
denoted by aB(ϕ) ∈ CNB and aM(θ) ∈ CNM for DoD ϕ
and DoA θ, respectively. We consider 3D direction vectors
for the DoD and the DoA instead of polar coordinates, which
will be useful in the proceeding operations. Any direction
vector θ can be expressed as θ = [θx, θy, θz]

T with ∥θ∥ = 1.
If a UPA that has Nx × Ny antennas with half wavelength
spacing is placed on the xy-plane, its array response vector
can be written as a(θ) = ax(θx) ⊗ ay(θy) with expressions
[ax(θx)]nx

= e−jπ(nx−1)θx and [ay(θy)]ny
= e−jπ(ny−1)θy

for nx = 1, . . . , Nx and ny = 1, . . . , Ny. Moreover, the gain
and phase errors at the array elements are modeled by diagonal
matrices ΓB ∈ CNB×NB for the BS and ΓM ∈ CNM×NM

for the MS. The mutual coupling matrices for the arrays at
the BS and the MS are denoted by MB ∈ CNB×NB and
MM ∈ CNM×NM in (2), respectively [54], [56]. The off-
diagonal entries of the mutual coupling matrices model the
coupling between different antenna elements, which is usually
omitted in parametric channel estimation methods. This leads
to a mismatch in the model used for channel estimation,
resulting in erroneous parameter estimates. We assume the
perfect knowledge of the hardware impairments at the BS,
i.e., MB and ΓB, while they can be estimated by using the
array calibration solution proposed for the MS in Section IV.
In this paper, we are interested in estimating the channel
and the impairments at the MS. Hence, we rewrite (2) as
HBM,d = H̃BM,dΓ

H
BM

H
B where H̃BM,d ∈ CNM×NB is the

matrix that includes the parameters to be estimated defined as

H̃BM,d=
L∑

l=1

αBM,lãM(θBM,l)aB(ϕ
H
BM,l)p(dTs+ t0− τBM,l),

(3)
where the array response vector at the MS that includes
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H
(mB)
BRM,d =

Q∑
q=1

P∑
p=1

αRM,qαBR,pãM(θRM,q)
(
MRΓRaR(ϕRM,q)

)H ×Ω(mB)

×MRΓRaR(θBR,p)
(
MBΓBaB(ϕBR,p)

)H
p(dTs + t0 − τBR,p + τRM,q), (4)

H
(mB)
BRM,d ≈

Q∑
q=1

α̃RM,qãM(θRM,q)a
H
R(ϕRM,q)p(dTs + t0 − τBR,1 − τRM,q)︸ ︷︷ ︸

≜HRM,d × ΓH
RM

H
RΩ

(mB)︸ ︷︷ ︸
≜Ω̄(mB)

×MRΓRaR(θBR,1)a
H
B(ϕBR,1)Γ

H
BM

H
B︸ ︷︷ ︸

≜HBR

, (5)

the hardware impairments is denoted by ãM(θBM,l) =
MMΓMaM(θBM,l) ∈ CNM . On the other hand, the sec-
ond contribution to the channel in (1) that represents the
BS-RIS-MS link is given in (4) at the top of this page,
where the diagonal phase reflection matrix at the RIS for
the mB-th training transmit configuration is represented by
Ω(mB) = diag(ω(mB)) ∈ CNR×NR , with a phase reflection
vector ω(mB) ∈ CNR which has unit modulus entries [18]–
[21]. In (4), the number of paths of the BS-RIS and the
RIS-MS channels are denoted by P and Q, respectively. The
channel parameters (i.e., complex gain, DoA, DoD, and delay)
for each path are defined similarly to those of the BS-MS
channel. The array response vector for the RIS is denoted by
aR(·) ∈ CNR . The mutual coupling and the gain/phase error
matrices for the RIS are represented by MR ∈ CNR×NR and
ΓR ∈ CNR×NR , respectively. Note that we model the mutual
coupling as a linear effect [67], instead of including it in an
end-to-end channel model which accounts for the coupling
between the RIS and the transmit/receive arrays [49]–[51],
since we consider a far-field mmWave system that presents
sparse channels. Although the RIS-MS link has Q paths, the
MS receives P signals with different delays at the DoA of the
q-th path, as shown in Fig. 1. Estimating the BS-RIS and the
RIS-MS channel parameters from (4) is not straightforward
since it is hard to decouple the two channels as the delays are
embedded in the pulse shaping function.

Several options exist to simplify the cascade channel expres-
sion given in (4). In mmWave systems, it is known that the LoS
path is much stronger than the NLoS paths. In this work, it is
assumed that the locations of the BS and the RIS are known.
Therefore, it is plausible to arrange the locations such that a
strong LoS path exists for the BS-RIS link [29], [33]. Relying
on this assumption, let us only consider p = 1, which is the
LoS path of the BS-RIS link, and treat others (i.e., NLoS paths)
as interference. In addition, hardware impairments at the RIS,
i.e., MR and ΓR, are assumed to be known similar to those of
the BS. If the NLoS paths of the BS-RIS link are assumed to
be negligible, the cascade channel in (4) can be simplified to
the expression given in (5) at the top of this page, where the
parameters related to the LoS path of the BS-RIS link (i.e.,
θBR,1, ϕBR,1 and τBR,1) are assumed to be perfectly known
as the locations of the BS and the RIS are known a priori. The
parameters related to the paths of the RIS-MS link that need to
be estimated are encompassed in the equivalent channel matrix
represented by HRM,d ∈ CNM×NR in (5), which has the
same form as H̃BM,d. Furthermore, the equivalent LoS channel

for the BS-RIS link is denoted by HBR ∈ CNR×NB , which
is known and independent of the delay taps. The unknown
parameter of the LoS path of the BS-RIS link (i.e., complex
gain αBR,1) is included in the equivalent channel of the RIS-
MS link by α̃RM,q = αRM,qαBR,1.

Given this definition of the channel, the received signal
at the MS for the n-th time instance and the (mB,mM)-th
training configuration can be written as

ymB,mM [n] =
√

PtW
H
mM

D−1∑
d=0

H
(mB)
d FmBsmB [n− d]

+WH
mM

vmB,mM [n], (6)

for n = 1, . . . , N , where Pt is the transmit power, and
vmB,mM [n] ∈ CNM is the noise vector for the (mB,mM)-
th training configuration at the n-th time instance, with inde-
pendent and identically distributed entries obeying NC(0, σ2).
Note that the noise at the output of the combiner in (6)
becomes correlated if the combiner is not orthogonal.

III. MOMP-BASED COMPRESSED CHANNEL ESTIMATION

In this section, we formulate the channel estimation problem
as a sparse recovery problem that can be solved with the
MOMP algorithm exploiting independent dictionaries in the
angular and delay domain [15]. This algorithm enables a low
complexity sparse recovery solution in a scenario where the
introduction of the RIS increases the dimensions of the sensing
matrix, and the final localization application requires high-
resolution dictionaries. The MOMP algorithm can recover a
multidimensional sparse signal based on a set of observations
provided that it can be represented by a product of projections
on a given set of sparsifying dictionaries. Exploiting the results
in [15] is not straightforward, however, since the received
signal is a combination of paths coming from two sources,
namely, the BS-MS link and the BS-RIS-MS link, for the
RIS-aided scenario. To overcome this difficulty, we present
a procedure that exploits two sets of dictionaries to model the
two parts in the composite channel.

A. Sparse Channel Representations

The first step to solving the channel estimation problem
is to find a sparse representation for the channels. We need
preliminary definitions and explanations before introducing the
sparsifying dictionaries used for the sparse representations.
First, the delay domain in the discrete equivalent channel
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model can be represented by a vector aT(τ) ∈ CD such
that [aT(τ)]d = p(dTs − τ) for a given delay τ , where the
function p(t) includes the effect of pulse shaping and the
different filtering stages at the RF front end. To represent the
angular domain, we can define two dictionaries for the array
responses at the BS, RIS, and MS since, as explained before,
a UPA has an array response vector that can be written as
the Kronecker product of two array responses. Consider the
UPAs at the BS, RIS, and MS with NB = NB,x × NB,y,
NR = NR,x × NR,y and NM = NM,x × NM,y elements,
respectively. Then, the array response at the BS for the incident
direction ϕ can be expressed as aB(ϕ) = aB,x(ϕx)⊗aB,y(ϕy),
with aB,x(ϕx) ∈ CNB,x and aB,y(ϕy) ∈ CNB,y . The array
responses at the RIS and the MS can be expressed similarly.
First, let us define the dictionaries for the BS-MS channel
given in (3). In this case, we can define ND = 4 dictionaries
ΨBM,k ∈ CNs

BM,k×Na
BM,k , k = 1, . . . , 4 that sparsify the BS-

MS channel as

ΨBM,1 = [aT(τ1), · · · ,aT(τNa
BM,1

)],

ΨBM,2 =
[
a∗B,x(ϕ

x

BM,1), · · · ,a∗B,x(ϕ
x

BM,Na
BM,2

)
]
,

ΨBM,3 =
[
a∗B,y(ϕ

y

BM,1), · · · ,a∗B,y(ϕ
y

BM,Na
BM,3

)
]
,

ΨBM,4 =
[
ãM(θBM,1), · · · , ãM(θBM,Na

BM,4
)
]
,

(7)

where the directions and the delays are discretized using
some predefined resolutions, i.e., a given number of atoms
for each dictionary, Na

BM,k, for k = 1, . . . , ND, such that
the dictionaries

{
τ1, . . . , τNa

BM,1

}
,
{
ϕ
x

BM,1, . . . , ϕ
x

BM,Na
BM,2

}
,{

ϕ
y

BM,1, . . . , ϕ
y

BM,Na
BM,3

}
and

{
θBM,1, . . . , θBM,Na

BM,4

}
cor-

respond to the discrete forms of τ − t0, ϕBM,x, ϕBM,y and
θBM, respectively. Furthermore, the sizes of the atoms in
each dictionary are given as N s

BM,1 = D, N s
BM,2 = NB,x,

N s
BM,3 = NB,y and N s

BM,4 = NM. For ease of notation, we
use the indices ik = 1, . . . , N s

BM,k and jk = 1, . . . , Na
BM,k

to point to the entries in the k-th dictionary for k =
1, . . . , ND. In addition, we utilize the multi-index notation
i ∈ IBM = {(i1, . . . , iND), ik = 1, . . . , N s

BM,k} and j ∈
JBM = {(j1, . . . , jND), jk = 1, . . . , Na

BM,k} to concurrently
point to the entries in multiple dictionaries. Note that the
Kronecker product form of the array response of the MS is
not exploited in ΨBM,4 since the overall hardware impairment
matrix MMΓM does not necessarily have a Kronecker product
form. However, this is not a limitation, as the MSs typically
contain fewer elements than the BS and the RIS.

The dictionaries defined in (7) quantize the directions and
the delays, which results in a mismatch with the actual
values of the channel paths. Since the MOMP algorithm can
operate with very high resolution, the quantization error can
be neglected [15]. Therefore, we can define the sparse tensor
CBM ∈ CNa

BM,1×···×Na
BM,ND that contains the channel gains

corresponding to specific atoms with multi-index j ∈ JBM as

[CBM]j =


αBM,l if

τBM,l = τBM,j1 ,

ϕx
BM,l = ϕ

x

BM,j2 ,

ϕy
BM,l = ϕ

y

BM,j3 ,

θBM,l = θBM,j4 ,
0 otherwise.

(8)

The dictionaries and the sparse channel gain tensor are used
to rewrite the entries of the BS-MS channel expression as

[H̃BM,i1 ]i4,i2NB,y+i3 =
∑

j∈JBM

ND=4∏
k=1

[ΨBM,k]ik,jk [CBM]j. (9)

Analogously, for the RIS-MS channel HRM,d introduced in
(5), the dictionaries ΨRM,k ∈ CNs

RM,k×Na
RM,k are defined as

ΨRM,1 = [aT(τ1), · · · ,aT(τNa
RM,1

)],

ΨRM,2 =
[
a∗R,x(ϕ

x

RM,1), · · · ,a∗R,x(ϕ
x

RM,Na
RM,2

)
]
,

ΨRM,3 =
[
a∗R,y(ϕ

y

RM,1), · · · ,a∗R,y(ϕ
y

RM,Na
RM,3

)
]
,

ΨRM,4 =
[
ãM(θRM,1), · · · , ãM(θRM,Na

RM,4
)
]
,

(10)

where the directions and the delays fall on a grid of
possible values similar to the BS-MS channel. The number
of atoms of each dictionary are denoted by Na

RM,k,
k = 1, . . . , ND, such that the dictionaries

{
τ1, . . . , τNa

RM,1

}
,{

ϕ
x

RM,1, . . . , ϕ
x

RM,Na
RM,2

}
,
{
ϕ
y

RM,1, . . . , ϕ
y

RM,Na
RM,3

}
and{

θBM,1, . . . , θBM,Na
BM,4

}
correspond to the discrete

forms of τ + τBR,1 − t0, ϕRM,x, ϕRM,y, θRM,x and
θBM, respectively. The sizes of the atoms in each
dictionary are given as N s

RM,1 = D, N s
RM,2 = NR,x,

N s
RM,3 = NR,y and N s

RM,4 = NM. The multi-index
notations that are used for the RIS-MS channel are given
as i ∈ IRM = {(i1, . . . , iND

), ik = 1, . . . , N s
RM,k} and

j ∈ JRM = {(j1, . . . , jND
), jk = 1, . . . , Na

RM,k}. Finally, we
define the sparse channel gain tensor for the RIS-MS channel
CRM ∈ CNa

RM,1×···×Na
RM,ND as

[CRM]j =


α̃RM,q if

τRM,q = τRM,j1 ,

ϕx
RM,q = ϕ

x

RM,j2 ,

ϕy
RM,q = ϕ

y

RM,j3 ,

θRM,l = θRM,j4 ,
0 otherwise.

(11)

The resultant sparse representation for the entries of the RIS-
MS channel expression in (5) can be written as

[HRM,i1 ]i4,i2NR,y+i3 =
∑

j∈JRM

ND=4∏
k=1

[ΨRM,k]ik,jk [CRM]j. (12)

The sparse channel representations in (9) and (12) will be
used to express the observations of the received signals during
training, which will be exploited by the sparse recovery
algorithm developed in the following subsection.

B. Channel Estimation Exploiting Multidimensional Sparsify-
ing Dictionaries

In this subsection, we will first derive the sparse recovery
problem to be solved with MOMP to estimate the composite
channel. To this end, we need to express the set of observations
by using the sparse representation of the channels devel-
oped in the previous section. However, the MOMP algorithm
requires the observation noise to be white [15]. Therefore,
we will include a whitening stage before constructing the
sparse recovery problem. To whiten the received signal in
(6), we left multiply it by L−1

mM
, which can be found from
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the Cholesky decomposition of the noise correlation matrix,
i.e., LmMLH

mM
= WH

mM
WmM . The whitened received signal

ȳmB,mM [n] ∈ CNRF,M , which is defined as ȳmB,mM [n] =
L−1
mM

ymB,mM
[n], can be written as

ȳmB,mM[n] =
√
PtW̄

H
mM

D−1∑
d=0

H
(mB)
d FmBsmB [n− d]

+ v̄mB,mM
[n], (13)

where W̄mM
= WmM

[L−1
mM

]H ∈ CNRF,M×NM is the whitened
combiner. Moreover, v̄mB,mM [n] = W̄H

mM
vmB,mM [n] ∈

CNRF,M is the noise after whitening. Using the overall channel
expression in (1) and the simplified channel expression for the
BS-RIS-MS link in (5), the whitened received signal in (13)
can be rewritten as

ȳmB,mM [n] =
√
PtW̄

H
mM

D−1∑
d=0

(
H̃BM,dΓ

H
BM

H
B

+HRM,dΩ̄
(mB)

HBR

)
FmB

smB
[n− d] + v̄mB,mM

[n],

(14)
where the received signal for the BS-MS and the BS-RIS-
MS links can be separated as ȳmB,mM

[n] = ȳBM
mB,mM

[n] +
ȳRM
mB,mM

[n]+ v̄mB,mM [n]. The noiseless received signals over
the BS-MS and the BS-RIS-MS channels are denoted by
ȳBM
mB,mM

[n] ∈ CNRF,M and ȳRM
mB,mM

[n] ∈ CNRF,M , respec-
tively. By defining the equivalent precoder for the BS-MS link
as F

′

mB
= ΓH

BM
H
BFmB

∈ CNB×NRF,B and for the BS-RIS-MS
link as F

′′

mB
= Ω̄

(mB)
HBRFmB ∈ CNR×NRF,B , the noiseless

received signals over the two links can be written as

ȳBM
mB,mM

[n] =
√
PtW̄

H
mM

D−1∑
d=0

H̃BM,dF
′

mB
smB

[n− d], (15)

ȳRM
mB,mM

[n] =
√
PtW̄

H
mM

D−1∑
d=0

HRM,dF
′′

mB
smB

[n− d]. (16)

If we substitute the sparse representations of the BS-MS and
the RIS-MS channels in (9) and (12) into the expressions
above, we can rewrite them as

ȳBM
mB,mM

[n]=
√
Pt

∑
i∈IBM

[W̄mM
]Hi4,:[F

′

mB
]i2NB,y+i3,:smB

[n− i1]

×
∑

j∈JBM

ND=4∏
k=1

[ΨBM,k]ik,jk [CBM]j,

(17)

ȳRM
mB,mM

[n]=
√
Pt

∑
i∈IRM

[W̄mM ]Hi4,:[F
′′

mB
]i2NR,y+i3,:smB [n− i1]

×
∑

j∈JRM

ND=4∏
k=1

[ΨRM,k]ik,jk [CRM]j.

(18)
To build the overall observation matrix, we need to con-
sider all the time instances during training. Hence, we de-
fine the observation for a given training configuration as
YmB,mM

= [ȳmB,mM
[1], · · · , ȳmB,mM

[N ]]T ∈ CN×NRF,M .

The matrices YBM
mB,mM

,YRM
mB,mM

,VmB,mM
∈ CN×NRF,M can

be defined by using a similar form. Furthermore, we can
group all the measurements in a single observation matrix
Y ∈ CMBN×MMNRF,M as

Y =

 Y1,1 · · · Y1,MM

...
. . .

...
YMB,1 · · · YMB,MM

 . (19)

We can construct YBM,YRM,V ∈ CMBN×MMNRF,M by
following the same steps. Finally, we vectorize all matrices
as y = vec(Y),yBM = vec(YBM),yRM = vec(YRM),v =
vec(V) ∈ CMMNRF,MMBN . By using the representations in
(17) and (18), yBM and yRM can be written as

yBM =
∑

i∈IBM

∑
j∈JBM

[ΦBM]:,i

(
ND=4∏
k=1

[ΨBM,k]ik,jk

)
[CBM]j,

(20)

yRM =
∑

i∈IRM

∑
j∈JRM

[ΦRM]:,i

(
ND=4∏
k=1

[ΨRM,k]ik,jk

)
[CRM]j,

(21)
where the entries of the BS-MS and the RIS-MS measurement
tensors, i.e., ΦBM ∈ CMMNRF,MMBN×Ns

BM,1×···×Ns
BM,ND and

ΦRM ∈ CMMNRF,MMBN×Ns
RM,1×···×Ns

RM,ND , are defined as

[ΦBM]mMNRF,MMBN+nRF,MMBN+mBN+n,i

=
√
Pt[W̄mM

]∗i4,nRF,M
[F

′

mB
]i2NB,y+i3,:smB

[n− i1], (22)

[ΦRM]mMNRF,MMBN+nRF,MMBN+mBN+n,i

=
√
Pt[W̄mM ]∗i4,nRF,M

[F
′′

mB
]i2NR,y+i3,:smB [n− i1] (23)

for n = 1, . . . , N , nRF,M = 1, . . . , NRF,M, mM = 1, . . . ,MM

and mB = 1, . . . ,MB. The goal is to simultaneously estimate
the BS-MS and the RIS-MS channels by solving the mini-
mization problem that is defined as

min
CBM,CRM

∥∥∥∥∥y −
( ∑

i∈IBM,
j∈JBM

[ΦBM]:,i

ND=4∏
k=1

[ΨBM,k]ik,jk [CBM]j

+
∑

i∈IRM,
j∈JRM

[ΦRM]:,i

ND=4∏
k=1

[ΨRM,k]ik,jk [CRM]j

)∥∥∥∥∥
2

. (24)

The MOMP algorithm proposed in [15] aims to solve the
conventional sparse channel estimation problem for a given
BS-MS link with much lower complexity than other greedy so-
lutions. This algorithm is similar to the classical OMP in [68],
in the sense that both algorithms follow a greedy approach
such that the channel paths are found one by one in descending
channel gain order by using matching projections. At each
iteration, the residual vector yres, which is initialized by y, is
updated by subtracting the contribution of the estimated path.
The reason for preferring MOMP over OMP is that it can
operate with large arrays and high-resolution dictionaries at
a lower complexity since it exploits multiple dictionaries. In
contrast, OMP leverages a single larger dictionary constructed
by taking the Kronecker product of all dictionaries [60]. The
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readers are referred to [15] for more details about the MOMP
algorithm.

To estimate the BS-MS and the RIS-MS channels con-
currently, we need to modify the MOMP algorithm, which
is tailored to estimate a single channel such as the BS-MS
channel. Since the BS-MS and the RIS-MS channels have
different transmit configurations and dictionaries, it is possible
to distinguish the paths of different channels and estimate
them simultaneously. To this end, we propose operating with
two sources by independently repeating the projection step
at each iteration for both sources and then selecting the best
matching projection. The proposed approach is summarized
in Algorithm 1. The algorithm can be terminated when a
convergence condition is satisfied or a target number of paths
Nmax are estimated. the BS-MS and the RIS-MS channels
can be reconstructed by substituting the estimated CBM and
CRM tensors at the output of Algorithm 1 into (9) and (12),
respectively. Furthermore, the sets of multi-indices that refer
to the atoms in the dictionaries for the estimated paths are
denoted by CBM and CRM. The directions and the delays of
the estimated paths are found using the dictionaries defined
in (7) and (10). In other words, for the l-th multi-index
jBM,l = (j1BM,l, j

2
BM,l, j

3
BM,l, j

4
BM,l) ∈ CBM, we can recover

the path parameters as τBM,l − t0 = τBM,j1BM,l
, ϕx

BM,l =

ϕ
x

BM,j2BM,l
, ϕy

BM,l = ϕ
y

BM,j3BM,l
and θBM,l = θBM,j4BM,l

.
Then, we can recover the z-axis parameters of the DoDs by
ϕz
BM,l =

√
1− (ϕx

BM,l)
2 − (ϕy

BM,l)
2. The path parameters of

the RIS-MS channel can be recovered by following the same
procedure. Although this algorithm has low computational
complexity, the memory requirements to store the measure-
ment tensors ΦBM and ΦRM become the bottleneck when we
have large arrays, which is the case for RIS-aided mmWave
systems.

C. Reduced Complexity Channel Estimation

To further reduce the complexity of Algorithm 1, instead of
defining separate dictionaries for the DoA, DoD, and delays
for each channel component, we only consider dictionaries
for the DoD and the delay so that the DoA information is
embedded into the equivalent complex gain for each path. Note
that the DoA of each path can be recovered from the resultant
equivalent complex gains. For the compressed sensing prob-
lem, we will use the first ND = 3 dictionaries in (7) and
(10) for the BS-MS and the RIS-MS channels, respectively.
To obtain a sparse representation for the received signal, we
will use the observation matrix in (19). The observation matrix
for the BS-MS channel can be expressed as

YBM =
∑

i∈IBM

∑
j∈JBM

[Φ̄BM]:,i

(
ND=3∏
k=1

[ΨBM,k]ik,jk

)
[C̄BM]j,:,

(25)
where Φ̄BM ∈ CMBN×Ns

BM,1×···×Ns
BM,ND is the measure-

ment tensor. Moreover, the tensor that captures the channel
gain and the DoA information of the BS-MS channel is
denoted by C̄BM ∈ CNa

BM,1×...Na
BM,ND

×MMNRF,M . For the
three dictionaries, the multi-index variables are defined as
i ∈ IBM = {(i1, i2, i3), ik = 1, . . . , N s

BM,k} and j ∈ JBM =

Algorithm 1 MOMP-based Channel Estimation
Input: y, ΦBM, ΦRM, ΨBM,k, ΨRM,k for k = 1, . . . , ND

Initialize: yres = y, CBM = ∅, CRM = ∅, iteration t = 0
1: while not converged do
2: Estimate jBM and αBM by using only the BS-MS

projections for the MOMP problem
3: Estimate jRM and αRM by using only the RIS-MS

projections for the MOMP problem
4: if |αBM|2 > |α2

RM| then
5: CBM ← CBM ∪ jBM

6: [CBM]jBM
← αBM

7: Update yres by subtracting the path {jBM, αBM}
8: else
9: CRM ← CRM ∪ jRM

10: [CRM]jRM ← αRM

11: Update yres by subtracting the path {jRM, αRM}
12: end if
13: t← t+ 1
14: if t = Nmax then
15: Terminate the algorithm
16: end if
17: end while
Output: CBM, CRM, CBM, CRM

{(j1, j2, j3), jk = 1, . . . , Na
BM,k}. On the other hand, the

observation matrix for the RIS-MS channel is written as

YRM =
∑

i∈IRM

∑
j∈JRM

[Φ̄RM]:,i

(
3∏

k=1

[ΨRM,k]ik,jk

)
[C̄RM]j,:,

(26)
where Φ̄RM ∈ CMBN×Ns

RM,1×···×Ns
RM,ND is the sensing

matrix corresponding to the RIS-MS link and C̄RM ∈
CNa

RM,1×...Na
RM,ND

×MMNRF,M contains the RIS-MS channel
coefficients. The multi-index variables are defined as i ∈
IRM = {(i1, i2, i3), ik = 1, . . . , N s

RM,k} and j ∈ JRM =
{(j1, j2, j3), jk = 1, . . . , Na

RM,k}. With the first three dic-
tionaries given in (7) and (10), we can express C̄BM and
C̄RM with the BS-MS and the RIS-MS channel coefficients
including information about the path complex gains and the
DoA responses as

[C̄BM]j,: =

 βT
BM,l if

τBM,l = τBM,j1 ,

ϕx
BM,l = ϕ

x

BM,j2 ,

ϕy
BM,l = ϕ

y

BM,j3 ,

0T otherwise,

(27)

[C̄RM]j,: =

 βT
RM,q if

τRM,q = τRM,j1 ,

ϕx
RM,q = ϕ

x

RM,j2 ,

ϕy
RM,q = ϕ

y

RM,j3 ,

0T otherwise.

(28)

for the channel coefficients denoted by βBM,l,βRM,q ∈
CMMNRF,M whose entries are given as

[βBM,l]mMNRF,M+nRF,M
= αBM,l[W̄mM

]H:,nRF,M
ãM(θBM,l),

(29)
[βRM,q]mMNRF,M+nRF,M

= α̃RM,q[W̄mM ]H:,nRF,M
ãM(θRM,q)

(30)
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for nRF,M = 1, . . . , NRF,M and mM = 1, . . . ,MM. The
entries of the tensors Φ̄BM and Φ̄RM satisfying the models
in (25) and (26) to reconstruct the received signal are given
as

[Φ̄BM]mBN+n,i =
√
Pt[F

′

mB
]i2Ny

B+i3,:smB
[n− i1], (31)

[Φ̄RM]mBN+n,i =
√
Pt[F

′′

mB
]i2Ny

R+i3,:smB
[n− i1] (32)

for n = 1, . . . , N and mB = 1, . . . ,MB. With all these
definitions, we can write the overall received signal as Y =
YBM +YRM +V. Then, the channel estimation problem is
defined as

min
C̄BM,C̄RM

∥∥∥∥∥Y −
( ∑

i∈IBM,
j∈JBM

[Φ̄BM]:,i

ND=3∏
k=1

[ΨBM,k]ik,jk [C̄BM]j,:

+
∑

i∈IRM,
j∈JRM

[Φ̄RM]:,i

ND=3∏
k=1

[ΨRM,k]ik,jk [C̄RM]j,:

)∥∥∥∥∥
2

F

,

(33)
similar to the previously defined problem in (24). The MOMP
algorithm can solve this problem by following the approach
introduced in Algorithm 1. The output of the algorithm pro-
vides estimates of the DoDs and the delays of the paths.
Furthermore, the MOMP algorithm estimates the coefficient
vectors defined in (27) and (28). Using the expressions given
in (29) and (30), the coefficient vectors can be written as

βBM,l = αBM,lW̄
HãM(θBM,l), (34)

βRM,q = α̃RM,qW̄
HãM(θRM,q), (35)

where W̄ = [W̄1, . . . ,W̄MM
] ∈ CNM×MMNRF,M . In the rest

of the section, we introduce the steps to estimate DoAs and
the complex gains of the BS-MS channel paths, while the
same steps apply to the RIS-MS channel paths. The estimated
coefficient vector for the l-th path of the BS-MS channel
zBM,l ∈ CMMNRF,M can be expressed as

zBM,l = αBM,lW̄
HãM(θBM,l) + nBM,l, (36)

where nBM,l ∈ CMMNRF,M is the estimation noise. Therefore,
the estimate of the DoA can be found by using the estimate
of βBM,l as

θ̂BM,l = argmax
θ

zHBM,lW̄
H(W̄W̄H)−1ãM(θ), (37)

which is a structured search problem that can be solved using a
discrete dictionary for the DoA, i.e., ΨBM,4 as in the previous
section. Then, the channel gain can be recovered by using
zBM,l, W̄ and θ̂BM,l as

α̂BM,l =
ãHM(θ̂BM,l)W̄zBM,l

∥W̄HãM(θ̂BM,l)∥2
. (38)

All the channel parameters in (2) are recovered by follow-
ing the described two-stage procedure. The DoAs and the
channel gains of the RIS-MS channel can be estimated by
following the same steps for constructing zRM,q ∈ CMMNRF,M

and following the provided solution. The described channel
estimation algorithm works with given hardware impairments

at the MS, which are not known at the beginning of the initial
access stage. That is, the exact expressions for the atoms
of the dictionaries ΨBM,4 and ΨRM,4 are not known. The
following section will introduce a dictionary learning approach
to estimate the channel with the described algorithm while
learning the hardware impairments.

D. Complexity Analysis

The complexity order of the MOMP algorithm is computed
in [15]. However, since we modify the MOMP algorithm
in this work, we calculate the complexity of the proposed
algorithm and also compute the complexity of the proposed
approach if OMP is used instead of MOMP. Assuming that
NBM,p and NRM,p are the number of estimated paths for
the BS-MS and the RIS-MS channels, the computational
complexity of the reduced complexity version of the MOMP
algorithm is given as

O

(
(Niter + 1)(MBN +MMNRF,M) (NBM,p +NRM,p)

×

[(
ND=3∑
k=1

Na
BM,k

)
ND=3∏
k=1

N s
BM,k

+

(
ND=3∑
k=1

Na
RM,k

)
ND=3∏
k=1

N s
RM,k

])
, (39)

where Niter is the number of inner iterations [15]. The sizes
of the atoms for the BS-MS channel are given as N s

BM,1 = D,
N s

BM,2 = NB,x, and N s
BM,3 = NB,y with corresponding

number of atoms Na
BM,1, Na

BM,2, and Na
BM,3, respectively.

Similarly, the sizes of the atoms for the RIS-MS channel are
given as N s

RM,1 = D, N s
RM,2 = NR,x, and N s

RM,3 = NR,y

with corresponding number of atoms Na
RM,1, Na

RM,2, and
Na

RM,3, respectively. If OMP algorithm is used instead of
MOMP, the terms

∑ND=3
k=1 Na

BM,k and
∑ND=3

k=1 Na
RM,k in (39)

would be replaced by
∏ND=3

k=1 Na
BM,k and

∏ND=3
k=1 Na

RM,k, and
the number of iterations Niter would be zero. Considering
that we would like to utilize very high-resolution dictionaries,
i.e., large Na

BM,k and Na
RM,k, the complexity of the OMP

algorithm is extremely prohibitive, and large arrays with high-
resolution dictionaries cannot be supported.

The computational complexity of the DoA recovery stage
given in (37) is low compared to the channel estimation stage.
The pseudo-inverse of the matrix W̄ can be calculated once
with a computational complexity of O((MMNRF,M)2NM),
and the search over the angular grid would result in a
complexity of O(MMNRF,M(NBM,pN

a
BM,4+NRM,pN

a
RM,4)).

Thus, the overall complexity of the DoA recovery stage can be
expressed as O(MMNRF,M(MMNRF,MNM+NBM,pN

a
BM,4+

NRM,pN
a
RM,4)). Since this complexity order is negligible,

the overall computational complexity order of the proposed
algorithm can be simply expressed by (39).

IV. DICTIONARY LEARNING

The channel parameters are estimated using the procedure
described in Section III exploiting given dictionaries. However,
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the dictionaries related to the DoAs, i.e., ΨBM,4 and ΨRM,4,
include the impairments of the array at the MS. If these impair-
ments are not known, the channel estimation stage will provide
inaccurate results. To overcome this limitation, we leverage a
dictionary learning approach to update the dictionary related
to the DoAs. Without loss of generality, we use the same
dictionary for the BS-MS and the RIS-MS channels, denoted
by ΨM = ΨBM,4 = ΨRM,4 ∈ CNM×GM , where GM is
the number of atoms. Let us express the estimated coefficient
vectors of the BS-MS and the RIS-MS channel paths in terms
of the dictionary ΨM as

zBM,l = W̄HΨMxBM,l + nBM,l, (40)

zRM,q = W̄HΨMxRM,q + nRM,q, (41)

where xBM,l ∈ CGM and xRM,q ∈ CGM are 1-sparse vectors
with the only non-zero entries αBM,l and α̃RM,q , respectively.
The channel estimation problem for the l-th path of the BS-MS
channel given a sparsifying dictionary is

min
ΨM,xBM,l

∥∥zBM,l − W̄HΨMxBM,l

∥∥2
2

subject to ∥xBM,l∥0 = 1,

∥[ΨM]:,j∥2 = 1, j = 1, . . . , GM,

(42)

where the l0-norm constraint ensures that the vector xBM,l

has only one non-zero entry. The same problem can be
constructed for the paths of the RIS-MS channel. To formulate
the joint sparse recovery and dictionary learning problem
when the dictionary is unknown, we collect the observations
corresponding to all paths of the BS-MS and the RIS-MS
channels as Z = W̄HΨMX+N where

Z = [zBM,1, · · · , zBM,NBM,p
, zRM,1, · · · , zBM,NRM,p

],

X = [xBM,1, · · · ,xBM,NBM,p
,xRM,1, · · · ,xBM,NRM,p

],

N = [nBM,1, · · · ,nBM,NBM,p
,nRM,1, · · · ,nBM,NRM,p

],
(43)

with dimensions Z ∈ CMMNRF,M×(NBM,p+NRM,p), X ∈
CGM×(NBM,p+NRM,p) and N ∈ CMMNRF,M×(NBM,p+NRM,p),
respectively. In addition to exploiting the observations from
different paths, we can also use the measurements obtained
at different MS locations, as proposed in [54]. The goal is to
increase the number of different sparse patterns, a common
consideration in the dictionary learning literature. Let the
number of different MS locations be denoted by Nloc. The
estimated coefficient matrix for the i-th MS location can be
represented by Zi, i = 1, . . . , Nloc. Then, the observations for
all the MS locations can be collected as Z̄ = W̄HΨMX̄+ N̄
where

Z̄ = [Zi, · · · ,ZNloc
] ∈ CMMNRF,M×Nloc(NBM,p+NRM,p),

X̄ = [Xi, · · · ,XNloc
] ∈ CGM×Nloc(NBM,p+NRM,p),

N̄ = [Ni, · · · ,NNloc
] ∈ CMMNRF,M×Nloc(NBM,p+NRM,p).

(44)

Finally, we can incorporate a denoising stage to combat the
low signal-to-noise ratio (SNR) conditions of the initial access
stage at mmWave bands. Let us express the denoised version
of Z̄ by Q, such that Z̄ = Q + N̄′ = W̄HΨMX̄ + N̄,
where N̄′ shows the mismatch between the denoised matrix

Algorithm 2 Dictionary Learning
Input: Z̄, W̄, w
Initialize: ΦM with MMΓM = INM

1: while not converged do
2: Find each xBM,l and xRM,q by solving (37) and (38)
3: Update the dictionary ΨM = [W̄H]†QX̄H(X̄X̄H)−1

4: Denoise observation Q = (1+w)−1(wZ̄+W̄HΨMX̄)
5: end while

Output: X̄, ΦM

and W̄HΨMX̄. The denoising operation can be embedded into
the problem by including a regularization term

∥∥Z̄−Q
∥∥2
F

as

min
ΨM,X̄,Q

∥∥Q− W̄HΨMX̄
∥∥2
F
+ w

∥∥Z̄−Q
∥∥2
F

subject to
∥∥xi

BM,l

∥∥
0
= 1, ∀l, i,

∥∥xi
RM,q

∥∥
0
= 1, ∀q, i,

∥[ΨM]:,j∥2 = 1, j = 1, . . . , GM,

(45)

where w is the regularization constant. We follow the com-
bined dictionary learning solution given in [54]. The objective
function of the given problem is convex for the individual
optimization variables. However, it is not jointly convex with
all the variables. Therefore, the problem can be solved with
an alternating minimization approach with three sub-problems,
where each sub-problem minimizes the objective function for
one variable while the others are fixed. Since we assume all
the paths are independent, the sparse recovery problem can be
solved, as explained in the previous section. The dictionary
update is achieved with the method of optimal directions
as ΨM = [W̄H]†QX̄H(X̄X̄H)−1 [69]. The denoising stage
is implemented with the least-squares (LS) solution Q =
(1+w)−1(wZ̄+W̄HΨMX̄). The resulting procedure is given
in Algorithm 2.

V. LOCALIZATION ALGORITHMS

The direction and the delay parameters of the paths belong-
ing to the BS-MS and the RIS-MS channels can be estimated
using the sparse channel estimation method explained in
previous sections. Any 3D localization algorithm that utilizes
these parameters can be adopted to estimate the locations
of the MSs as a byproduct of channel estimation. However,
unlike most mmWave localization schemes, we have additional
paths thanks to the aid of the RIS. We consider two different
geometric approaches for localization depending on whether
the LoS paths of the BS-MS and the RIS-MS channels exist.
The first approach applies to the classical BS-MS setting
without a RIS and to the case with a RIS when only the RIS-
MS link is available, i.e., the BS-MS link is obstructed. As we
consider indoor localization, our derivations exploit beneficial
properties of indoor propagation environments to jointly solve
for the unknown clock offset and the localization problem in
an original manner. The second approach applies to the case
where the LoS paths of both the BS-MS and the RIS-MS
channels are available.
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A. Localization with a Single LoS Path
This approach applies to the case where one LoS path

is available, i.e., one of the BS-MS or RIS-MS channels
is obstructed while the LoS path for the other channel is
available. We begin by describing the localization algorithm
by using the BS-MS link. Let b ∈ R3 and m ∈ R3 be the
locations of the BS and the MS, respectively, and c denote the
speed of light. Then, the MS location can be expressed as

m = b+ cτBM,1ϕBM,1. (46)

The same equation can be written with the help of the
DoA θBM,1. Unfortunately, the channel estimation algorithm
provides only relative delays or time difference of arrival
(TDoA) for the paths (i.e., ∆τBM,l = τBM,l − t0) due
to the unknown clock offset t0. We will use the relative
delays and a fundamental assumption of the considered indoor
localization scenario, where the reflection surfaces are either
horizontal or vertical, to solve this problem [14], [15]. This
assumption lets us classify the NLoS reflections as wall or
floor/ceiling reflections. As a preliminary for the classification
algorithm, we need to recover the azimuth and elevation
angles from the direction vectors, which can be achieved by
θaz = arg(θx + jθy) and θel = arcsin(θz) for a direction
vector θ.

Let us classify the paths as LoS, first-order wall, or
floor/ceiling reflections. Firstly, if the path is LoS, the elevation
and azimuth angles should satisfy θel

BM,l = −ϕel
BM,l and

θaz
BM,l = π − ϕaz

BM,l, respectively. Now, we can classify the
NLoS paths by using the properties of the indoor environment
considered in this paper. If an NLoS path is reflected by a
wall, the vertical distance traveled by the LoS and the NLoS
path is the same, satisfying

ϕz
BM,l(∆τBM,l + t0) = ϕz

BM,1(∆τBM,1 + t0). (47)

On the other hand, if it is a floor/ceiling reflection, the azimuth
angle of the path should be equal to the azimuth angle of the
LoS path. For such paths, a floor/ceiling path travels the same
distance in the horizontal plane as the LoS path, satisfying√

(ϕx
BM,l)

2 + (ϕy
BM,l)

2(∆τBM,l + t0)

=
√

(ϕx
BM,1)

2 + (ϕy
BM,1)

2(∆τBM,1 + t0). (48)

Paths that do not satisfy the floor/ceiling or wall conditions are
discarded from the path pool. Additional constraints exist for
the path classification if both the DoA and the DoD are avail-
able. Floor/ceiling reflections satisfy θelBM,l = ϕel

BM,l, whereas
wall reflections satisfy θelBM,l = −ϕel

BM,l. After classifying the
NLoS paths, the estimate t̂0 is found by using the set of
equations given by (47) and (48) [15]. Then the true τBM,1

is computed, and the MS position is estimated using (46).
While we described the localization for the BS-MS link,

the same approach also works for the case where the BS-MS
link is obstructed, and a LoS path exists for the RIS-MS link.
Let the position of the RIS be denoted by r ∈ R3. Then, we
can obtain an estimate of the MS position with the aid of the
RIS, if we replace b, τBM,l, ϕBM,l and θBM,l with r, τRM,q ,
ϕRM,q and θRM,q , respectively, in the equations above.

Algorithm 3 Proposed Localization Scheme
Input: CBM, CRM

1: Find the angular and delay parameters from CBM and CRM

2: Classify the paths in CBM and CRM

3: if LoS paths exist for both BS-MS and RIS-MS then
4: Solve (49) to find t̂0
5: else
6: if LoS path exists for only BS-MS then
7: Find t̂0 using the paths CBM in (47) and (48)
8: else
9: Find t̂0 using the paths CRM in (47) and (48)

10: end if
11: end if
12: Find m̂ by using t̂0 in the suitable equation in (49)
Output: m̂

B. Localization with Two LoS Paths

Now, we assume that LoS paths exist for both the BS-MS
and the RIS-MS links. In this case, it is possible to find the
location of the MS by using just the two LoS paths; the NLoS
paths are not required, which means there is no dependency
on the properties of the indoor environment. The key idea is
that the MS position computed from (46) or the RIS-MS is
the same, which leads to an equality expressed as

m = b+ c(∆τBM,1 + t0)ϕBM,1

= r+ c(∆τRM,1 + t0)ϕRM,1.
(49)

Using the estimated TDoAs, (49) is a simple linear equation
with the unknown t0, which can be solved accordingly. Then,
the estimate of t0 can be substituted in either of the equations
to find the MS location. It is meaningful to use the LoS path
that has a higher gain since it could possibly provide more
accurate estimates. Note that (49) is constructed using only
the DoDs and the delays, while it can also be constructed
with DoAs and delays. The selection depends on the size of
the array and the number of training sequences devoted to the
estimation of the DoAs and the DoDs. The overall localization
procedure is summarized in Algorithm 3.

VI. NUMERICAL RESULTS

We consider a ray tracing simulation implemented with
Wireless InSite software for channel generation in an indoor
factory environment, shown in Fig. 2. The generated channel
dataset is available in [65]. The BS is located on the ceiling
while the RIS is mounted on the wall at a height of rz = 5.5m.
The location of the MS is randomly generated 100 times at a
height of mz = 1.5m. Considering the communication system,
the center frequency is set to 60GHz while the bandwidth is
1GHz. The transmit power is set to Pt = 20dBm, whereas
the noise variance is σ2 = −84dBm, which is the thermal
noise at 15◦C with the given bandwidth. The pulse shaping
function is selected as p(t) = sinc(t). The delay tap length
and the number of training symbols are set to D = 64 and
N = 64, respectively. Training symbols are selected as the
rows of the 64 element Hadamard matrix. the BS and the
MS are equipped with 8 × 8 UPA with 8 RF chains and
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RIS

Fig. 2. Indoor factory environment in Wireless-Insite. The BS is located on
the ceiling, while the RIS is mounted on the wall. The RIS is represented by
the red hemisphere on the left wall.

4 × 4 UPA with 4 RF chains, respectively. For the RIS, two
different architectures with 16× 16 and 32× 32 elements are
considered. The mutual coupling matrix and the gain/phase
errors are generated by using the parameters in [53], [54],
such that the off-diagonals of the mutual coupling matrix are
randomly selected from a uniform distribution in the range
[0.01, 0.4]. Furthermore, the gains are modeled as normal
variables with distribution N (1, (0.05)2), and the phase errors
are modeled as N (0, (π/9)2). Mutual coupling between two
antennas is highly dependent on the circuit. Therefore, using
random entries for the mutual coupling matrix covers a wide
range of scenarios, including challenging ones. Consequently,
we use random mutual coupling for the results unless specified
otherwise.

Regarding the channel estimation algorithm, the dictionaries
have a high resolution such that the ratio of the number of
atoms to the size of the atoms in each dictionary is set to
128. Furthermore, the number of training frames, i.e., pilot
overhead, for each setting is given in Table I. As the number
of elements at the RIS increases, more training frames are
required. Therefore, the number of training transmit configu-
rations MB is adjusted according to the number of antennas
at the BS and the number of elements at the RIS. Note that
the proposed approach is not optimized for reducing the pilot
overhead, which would require the optimization of the training
precoders, RIS phases, and combiners. We consider three
different cases, namely, only the BS-MS channel is available,
only the RIS-MS channel is available (i.e., the BS-MS link is
blocked), and both channels are available. We assume that
the link availability (or blockage) information is provided
by an oracle. Although determining link availability is an
interesting subject, it is beyond the scope of this work. Similar
assumptions are used in many channel estimation works where
the BS-MS link is assumed to be blocked [27], [28], [30],
[32]–[37]. Moreover, the training combiners, which are the
same for all cases, are generated using the Kronecker product
of the DFT matrices for the x and y directions of the UPA at
the MS. The entries of the precoders are selected with random
phases for the case with only the BS-MS channel. For the case
with only the RIS-MS channel, the precoders are chosen such

TABLE I
ARRAY ARCHITECTURES AND TRAINING FRAMES

BS MS RIS MB MM Number of frames

8x8 4x4 - 8 4 32
8x8 4x4 16x16 32 4 128
8x8 4x4 32x32 128 4 512

that the columns of the precoders are matched to the DoD
of the known LoS path of the BS-RIS channel, i.e., ϕBR,1.
Finally, half of the precoders are selected with random phases,
and the other half are matched to the LoS path of the BS-RIS
channel for the case where both the BS-MS and the RIS-MS
channels are available.

First, we evaluate the DoD and the DoA estimation accuracy
of the LoS paths of the BS-MS and the RIS-MS channels.
The cumulative distribution functions (CDFs) of the angle
estimation errors are shown in Fig. 3. It is observed that
the DoD estimation error of the RIS-MS channel is much
lower than that of the BS-MS channel. Moreover, the accuracy
increases with the increasing number of RIS elements. On
the other hand, we observe that the DoA estimation error
is high for all cases before the dictionary learning algorithm
is applied. Since we consider ray tracing-based channels and
randomly generated mutual coupling matrices for evaluating
our proposed approach, the errors are more prominent for
specific sets of angles before dictionary learning. Thus, we
observe DoA estimation outage in some cases depending on
the locations of the BS and the MS. After applying the dictio-
nary learning algorithm, the DoA estimation error decreases
significantly. Moreover, we investigate the delay estimation
error. Since the estimated delays include the unknown clock
offset, we evaluate the TDoA estimation error for the path with
the lowest TDoA, i.e., the reflection that travels the shortest
distance. The results, which are given in Fig. 4, show that the
TDoA error is below 6ns for all cases. The maximum ranging
error for the reflected path is 1.8m. It should be noted that the
TDoA error for the BS-MS channel is, in general, smaller than
the TDoA error for the RIS-MS channel for both 16× 16 and
32× 32 RISs. This result is reasonable since BS-MS channel
paths are stronger than other RIS-MS paths.

Furthermore, we investigate the CDFs of the channel es-
timation error and the localization error in Fig. 5. We con-
sider the normalized mean square error (NMSE) to observe
the channel estimation accuracy. The NMSE of the BS-
MS channel estimate can be expressed as

∑
d ∥ĤBM,d −

HBM,d∥2/
∑

d ∥HBM,d∥2, where ĤBM,d is the estimated
channel. Similarly, the NMSE of the RIS-MS channel estimate
can be computed as

∑
d ∥ĤRM,d−HRM,d∥2/

∑
d ∥HRM,d∥2,

where ĤRM,d is the estimated channel. Since the BS-RIS-MS
channel depends on the RIS configuration and we assume that
the LoS path of the BS-RIS channel is strong and known,
showing the NMSE of the RIS-MS channel is sufficient to
assess the channel estimation performance of the channel
through RIS. We observe that the NMSE of the BS-MS
channel is higher than the NMSE of the RIS-MS channel, es-
pecially before the dictionary learning algorithm is applied. A
similar observation can be made for the localization accuracy.



13

(a) CDF of the DoD estimation error with only BS-MS or RIS-MS channel.

(b) CDF of the DoA estimation error with only BS-MS or RIS-MS channel.

Fig. 3. CDF of the angle estimation error of the LoS path of either the BS-
MS or the RIS-MS channel at Pt = 20dBm.

Fig. 4. CDF of the TDoA estimation error for the path with the lowest TDoA
of either the BS-MS or the RIS-MS channel at Pt = 20dBm.

Note that the localization accuracy before dictionary learning
for the cases where only the RIS-MS channel exists suffer from
outage. The NLoS paths of the RIS-MS channel are weak due
to the double path loss; thus, the lack of knowledge of the MS
hardware impairments significantly affects the DoA estimation
error. Since the localization method relies on a system of
equations built using the information of the NLoS paths, the
erroneous information results in low accuracy or no solution in
some cases. One crucial observation is that localization error
is significantly lower when the LoS paths are available for
both channels. The main reason is that this method does not
rely on NLoS paths. Consequently, the benefit of the RISs is

(a) CDF of the channel estimation NMSE.

(b) CDF of the localization error.

Fig. 5. CDF of the channel estimation NMSE and the localization error at
Pt = 20dBm.

more significant if both LoS paths are available. Specifically,
localization error below 10cm is achieved for 80% of the
cases. Additionally, we investigate the channel estimation and
the localization error under a realistic mutual coupling effect.
To that end, we generate the mutual impedances between the
antennas using the analytical derivations and parameters in
[51], where the antennas and the RIS elements are assumed
to be cylindrical thin wires of perfectly conducting material.
The obtained results with a 16×16 RIS are given in Fig. 6. It
can be seen that the channel estimation NMSE for the BS-MS
channel is improved compared to the random case, especially
before the dictionary learning. For localization, we observe
similar accuracy levels attained for the random case. That is,
the localization error with the RIS after dictionary learning
is lower than that with the BS. These results confirm that the
proposed algorithm can operate with arbitrary mutual coupling
matrices.

Finally, we analyze the dependency of the channel esti-
mation and the localization accuracy on the transmit power
in Fig. 7. We show the mean NMSE and the localization
error for different cases and percentiles. The x-th percentile
indicates that the first x% of the data points, sorted from
lowest to highest, are used for plotting that curve. The aim of
showing the results with different percentiles is to investigate
the variation of the errors. The results are shown after the
dictionary learning with a RIS of size 16×16. We observe that
the channel estimation NMSE and the localization error with
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(a) CDF of the channel estimation NMSE.

(b) CDF of the localization error.

Fig. 6. CDF of the channel estimation NMSE and the localization error at
Pt = 20dBm with realistic mutual coupling matrices.

only the BS-MS channel are relatively constant even at low
transmit power. In contrast, localization errors of the cases that
utilize the RIS-MS channel are much higher at low transmit
power. The path through the BS-RIS-MS link suffers from
double path loss, which is why the effective SNR of the signals
received through this link is low. Nevertheless, it is observed
that cm-level accuracy can be achieved with the availability
of both the BS-MS and the RIS-MS channels at reasonable
transmit power levels. The localization error can be reduced
even further with larger RISs.

VII. CONCLUSION

We developed a low-complexity compressive channel es-
timation and dictionary learning strategy for a RIS-aided
mmWave system, leveraging the MOMP algorithm. The pro-
posed approach can jointly estimate the BS-MS and the
RIS-MS channels while calibrating the user array with the
assumption of the knowledge of the LoS path of the BS-
RIS channel. We integrated this approach with an indoor
localization strategy that can operate with or without the
RIS. In the case where either the BS-MS or the RIS-MS
channel is available, we made use of the NLoS paths and the
properties of the indoor environment. We generated a set of
realistic indoor channels using ray tracing, and we showed the
significant improvement in localization accuracy that the RIS
deployment can provide, even without perfect synchronization
assumptions. The scenario where the LoS paths of both

(a) Channel estimation NMSE vs transmit power.

(b) Localization error vs transmit power.

Fig. 7. Channel estimation NMSE and the localization error with respect to
transmit power.

the BS-MS and the RIS-MS channels are available enables
extremely high localization accuracy. These results illustrate
the interest in exploiting RISs for sensing purposes, extending
the benefits of this technology to situations where the LoS link
between the BS and the MS is available.
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